(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date (10) International Publication Number
10 January 2002 (10.01.2002) PCT WO 02/03251 A2
(51) International Patent Classification’: GO6F 17/30 (81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
(21) International Application Number: PCT/US01/20817 DE, DK, DM, DZ, EL, ES, F1, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
(22) International Filing Date: 29 June 2001 (29.06.2001) LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,

NO, NZ, PL, PT,RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(25) Filing Language: English
(26) Publication Language: English (84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
(30) Priority Data: patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
60/215,699 29 June 2000 (29.06.2000) US patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,

IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,

(71) Applicant: ALPHABLOX CORPORATION [US/US]; CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

800 Maude Avenue, Mountain View, CA 94043 (US).

Published:
(72) Inventors: WARREN, Christina, E.; 6631 Bubblingwell — without international search report and to be republished
Place, San Jose, CA 95120 (US). JOHNSON, Galt; 65 upon receipt of that report

Crestmont Drive, San Francisco, CA 94131 (US).
For two-letter codes and other abbreviations, refer to the "Guid-
(74) Agents: BUDNITSKAYA, Rimma et al.; Fenwick & West ance Notes on Codes and Abbreviations" appearing at the begin-
LLP, Two Palo Alto Square, Palo Alto, CA 94306 (US). ning of each regular issue of the PCT Gazette.

(54) Title: CACHING SCHEME FOR MULTI-DIMENSIONAL DATA

102 104
User Interface Cube Manager Module
Meta Data } 108 ‘
Query

Compitation Module
xecufion N

— . YPan
Execution Module

Data

"3 N
QUETY ol Fautt Handier
114

100

(57) Abstract: A system, method, and a computer program product for caching multi-dimensional data based on an assumption
of locality of reference. A user sends a query for data. A described compilation module converts the query into a set of cubelet
addresses and canonical addresses. In the described embodiment, if the data corresponding to the cubelet address is found in a data
cache, the data cache returns the cubelet, which may contain the requested data and data for "nearby" cells. The data corresponding
to the canonical addresses is extraced from the returned cubelet. If the data isnot found in a data cache, a fault handler queries a
back-end database for the cubelet identified by the cubelet address. This cubelet includes the requested data and data for "nearby"
g cells. The requested data and the data for "nearby cells" are in the form of values of measure attributes and associated canonical
addresses. The returned cubelet is then cached and the data corresponding to the caonical addresses is extracted.

O 02/03251 A2

WO 02/03251 PCT/US01/20817

CACHING SCHEME FOR MULTI-DIMENSIONAL DATA

Inventor(s)
Christina E. Warren

(Galt Johnson

Related Applications

This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional
Application No. 60/215,699, filed June 29, 2000, and entitled “Caching Scheme for Multi-
Dimensional Data,” which is incorporated by reference herein in its entirety.

Background
Technical Field

The present invention relates generally to memory access and, more specifically, to a
method and system for caching multi-dimensional data.

Background of the Invention

Relational databases usually include a plurality of tables that are searched
(“queried”) using a well-known query language, such as the Structured Query Language
(SQL). Relational databases, however, do not allow a user to selectively extract and view
data from different points of view. To organize and summarize data for efficient analytical
querying, a concept of a cube is used.

A cube contains one or more dimensions and one or more measures. Measures are
central values in a cube that are analyzed, such as sales, profit, costs of goods sold or
inventory count. A cube provides a logical, easily understood mechanism for querying data.
A cube allows a user to extract and view data from different points of view. Dimension
levels are a powerful tool, allowing users to ask questions at a high level and then expand a
dimension hierarchy to reveal more details. Using a drill down/drill up technique a user
may navigate through levels of data ranging from the most summarized (up) to the most
detailed (down).

When a user requests data from one area of a cube, he will probably also be
interested in viewing data that clusters around that area of the cube. To retrieve such data,
however, a number of individual queﬂes need to be submitted to a database. Conventional

1

WO 02/03251 PCT/US01/20817

caching approaches allow for caching each database address and a value corresponding to a
measure attribute. Such an approach works acceptably well with cubes having a small
number of dimensions. However, the number of possible stored measures grows
exponentially in cubes with a large number of dimensions. Therefore querying and caching
each pair—an address and a value corresponding to a measure attribute—results in a large
number of single measure queries against the database.

What is needed is a way to increase the efficiency of data access in a database.

Summary of the Invention

A described embodiment of the present invention provides a system, method, and a
computer program product for caching multi-dimensional data in a data cache. The
described embodiment uses a known a multi-dimensional construct, a cube, to represent the
dimensions of data available to a user. This construct may have one or more dimensions.
When the user submits a query or request for data, the request is converted to a set of
canonical addresses and a set of cubelet addresses corresponding to their location in the
cube. The described embodiment defines a region of related data in a cube to be a cubelet.
A cubelet is a collection of values of a corresponding measure attribute and their associated
canonical addresses. A cubelet address is the unique name for a cubelet that both uniquely
identifies the cubelet, and identifies its location in the cube. A canonical address is the
address of a single cell in the cube, and uniquely identifies one set of measures in the cube.

In a described embodiment, an execution module probes a data cache based on a
cubelet address to determine if that portion of the cube has previously been cached. If so,
the data cache returns the cubelet, which may contain more data than requested in the query.
The execution module then probes the cubelet for the requested data and returns the
requested data to the user. If the cubelet identified by the cubelet address is not found in the
data cache, a fault handler queries a back-end database for data. The database returns a
result set, which includes the requested data and the data for “nearby cells.” The returned
data is stored in the data cache in the form of a cubelet. Different cubelets may represent
different levels of data in the database.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a block diagram illustrating an overall architecture in accordance with a

described embodiment of the present invention.

2

WO 02/03251 o ~ PCT/US01/20817

Fig. 2A illustrates a supported relational schema in accordance with an embodiment
of the present invention.

Fig. 2B illustrates dimension tables joined to a fact table in the embodiment of Fig.
2A.

Fig. 2C shows data in an example of a database conceptualized as a cube and an
associated addressing scheme in accordance with an embodiment of Fig. 2A.

Fig. 3 illustrates a time dimension structure in a meta data structure in accordance
with a described embodiment of the present invention.

Fig. 4 illustrates a location dimension structure in the meta data structure in
accordance with a described embodiment of the present invention.

Figs. 5A-5D are block diagrams of a set of cubelets stored in a data cache in
accordance with a described embodiment of the present invention.

Fig. 6 is a block diagram of the data cache in accordance with a described
embodiment of the present invention.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Fig. 1 is a block diagram illustrating an overall architecture of a system 100 for
caching multi-dimensional data in accordance with a described embodiment of the present
invention. System 100 includes, but is not limited to, a user interface 102, a cube manager
module 104, a meta data structure 106, a compilation module 108, an execution module
110, a data cache 113, a fault handler 114, a database 116, and a plan generator 118.

The cube manager module 104 manages all the resources and provides internal
information to other components. A meta data structure 106 is embedded in the cube
manager module 104. The meta data structure 106 has data for all the dimensions in the
cube, and there is always at least one dimension. The meta data structure 106 is described
in more detail below in connection with Figs. 3 and 4.

The cube manager module 104 receives a query from a user through the user
interface 102 and forwards the query to the compilation module 108. The compilation
module 108 in this embodiment supports a subset of the Multi-Dimensional Expression
Language (MDX) developed by Microsoft. The compilation module 108 includes a parser
(not shown) for processing a string to determine if the query is a valid MDX string. The
parser is written using the product JavaCC, available from MetaMata. The compilation

module 108 further includes the plan generator 118. The plan generator 118 breaks the
3

WO 02/03251 PCT/US01/20817

multi-dimensional query into probes into the multi-dimensional space. The plan generator
118 also computes a set of addresses and generates an execution plan containing these
addresses. The compilation module 108 outputs the execution plan to the execution module
110. The execution module 110 takes the execution plan and executes it against the data
cache 113. The data cache 113 manages the in-memory storage of query results and
represents a two-level hash table. The data cache 113 is described below in more detail in
connection with Fig. 6.

System 100 further includes the database 116 for storing data. It should be noted
that database 116 can be any data store, such as a relational database, multi-dimensional
database, flat file, efc. and can have any number of dimensions and levels. In the preferred
embodiment of the present invention, database 116 is a relational database. System 100
supports a known Star schema in the database 116. System 100 further includes the fault
handler 114 for querying the relational database 116 if the requested data is not present in
the data cache 113.

The following paragraphs show an example database 116 and how data cache 113
operates in conjunction with the database 116.

Fig. 2A illustrates an example of a supported schema 200 in the database 116.
Schema 200, which is an instance of a Star schema, is a data source from which a cube
derives its measures and dimensions. The schema 200 represents a set of tables that store
the measures and their related dimensions. The schema 200 includes the following tables:
Fact table 210, Time table 220, Location table 230, and Product table 240. The Fact table
210 stores the measures and identifiers that relate the measures back to the dimensions.
Each dimension is related via a primary-key/foreign-key relationship to the fact table.
Different levels in a dimension may be denormalized or normalized in this embodiment. In
this example, the levels are all denormalized.

Time table 220 has four columns: time_key, Day, Month and Year. Each row
contains a time_key, which is a value in the Time table 220 that uniquely identifies one row
in that table. Each cube dimension may include a hierarchy of levels to specify the
categorical breakdown available to users. In the Time table 220, Year, Month and Day
represent three different levels in the hierarchy in the time dimension, from the least detailed
to the most detailed. The time dimension hierarchy is discussed in more detail in

connection with Figure 3.

WO 02/03251 PCT/US01/20817

The Location table 230 has three columns: location_key, State and Region. The
location_key uniquely identifies exactly one row in the Location table 230. Each row
contains the state and region each location_key represents. In one embodiment of the
present invention, Location table 230 stores data for CA and NM for the Western Region,
for NY and NH for the Eastern Region, and for IL and OK for the Midwestern Region. In
the Location table 230, Region and State represent two different levels in the hierarchy in
the location dimension, from the least detailed to the most detailed. The Location
dimension hierarchy is discussed in more detail in connection with Fig. 4.

The Product table 240 has three columns: product key, Name, and Manufacturer.
The product_key uniquely identifies one row in the Product table 240. Each row contains
the name and manufacturer each product_key represents. In one embodiment of the present
invention, the Product table 240 stores the following products: Happy Soap and Meditation
Cleanser manufactured by Serene Products (SP). Product table 240 also stores Super
Scruby, Floor Floss, and Carpet Cure manufactured by Clean-Eeez. In the Product table
240, Name and Manufacturer represent two different levels in the hierarchy in the product
dimension, from the most detailed to the least detailed. In the Product table 240 it is
assumed that one product is manufactured by exactly one manufacturer.

The Fact table 210 is the central table in the schema 200. Columns in the Fact table
210 reference the primary keys, time_key, location_key, and prod_key of the related
dimension tables 220, 230, and 240, and it also contains the measures. In the shown Fact
table 210 there is only one measure, Sales. The first row in the Fact table 210 is: time_key =
2, location_key = 6, prod_key = 4, Sales= $2,000. The second row is: time_key = 365,
location_key = 3, prod_key =5, Sales= $1,980. The first row in the Fact table 210 indicates
that on January 2, 1999 (time_key = 2), in Oklahoma (location_key = 6), for Floor Floss
(prod_key = 4) there were sales of $2,000. Similarly, data in the second row indicates that
on December 31, 1999 (time_key = 365) in New York (location_key = 3), for Carpet Cure
(prod_key = 5) there were sales of $1,980.

Thus, the Fact table 210 contains data at the lowest level (Day), but a user may want
to query the data in the Fact table 210 at different levels. For example, the user might be
interested in looking at an aggregation (e.g., sum, average, etc.) of the data by month
instead of looking at all 365 days in the year. Further, the user might be interested in asking
for data aggregated at the Region level. It should be noted that the Fact table 210 may

5

WO 02/03251 PCT/US01/20817

contain any number of rows, and are usually quite large, often running into the billions of
TOWS.

Fig. 2B illustrates dimension tables 220, 230, and 240 joined to the Fact table 210 in
the supported schema 200.

Fig. 2C illustrates an example of data in the database 116 conceptualized as a cube
and an associated hierarchical addressing scheme used to address the cube. The data in the
database 116 derives its source data from schema 200. The cells contain the corresponding
values of measure attributes. There can be any number of measures. Each cell has an
address, called a canonical address, as discussed below. The number of dimensions
determines the number of components in the canonical address. Some cells may have
values, but are shown only for those cells in the foreground for ease of explanation. As
shown in Fig. 2C, cells marked with ‘X’ have no values. Alphanumeric values are the
members of the dimensions. Example members are: Jan, NH, and West. The following
canonical address <Time. 1999. Jan, Loc. Midwest.IL, Measure.*> identifies a cell in which
the value is <5>. A region of related data, called a cubelet, is identified by a cubelet
address. Cubelets and their cubelet addresses are described in more detail below in
connection with Figs. 5A-5D.

Fig. 3 illustrates time dimension structure 300 in the meta data structure 106 of Fig.
1. This data structure is used to convert a query into a set of cubelet addresses and
canonical addresses. The time dimension structure 300 is represented by three classes:
hierarchy, level and member. Hierarchy contains the ordered set of levels and a tree of
dimension members. The time dimension structure 300 has two levels: Year and Month,
and contains the following members:

{ Time,
Time.1999,
Time.2000,
Time.1999.Jan,
Time.1999.Feb,
Time.1999.Mar,
Time.1999.Sept,
Time.1999.Nov,
Time.1999.Dec,

WO 02/03251 PCT/US01/20817

Time.2000. Jan,
Time.2000. Mar,
Time.2000. July,
Time.2000. Oct,
Time.2000. Dec

}

Levels represent a set of members in a dimension structure such that all members of
the set are at the same distance from a root of the structure. The root is the top-most level in
a hierarchy. The root of the dimension structure 300 is defined by the name of the
Hierarchy, Time. A level has a set of pointers to the members at its level. For example,
level ‘Month’ has a set of pointers (not shown) to the following members: ‘1999.Jan’,
*1999.Feb’, ‘1999.Mar’, ‘1999.Sept’, ‘1999.Nov’, and ‘1999.Dec.” Similarly, ‘Month’
maintains a set of pointers (not shown) to the following members: ‘2000.Jan’, ‘2000.Mar’,
2000.Jul’, ©2000.0ct’, and ‘2000.Dec.” The parent of a member is located at the level
immediately above of that member in a dimension structure. A child of a member is
located at a level below of that member. Members of the same parent are siblings. Each
member has pointers to its parent, level, next sibling and first child. For example, member
1999.Jan’ maintains a pointer to its parent, ‘Time.1999’, to its level “‘Month’ (pointer is not
shown), to its next sibling ‘1999.Feb’ an(i to its first child (not shown): *Time.1999.Jan 1°.

Member ‘Time.1999.Jan’ is a sibling of the member ‘Time.1999.Sept’ because they
are children of the same parent, ‘Time.1999.” Member ‘Time.1999.Jan’, however, is not a
sibling of members ‘Time.2000.Jan’, ‘Time.2000.Mar’, etc. because they have different
parents, ‘Time.1999’ and ‘Time.2000.’

Fig. 4 illustrates the Location dimension structure 400 stored in the meta data
structure 106 of Fig. 1. This data structure is used to convert a query into a set of cubelet
addresses and canonical addresses. The location dimension structure 400 has two levels:
Country and Region. Location dimension structure 400 contains the following members:

{

Loc,

Loc. US,

Loc. US.West,

WO 02/03251 PCT/US01/20817

Loc. US.East,

Loc. US.Midwest,

Loc. US.West.CA,

Loc. US.West.NM,

Loc. US.East.NY,

Loc. US.East.NH,

Loc. US.Midwest.IL,

Loc. US.Midwest.OK

¥

The root of the member tree is defined by the name of the Hierarchy, Location.
Level ‘Region’ has a pointer (not shown) to East, West and Midwest. Each member in the
dimension structure 400 refers to its parent, level, next sibling and first child. For example,
‘Midwest’ has a pointer to its parent ‘US’, its level ‘Region’ (pointer is not shown), its next
sibling ‘Bast’ (pointer is not shown), and its first child ‘IL’. Members ‘East’ and ‘West’ are
siblings of ‘Midwest’. Members “West.CA’ and ‘West.NM’ are siblings and maintain
pointers to their parent ‘Loc.West.” Similarly, ‘East NY’ and ‘East.NM’ are siblings and
maintain pointers to their parent Loc.East. Members ‘Loc.Midwest.IL’ and
‘Loc.Midwest.OK” are siblings and maintain pointers to their parent ‘Loc.Midwest.”

In a preferred embodiment, the meta data structure 106 also stores a Product
dimension structure (not shown in the figures). Product dimension structure includes the
following members:

{

Product,

Product. Clean-Eeze,

Product.Serene Products,

Product. Clean-Eeze.SuperScruby,

Product. Clean-Eeze.Floor Floss,

Product. Clean-Eeze.Carpet Cure,

Product. Serene Products.Happy Soap,

Product. Serene Products.Meditation Cleanser

}

WO 02/03251 PCT/US01/20817

It should be noted that the meta data structure 106 may store any number of
dimension structures reflecting a logical organization of the multi-dimensional, multi-level
database 116.

Referring again to Fig. 1, the following example illustrates a method performed by
the embodiment of Fig. 1. The cube manager module 104 receives a an MDX query from a
user to fetch data. As an illustrative example, a request is in the form of the following MDX
query:

Select {CA, OK} on columns,

{1999, 2000} on rows

From cube

Where (Measures.Sales, Product.Serene Products.Happy Soap).

A ‘SELECT’ clause is used to select the members to be returned, referred to as an
axis specifications. The “WHERE?’ clause is used to restrict the returned data to otherwise
unrestricted dimensions, referred to as slicer dimensions. Generally, there are multiple
members from different dimensions in axis specifications. Thus, in the sample query, ‘CA’,
‘0K, 1999, and ‘2000 appear in axis specifications. It should be noted that if a member
appears in the axis specifications, that member and its sibling members are part of the same
cubelet containing the query result. In contrast, the “WHERE’ clause slicers are single
members. In the sample query, “‘Happy Soap’ appears in the slicer specification. Ifa
member appears in the slicer, siblings of that member are not part of the cubelet containing
the query result.

The cube manager module 104 forwards the query to the compilation module 108.
The output of the parsing phase is a parse tree representing the query. Semantic validation
of the parse tree yields a list of all values that will appear on each of the axes. The semantic
validation phase uses the dimension structures 300 and 400 and the Product dimension
structure to resolve possibly qualified member names. The result of a resolution is the name
of a dimension (i.e., the root of the dimensional hierarchy), a member within a hierarchy, or
the name of a level. . Level names may only appear as the argument to an enumeration
function. For example, the specification ‘Location.Region.members’ yields all the members

at the Region level, i.e. “West’, ‘Bast’ and ‘Midwest’.

WO 02/03251 PCT/US01/20817

In an alternative embodiment, the compilation module 108 accepts a template query,
which defines exactly which members from which dimensions are requested. The
compilation module 108 validates the members in the template query.

The output of this step is a grid with resultant axes (Loc.West.CA,
Loc.Midwest.OK), (Time.1999, Time.2000) and slicers (Measure.Sales, Happy Soap) and
the location of the requested data in the result set ((0,0), (0,1), (1,0), (1,1)).

Table 1. Grid generated by the compilation module

Period Loc.West.CA Loc.Midwest.OK

Time.1999 Measure.Sales, Happy Soap | Measure.Sales, Happy Soap
(0,0 (0,1)

Time. 2000 Measure.Sales, Happy Soap | Measure.Sales, Happy Soap
(1,0) (1,1)

The plan generator 118 computes the cross join of the values on axes and slicers,
producing the following set (A) of canonical addresses and their location in the final result
set (‘SP’ is an abbreviation for ‘Serene Products’):

<Loc.West.CA, Time.1999, Product.SP.Happy Soap, Measure.Sales> (0,0)

<Loc.West.CA, Time.2000, Product.SP.Happy Soap,Measure.Sales > (1,0)

<Loc.Midwest.OK, Time.1999, Product.SP.Happy Soap, Measure.Sales > (0,1)

<Loc.Midwest.OK, Time.2000, Product.SP.Happy Soap, Measure.Sales > (1,1)

Set (A) represents all the points in the data cache 113 that need to be examined in
order to answer the query. As discussed above in connection with Fig. 2C, a region of
related data (cubelet) in a cube is identified by a cubelet address. The plan generator 118
computes a cubelet address for each canonical address in the set. The cubelet address
includes the two components: a parent of each member in each canonical address and an
indication whether the member appears in the axis or slicer dimension in the query. Note
that cubelet addresses do not contain the Measure dimension. The Measure dimension only
appears in the canonical address. Thus, for the canonical address <Loc.West.CA,
Time.1999, Product.SP.Happy Soap, Measure.Sales> the plan generator 118 generates the
following cubelet address {Loc.West.*, Time.*, Product.SP.Happy Soap}. In this cubelet
address, ‘Loc.West’ is the parent of ‘CA’ and ‘Time’ is the parent of ‘1999°. Because
members ‘CA’ and ‘2000 appear in the axis specification (as indicated in the ‘SELECT’

10

WO 02/03251 PCT/US01/20817

clause in the query), ‘*’ in the cubelet address indicated that all children of the ‘Loc.West’
(CA and NM) and ‘Time’ (1999 and 2000) will be selected for caching. Because ‘Happy
Soap’ appears in the “WHERE?’ clause in the query, the plan generator 118 determines that
‘Happy Soap’ appears in the slicer. As a result, only the member ‘Happy Soap’, but not its
siblings, will be selected for caching.

Similarly, for the canonical address <Loc.West.CA, Time.2000, Product. SP.Happy
Soap, Measure.Sales > the plan generator 118 computes the following cubelet address
{Loc.West.*, Time.*, Product.SP.Happy Soap}. In this cubelet address, ‘Loc.West’ is the
parent of ‘CA’ and “Time’ is the parent of ‘2000°; ** indicates that ‘CA’, and ‘2000’ appear
in the axis dimension in the query. Therefore, all children of ‘Loc.West’ and ‘Time’ will be
selected for caching. It should be noted that the first two canonical addresses in the set (A)
have the same cubelet address. This indicates that values for a measure attribute Sales
identified by these canonical addresses are stored in the same cubelet.

The plan generator 118 also generates cubelet addresses for canonical addresses
<Loc.Midwest.OK, Time.1999, Product.SP.Happy Soap, Measure.Sales > and
<Loc.Midwest.OK, Time.2000, Product.SP.Happy Soap, Measure.Sales >. This cubelet
address for both canonical addresses is the cubelet {Loc.Midwest.*, Time.*,
Product.SP.Happy Soap}. This indicates that values for a measure attribute Sales identified
by these canonical addresses are stored in the same cubelet. The following cubelet
addresses: {Loc.West.*, Time.*, Product.SP.Happy Soap} and {Loc.Midwest.*, Time.*,
Product.SP.Happy Soap} form a set of cubelet addresses (B). The set (A) of canonical
addresses, the set (B) of cubelet addresses, and the location of the values in the result set
comprise the major components of an execution plan.

The execution module 110 receives the execution plan. For each of the entries in the
query plan’s list of cubelet addresses, the execution module 110 probes the data cache 113
to determine if that portion of the cube is known. For example, the execution module 110
determines if a cubelet identified by the cubelet address {Loc.West.*, Time.*,
Product.SP.Happy Soap} has been cached.

If the cubelet is already cached, the execution module 110 returns the cubelet
identified by the cubelet address. This cubelet includes the values of the measure attribute
‘ Sales having the following canonical addresses:

<CA, 1999, Happy Soap, Measures.*> = <17>
11

WO 02/03251 ~ PCT/US01/20817

<CA, 2000, Happy Soap, Measures.* >=<11>

<NM, 1999, Happy Soap, Measures.* > = <24>

<NM, 2000, Happy Soap, Measures.* > = <26>

The execution module 110 then probes this cubelet for the two canonical addresses
(listed in the execution plan): <CA, 1999, Happy Soap, Sales> and <CA, 2000, Happy
Soap, Sales>. The execution module 110 extracts values 17 and 11 corresponding to the
canonical addresses and places them in the final result set in the locations (0,0) and (1,0)
indicated in the execution plan.

If the data is not found in the data cache 113, the cube manager module 104
generates a miss and invokes the fault handler 114 to query the database 116 for data. The
database 116 returns the cubelet associated with the cubelet address. This cubelet is stored
in the data cache 113. This cubelet includes the requested data. It also contains the data for
“nearby” cells. The requested data and the data for “nearby cells” are in the form of values
of measure attributes and associated canonical addresses. The components of each
canonical address for the cells containing the requested data include members that appear on
axis specifications and slicers in the query. The components of each canonical address for
“nearby cells” include members that appear on slicers and siblings of members that appear
on axis specifications in the query, as shown in table 620 of Fig. 6.

Continuing with the example, the execution module 110 also determines whether the
portion of the cube identified by the cubelet address {Loc.Midwest.*, Time.*,
Product.SP.Happy Soap} is already stored in the data cache 113. If the cubelet is already
cached, the execution module 110 returns a cubelet identified by the cubelet address. This
cubelet includes the values of a measure attribute Sales having the following canonical
addresses:

<IL, 1999, Happy Soap, Measures.*> = <34>

<IL, 2000, Happy Soap, Measures.*> = <37>

<OK, 1999, Happy Soap, Measures.*> = <27>

<OK, 2000, Happy Soap, Measures.*> = <38>

The execution module 110 then probes this cubelet for the two canonical addresses:
<OK, 1999, Happy Soap, Sales > and <OK, 2000, Happy Soap, Sales >. The execution

module 110 extracts values <27> and <38> corresponding to the canonical addresses and

12

WO 02/03251]) PCT/US01/20817

places them in the final result set in the locations (0,1) and (1,1) indicated in the execution
plan.

If the data is not found in the data cache 113, the data cache module 113 generates a
miss and invokes the fault handler 114 to query the database 116 for data. The database
116 returns a cubelet associated with the cubelet address. This cubelet is stored in the data
cache 113. This cubelet includes the requested data. It also contains the data for “nearby”
cells. The requested data and the data for “nearby cells” are in the form of values of
measure attributes and associated canonical addresses. The components of each canonical
address for the cells containing the requested data include members that appear on axis
specifications and slicers in the query. The components of each canonical address for
“nearby cells” include members that appear on slicers and siblings of members that appear
on axis specifications in the query, as shown in table 630 of Fig. 6.

Figs. 5A-5D are block diagrams of a set (lattice) of cubelets stored in the data cache
113. Data is cached at various levels, to facilitate the retrieval of data at different levels.
Users can issue queries designed to return the whole cube or selected portions at different
levels of detail. This type of operation is called drilling. Suppose a user issues a query to
see Sales values of a Happy Soap product manufactured by Serene Products (SP) for 1999
in the West and East regions of the US. If the user queries this part of the cube, the user
might next be interested in comparing Sales values for the years 1999 and 2000 in these
regions as well is in Midwest of the US. The invention facilitates the inspection of related
data by caching the entire cubelet containing the requested data. In response to the query
for sales in 1999, the execution module 110 returns the Sales value of <41> for the Western
Region and <32> for the Eastern Region in Fig. 5B. In addition, Sales data for Happy Soap
for 1999 and 2000 in all the regions are stored in the data cache 113 for future use. As
shown in Fig. 5B, this data is stored in a cubelet identified by the cubelet address {Time.*,
Loc.US.*, Product.SP.Happy Soap}. Thus, the next time a user is interested in comparing
Sales values for 1999 and 2000, the user can retrieve this information from the data cache
113 without re-accessing the database 116.

The user may notice that 2000 Sales values are higher than those in the year 1999.
Expanding the Year dimension to the Month level, the user can query Sales values for a

particular month, for example January, by drilling down on ‘Time’ dimension, as shown in

13

WO 02/03251 . PCT/US01/20817

Fig. 5C. Such a query would result in a cubelet of a lower dimension level (without
aggregated month values) being cached.

Fig. 6 is a block diagram of example tables in the data cache 113 in accordance with
a described embodiment of the present invention. The data cache 113 manages the in-
memory storage of query results. The data cache 113 stores pairs of (Cubelet Address,
Cubelet Pointer) in a hash table. Similarly, the Cubelet stores pairs of (Canonical Address,
Measures) in a hash table. Thus, the data cache 113 is a two-level hash table: first, by a
cubelet address and then by a canonical address. As an illustrative example, the data cache
113 stores the following cubelet address in a hash table 610: {Loc.West.*, Time.*,
Product.SP.Happy Soap}, where “*’ refers to all the children of ‘West’ and ‘Time’. This
cubelet address identifies a cubelet that includes all the measures for Sales of ‘Happy Soap”
for all States in the Western region for all years. Specifically, hash table 620 stores
measures identified by the following canonical addresses: <CA, 1999,Happy Soap,
Measure.*>, <CA, 2000,Happy Soap, Measure.*>, <NM, 1999,Happy Soap, Measure.*>,
<NM, 2000,Happy Soap, Measure.*>.

Hash table 610 also stores the cubelet address {Loc.Midwest.*, Time.*,
Product.SP.Happy Soap}, where ‘*’ refers to all the children of ‘Midwest’ and ‘Time’. This
cubelet address identifies a cubelet that includes all the measures for Sales of ‘Happy Soap”
for all States in the Midwest region for all years. Specifically, a hash table 630 stores
measures identified by the following canonical addresses: <IL, 1999,Happy Soap,
Measure.*>, <IL, 2000,Happy Soap, Measure.*>, <OK, 1999,Happy Soap, Measure.*>,
<OK, 2000,Happy Soap, Measure.*>.

Hash table 610 also stores the cubelet address {Loc.East.*, Time.*,
Product.SP.Happy Soap}, where “*’ refers to all the children of ‘East’ and ‘Time’. This
cubelet address identifies a cubelet that includes all the measures for Sales of ‘Happy Soap”
for all States in the East region for all years. Specifically, a hash table 640 stores measures
identified by the following canonical addresses: <NY,1999,Happy Soap, Measure.*>, <NY,
2000,Happy Soap, Measure.*>, <NH, 1999,Happy Soap, Measure.*>, <NH, 2000,Happy
Soap, Measure.*>,

As discussed above, the execution module 110 first probes the data cache 113 to
determine if the portion (cubelet) of the data cache 113 identified by a cubelet address is
cached. Ifyes, the cubelet is returned from the data cache 113. This cubelet includes the

14

WO 02/03251) PCT/US01/20817

requested data. It also contains the data for “nearby” cells. The requested data and the data
for “nearby cells” are in the form of values of measure attributes and associated canonical
addresses. The components of each canonical address for the cells containing the requested
data include members that appear on axis specifications and slicers in the query. The
components of each canonical address for “nearby cells” include members that appear on
slicers and siblings of members that appear on axis specifications in the query. The
execution module 110 then probes that cubelet for the canonical addresses received in the
execution plan. The execution module 110 extracts the requested data and places it in the
result set in locations indicated in the execution plan. It should be noted that the execution
module 110 may return a cubelet containing no values.

Mathematical details of the Data Cache

Suppose we have an n dimensional cube that consists of dimensions D,, D,, ..., D,.
Each of these D, is a set of members that have a hierarchical relationship that satisfy the
following properties for each D

root(D) = d for one and only d € D

parent(root(D)) = @

For all x € D, there exists one y such that parent(x) =y

Define (D,, <) as a partial order on D, such that x <y -> x is a child of y

Let d, be an element of D

Define children (d)) as {x € D, | parent (x) = d;}

Define siblings (d,) as {x € D; | parent (x) = parent (d,)}

Define level(d,) = distance from d, to the root of D, in the member tree of D,.

Define the Level Set as: L; = {x | x € D; and level(x, D,) = j}

The vector of a fully qualified member is formed as follows:

CA = {«d,,4,,....d> | d,e D;}

There is one to one mapping between fully qualified member MDX queries and
canonical addresses of every point in a cube.

Each component c; in ¢ is a symbol of the form:

d; =k;Kpekie ... + Ky, Where k€ Ly and 0 <= m; <= numLevels(D))

We allow a canonical address to have a null value in a given dimension even though

MDX does not define a query that maps to such an address. This permits us to define the

15

WO 02/03251 . PCT/US01/20817

canonical address of the form <parent(d,),parent(d,),...,parent(d,)> for all MDX-generated

addresses. Now we can rewrite ¢ as

¢ =<dpd,...d> = <kypokpokyse 0 klm1 s KorokppoKose ... @ kim2 s e s KopoKptkpe e kimn

Caching pairs of (c, m) would result in a large number of single measure queries
against database 116. The present invention offers a meaningful way to group canonical
addresses that allows for query optimization. The canonical addresses are grouped into a
cubelet. For a given canonical address d = <d,,d,,...,d,> € CA, there is

K, = FullCubelet(<d,,d,,...,d,>) = children(d,) ® children(d,) ® ... & children(d,)

= {<d,*a,, d,*a,, ... ,d,*a> | d;*a; € D, and parent(d,*a,) = d;}

A FullCubelet has the property that all of its elements have the same parent member
in each of its dimensions.

Queries will generally choose a small number of dimensions to go into the axis
(row/column) specifications. The FullCubelet will retrieve siblings on slicer dimensions
that the user might not be interested in. The present invention introduces a PartialCubelet,
which will retrieve siblings on slicer dimensions that are part of the axis specifications. We
define a PartialCubelet as follows:

Define AxisVector(d) or av(d) as

Mapping <d,,d,,...,d,> to <a,,a,,...,a,>

such that a, = d, if d, is on the axis specifications of the query. Otherwise, a.,

Define SliceVector(d) or sv(d) as

Mapping <d,,d,,...,d,> to <s,,S,,...,8,>

such that s; = d; if d, is a slicer dimension. Otherwise, s,

For a given canonical address d = <d,,d,,...,d > € CA there is a Partial Cubelet,

P ;= PartialCubelet(d) = FullCubelet(AxisVector(d)) + SlicerVector(d) .

= { <P1,P2re- Py | p; € children(d,) if d; ¢ AxisVector(d),

d; otherwise}

This optimization allows users to populate all the measures in the Partial Cubelet
with a single query. This approach only incurs the additional result storage overhead for

axis dimensions. This pattern of storage makes the caching more efficient.

16

WO 02/03251]) PCT/US01/20817

The present invention advantageously allows drilling down and up on axis
dimensions. Suppose a P, = PartialCubelet(<d,,d,,...,d,>) and suppose that <c,,c,...,c,> &€ P,
is a member of a result set on which a user wishes to drill up or drill down.

Suppose that the user chooses to drill down on some c; that is an axis dimension.
This would result in fetching Cubelet(d,,d,, ... ,c, ... ,d,), which is a superset of
<¢;,Cy, ... , children(cy), ... , ¢,>. This cubelet will also let the user to drill down along c; for
any other member of P, of the form <c/'¢,',..., ¢; ..., ¢, without need for re-query. Thus,
the present invention advantageously allows the user to obtain the results of a particular
member drill down across all other elements of a result set with a single re-query.

Suppose the user chooses to drill up on c;.

This results in fetching Cubelet(d,,d,, ... ,parent(d,), ... ,d,>, which is a superset of
<C;,Cyy +ovp Oy, ... , ¢> and a superset of <c,,c,, ..., siblings(d,), ... , d>. This cubelet will let
users also drill down along c; for any other member of P, of the form <c,'c,' ..., ¢;,..., ¢,">
without need for re-query. The data cache 113 insures that a given pair (Canonical Address,
measure) will exist in at most one cubelet at a given time to avoid replication of data.

Alternative Embodiments

In an alternative embodiment, the user will be able to specify both a hard cache limit
and soft cache limit of the data cache 113 to implement size/memory constraints. Both
parameters are expressed in terms of the number of measures stored in the data cache 113.
If the hard cache parameter is specified, the data cache 113 ensures that it never exceeds the
hard cache limit. The data cache 113 is allowed to exceed the soft cache limit by one
cubelet of information. This permits the data cache 113 to handle a large number of
requests in a densely populated cubelet containing detailed information. Using the soft
cache limit advantageously allows the data cache 113 to handle an enormous number of
queries.

To minimize the number of requests to the database 116, the present invention
maintains a cubelet heap that will prioritize which cubelet will be returned from the data
cache 113 when it is necessary to free up cache space. The final priority function will be
determined based on experimentation. The initial priority function is preferably a
combination of Least Recently Used (LRU), the number of results in the cubelet, and the
estimated detail level of the cubelet. The estimated detail level is preferably used because

summary queries (those closer to the root of dimensional hierarchies) are generally more

17

WO 02/03251 . . PCT/US01/20817

costly to the database than detail queries (those closer to the members of the dimensional
hierarchy). The estimated detail level will be calculated from the cubelet address by
calculating the distance of each of its components from the root of its member tree and

applying the Euclidian distance formula to it. That is: Suppose we have a cubelet address

<¢,,Cys ... » €,> . Then we calculate d = \/ dist(c,)? +dist(c,)? +...+dist(c,)* where
dist(c,) is the distance of member c, from the root of its member tree.

From the above descriptions, it will be apparent that the present invention disclosed
herein provides a novel and advantageous method, system, and a computer program product
for retrieving and caching multi-dimensional data. The foregoing discussion discloses and
describes merely exemplary methods and embodiments of the present invention. As will be
understood by those familiar with the art, the invention may be embodied in other specific
forms without departing from the spirit or essential characteristics thereof. Accordingly, the
disclosure of the present invention is intended to be illustrative, but not limiting, of the

scope of the invention, which is set forth in the following claims and equivalents.

18

WO 02/03251) . PCT/US01/20817

WHAT IS CLAIMED IS:

1. A system for caching multi-dimensional data from a data store, the system
comprising:

a cube manager module for receiving a query requesting the data from the data store;

a compilation module, coupled to the cube manager module, for determining a set of
canonical addresses from the query and a set of cubelet addresses from at least one of the set
of canonical addresses;

a data cache for storing at least one cubelet including the requested data and data for
nearby cells, the cubelet identified by at least one of the set of cubelet addresses; and

an execution module, coupled to the compilation module, for requesting the data

from the data cache in accordance with the at least one of the set of cubelet addresses.
2. The system of claim 1, wherein the data store is a multidimensional database.
3. The system of claim 1, wherein the data store is a relational database.

4. The system of claim 3, further comprising a meta data structure for representing

at least one dimension structure of the data store.

5. A computer-implemented method comprising:

receiving a query requesting data from a data store;

determining a set of canonical addresses from the query and a set of cubelet
addresses from at least one of the set of canonical addresses, each canonical address
representing a vector of members in the data store corresponding to the requested data, and
each cubelet address representing a cubelet that includes the requested data and data for
nearby cells;

when the cubelet is stored, returning the cubelet.

6. The computer-implemented method of claim 5, wherein the query includes
members on axis and slicers specifications and wherein each nearby cell has a canonical

address, the components of each canonical address include the members that appear on

19

WO 02/03251 ' PCT/US01/20817

slicer specifications and siblings of the members that appear on axis specifications in the

query.

7. The computer-implemented method of claim 5, further comprising:
using at least one of the set of canonical addresses to locate the requested data in the

returned cubelet,

8. A computer-implemented method, comprising:

receiving a query requesting data from a data store;

determining a set of canonical addresses from the query and a set of cubelet
addresses from at least one of the set of canonical addresses, each canonical address
representing a vector of members in the data store corresponding to the requested data, and
each cubelet address representing a cubelet;

using at least one of the set of cubelet addresses to determine whether a data cache
stores the corresponding cubelet;

when the cubelet is not stored in the data cache, retrieving from the data store a
cubelet indicated by the cubelet address determined from the query; and

storing the retrieved cubelet in the data cache.

9. The method of claim 8, wherein the query includes members on axis and slicer
specifications and wherein the cubelet includes the requested data and data for nearby cells,
each nearby cell having a canonical address, the components of each canonical address
include the members that appear on slicers and siblings of the members that appear on axis

specifications in the query.

10. A computer-implemented method comprising:

receiving a query requesting data from a data store;

determining a set of canonical addresses from the query and a set of cubelet
addresses from at least one of the set of canonical addresses, each canonical address
representing a vector of members in the data store corresponding to the requested data, and

each cubelet address representing a cubelet in the data store;

20

WO 02/03251 . . PCT/US01/20817

using at least one of the set of cubelet addresses to determine whether a data cache
stores the corresponding cubelet;

when the cubelet is stored, returning the cubelet from the data cache; and

using at least one of the set of canonical addresses to locate the requested data in the

returned cubelet.

11. The method of claim 10, wherein the query includes members on axis and slicer
specifications and wherein the cubelet includes the requested data and data for nearby cells,
each nearby cell having a canonical address, the components of each canonical address
include the members that appear on slicer specifications and siblings of the members that

appear on axis specifications in the query.

12. A computer program product for caching multi-dimensional data, including
program instructions on a computer-readable medium, the product comprising:

a computer readable medium;

amodule stored on the medium for receiving a query requesting data from a data
store;

a module stored on the medium for determining a set of canonical addresses from
the query and a set of cubelet addresses from at least one of the set of canonical addresses,
each canonical address representing a vector of members in the data store corresponding to
the requested data, and each cubelet address representing a cubelet that includes the
requested data and data for nearby cells;

amodule stored on the medium for returning the cubelet when the cubelet is stored.

21

PCT/US01/20817

WO 02/03251

1/11

l 'Oid

00l

eleq paisenbay

aoBel] Josn

asegeleq
Asnp
1%
Y |vRegnd
dds l\ Jo|pueH jined j«—— >
Aien
o el — syoeo eleq
ssalppy Jejeqny A y ¥Rang
oLl .\ o
|[NPOJAl UollNdaX3 mwmn_
ueid a1sonbay
uonnoax3
80} — gL | 10e1suen uejd
9|NPO\ UOREdWoD)
Aenp A
-
goy /| FEAHMN fiend
ajnpoly Jebeueypy aqng
70l c0l

WO 02/03251

PCT/US01/20817
2/11
Time Table
Time Key | Day Month Year
1 1/1/1999 Jan 1999
2 1/2/1999 Jan 1999
127311 290
365 1999 Dec 1999 /-
366 1/1/2000 Jan 2000
367 1/2/2000 Jan 2000
396 2/1/2000 Feb 2000
Fact Table 731 12/31/2000 | Dec 2000
210
\ T ocation P d/t——\ Location Table
i ocation| Produc
Key Key Key Sales
Location Key State Region
2 6 4 2,000
1 CA West
365 3 5 1,980 9 NM West F 230
3 NY East
4 NH East
5 1L Midwest
6 OK Midwest
Product
Table
200 Prod Key | Name Manufactuer
1 Ha Soa Serene
PPy P Products /— 240
2 Meditation Serene
Cleanser _ Products
3 SuperScruby Clean-Eeze
4 Floor Floss Clean-Eeze
5 Carpet Cure Clean-Eeze

FIG. 2A

PCT/US01/20817

WO 02/03251

3/11

g¢ oOlid

uolbay

o)els

Koy uoleoo]

soleg

JBaA

Yiuo
feg

Ao3] uopeoo]

A8y} 1onpold

Ao) swit L

Aoy owi)

s|qel uoieso]

J

0€c

s|qe awil

/

0ce

ajqe] joed

o_‘NK

. Jainjoenuey

sweN

Aoy 1onpoid

a|qe) janpoid
ove —

PCT/US01/20817

4/11

WO 02/03251

¢ 9Old

awl |
0002 | | 6661
990 190 Ainp yoley uer 29d AON ideg Aepy ged4 uepr
soes
8 8 L L Y 9 g g 14 14 £
alnses
Seen HT@BU_S_ —
6 8 A y 9 L 9 9 g g g T

Q 83 —

\NNmquﬁmNmmzz

zlzlzlelzlelv|e|z|v]|r|w

amow Addey
\ \ \ \\ \ \\ \Lm\wﬁ“ 10 uoneypsiy A&m aueles
\%&

uoneo0T

\
X
b
x
x
x
=x
x
X
X
z

1S9M, —

NEANAN
NN

AN
\

RN

T
TS S Seowasy TR

PCT/US01/20817

WO 02/03251

5/11

(o3 (100) nr) (avw) (Nvr)
YIGNIN HIGNTN HIGNIW HFGNIN FFENEN

(0002) ¥3gNaN

(anlL) Yagnan

¢ 'old

(03a) (AON) (1Ld3as) (uwvw) (g3d) (NVI)
HIGWIWN HIGWIN YIGWIN HFFNTIN HIGNTN EFFNEN

(6661) ¥3aWaN

(3INIL) AHOYVYIIH

(HLNOW) 13A31

(dv3A) 13ATT

(0) 13ATT

PCT/US01/20817

WO 02/03251

6/11

¥ Old

N) _._z/\>z _>_<o (31VLS) 13ATT
(Lsamain)
1S3M) H3AgWaN
YIaWan (1Sv3) ¥3gnan (1s3m) (NOI93Y) T3AT1
(sn) ¥agwaw (AYLINNOD) T3ATT
(NOILYDOT)
SELE (0) 1A

(NOILYDOT) AHOHYHIIH

PCT/US01/20817

WO 02/03251

7/11

<deos

VG Old

<deos

>aaw:.aw.ﬁzcoa ‘- ISOMPIWSN™O0[*, 0002 SWil> Addey'ds-1onpoud ‘., 1sempili sn 00|, 666 L oW}

A

6 8 YA YA A — * 9 1+ G 14 4 MO
_ Jsompi/y
rym g L L 9 rh 9 9 °] g] _ i
* Z Z [I [4 * ‘ 1 Z l Z z l * HN
e | sn | 201
— X X X 1 X _ _ X X 1 X X X AN
v L YA G c] ﬂ a 14 14 Z L 1 [4 NN
ISaM
Z 4 Z € Z J € ¥ € 4 3 ¥ VO
/ <deos Addeyds-jonpoud
‘s’1sam'sn 00y',"666 | oWi>
92 | 0O | Ane | seyy | uer soq | noN | des | Aew | geq | uep
0002 6661
s
<deos

Addey-ds-yonpoud ‘. 1sem’sn'o0}*, 0002 aWn>

PCT/US01/20817

WO 02/03251

8/11

Addeyds-yonpoud ‘00| ‘o>

<deos

A

6¢c
\

N

207

ANIL

<deos
Addey-ds-jonpoud ¢, sn-oo|‘awin>

SN

207

oel JSOMPIN

0c jseq

€L 1S9
INIL

aG old

<deos Addey-ds-1onpo.d
' SN'O0|°, "oWi)>

<deos Addey-ds-onpo.d
‘00[', owl}>

\\.I‘

NIL

cll 007
Vﬁwow mmv
JNIL
ﬂ\mm 19 }SempInN
ol ol }seq sn | 201
me 37 1sep\
000¢ 6661

PCT/US01/20817

WO 02/03251

9/11

deos Addey ds-jonpoud
‘00| *,'000Z 2w}

/

06 '9Old

deos Addey-ds-jonpoud

‘00] *,’6661 oW

£

¥e 14 €c 1e [44 V\FN 1c 8l (114 Ll Gl 007
LTq| 190 Anp lepy uep PTg] AON ydeg Ren ge+ uep
000¢ 6661
swiL
deos Addey ds-jonpoud deos Addey ds-onpoid
,,,.oo_.*.ooow.mcv '+ "00}', 6661 .mEV
Vva 9l ¥l 14 mvlﬁ €l L L 6 6 wll 1SeMpIN
4 4 4 [4 4 l [4 4 4 4 l jseq 907
Jr 14 6 L g L L 8 g 6 9 9 1S9
20Q 190 Anp ey uep g AON 1deg Aey go4 uep
000¢ 6661
swil

PCT/US01/20817

WO 02/03251

10/11

as old

)

SN

207

yx4 /‘ MO
1SoMpIIN
L€ e i
<deos Addeyds-onpoud
‘- ISOMPILI SN 00)*,"aWil>
ﬂ 6 6 _ HN
jseq
<deos Addeyds-yonpoid 1 1 AN
‘. 'Iseasn oo|’, awil>
92 14 AN
1SoM
a [Ll
<deos Addey-ds-jonpoud vO
‘J1samsneoof’, allil> .m W
0002 6661

oL

PCT/US01/20817

WO 02/03251

11/11

<, 'Sainsea|y‘deog
AddeH'000Z'HN>

<, 'Salnsesyy‘deog
AddeH'6661 ‘HN>

<, sainses|‘deog
AddeH'0002' AN>

<, Salnsesiy‘deog
AddeH 6661 AN>

ainsespy

SSaIpPY {edluoue)d

10[99N0
sip u)

seinseaw

Jo Jaquinu

9¢

<, Sainsea|y‘deog
AddeH‘0002 N>

14

<, 'sainsesjy‘deog
AddeH'6661 ‘N>

bi

<, 'Sainsesiy‘deog
AddeH'0002'vO>

Li

<, 'sainseap‘deog
AddeH’6661'VO>

2Inses

$S2IppY |esjuoue)

0ceo /k/

9 'Old

e <, 'seinsea)y‘deog

AddeH'000Z'M0O>

1z <, sainsesiy‘deog

AddenH‘6661M0O>

J6 <, sainses|y‘deog

AddeH'0002 11>

<, sainseay‘deog

ve AddeH'6661 11>
ainsespy SSaIppy [esluoue)

\— ogo

<deog AddeH ds°1onposd

‘oeuwl fL1seq 00> s)9l|gno
10
N— <deog AddeH-dg1onpoid Jequinu
‘s 'ou} ,"}ISOMPIN00T>
<deog AddeH s 10npoid
é ;' OUI} ', JSON 00> \
Jsjulod ssal ajegn
N PPV 18j8gnd

U o9

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

