w ©2213/096537 A 1[I I V0000 00000 O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization
International Bureau

27 June 2013 (27.06.2013)

WIiPO |PCT

(10) International Publication Number

WO 2013/096887 Al

(51)

21

(22)

(25
(26)
(30)

(71)

(72)

(74)

International Patent Classification:
GO6F 17/30 (2006.01)

International Application Number:
PCT/US20 12/07 1454

International Filing Date:
21 December 2012 (21.12.2012)

Filing Language: English
Publication Language: English
Priority Data:

61/580,193 23 December 201 1(23. 12.201 1) us
13/725399 21 December 2012 (21.12.2012) us (84
Applicant: AMIATO, INC. [USUS]; 12543 Pamtag

Drive, Saratoga, CA 95070 (US).

Inventors: BINKERT, Nathan; 1677 Pecan Ct., Redwood
City, CA 94061 (US). HARIZOPOULOS, Stavros; 1050
17th St., Apt. 302, San Francisco, CA 94107 (US). SHAH,
Mehul, A.; 12543 Palmtag Dr., Saratoga, CA 95070 (US).
SOWELL, Benjamin; 151 Calderone Ave, Apt. 291,
Mountain View, CA 94041 (US). TSIROGIANNIS, Di-
mitris; 182 W. Hillsdale Blvd., Building 4, San Mateo, CA
94403 (US).

Agents: NYE, Michael, R. et a; Harness, Dickey &
Pierce, P.L.C., P.O. Box 828, Bloomfield Hills, M| 48303
Us).

(81) Designated States (unless otherwise indicated, for every

kind d national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
ZM, ZW.

Designated States (unless otherwise indicated, for every
kind d regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, Sz, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SV,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

before the expiration d the time limit for amending the
claims and to be republished in the event d receipt d
amendments (Rule 48.2(h))

(54) Title: SCALABLE ANALYSIS PLATFORM FOR SEMI-STRUCTURED DATA

Source
Designation;
Subsetting
Instructions

308

Type
Guidelines

Map
Criteria

Indexing
Instructions

Typing
Hints

H 318

328

/

336 340
/

Input

Schema | Objects

Inference
Module |

| Adormment
| Module

Data Wrapper

Relational
Schema
Creation Module

Relational

Relational Schema

Optimization
Module

Metadata
Service

Sources " Functions |

300 304 312

358

Storage Service 344

| Index
Creation
| Module

;

Query

Storage
Pracessing
Module Executor

320

Auxiliary Index
Creation

Module

332

324 360 Query

Response Query

‘ODBC Client

(57) Abstract: A method of operating a query system includes retrieving objects from a data source, wherein each of the retrieved
objects includes (i) data and (ii) metadata describing the data. The method includes dynamically creating a cumulative schema by in-
ferring a schema from each of the retrieved objects and merging the inferred schema with the cumulative schema. The method in -
cludes storing the data of each of the retrieved objects in a storage service. The method includes receiving, from auser, a query, and
responding to the query based on data stored by the storage service.



10

15

20

25

WO 2013/096887 PCT/US2012/071454

SCALABLE ANALYSIS PLATFORM FOR SEMI-STRUCTURED DATA

CROSS-REFERENCE TO RELATED APPLICATION

[0001] This application claims priority to U.S. Utility Application No. 13/725,399,
filed December 21, 201 2 and U.S. Provisional Application No. 61/580,1 93, filed
December 23, 201 1. The entire disclosure of the above application is incorporated

herein by reference.

FIELD

[0002] The present disclosure relates to a scalable interactive database platform
and more specifically to a scalable interactive database platform for semi-

structured data that incorporates storage and computation.

BACKGROUND

[0003] The background description provided herein is for the purpose of general-
ly presenting the context of the disclosure. Work of the presently named inventors,
to the extent it is described in this background section, as well as aspects of the
background description that may not otherwise qualify as prior art at the time of
filing, are neither expressly nor impliedly admitted as prior art against the present

disclosure.

[0004] Traditional database systems feature a query execution engine that is
tightly integrated with the underlying storage back-end, which typically consists of
block-addressable persistent storage devices with no compute capabilities. These
devices (hard disk drives and/or solid state drives) are characterized by (a) access
times that differ significantly depending on whether the data is accessed sequen-
tially or randomly, (b) access units that have a fixed minimum size, set at the
granularity of a block, and (c) significantly slower (orders of magnitude) access
time than main memory. These characteristics, along with the assumption that the
storage back-end does not have any non-trivial compute capabilities have had an
important impact on the design of database systems, from storage management

to query execution to query optimization.



10

15

20

25

30

WO 2013/096887 PCT/US2012/071454

[0005] Databases originally served as operational stores managing the day-to-
day activities of businesses. As database technology improved both in perfor-
mance and cost, businesses saw a need to keep an increasing amount of opera-
tional history and business state for later analysis. Such analyses help businesses
gain insight into their processes and optimize them, thereby providing a competi-

tive advantage and increasing profit.

[0006] Data warehousing arose out of this need. Business data is often well-
structured, fitting easily into relational tables. Data warehouses are essentially
scalable relational database systems offering a structured query language (SQL)
for offline analysis of this business data, and optimized for read-mostly workloads.
For example, data warehouses include traditional systems like Teradata and new-
er vendors such as Vertica, Greenplum, and Aster Data. They provide a SQL in-

terface, indexes, and fast columnar access.

[0007] Typically, data warehouses are loaded periodically, e.g., nightly or weekly,
with data ingested from various sources and operational systems. The process of
cleaning, curating, and unifying this data into a single schema and loading it into a
warehouse is known as extract-transform-load (ETL). As the variety of sources
and data increases, the complexity of the ETL process also increases. Success-
fully implementing ETL, including defining appropriate schemas and matching in-
put data to the predetermined schemas, can take professionals weeks to months,
and changes can be hard or impossible to implement. There are a number of
tools, such as Abinitio, Informatica, and Pentaho, in the market to assist with the
ETL process. However, the ETL process generally remains cumbersome, brittle,

and expensive.

[0008] The data analytics market has exploded with a number of business intelli-
gence and visualization tools that make it easy for business users to perform ad
hoc, iterative analyses of data in warehouses. Business intelligence tools build
multidimensional aggregates of warehouse data and allow users to navigate
through and view various slices and projections of this data. For example, a busi-
ness user might want to see total monthly sales by product category, region, and
store. Then, they might want to dig deeper to weekly sales for specific categories

or roll-up to see sales for the entire country. Multidimensional aggregates may al-
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so be referred to as online analytical processing (OLAP) cubes. A number of busi-
ness intelligence (Bl) tools, such as Business Objects and Cognos, enable such
analyses, and support a language called Multidimensional Expressions (MDX) for
guerying cubes. There are also a number of visualization tools, such as Mi-
croStrategy, Tableau, and Spotfire, that allow business users to intuitively navi-

gate these cubes and data warehouses.

[0009] More recently, the type of data that businesses want to analyze has
changed. As traditional brick and mortar businesses go online and new online
businesses form, these businesses need to analyze the types of data that leading
companies, such as Google and Yahoo, are inundated with. These include data
types such as web pages, logs of page views, click streams, RSS (Rich Site
Summary) feeds, application logs, application server logs, system logs, transac-

tion logs, sensor data, social network feeds, news feeds, and blog posts.

[0010] These semi-structured data do not fit well into traditional warehouses.
They have some inherent structure, but the structure may be inconsistent. The
structure can change quickly over time and may vary across different sources.
They are not naturally tabular, and the analyses that users want to run over these
data—clustering, classification, prediction, and so on— are not easily expressed
with SQL. The existing tools for making effective use of these data are cumber-

some and insufficient.

[0011] As aresult, a new highly scalable storage and analysis platform arose,
Hadoop, inspired by the technologies implemented at Google for managing web
crawls and searches. At its core, Hadoop offers a clustered file system for reliably
storing its data, HDFS (Hadoop Distributed File System), and a rudimentary paral-
lei analysis engine, MapReduce, to support more complex analyses. Starting with
these pieces, the Hadoop ecosystem has grown to include an indexed, operation-

al store, HBase, and new query interfaces, Pig and Hive, that rely on MapReduce.

[0012] Hive is an Apache project that adds a query layer on top of Hadoop, with-
out any of the optimizations found in traditional warehouses for query optimization,
caching, and indexing. Instead, Hive simply turns queries in a SQL-like language
(called Hive-QL) into MapReduce jobs to be run against the Hadoop cluster.

There are three main problems with Hive for traditional business users. Hive does
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not support standard SQL, and does not have a dynamic schema. Further, Hive is
not fast enough to allow interactive queries, since each Hive query requires a
MapReduce job that re-parses all the source data, and often requires multiple

passes through the source data.

[0013] Impala is a real-time engine for Hive-QL queries on Cloudera's Hadoop
implementation. It provides analysis over Hive's sequence files and may eventual-
ly support nested models. However, it does not have a dynamic schema, instead

requiring that a user still provide a schema upfront for the data to be queried.

[0014] Pig is another Apache project and offers a schema-free scripting lan-
guage for processing log files in Hadoop. Pig, like Hive, translates everything into
map-reduce jobs. Likewise, it doesn't leverage any indexes, and is not fast

enough for interactivity.

[0015] Jagl is a schema-free declarative language (in contrast to declarative lan-
guages, like SQL) for analyzing JavaScript Object Notation (JSON) logs. Like Pig,
it compiles into map-reduce programs on Hadoop, and shares many of the same

drawbacks, including a non-interactive speed.

[0016] Hadoop itself is catching on fairly quickly, and is readily available in the
cloud. Amazon offers elastic map-reduce, which may be effectively equivalent to
Hadoop's MapReduce implementation running in the cloud. It works on data
stored in Amazon's cloud-based S3 (Simple Storage Service) and outputs results

to S3.

[0017] The advantages of the Hadoop ecosystem are three fold. First, the sys-
tem scales to extreme sizes and can store any data type. Second, it is extremely
low cost compared to traditional warehouses (as much as twenty times less ex-
pensive). Third, it is open-source, which avoids lock-in with a single vendor. Users
want the ability to pick the right tool for the right job and avoid moving data be-
tween systems to get their job done. Although Hadoop is more flexible, using Ha-
doop requires specially skilled administrators and programmers with deep
knowledge, who are usually hard to find. Moreover, Hadoop is too slow to be in-

teractive. Even the simplest queries take minutes to hours to execute.
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[0018] Dremmel is a tool developed internally at Google, which provides SQL-
based analysis queries over nested-relational or semi-structured data. The original
version handled data in ProtoBuf format. Dremmel requires users to define the
schema upfront for all records. BigQuery is a cloud-based commercialization of
Dremmel and is extended to handle CSV and JSON formats. Drill is an open-

source version of Dremmel.

[0019] Asterix is a system for managing and analyzing semi-structured data us-
ing an abstract data model (ADM), which is a generalization of JSON, and annota-
tion query language (AQL). Asterix does not support standard SQL, nor does it

have fast access afforded by the present disclosure.

SUMMARY

[0020] A method of operating a query system includes retrieving objects from a
data source, wherein each of the retrieved objects includes (i) data and (ii)
metadata describing the data. The method includes dynamically creating a cumu-
lative schema by inferring a schema from each of the retrieved objects and merg-
ing the inferred schema with the cumulative schema. The method includes storing
the data of each of the retrieved objects in a storage service. The method includes
receiving, from a user, a query, and responding to the query based on data stored

by the storage service.

[0021] The method also includes converting the cumulative schema into a rela-
tional schema, and presenting the relational schema to the user, wherein the que-
ry from the user is constructed over the relational schema. The method also in-
cludes storing the data of each of the retrieved objects in at least one of (i) a first
index and (ii) an array index, wherein the storage service includes the first index
and the array index. The method also includes responding to the query based on

data from at least one of the first index and the array index.

[0022] The method also includes storing a datum from a retrieved object in the
first index as a key-value pair, wherein the value of the key-value pair is the da-
tum, and wherein the key of the key-value pair is based on (i) a path of the datum
consistent with the relational schema and (ii) a unique identifier of the retrieved

object. The key of the key-value pair is constructed so that the first index collo-
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cates key-value pairs first by the path and then by the unique identifier. A datum
that is part of an array is stored in the array index. Data that is part of an array is

not stored in the first index.

[0023] The datum is stored in the array index as a key-value pair, wherein the

value of the key-value pair is the datum, and wherein the key of the key-value pair
is based on (i) a path of the datum consistent with the relational schema, (ii) a

unique identifier of the retrieved object, and (iii) an index of the datum's location in
the array. The key of the key-value pair is constructed so that the array index col-
locates key-value pairs first by the path, next by the unique identifier, and then by
the index. The key of the key-value pair is further based on ajoin key. The key of
the key-value pair is constructed so that the array index collocates key-value pairs
first by the path, next by the unique identifier, next by the join key, and then by the
index. The method also includes selectively storing the datum in an auxiliary array

index.

[0024] The datum is stored in the auxiliary array index as a key-value pair,
wherein the value of the key-value pair is the datum, and wherein the key of the
key-value pair is based on (i) a path of the datum consistent with the relational
schema, (i) an index of the datum's location in the array, and (iii) a unique identi-
fier of the object. The key of the key-value pair is constructed so that the auxiliary
array index collocates key-value pairs first by the path, next by the index, and then
by the unique identifier. The key of the key-value pair is further based on a join
key. The key of the key-value pair is constructed so that the auxiliary array index
collocates key-value pairs first by the path, next by the index, next by the unique

identifier, and then by the join key.

[0025] The method also includes storing the first index in an order-preserving in-
dex store, wherein the storage service includes the order-preserving index store.
The method also includes storing the array index in the order-preserving index
store. The relational schema is a structured query language (SQL) schema, and
the query is an SQL query. The query is one of a Hive-QL query, a jagl query, and
XQuery.

[0026] The method also includes selectively identifying an object of the cumula-

tive schema as a map. The object of the cumulative schema is identified as a map

6
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based on frequencies of occurrence of fields of the object within the retrieved ob-
jects. The method also includes tracking the occurrence frequencies while dynam-
ically creating the cumulative schema. The object of the cumulative schema is
identified as a map in response to an average of the frequencies of occurrence

being below a threshold.

[0027] The method also includes storing a datum corresponding to the map into

a map index as a key-value pair, wherein the value of the key-value pair is the da-
tum, and wherein the key of the key-value pair is based on (i) a path of the datum

consistent with the relational schema, (ii) a unique identifier of the retrieved object
providing the datum, (iii) a join key of the map, and (iv) a map key of the datum in
the map. The key of the key-value pair is constructed so that the map index collo-
cates key-value pairs first by the path, next by the unique identifier, next by the

join key, and then by the map key.

[0028] The method also includes storing a datum corresponding to the map into
an auxiliary map index as a key-value pair, wherein the value of the key-value pair
is the datum, and wherein the key of the key-value pair is based on (i) a path of
the datum consistent with the relational schema, (ii) a map key of the datum in the
map, (iii) a unique identifier of the retrieved object providing the datum, and (iv) a
join key of the map. The key of the key-value pair is constructed so that the auxil-
iary map index collocates key-value pairs first by the path, next by the map key,

next by the unique identifier, and then by the join key.

[0029] Converting the cumulative schema into the relational schema includes
creating a root table with a column for each element in a top level of the cumula-
tive schema. Converting the cumulative schema into the relational schema in-
eludes creating an additional table in the relational schema for each array in the
cumulative schema. The additional table includes (i) ajoin key column, (ii) an in-

dex column, and (iii) for each scalar type of data in the array, a value column.

[0030] The method also includes inserting a join key column into the additional

table and into the root table when the array is present at the top level of the cumu-
lative schema. The method also includes inserting a join key column into the addi-
tional table and into an intermediate table when the array is nested in the cumula-

tive schema below the top level. Converting the cumulative schema into the rela-
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tional schema includes creating an additional table in the relational schema for

each map in the cumulative schema.

[0031] The additional table includes (i) a join key column, (i) a key column, and
(i) for each scalar type of data in the map, a value column. The key column is a
string type. The method also includes inserting a join key column into the addi-

tional table and into the root table when the map is present at the top level of the

cumulative schema.

[0032] The method also includes inserting a join key column into the additional
table and into an intermediate table when the map is nested in the cumulative
schema below the top level. The method also includes selectively storing a data
value of a retrieved object in a value index as a key-value pair, wherein the key of
the key-value pair is based on (i) a path of the data value consistent with the rela-
tional schema and (i) the data value, wherein the value of the key-value pair is
based on a unique identifier of the retrieved object, and wherein the storage ser-

vice includes the value index.

[0033] The key of the key-value pair is constructed so that the value index collo-
cates key-value pairs first by the path, and then by the data value. When the data
value is part of an array, the value of the key-value pair is further based on an in-
dex of the data value in the array. The value of the key-value pair is further based
on ajoin key of the array. When the data value is part of a map, the value of the

key-value pair is further based on a map key of the data value in the map.

[0034] The value of the key-value pair is further based on ajoin key of the map.
The method also includes generating the retrieved objects by adding metadata to
raw data obtained from the data source. Inferring the schema for a retrieved ob-
ject is performed based on the metadata of the retrieved object and inferred types
of elements of the retrieved object. For each of the retrieved objects, the data of
the retrieved object includes values and the metadata of the retrieved object in-

cludes names of the values.

[0035] Each of the retrieved objects is a JavaScript Object Notation (JSON) ob-
ject. The cumulative schema is a JavaScript Object Notation (JSON) schema. The

method also includes selectively storing each of the retrieved objects in a row in-
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dex, wherein the storage service includes the row index. A retrieved object is
stored in the row index as a key-value pair, wherein the key of the key-value pair
is a unique identifier of the retrieved object, and wherein the value of the key-

value pair is a serialization of the entire retrieved object.

[0036] Further areas of applicability of the present disclosure will become appar-
ent from the detailed description provided hereinafter. It should be understood that
the detailed description and specific examples are intended for purposes of illus-

tration only and are not intended to limit the scope of the disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

[0037] The present disclosure will become more fully understood from the de-

tailed description and the accompanying drawings, wherein:

[0038] FIG. 1A depicts an example network architecture for a scalable analysis

platform for semi-structured data that leverages cloud resources;

[0039] FIG. 1B depicts an example network architecture for a scalable analysis

platform for semi-structured data with a server appliance at the user end,;
[0040] FIG. 1C is a functional block diagram of a server system;

[0041] FIG. 2A is a functional block diagram of an example scalable analysis

platform for semi-structured data;

[0042] FIG. 2B is a functional block diagram of an example query system of a

scalable analysis platform for semi-structured data;

[0043] FIG. 3 is a flowchart depicting an example method of incorporating in-

gested data;
[0044] FIG. 4 is a flowchart depicting an example method of inferring a schema;

[0045] FIG. 5 is a flowchart depicting an example method of merging two sche-

mas;
[0046] FIG. 6 is a flowchart depicting an example method of collapsing schemas;

[0047] FIG. 7 is a flowchart depicting an example method of populating indexes

with data;
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[0048] FIG. 8 is a flowchart depicting an example method of performing map

adornment; and

[0049] FIG. 9 is a flowchart depicting an example method of creating a relational

schema from a JSON schema.

[0050] In the drawings, reference numbers may be reused to identify similar

and/or identical elements.

DETAILED DESCRIPTION

OVERVIEW

[0051] The present disclosure describes an analysis platform capable of offering
a SQL (structured query language)-compliant interface for querying semi-
structured data. For purposes of illustration only, semi-structured data is repre-
sented in JSON (JavaScript Object Notation) format. Other self-describing, semi-
structured formats can be used according to the principles of the present disclo-
sure. Source data does not need to be self-describing. The description can be
separated from the data, as would be the case with something like protocol buff-
ers. As long as there are rules, heuristics, or wrapper functions to apply tags to

the data, any input data can be turned into objects similar to a JSON format.

[0052] In various implementations of the analysis platform according to the pre-

sent disclosure, some or all of the following advantages are realized:

Speed

[0053] The analysis platform provides fast query response times to support ad-
hoc, exploratory, and interactive analysis. Users can use this system to quickly
discover hidden insights in the data, without having to submit a query and return
later in the day or the next day to view the results. The analysis platform relies on
an index store, storing all ingested data in indexes, which allows for fast response

times.

[0054] Two primary indexes are used, a Bigindex (Bl) and an Arraylndex (Al),
which are described in more detail below. These are a cross between path index-

es and column-oriented stores. Like column-oriented stores, they allow queries to

10
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retrieve data only in the relevant fields, thereby reducing I/O (input/output) de-
mands and improving performance. Unlike column stores, however, these indexes
are suitable for complex nested objects and collections with numerous fields. For
other access patterns, the analysis platform engine maintains auxiliary indexes,
described in more detail below, including a Valuelndex (VI). Like traditional data-
base indexes, the Valuelndex provides fast logarithmic access for specific field
values or ranges of values. These indexes significantly reduce the data necessary

to retrieve to satisfy a query, thereby improving response times.

Dynamic Schema

[0055] The analysis platform infers the schema from the data itself, so that users
do not have to know an expected schema a priori, and pre-declare the schema
before data can be loaded. Semi-structured data may have varying structure, both
over time and across different sources. So, the engine computes and updates the
schema (or structure) from the data dynamically as data arrives. A relational
schema based on this computed schema is presented to users, which they can

use to compose queries.

[0056] Unlike previous analysis engines that require programmers to specify the
schema of data collections before querying them, the present platform computes
(or, infers) the underlying schema amongst all the ingested objects. Because of
the dynamic schema property, there is a great deal of flexibility. Applications that
generate source data can change the structure as the application evolves. Ana-
lysts can aggregate and query data from various periods without needing to speci-
fy how the schema varies from period to period. Moreover, there is no need to de-
sign and enforce a global schema, which can take months, and often requires ex-

eluding data that does not fit the schema.

[0057] Other analysis systems like MapReduce or Pig that are sometimes de-
scribed as "schema-free" have two main drawbacks. First, they require users to
know the schema in order to query the data, instead of automatically presenting
an inferred schema to the user. Second, they parse and interpret objects and their
structure on every query, while the analysis platform parses and indexes objects

at load time. These indexes allow subsequent queries to run much faster, as men-

11
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tioned above. Previous engines do not provide automatic inference of a precise

and concise schema from the underlying data.

SQL

[0058] The analysis platform exposes a standard SQL query interface (for exam-
pie, an interface compliant with ANSI SQL 2003) so that users can leverage exist-
ing SQL tools (e.g., reporting, visualization, and Bl tools) and expertise. As a re-
sult, business users familiar with SQL or SQL tools can directly access and query
semi-structured data without the need to load a data warehouse. Since traditional
SQL-based tools do not handle JSON or other semi-structured data formats, the
analysis platform presents a relational view of the computed schema of JSON ob-
jects. It presents a normalized view and incorporates optimizations to keep the
view manageable in size. Although the relational views may present several tables

in the schema, these tables are not necessarily materialized.

[0059] In order to better accommodate representing semi-structured data in tabu-
lar form, the analysis platform can automatically identify "map" objects. Maps are
objects (or nested objects) in which both the field name and value can be
searched and queried. For example, an object may contain dates as field names
and statistics like page views for the values. In the relational view, maps are ex-
tracted into separate tables and the data is pivoted such that keys are in a key

column and values are in a value column.

Scale and Elasticity

[0060] The analysis platform scales to handle large dataset sizes. The analysis
platform can automatically and dynamically distribute internal data structures and

processing across independent nodes.

[0061] The analysis platform is designed and built for virtualized "cloud" envi-
ronments, including public clouds such as Amazon Web Services and private
clouds, such as virtualized server environments administered by the user's organ-
ization or offered by third parties, such as Rackspace. Various components of
Amazon Web Services, including S3 (Simple Storage Service), EC2 (Elastic
Compute Cloud), and Elastic Block Storage (EBS), can be leveraged. The analysis

12
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platform is elastic, meaning it can scale up and down to arbitrary sizes on de-
mand, and can hibernate by storing its internal data structures on long-term
stores, such as Amazon S3. The analysis platform also has multi-tenancy and

multi-user support.

[0062] The analysis platform uses a service-based architecture that has four
components: the proxy, the metadata service, the query executor, and the storage
service. To scale the analysis platform engine to support larger datasets, provide
faster responses, and support more users, the execution engine is parallelized
and the storage service is partitioned across independent, low-cost server nodes.
These nodes can be real servers or virtualized servers in a hosted environment.
Since the executor and storage service are de-coupled, they can be scaled inde-
pendently. This de-coupled, scale-out architecture allows the user to leverage the
on-demand elasticity for storage and computing that a cloud environment like

AWS provides.

[0063] The storage service is configurable with various partitioning strategies.
Moreover, the underlying data structures (indexes and metadata) can be migrated
to long-term storage like Amazon S3, to hibernate the system when not in use,

thereby decreasing costs.

Synchronization

[0064] The analysis platform can be configured to automatically synchronize its
contents with, and thereby replicate, the source data from repositories like HDFS
(Hadoop Distributed File System), Amazon S3 (Simple Storage Service), and

noSQL stores, such as MongoDB. These sources can be continuously monitored
for changes, additions, and updates, so that the analysis platform can ingest the

changed data. This allows query results to be relatively up-to-date.

SCHEMA INFERENCE

[0065] The analysis platform takes the following actions in response to data ap-
pearing in a source: (1) infer unified semi-structured (such as JSON) schema from
the data, (2) create a relational view for the schema, (3) populate physical indexes

with data, and (4) execute queries that leverage the indexes. Parts or all of actions
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1, 2, and 3 may be pipelined to allow only a single pass through the data from the

data source.

[0066] The first action, schema inference, is described first.

Introduction to Semi-structured Data

[0067] JSON is an increasingly popular self-describing, semi-structured data
format, and is very commonly used for data exchange on the internet. Again, while
JSON is described here for illustration, and to provide context for later examples

using the JSON format, the present disclosure is not limited to JSON.

[0068] Briefly, a JSON object consists of string fields (or columns) and corre-
sponding values of potentially different types: numbers, strings, arrays, objects,
etc. JSON objects can be nested and the fields can be multi-valued, e.g., arrays,
nested arrays, etc. A specification can be found at: http://JSON.org. Additional de-
tails are can be found in "A JSON Media Type for Describing the Structure and
Meaning of JSON Documents,” IETF (Internet Engineering Task Force) draft-zyp-
json-schema-03, November 22, 201 0, available at http://tools.ietf.org/html/draft-
zyp-json-schema-03, the entire disclosure of which is hereby incorporated by ref-
erence. There are generalizations of JSON to include more types, e.g., BSON
(Binary JSON). Moreover, other semi-structured formats like XML, Protobuf, Thrift,
etc. can all be converted to JSON. When using XML, queries may conform to

XQuery instead of SQL.

[0069] Below is an example JSON object:

{ "player": { "fname": "George", "lnane": "Ruth", "nicknane"
"Babe"}, "born": "February 6, 1985",
"avg": 0.342, "HR': 714,
“"teams": [ { "nanme": "Boston Red Sox", "years": "1914-1919" i,
{ "name": "New York Yankees", "years": "1920-1934" },
{ "name": "Boston Braves", "years": "1935" } ] }

[0070] The structure of semi-structured objects can vary from object to object.

So, in the same baseball data, the following object may be found:
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{ "player": { "fname": "Sandy", "Ilnane": "Koufax"}, "born":
"December 30, 1935",
"ERA": 2.76, "strikeouts": 2396,
“"teams": [ { "nanme": "Brooklyn / LA Dodgers", "years": "1955-
1966" } ] }

[0071] A schema describes the possible structures and data types found in a da-
ta collection. This schema includes the names of the fields, the types for the cor-
responding values, and the nesting relationships. Thus, the schema for the above

two objects would be:

{ "player": { "fname": string, "lname": string, "nickname" : string
}, "born": string, "avg" : number, "HR': nunber, "ERA': number,
"strikeouts": nunber,

"teams": [ { "name": string, "years": string } ] }

[0072] Although the above is the notation used throughout the document for illus-
trating schemas, a more complete specification is JSON-schema, available at
http://JJSON-schema.org. For example, types in the JSON-schema are generally
included in quotes, as in string or "int." For conciseness and readability in this dis-

closure, the quotes will be omitted.

[0073] Semi-structured objects can alternatively be viewed as trees with fields as
nodes and leaves as atomic values. A path in the object or schema is a path in

this tree, e.g., "player.fname”, "teams[].name".

Iterative Schema Inference

[0074] Before a user can ask questions of a data set, they need to know the
schema - i.e., what fields or dimensions are available for querying. In many cas-
es, the analyst is not responsible for generating the data, so they are unaware of
what has been recorded and available. For example, in the baseball example
above, an analyst may not know that the "ERA" field was available if only hitters
had been observed in the collection. So, the analysis platform computes (or, in-
fers) a unified schema from the ingested data and presents a relational view of the

schema to assist the analyst in formulating queries.

[0075] The analysis platform aims to produce a schema aimed at optimizing the

precision and conciseness of the schema. Generally, precise means that the
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schema represents all the structures in the observed or ingested data and does
not allow for structures not yet seen. Concise means that the schema is small

enough that it can be read and interpreted by a human.

[0076] The general approach to dynamically creating the schema is to start with
a "current" schema inferred from past objects and grow the schema as new ob-
jects are ingested. We simply merge the current schema (S_curr) with the schema

(type) of a new object (0_new) to arrive at the new schema (S_new):

S new = nmerge (S curr, type(0_new))

[0077] Roughly speaking, the merging process takes the union of the two sche-
mas, collapsing common fields, sub-objects, and arrays, and adding new ones

when they appear. This is discussed in more detail below.

Objects

[0078] Some of the following examples use data that resembles the output of a
data stream from Twitter, referred to as the firehose. The Twitter firehose gives a
stream (unending sequence) of JSON objects that represent the tweets "tweeted"
and metadata about those tweets: e.g., user, location, topics, etc.). These tweets
are analogous to many other types of event log data, such as that generated by
modern web frameworks (e.g., Ruby on Rails), mobile applications, sensors and
devices (energy meters, thermostats), etc. Although similar to Twitter data, the fol-

lowing examples diverge from actual Twitter data for purposes of explanation.

[0079] Basic JSON objects are straightforward to deal with; we simply infer the

types seen in the object. For instance, consider the following object:

{ "created_at" : "Thu Nov 08", "id": 266353834,

"source": "Twitter for i Phone",

"text": "Qlstavrachi : would love dinner. Cook this:
http: //bit .1y/955Ff o",

"user": { "id": 29471497, "screennane": "Mashah08" 3,

"favorited" : false}

[0080] The schema inferred from that object would be:

{ "created_at" : string, "id": nunber, "source": string, "text":
string,
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"user": { "id": nunber, "screen_nane
bool ean }

string 3}, "favorited":

[0081] As new objects arrive, new fields can be added by performing a union on
the set of fields. Sometimes, a field will be repeated, but its type varies, a condi-
tion called type polymorphism. The schema uses multiple attributes with the same

key to represent type polymorphism.

[0082] Log formats often change and developers may add new fields, or change
the field type. As a concrete example, consider the "id" field identifying the tweet,
which was originally a number. However, as the number of tweets grew, certain
programming languages could not handle such large numbers, and so the "id"

field has been changed to a string. So, suppose we saw a new record of the form

{ "created_at" : "Thu Nov 10", "id": "266353840",
"source": "Twitter for iPhone",

"text": "Cbinkert: cone with me to Olstavrachi place",
"user": { "id": 29471497, "screennane": "Mashah08" 3,
"retweet _count ": 0 }

[0083] Since a string "id" has now been seen, and a new field "retweet_count"

has appeared, the schema is augmented as follows:

{ "created_at" : string, "id": nunber, "id": string, "source":
string, "text": string,
"user": { "id": nunber, "screen_nane ": string },

"retweet _count ": nunber }

[0084] Notice that "id" appears twice, once as a string and once as a number.
Sometimes, the structure of nested objects vary. For example, suppose we added

more profile information for the user:

{ "created_at" : "Thu Nov 10", "id": "266353875",
"source": "Twitter for i Phone",
"text": "Obinkert: cone with me to Glstavrachi place",
"user": { "id"': "29471755", "screen_nane ": "mashah08",
"l ocation": "Saratoga, CA", "followers_count ": 22 1},
"retweet _count ": 0 }

[0085] In that case, the platform recursively merges the "user" nested schema to

get the following schema:
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{ "created_at" : string, "id": nunber, "id": string, "source"
string, "text": string,
"user": { "id": nunber, "id": string, "screen_name ": string,
“"location": string, "followers count ": nunber
"retweet _count ": nunber }

Null Fields and Empty objects

[0086] Empty objects or null fields can be present in JSON records. For example,

the record for a person's coordinates (latitude and longitude) might be:

{ "coordinates": {} }

The schema has the identical type:

{ "coordinates": {3} }

Strictly speaking, {} is termed instance, and the type is object. The examples and
explanations in this disclosure vary from strict JSON for ease of explanation.
[0087] Similarly, the following object

{ "geo": null }

has the identical type:

{ "geo": null }

[0088] If a subsequent record has a value for the object, the empty object is filled
in by applying the merge. For instance, the records:

{ "coordinates": {} }
{ "coordinates": {"type": "Point"} }

will produce the schema

{ "coordinates": {"type": string} }

[0089] A null type is similarly replaced by an observed type. For example, the

records

{ "geo": null }
{ "geo": true }

will produce the schema:
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{ "geo": boolean }

Arrays

[0090] Tweets often contain items such as hashtags (highlighted topic words),
urls, and mentions of other Twitter users. The Twitter firehose, for example, may
parse and extract these items automatically for inclusion in the tweet's JSON ob-
ject. In the following examples, hashtag metadata is used to illustrate how the

schema for arrays is inferred.

[0091] First, let's consider extracting and recording a list of starting offsets for

hashtags in the following tweet (or string):

"#donuts #nuffins #biscuits”

Those offsets may be represented with an array as follows:
{ "offsets": [0, 8, 17] }
[0092] An array in the source data is represented in the schema as an array con-

taining the types of the elements found in the source array, in no particular order.

Thus, the schema for the above object is:

{ "offsets": [nunber] }

[0093] One may want to include the hashtag along with the offset for later pro-
cessing. In that case, the tweet object may enumerate both the hashtag and offset

in the array as follows:

{ "tags": [o, "donuts", 8, "nuffins", 17, "biscuits"] }

The corresponding schema would include both types in the array:

{ "tags": [ nunber, string ] }

[0094] Alternatively, the tags and offsets could be reversed as follows:

{ "tags": ["donuts", o, "muffins", 8, "biscuits", 171 }

and, because the "tags" array can contain either a string or number, the resulting

schema is:

{ "tags": [ string, nunber ] }
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[0095] In fact, tag text and tag offsets can be included in adjacent objects:

{ "tags": ["donuts", "muffins", "biscuits"] 13,
{ "tags": [0, 8, 17] }

There are now two schemas for "tags™

{ "tags": [string] } and { "tags": [nunber] }

In this case, the arrays are at the same depth and can be merged to yield the
same schema as above:

{ "tags": [ string, nunber ] }

[0096] Also, note that the following schemas are identical:

{ "tags": [string, nunber] }
{ "tags": [number, string] }

This is because the list of types is treated as a set. Types for array elements are
merged where possible, and merging is further performed for objects and arrays
inside arrays. In various other implementations, the order of types and dependen-
cies among types (in both arrays and objects) could be preserved. However, this

may make the schema much less concise.

Nested Objects

[0097] To illustrate nested objects, suppose both beginning and ending offsets

are recorded as follows:

{ "tags": (¢ "text": "donuts", "begin": 0 }, { "text": "donuts",
"end": 6 }]1}

The resulting schema is:

{ "tags": [{"text": string, "begin": nunber,
"end": nunber 1 }

As shown, the objects types are merged instead of typing the array elements sep-

arately.

[0098] Similarly, in a case where the tag string and offsets are in nested arrays:

{ "tags": [ [ "donuts", "nmuffins" 1, [0 , 8] ] } ==>
{ "tags": [[string], [nunber]]},

20



10

15

20

25

30

WO 2013/096887 PCT/US2012/071454

The schema further reduces to:

{ "tags": [[string, nunber] ]}

This is the tradeoff made in various implementations of the present disclosure be-
tween precision of the schema and conciseness of the schema.

[0099] Empty objects and empty arrays are treated as follows. Because empty
objects are filled in as described above, the following example schema reduction

is possible:

{ "parsed": { "tag": {3, "tag": { "offset": nunmber } } }
=> { "parsed": { "tag": { "offset": number }}

Similarly, using the merging rules for arrays, the following schema reductions are

made:

{ "tags": [[1, [ nunber ]] } => { "tags": [[ nunber ]] }

{ "tags": [11, [w]] } =>{ "tags": [[n1]] }

{ "tags": [[1, [r11, [number] ] } => { "tags": [[11]1., [nunber] ] }

=> { "tags": [[[], number] 1] }

Merge Procedure

[0100] To create a new schema from a previous schema and a new object, the
analysis platform first types (i.e., computes the schema for) the new object. This
procedure is intended to specify the canonical semantics for typing, not describe
any particular implementation. In the following description, the variables v, w, v_i,
w_j range over any valid JSON value, while j, k, j_m, k_n range over valid strings.

The base rules for typing are:

type (scalar v) = scalar_type of v
type ({ k_I: v_I, ..., kn v_n 1) =

collapse ({ k_I : type(v_l), ..., k_n: type(v_n) 1)
type ([ v_I, ..., v.n ]) =

col lapse ([ type(v_l) , ..., type(v_n) 1)

[0101] The first rule simply states that for a scalar, such as 3 or "a", the corre-
sponding type is inferred directly from the value itself (number for 3 or string for
"a"). The second and third rules recursively type objects and arrays using the col-

lapse function.
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[0102] The collapse function repeatedly merges types of the same field in ob-
jects, and merges objects, arrays, and common types inside arrays. It continues

recursively until the scalar types are reached. For objects, the collapse function is:

collapse ({ k_I: v_I, ..., kn v_n }):
while k_i == k_j:
if v.i, v_j are scalar types and v_i == v_j OR
v_i, v_j are objects ORv_i, v_j are arrays:
replace {..., k. : v_i, ..., k j:v_3, ...}
with {..., k_i : nerge (v_i, v_3j), ...}

[0103] For arrays, the collapse function is:

collapse ([ v.I, ..., v.n ]):
while v_i, v_j are scalar types and v_i == v_j OR
v_i, v_j are objects ORv_i, v_j are arrays:
replace [..., v_i, ..., v, ...]
wth [..., merge (v, v_j), ...]

[0104] The merge function describes how to pairwise combine values to remove
duplicates and combine arrays/maps. For objects, merge simply calls collapse re-

cursively to collapse common fields:

nerge (v, v) = Vv

merge ({}y , { k1 : v, ..., kn:v.ny) ={kIl:vl, ..., kn v_
}

merge ({ j_I: v, ..., j_ni v_n y, {kJI:wl, ..., km wm})
= collapse ({ j_I : v, ..., j_n v_.n, kIl :wl, ..., km wm
})

[0105] Similarly for arrays:

merge ([1, [v., ..., v.nl ) = [v., ..., v_n]
merge([v_l, ..., v.nl, [wl, ..., wni)
= collapse ([v, ..., v.n, wl, ..., wni)

[0106] Nulls are preserved, such as shown here:

merge ( { "coordinates": {3y } , { "coordinates": null } ,
{ "coordinates": (1 } )
= { "coordinates": {}, "coordinates": [], "coordinates": null }

A JSON null is a value, just as the number 9 is a value. In a relation, NULL indi-

cates that there was no value specified. In SQL, nulls are presented as
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tags<null>: boolean, where the Boolean value is True if the null exists, and NULL
otherwise. To simplify the schema for a SQL user, the coordinates<null> column
can be omitted if the user does not need to differentiate JSON nulls from SQL

nulls.

Cumulative Example

[0107] With the above simple rules, it is possible to type deeply nested JSON
records. For instance, consider a complex hypothetical record that represents

page view statistics for a web page:

{ "stat": [ 10, "total_pageviews", { "counts": [1, [3]],
"page_attr": 7.0 3y, { "page_attr": ["internal "]} 1}

The following schema would be produced:

{ "stat": [nunber,
string,
{ "counts": [nunmber, [numnber]],
"page_attr" : nunber,
"page_attr" : [string]
11}

[0108] In various implementations, the JSON Schema format can be used to en-
code the inferred schema. This format is standardized, and can easily be extend-
ed to incorporate additional metadata (e.g., whether an object is a map). However,
it is quite verbose and space-inefficient, so it is not used for the examples in this
disclosure. For instance, in JSON-Schema format, the above schema is repre-

sented as follows:

"type": "object",
"properties ": {
"stat": {
"itens": {
“type": |
"nunber",
"string" ,
{
"type" : "obj ect",
"properties ": {
"counts" @ {
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"items " {
"type' : [
"number"

{
"items " {
"type" : "number"

).
"type" : "array"

]

).
"type" : "array"

',
"page attr ": {

"type" [
"number"

{
"items " {
n typell : n grlngll

).
"type" : "array"

}r
"type" . "array"

MAP ADORNMENT

[0109] Developers and analysts can use JSON objects and arrays for many dif-
ferent purposes. In particular, JSON objects are frequently used both as objects
and as "maps." For example, a developer might create an object, where the fields
are dates and values are collected statistics like page views. Another example is
when fields are user ids and values are profiles. In these cases, the object is more
like a map data structure rather than a static object. A user does not always know

the possible fields names because there are so many of them, and the field
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names are dynamically created. As a result, users may want to query fields in the

same way they query values.

[0110] To support this use, the analysis platform is able to identify maps. The
analysis platform incorporates heuristics to identify maps, and also allows users to
specify which nested objects should and should not be treated as maps. Tagging

objects as maps is called adornment.

[0111] Generally, adornment is performed after the initial load - that is, it is not
necessary to identify maps on the initial ingest. Adornment can be performed later
on a second pass, or after more data has been ingested. In addition, maps can be

reverted back to simply objects, if needed.

[0112] By default, JSON objects are treated as objects (or, structs, in C nomen-
clature). This can be explicitly indicated in the JSON Schema by annotating an

object with "obj_type": object. The shorthand notation used in examples below is
0{}.
[0113] To flag maps, the heuristic looks for fields that as a group occur relatively

infrequently compared to their containing object (container). For maps, the short-

hand M{} is used.

[0114] While computing the schema on the first pass, the frequency that fields
occur is tracked. Consider an object (or nested-object) which occurs with frequen-
cy Fin the data set. Let v_i be the frequency of field i in the object, and N be the
number of unique fields of the object (irrespective of its type). The ratio (sum(v_i) /
N) / F is the ratio of the average field frequency to the frequency of the container.
If this ratio is below a threshold, such as 0.01, which may be user-configurable,
then the containing object is designated as a map. In various implementations,

empty objects in the JSON Schema are treated as maps.

CREATING RELATIONAL SCHEMA

[0115] After the schema of the JSON objects in the source data set is inferred,
the analysis platform produces a relational schema that can be exposed to SQL
users and SQL-based tools. The goal is to create a concise schema that repre-
sents the containment relationships in the JSON schema, while giving the users

the power of standard SQL. This relational schema is produced from the adorned
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JSON schema, and is a view over the underlying semi-structured data set. A few
examples of how a JSON schema is converted to a relational view are presented

here, before discussing a generalized procedure for performing the conversion.

Objects

[0116] The simplest example is an object with simple scalar types, such as the

following schema:

{ "created_at" : string, "id": number, "text": string,
"source": string, "favorited": boolean }

In this case, the fields of the object translate directly into columns of a relation:

Root (created_at : str, id: num text: str, source: str, favorited:
bool )

[0117] The relation (or, table) of the top-level object is called "Root" here, alt-
hough it can be replaced by, for example, the name of the source collection, if
such a name exists. In the interest of space and readability, the type names string,

number, and boolean have been shortened to str, num, and bool.

[0118] The type can be added to the attribute name in order to support type pol-

ymorphism. For instance, consider the following schema:

{ "created_at" : string, "id": nunmber, "id": string, "text":
string, "source": string, "favorited": boolean }

The resulting relational schema would then have separate "id" and "id" columns:

Root (created_at : str, id<nun®: num id<str>  str,
source: str, text: str, favorited: bool)

Nested Objects

[0119] Nested objects produce new relations with foreign-key relationships. For

instance, consider the JSON schema:

{ "created_at" : string, "id": nunber, "source": string, "text":
string,
"user": { "id": nunber, "screen_name ": string },
"favorited": boolean }

The corresponding relational schema is
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Root (created_at : str, id: num source: str, text: str, favorited:
bool, wuser: join_key)
Root .user (id_jk: join_key, id: num screennane: str)

[0120] The nested object is "normalized" into a separate relation named by its
path, "Root.user" in this case. The column "Root.user"."idJk" in the new table that
represents the sub-object is a foreign-key for the column "Root.user" ("user" col-
umn in the table "Root"). The type is specified as "joinkey" to distinguish it from
other columns, but in actual implementations, the join_key type is typically an in-

teger.

[0121] Objects can be nested several levels deep. For example, retweet objects
may include a retweeted status object, which includes the profile of the user that

retweeted, resulting in the following schema:

{ "created_at" : string, "id": nunber, "source": string, "text":
string,
"user": { "id": nunmber, "screen_nane ": string 1},
"retweeted_status" : { "created_at" : string, "id": nunber,
"user": { "id": nunber, "screen_nanme ": string } },
"favorited": boolean }

The corresponding relational view is:

Root (created_at : str, id: num source: str,
text: str, favorited: bool,
user: join_key, retweeted _status : join_key)

Root .user (id_jk: join_key, id: num screennane: str)

Root .retweeted_status (id_jk: join_key, created_at: str, id: num
user: join_key)

Root .retweeted_status .user (id_ jk: join_key, id: num screennane:
str)

Note that "Root.user”, "Root.retweeted_status”, and "Root. retweeted_status. user"

are all separated into different tables.

Optimizing 1-to-1 Relationships

[0122] In nested object relationships, often there is a 1-to-1 relationship from
rows in the main table to the rows in the table for the nested object. As a result,
these can be collapsed 1-to-1 into a single table using dotted notation for the col-

umn names.
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[0123] For example, the multi-relation examples above flatten into:

Root (created_at : str, id: num source: str,
text: str, favorited: bool,
user. id: num user .screen_name : str)

and, for the three-level nested object example,

Root (created_at : str, id: num source: str,
text: str, favorited: bool,
user. id: num user .screen_nane :@ str,
retweeted status .created at : str,
retweeted status .id: num
retweeted status .user .id: num
retweeted_status .user .screen_nane : str)

[0124] Note that, since the relational schema is simply a view over the JSON

schema, flattened, partially flattened, or separate (un-flattened) relational schema
can be presented to the user as desired by the analysis platform without modifying
the underlying data. The only limitation is that the user not be presented with con-

flicting table definitions.

Maps

[0125] Without designating a set of fields as a map, the corresponding relational
schema may include a huge number of columns. In addition, the user may want to
query the field names; for example, they may want to find the average page views

in December.

[0126] To solve these issues, the tables for (nested) objects that are adorned as
maps can be "pivoted.”" For example, consider the following schema for keeping
track of various metrics (daily page views, clicks, time spent, etc.) for each page

on aweb site:

0{ "page_url": string, "page_id" : number,
"stat_nane": string,
"metric": M{ "2012-01-01": number, "2012-01-02": nunber, ...,
"2012-12-01": nunber, ...}}

[0127] Rather than producing a table with a separate column for each day, the

fields and values can be stored as key-value pairs in a relation:
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Root (page_url : str, page_id: num stat_name: str, netric<map>:
j oi n_key )
Root .metric<map> (id_jk: join_key, key: string, val: num

[0128] In this case, the id column is a foreign key; indicating within which record
each map entry was originally present. For a year's worth of page views, instead
of having 365 columns in table "Root.metric”, there are only two. The "key" col-
umn stores the field names and the "val" column stores the values. For example,
for the above schema, the database may contain these records for

"www.noudata.com/jobs" (page_id 284):

Root ("www. noudata. com jobs", 284, "page views ", 3),
Root . metric<map> (3, "2012-12-01", 50),
Root . metric<map> (3, "2012-12-02", 30),

[0129] Pivoting still works when there is type polymorphism in the map. For ex-
ample, suppose the metric represents sentiment, which contains both a category

and a score indicating the strength of the category:

{ "page_url": "ww. noudat a. coni bl og", "page_id": 285, "stat_ name":
"senti nment
"metric": { "2012-12-01": "agreenent", "2012-12-01": 5,
"2012-12-05": "anger", "2012-12-05": 2, ... } }

The JSON schema would be:

0{ "page_url": string, "page_id" : numnber,
"stat_nanme": string,
"metric": M{ "2012-12-01": string, "2012-12-01": nunber, ...,
"2012-12-05": string, "2012-12-05": nunber, ...}}

[0130] When creating the relational schema, a new "val" column can be added to
the map relation to include the new type. The other "val' columns can be append-

ed with their types as well to distinguish the column names, as shown:

Root (page_url : str, page_id: num stat_name: str, netric<map>:
j oi n_key )

Root .metric<map> (id_jk: join_key, key: string,
val <str>: str, val<nume: num

[0131] The entries resulting from the above JSON object would appear as:

Root . metric<map> (4, "2012-12-01", “"agreenment", NULL),

29



10

15

20

25

30

WO 2013/096887 PCT/US2012/071454

Root .nmetric<map> (4, "2012-12-01", NULL, 5),
Root . nmetric<map> (4, "2012-12-05", "anger", NULL),
Root . nmetric<map> (4, "2012-12-05", NULL, 2)

Once these maps are pivoted, users can apply predicates and functions to the key

column as they would any other column.

Nested Maps

[0132] The basic principles are the same for nested maps. Consider a list of sta-
tistics per day and per hour:
M{"2012-12-01" : M{ "12:00": nunber,

"01:00": nunber,
"02:00": nunber,

el ),
"2012-12-02" : M{ ... },

}

The resulting schema would be

Root (id_jk: join_key, key: string, val<map>: |join_key)
Root .val <map> (id_jk: join_key, Kkey: string, val<num> : num

[0133] Objects can also be nested inside maps:

M{"2012-12-01" : 0o{ "sentinment": string,
"strength": nunber }
"2012-12-02" : 0o{ ... }

}

The resulting flattened relational schema is:

Root (id_jk: join_key, key: string, val<map>: |join_key)
Root .val <map> (id_jk: join_key, sentinent: string,
strength: nunber)

Empty Elements

[0134] Empty objects sometimes appear in the data. Consider the schema:

{ "created_at" : string, "id": nunber, "source": string, "text":
string,
"user": { "id": nunber, "screen_nane ": string } }

A JSON object may be received without user information, as shown here:
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{ "created_at" : "Thu Nov 08",
"id"': 266353834,
"source": "Twitter for iPhone",
"text": "Qlstavrachi : would |ove dinner. Cook this:
http://bit.ly/955Ff 0",
"user": { } }

[0135] The empty user object can be represented with the following relational tu-

ples:

Root ("Thu Nov 08", 266353834, "Twitter for iPhone", "@]Istavrachi
would love dinner. Cook this: http://bit.ly/955F 0", j oi n_key)
Root .user (join_key, NULL, NULL)

[0136] If all ingested user objects had an empty object in the ingested stream,
the resulting JSON schema would include an empty object. For example, see the

final field ("user") in this schema:

{"id": nunber, "user": {}}

In this case, empty object "user" can be treated as a map, resulting in the follow-
ing relational schema:

Root (id: num user<map>:. join_key)
Root .user<map> (id_jk: join_key, key: string)

[0137] Note that Root.user<map> does not have any value columns, and initially
is empty. However, this design makes it straightforward to add columns later if the
schema changes as new objects are ingested, because each record in Root will

have already been assigned a join key.

Arrays

[0138] Arrays are treated similarly to maps, so the schema translation is quite
similar. The major difference is that the string "key" field of a map is replaced by
an "index" field of type integer (int) corresponding to the array index. A simple ex-

ample is:
{ "tags": [ string ] }
which leads to the relational schema:

Root (tags<arr>: join_key)
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Root .tags<arr> (id_jk: join_key, index: int, val<str>  str)
[0139] Type polymorphism and nested arrays work the same way as for maps.
Consider the following schema:

{ "tags": [ nunber, string] }

which leads to the relational schema:

Root (tags<arr> : join_key)
Root .tags<arr> (id_jk: join_key, index: int,
val <nun®: num val<str>: str)

[0140] An object may be nested within in an array, as here:

{ "tags": ¢ "text": string, "offset": nunber 31 }

The resulting relational schema can be created as:

Root (tags<arr> : join_key)
Root .tags<arr> (id_jk: join_key, index: int, val : join_key)
Root .tags<arr> .val (id_jk : join_key, text: str, offset: num

[0141] Using the 1-to-1 flattening optimization, the relational schema becomes:

Root (tags<arr> : join_key)
Root .tags<arr> (id_jk: join_key, index: int,
val .text : str, val. offset: num

Nested and Empty Arrays

[0142] Relational schemas can be created for nested and empty arrays in a simi-

lar manner to maps. For the following schema:

{ "tags": [string, [nunber]], “urls": []}

the relational schema would be:

Root (tags<arr> : join_key, wurls<arr> join_key)
Root .tags<arr> (id_jk: join_key, index: int,
val <str>: str, val<arr> : join_key)
Root .tags<arr> .val<arr> (id_jk: join_key, index: int,
val <nunme> : nun)
Root .urls<arr> (id_jk : join_key, index: int)
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[0143] Note that, for the nested array, a separate table is created with "val" ap-
pended to the table name. For the empty array, a separate table is created with
only an "index" column, but no "val" column, which can be added later once the

contents of the array are observed and typed.

Type Inference on Atomic Values

[0144] The above type inference and conversion to relational schema procedure
relies on the basic types available in JSON. The same procedure applies equally
to whatever type system is selected. In other words, the analysis platform can in-
fer narrower scalar types like integer, float, and time, as long as the atomic scalar
types can be inferred from the value. BSON and XML have such extended type

systems. Moreover, various heuristics (such as regular expressions) can be used

to detect more complex types such as dates and times.

[0145] Since ANSI SQL does not support the same types as JSON, the inferred
types are converted into the most specific types seen thus far for the relational
view. For example, if only integers have been seen for field "freq", then the num-
ber type will be converted to integer in the relational schema for "freq". Similarly, if
both integers and floats have been observed, then the relational schema will show
the "freq" column as a float. Likewise, string fields convert to character varying
types in the relational schema. In other words, the more specific types than basic

JSON types may be tracked.

[0146] An alternative is to rely on type polymorphism and use the more specific
type system to infer the data value's types. That is, instead of using JSON primi-

tive types, use ANSI SQL's primitive types.

[0147] Below are the list of types tracked during ingestion (on the left) and how
they are converted for the SQL schema (on the right). Most SQL databases sup-
port additional types including text which can be used if desired by the client.

Note: the Objectld type is specific to BSON.

i nt32, — > | NTEGER

i nt 64, — > | NTEGER

double, _ . DOUBLE PRECI SI ON
string, — - VARCHAR

dat e, — > DATE
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bool , -—> BOOLEAN
obj ect _id, (BSON) —-> VARCHAR( 24)
time -——>  TI M

timestanp — > TIMESTAMWP

Procedure

[0148] Converting from a JSON schema to a relational schema can be accom-
plished using a recursive unpacking of the nested JSON schema structure. A

pseudocode representation of an example implementation is shown here.

Call for every attribute in topnost object:
attr_schem, "Root", attr_nane

create_schema (json_schemn, rel_name, attr_nane):

/* Creates a table (relation) if it's adorned as an object =/
if json_schema is object:

Add join key called attr_nane to relation rel_nane

newrel = rel _name + "." + attr_nane
Create relation new rel
add (id_jk: join_key) to newrel

/* recursively add attributes to the table (relation) */
for attr, attr_schema in json_schems:
create_schema (attr_schemn, newrel, attr)

/* Creates appropriate attrs and table for (nested) map */
else if json_schema is map:
Add join key called 'attr_name + <map>"' to relation rel_name
newrel = rel_nane + "." + attr_name<map>
Create relation new rel
Add (id_jk: join_key) and (key: string) to newrel

/* recursively add attributes to the table (relation) */
for each distinct value type val_type in json_schema:
create_schema (val _type, newrel, "val")

/* Creates appropriate attrs and table for array */

else if json_schema is array:
Add join key called 'attr_name + <arr>"' to relation rel_name
newrel = rel name + "." + attr_nane<arr>

Create relation new rel

34



10

15

20

25

30

35

WO 2013/096887 PCT/US2012/071454

Add (id_jk: join_key) and (index: int) to newrel

/* recursively add attributes to the table (relation) */
for each distinct item type itemtype in json_schena :
create_schema (itemtype, newrel, "val")

/* Primtive type, add colum to the table (relation) =/
el se :
If attr_name does not exist in relation rel_ nane:
Add columm (attr_nane, attr_nane 's type) to relation

rel _nane

el se
Renane attribute attr_name to attr_nane + "<orignal
attr_name 's type>" in relation rel_nane

Add colum (attr_name + "<" + attr_name's type + ">",
attr_name 's type) to relation rel_nane

[0149] The above procedure will create the relational schema without the 1-to-1
optimization. A second pass may be performed through the relational schema,
identifying object tables with 1-to-1 relationships and collapsing them. Alternative-
ly, the 1-to-1 -optimization could be performed inline, but this was not shown for
clarity. When a sub-tree of the schema with nested objects is not "interrupted” by
arrays or maps, then the entire object sub-tree can be collapsed into a single table
with attributes named by their path to the root of the sub-tree. An attribute that is a
map or object remains in a separate table, but any sub-objects contained within
can be collapsed recursively. These principles apply to any arbitrary depth of

nested objects.

POPULATING INDEXES WITH DATA

[0150] Once the JSON and relational schemas have been updated in response
to a new object, the data contained within the object can be stored in indexes, as

described below.

[0151] The indexes in the analysis platform rely on order-preserving indexes that
store key-value pairs. The indexes support the operations: lookup(prefix), in-
sert(key, value), delete (key), update(key, value), and get_next() for range
searches. There are a number of data structures and low-level libraries that sup-

port such an interface. Examples include BerkeleyDB, TokyoCabinet, KyotoCabi-
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net, LevelDB, and so on. These internally use order-preserving, secondary store
data structures like B-trees, LSM (log-structured merge) trees, and Fractal trees.
There may be special cases where non-order-preserving indexes (such as hash
tables) are used, such as for object IDs. With non-order-preserving indexes,

get_next() and the ability to do range searches may be sacrificed.

[0152] In various implementations, the analysis framework uses LevelDB, which
implements LSM trees, does compression, and provides good performance for
data sets with high insert rates. LevelDB also makes performance trade-offs that
may be consistent with common use models for the analysis framework. For ex-
ample, when analyzing data such as log data, data will be frequently added, but
existing data will be infrequently, or, never, changed. Advantageously, LevelDB is
optimized for fast data insertion at the expense of slower data deletion and data

modification.

[0153] Order-preserving indexes have the property that they collocate the key-
value pairs in key order. Thus, when searching for key-value pairs nearby a cer-
tain key or retrieving items in order, the responses will return much faster than

when retrieving items out of order.

[0154] The analysis platform can maintain multiple key-value indexes for each
source collection, and in some implementations, between two and six indexes for
each source collection. The analysis platform uses these indexes for evaluating
SQL queries over the relational schema (the SQL schema does not need to be
materialized). Each object is assigned a unique id denoted by tid. The two indexes
from which the other indexes and the schemas can be reconstructed are the Big-

Index (Bl) and Arraylndex (Al).

Bigindex (BI)

[0155] The Bigindex (BI) is the base data store that stores all fields in the data
that are not embedded in an array. A value (val) can be retrieved from the Bl by a

key based on col_path and tid.

(col_path , tid) -> val
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[0156] The col_path is the path to the field from the root object with the field's

type appended. For example, for the following records:

1: { "text": "Tweet this", "user": { "id": 29471497,
"screenname” : "MashahO 8" } }

2: { "text": "Tweet that", "user": { "id"': 27438992,
"screennanme ": "binkert" } }

the following key-value pairs are added to the BI:

(root .text<str>, 1) —> "Tweet this"
(root .text<str>, 2) —> "Tweet that”
(root. user .id<nunp, 1) — > 29471497
(root. user .id<nunp, 2) — > 27438992
(root .user .screen_nanme<str>, 1) — > "Mashah08"
(root .user .screen_nanme<str>, 2) —> "binkert"

[0157] in various implementations, the underlying index store (such as LevelDB)
is unaware of the significance of the segments of the key. In other words, while
"root.text<str>, 1" signifies the first element of the string text field in the root table,
the index store may simply see an undifferentiated multi-character key. As a sim-
ple example, the key could be created simply by concatenating the col_path and
tid (importantly, in that order). For example, the first key demonstrated above may
be passed to the index store as "root.text<str>1 ." The index store will collocate the
second key ("root.text<str>2") with the first key not because of any understanding
of the path similarity, but simply because the first 14 characters are the same.
Even though the column name and type are stored as part of every key, because
of the sort ordering, compression (such as prefix-based compression) can be

used to reduce the storage cost.

[0158] In the BI, all columns of the source data are combined into a single struc-
ture, unlike traditional column stores which create a separate column file for every
new column. The Bl approach allows for a single index instance and also enables
map detection to be delayed. Since new fields simply appear as entries in the BI,
failing to pivot a map does not incur the physical cost of creating a large number

of physical files for each field later turned into a map.

[0159] In the BI, the key-value pairs for each attribute or "column" are collocated.

Thus, like column files, the Bl allows the query executor to focus on the fields of
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interest in a query rather than forcing it to sweep through data containing fields not

referenced in a query.

Arraylndex (Al)

[0160] Although fields from the normalized tables for arrays could be added to
the BI, the array indices would then be from their corresponding values. Instead,
array fields can be added to a separate Arraylndex (Al) that preserves the index
information and allows entries in the same array to be collocated by the index

store, which provides good performance for many queries. The array values can

be stored in the Al using the following signature:

(col _path, tid, join_key, index) -> val

[0161] The col_path is the path of the array field: for example, "root.tags" for el-
ements in the tags array, or "root.tags.text" for the "text" field in an object inside
the tags array. The join_key and index are the array's foreign key and index of the
value. The tid is also stored, to avoid having to store a separate entry in the BI for
each array. The tid can be used to look up values for corresponding columns in

the same object. Consider the objects that represent hashtags in different tweets:

1: { "id": 3465345, "tags": [ "muffins" "cupcakes" ] }
2: { "id": 3465376, "tags": [ "curry" "sauces" ] }

For these, the tags table has the following schema:

Root .tags<arr> (id_jk: join_key, index: int, val: string)

For that table, the entries in the Al would be:

(root .tags<arr> 1, 1, 0) —> "nuffins"”
(root .tags<arr> 1, 1, 1) —> "cupcakes"
(root .tags<arr> 2, 2, 0) —> "curry"
2, 2

(root .tags<arr>, 1) — > "sauces"

[0162] The array index allows for quickly iterating through the values of array
fields. This is useful, for example, when running statistics over these fields (e.g.,

sum, average, variance, etc.), finding specific values, etc.
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Nested Array Example

[0163] Note that, for arrays in the root object (top-level arrays), the tid and
join_key fields are redundant (see above) and can be optimized away. However,
for nested arrays, a separate join_key is needed and not superfluous. For exam-
pie, consider this JSON obiject:

1: {"id": 3598574, “"tags": [[8,25,75], ["muffins", "donuts",
"pastries "]]}

The corresponding relational schema is:

Root .tags<arr> (id_jk: join_key, index: int, val<arr> : join_key)
Root .tags<arr> .val<arr> (id_jk: join_key, index: int, val<nunp:
num val <str>: str)

Recall that the Al uses the following key-value pair

col _path, tid, join_key, index -> val

which results in these Al entries

tags<arr> .val<arr> 1, 1, 0 ->1

tags<arr> .val<arr> 1, 1, 1 -> 2

(numbers array)

tags<arr> .val<arr> .val <nune», 1, 1, 0 -> 8
tags<arr> .val <arr> .val <nunp, 1, 1, 1 -> 25
tags<arr> .val <arr> .val <nunp, 1, 1, 2 -> 75
(string array)

tags<arr> .val<arr> .val<str> 1, 2, 0 -> "nuffins"”
tags<arr> .val<arr> .val<str> 1, 2, 1 -> "donuts"
tags<arr> .val<arr> .val<str> 1, 2, 2 -> "pastries"”

[0164] Note that if the join key were removed from the nested array key-value
pairs, then it would not be possible to know whether muffins was part of the first
nested array or the second. Thus, the join key is redundant for a top-level array,

but not for cases of nested arrays.

Array Index 2 (Al2)

[0165] Although these two indexes (Bl and Al) are sufficient to reconstruct all the
ingested data, there are access patterns that they do not support efficiently. For
these, we introduce the following indexes, which can optionally be created to im-

prove performance at the cost of additional space.
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[0166] This has the signature:

(col _path, index, tid, join_key) -> val

which allows specific index elements of an array to be found quickly. For example,

returning all tags at index 10 (tags[1 O]) is simple and fast using Al2.

Map Index (Ml)

[0167] The map index is similar to the array index in its functionality and signa-

ture:

(col _path, tid, join_key, mp_key) -> val

[0168] The primary difference is that the map index is not built during initial in-
gestion, and is instead constructed asynchronously. During initial loading, maps
will be treated as objects and inserted into the Bl as usual. Once both are popu-
lated, there are entries available in both the Bl and MI for more efficient query
processing. The BI entries remain relevant in case a user or administrator re-
quests that the map be unadorned. Only the relational schema needs to be
changed, and the original Bl entries corresponding to the unmapped data will then

be used in queries.

[0169] Like the Al, the Ml is useful when iterating through the elements of a map:
for applying statistical functions, for restricting to specific field names, etc. Consid-

er again objects that maintain pageview statistics:

1: { "url": "noudata.com bl og",
"page_views" : { "2012-12-01": 10, "2012-12-02": 12, ... "2012-
12-15": 10 }

2: { "url": "noudata.conijobs",
"page_views" : { "2012-12-01": 2, "2012-12-02": 4, ... "2012-
12-15": 7 }

The relational schema for the page_views table if flagged as a map is:

Root .page_vi ews<map> (id_jk: join_key, key: string, val: num

where key is the map's key and val is the associated value. For
the above objects, the entries in the MI would be:

(root . page_vi ews<nmap>, 1, 1, "2012-12-01") —> 10

(root .page_vi ews<map>, 1, 1, "2012-12-02") --> 12
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(root .page_vi ews<map>, 1, 1, "2012-12-15") —> 10
(root .page_vi ews<map>, 2, 2, "2012-12-01") —> 2
(root .page_vi ews<map>, 2, 2, "2012-12-02") —> 4
(root .page_vi ews<map>, 2, 2, "2012-12-05") --> 7

This ordering allows the values in the page_views map to be collocated for each

page, while in the BI, the values would be collocated by date.

Map Index 2 (MI2)

[0170] In addition, an auxiliary map index may be implemented. The map index

is similar to the array index in its functionality and signature:
(col _path, map_key, tid, join_key) -> val
This allows efficient searches for specific map elements, such as “all the different

values coresponding to map key 201 2-1 2-05." A generic representation of both

Al2 and MI2 can be written as follows:

(col _path, key, tid, join_key) -> val

where key corresponds to the index of an array or the map_key of a map.

Valuelndex (VI)

[0171] Although the above indexes are useful for looking up values for specific
fields and iterating through those values, they do not allow fast access if queries
are looking only for specific values or ranges of values. For example, a query may
ask to return the text of tweets written by "mashah08". To assist such queries, a
Valuelndex can be built for some or all fields in the schema. The Valuelndex may
be built as data is ingested or be built asynchronously later. The key for the value

index is:

(col _path, wval)

where val is the value of the attribute in the source data. The corresponding value
to that key in the VI depends on where the field for the value occurs. For each of

the indexes above, it varies:

Bl: (col_path, val) —>tid
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AI: (col _path, val ) —> tid, join_key, index
M: (col _path, val) —> tid, join_key, key

[0172] For example, the tweets:

1: { "text": "Tweet this", "user": { "id": 29471497,
"screennanme ": "nmashahO 8" } }

2: { "text": "Tweet that", "user": { "id": 27438992,
"screen name": "binkert" } }

are stored as:

(root .text<string>, "Tweet this") -1
(root .text<string>, "Tweet that") — s 2
(root .user .id<nume, 29471497) —> 1
(root. user .id<nunme, 27438992) —> 2
(root .user .screen_nanme<string>, "MashahO8") —> 1
(root .user .screen_nanme<string>, "bi nkert") — s 2

Using the VI, one can search for all tweets authored by "mashah08" by looking for
the key: (root.user.screen_name, "mashah08") and retrieving all associate tids.
Then the Bl can be searched using the retrieved tids to return the corresponding

text of each tweet.

The cost of indexes, and especially the value index, is the additional storage
space, and the execution time needed to update them as new objects are added
to the system. Due to space or update overheads, the user may not want to index
all possible paths because of these. So, the user can specify which paths to index
in the VL.

RowlIndex (RI)

[0173] To facilitate re-creation of an entire ingested object (similar to requesting
a record in a traditional row-based store), a RowIndex (RI) can be implemented.

The Rowindex stores a key-value pair

tid —> JSON object

[0174] The JSON object may be stored as a string representation, as a BSON, or
as any other serialized format, such as a tree structure used for internal represen-
tation of a JSON object. For the two tweets discussed above with respect to the

VI, the corresponding RI entries would be:
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1 —> { "text": "Tweet this", "user" { "id":
"screennane "mashah0 8" } }
2 —> { "text": "Tweet that", "user" { "id":
"screen name": "binkert" } }
EXAMPLE

PCT/US2012/071454

29471497 ,

27438992 ,

[0175] An example for the BI, Al, MI, and VI. Consider tweets similar to the

above, where a "retweet_freq" attribute is added, which keeps track of how many

times a tweet was retweeted in a day:

1: { "text": "Love #muffins and #cupcakes: bit .ly/ 955Ff o",
"user": { "id": 29471497, "screen_nane "mashah08" 3,
“"tags": [ "muffins", "cupcakes" ],

"retweet _freq" : { "2012-12-01": 10, "2012-12-02": 13,
"2012-12-03": 111}

2: { "text": "Love #sushi and #umam bit .1y/955F o",
"user": { "id": 28492838, "screen_nane "bi nkert" 1,
"tags": [ "sushi", Tumam" 7],

"retweet _freq" : { "2012-12-04": 20, "2012-12-05": 11} 1}

[0176] The schema for these records is:

0{ "text": string, "user": 0{ "id": nunber,

"screennane string }, "tags": [ string ,
"retweet _freq" : M{ "2012-12-01": nunber "2012-12-05":

nunmber

b}

[0177] The JSON-Schema for these records will be

{
“"type": "object",
"obj _type": "object",
“"properties ": {
"text": {
“"type": "string"
by
"user'": {
“"type": "object",
"obj _type": "object",
“"properties ": {
idt |
“"type": "nunber",
b,
"screennang" A

“"type": "string",
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}
s

"tags" : {
"type" : "array",
"items " {
"type" : "string"

s

"retweet _f req" : {
"type": "object",
"obj _type": map",
"properties ": {

"2012-12-01": {

"type" :
by

nunber "

"2012-12-05": {

"type" :

nunber "

PCT/US2012/071454

[0178] If retweet_freq is not treated as a map, the relational schema is:

Root (text: str,
user. id: num

user .screen_nane

tags<arr>. join_key,

retweet freq.
retweet freq.
retweet f req.
retweet freq.
retweet f req.

Root .tags<arr> (id_jk:

2012-12-01
2012-12-02
2012-12-03
2012-12-04
2012-12-05

i ndex: int,

val :

str)

j 0i n_key,

num
num
num
num
num

[0179] In this case, the example records above would populate these relations as

follows:

Root :
("Love #muffins
NULL)

", 29471497,
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("Love #sushi ...", 28492838, binkert, 2, NULL, NULL, NULL,
20, 1)

Root .tags<arr> :

(1, o, "muffins")
(1, 1, "cupcakes")
(2, o0, "sushi")

(2, 1, "umam")

*n

[0180] Note that these are the tuples the queries would return if a "select *" query
were run on these tables. These tuples are not necessarily materialized as such in
the storage engine. That is, this may simply be a virtual view over the underlying

data, and not physically stored as depicted.

[0181] Iif retweet_freq is identified as a map, the relational schema becomes

more concise (and more accommodating of additional data), as follows:

Root (text: str,
user. id: num user .screen_nanme :@ str,
tags<arr>: join_key,
retweet f req<map> : join_key)
Root .tags<arr> (id_jk: join_key,
i ndex: int,
val : str)
Root .retweet f reg<map> (id_jk: join_key,
key: str,
val :  num

[0182] The corresponding tuples are:

Root :

("Love #muffins ...", 29471497, mashah08, 1, 1)

("Love #sushi ...", 28492838, binkert, 2, 2)
Root .tags<arr> :

(1, o, "muffins")

(1, 1, "cupcakes")

(2, o0, "sushi")

(2, 1, "umam")

Root .retweet f reg<map> :
(1, "2012-12-01", 10)
(1, "2012-12-02", 13)
(1, "2012-12-03", 1)
(2, "2012- 12-04", 20)
(2, "2012- 12-05", 1)
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[0183] The key-value pairs added to the Bl are:

(root .retweet _freq. 2012-12-01, 1) —> 10
(root .retweet _freq. 2012-12-02, 1) —> 13
(root .retweet _freq. 2012-12-03, 1) —> 1
(root .retweet _freq. 2012-12-04, 2) —> 20
(root .retweet _freq. 2012-12-05, 2) —> 1
(root. text, 1) --> "Love #muffins and #cupcakes"
(root. text, 2) --> "Love #sushi and #unmam "
(root. user .id, 1) —> 29471497

(root. user .id, 2) —> 28492838

(root .user .screenname, 1) — > mashah08
(root .user .screennane, 2) --> binkert

[0184] The key-value pairs added to the Al are as follows. Note that in this case,

the join key is redundant (same as tid) since there are no nested arrays.

(root .tags<arr> 1, 1, 0) —> "nuffins"”
(root .tags<arr>, 1, 1, 1) —> "cupcakes”
(root .tags<arr>, 2, 2, 0) —> "sushi"
(root .tags<arr> 2, 2, 1) —>"

umam

[0185] The RIwill have the following two entries

1 —> { "text": "Love #muffins and #cupcakes: bit .ly/955F o",
"user": { "id": 29471497, “"screen_name ": "mashah08" ;, "tags":
[ "muffins", "cupcakes" 7, "retweet _f req" : { "2012-12-01":
10, "2012-12-02": 13, "2012-12-03": 1 } }

2 —> { "text": "Love #sushi and #umam : bit .ly/ 955Ff o", "user": {
"id": 28492838, "screen_nane ": "binkert" 3}, "tags": [ "sushi",
"umam " ], "retweet_f req" : { "2012-12-04": 20, "2012-12-05": 1

b}

[0186] If and when it is built, the MI will have the following entries:

(root .retweet __freg<map>,
(root .retweet __freg<map>,
(root .retweet __freg<map>,
(root .retweet __freg<map>,
(root .retweet __freg<map>,

"2012-12-.01") —> 10
"2012-12-.02") —> 13
"2012-12-.03") —> 1
"2012-12-.04") —> 20
"2012-12-.05") —> 1

N N R R R
NN R R R

[0187] Similarly the VI will have the following entries (if all paths are indexed and

maps are treated like maps):

(root .retweet _freq<map>, 1) —> 2, 2, "2012-12-05"
(root .retweet _freq<map>, 1) —> 1, 1, "2012-12-03"
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(root .retweet freq<map>, 10) —> 1, 1, "2012-12-01"
(root .retweet freq<map>, 13) —> 1, 1, "2012-12-02"
(root .retweet freq<map>, 20) —> 2, 2, "2012-12-04"
(root .tags<arr>, "cupcakes") —> 1, 1, 1
(root .tags<arr>, "muffins") —>1, 1, 0
(root .tags<arr>, "sushi") —>2, 2, 0
(root .tags<arr>, "umam") —> 2, 2, 1
(root .text<str>, "Love #muffins and #cupcakes") —> 1
(root .text<str>, "Love #sushi and #umam ") —> 2
(root. user .id, 29471497) —> 1
(root. user .id, 28492838) —> 2
(root .user .screennane, "mashah08") —> 1
(root .user .screennane, "bi nkert") —> 2

[0188] Although the actions above are described in phases, they can be pipe-
lined to allow the ingest to be performed in a single pass, loading the BI, Al, and
RI, and computing the JSON schema. The other indexes can be built asynchro-

nously and can be enabled and disabled as desired.

SYSTEM ARCHITECTURE

[0189] The analysis platform is architected to be service-oriented. In various im-
plementations, there are five main services: a proxy, a metadata service, a query

executor, a storage service, and an ingestion service.

[0190] This decoupled approach may have several advantages. Since these ser-
vices communicate only through external APIs (remote procedure calls), the ser-
vices can be multiplexed and each shared independently. For example, multiple
proxies may be used per executor and multiple executors per storage service. The
metadata service can also be shared across multiple instances of executor and

storage services.

[0191] The executor, storage, and ingestion services are parallelized, and can
run the individual pieces in virtualized machine instances in either private or public
infrastructures. This allows suspending and scaling these services independently.
This is useful for reducing costs by adjusting service capacity based on fluctua-
tions in demand. For example, the elasticity of a public cloud can be used to high-
ly parallelize the ingestion service for fast overnight loading, while keeping the ex-

ecution and storage service reduced in size for daily query workloads.
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[0192] The proxy is the gateway to clients and supports one or more standard
protocols, such as ODBC (Open Database Connectivity), libpg, JDBC (Java Data-
base Connectivity), SSL (secure sockets layer), etc. The gateway serves as a
firewall, authentication service, and a locus of control for the internal services. For
example, client connections (such as network sockets) can be kept open at the
proxy while the supporting execution and storage services are suspended to save
costs. When the client connection becomes active again, the needed services can

be woken on-demand with a relatively short start-up latency.

[0193] The metadata service is typically shared by many instances of the other
services. It stores metadata including schemas, source information, partitioning
information, client usernames, keys, statistics (histograms, value distributions,
etc.), and information about the current state of each service (number of instanc-

es, IP addresses, etc.).

[0194] The storage service manages indexes and serves read and write re-

qguests. In addition, the query executor can push down a number of functions into
the storage service. In various implementations, the storage service can evaluate
predicates and UDFs (user defined functions) to filter results, evaluate local joins
(e.g., to reconstruct objects), evaluate pushed-down joins (e.g., broadcast joins),

and evaluate local aggregations.

[0195] The storage service can be parallelized through a technique called parti-
tioned parallelism. In this approach, numerous instances or partitions of the stor-
age service are created and the ingested objects are divided among the partitions.
Each partition stores each type of index, just as if it were a single whole instance.

However, each partition only indexes a subset of the ingested data.

[0196] The analysis engine supports one or more partitioning strategies. A sim-
ple but effective strategy is to partition the objects by tid and store their respective
entries in the local indexes. In this way, ingested objects are not split across dif-
ferent instances, which may consume significant network bandwidth when a query
relies on multiple portions of an object. The tid can be assigned in a number of
ways, including hash assignment, round robin, or range-based assignment. These
particular assignments distribute the most recent data across all the instances,

thereby spreading the load.
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[0197] Another strategy is to partition by another field value (or combination of
field values), such as a user id or session id. Alternate partitioning fields (columns)
make it convenient to perform local joins with other tables or collections, e.g., user
profiles. The partitioning strategy may be hash partitioning or use sampling and
range partitioning. The former is used for efficient point lookups and the latter for

supporting efficient range searches.

[0198] Regardless of the partitioning strategy, an object or any subset of the ob-
ject should be able to be reconstructed locally. Therefore, the storage service par-
titions have no cross talk during query processing and only need to communicate

with the execution service via their API.

[0199] The storage service has a cache. We can increase the cache size in each
partition or increase the number of partitions to improve the performance of the
storage service. The storage service can cache the indexes in memory or on local
disk, and the indexes can live on external storage like Amazon S3. This feature
allows for shutting down and destroying the storage service nodes and redeploy-
ing them whenever necessary. Moreover, it allows extreme elasticity: the ability to
hibernate the storage service to S3 at low cost and change storage service capac-

ity as demand fluctuates.

[0200] The query execution service executes the query plan generated by the
query planning phase. It implements query operators, e.g., join, union, sort, ag-
gregation, and so on. Many of these operations can be pushed down to the stor-
age service, and are when possible. These include predicates, projection, colum-
nar joins to reconstruct the projected attributes, and partial aggregations for dis-

tributive and algebraic aggregation functions with group by statements.

[0201] The query execution service takes in data from the storage service and
computes the non-local operations: non-local joins, group by statements that need
repartitioning, sorts, and so on. The executor is similar to a partitioned parallel ex-
ecutor. It uses exchange operators to repartition between query execution steps
and employs local storage for spilling intermediate results. For many queries, it is
possible to run most of the query in the storage service and require only a single

executor node to collect the results and perform any small non-local operations.
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INGESTION SERVICE

[0202] The ingestion service is responsible for loading semi-structured data into
the storage service where it can be queried. Users provide data in a variety of
formats (e.g., JSON, BSON, CSV) from a variety of platforms (e.g., MongoDB,
Amazon S3, HDFS), optionally compressed with a compression mechanism (e.g.,
GZIP, BZIP2, Snappy). The basic procedure holds true regardless of the format

used.

[0203] The ingestion task can be roughly divided into two parts: the initial inges-
tion task that loads a large volume of new user data, and incremental ingestion,

which occurs periodically when new data is available.

Initial Ingestion

[0204] The initial ingestion process can be broken into several steps. First, parti-
tion input data into chunks. Users provide initial data in a collection of files or by
providing direct connections to their data sources. The location and format of the-
se files is recorded in the metadata service. Users may provide data that is al-
ready partitioned, for instance due to log file rotation, but if not, the files can be
partitioned into chunks to support parallel loading. These chunks are typically on

the order of several hundred megabytes and are processed independently.

[0205] The exact mechanism for partitioning the input files depends on the data
format. For uncompressed formats in which records are separated by newlines,
(e.g., JSON or CSV), a single file can be processed in parallel using a number of
processes equal to the target number of chunks. Processing starts at the appro-
priate offset in the file (file_size / total_num_chunks) * chunk_num, and then
searching until a newline is found. For compressed data or data in a binary format
like BSON, each input file may need to be scanned sequentially. The location of

each chunk (file, offset, size) is stored in the metadata service.

[0206] Once the data is divided into chunks, the actual schema inference and
ingestion is performed. As part of this process, two services are launched: the in-
gestion service and the storage service. These two services can employ multiple
servers to do the work. The two services can also be co-located on any given ma-

chine. The ingestion service is transient and used only during the ingestion pro-
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cess, while the storage service holds the actual data and must be persistent. The
servers involved in ingestion send data to the storage service servers and the
number of ingestion servers is independent of the number of storage servers
where the number is chosen to minimize imbalance between the throughput of
each service. The chunks are partitioned between the ingestion servers. Each in-
gestion server is responsible for the following steps for each chunk assigned to it:
(i) parsing and type inference, (i) communication with storage service, and

(i) computing local schema and statistics.

[0207] First, the data record is parsed into an internal tree representation. A con-
sistent internal representation may be used for all the source formats (JSON,
BSON, etc.). Depending on the input format, type inferencing may also be per-
formed. For instance, JSON does not have a representation of a date, so it is
common to store dates as strings. Since dates are very common, they are on ex-
ample of a type detected during ingestion so that users can issue queries making
use of dates. For CSV input files, since the columns are not typed, basic types

such as integers must be detected as well.

[0208] Once the record has been parsed and types inferred, a compressed rep-
resentation of the parse tree is sent to the storage service. This takes the form of
a preorder traversal of the tree. The storage service is responsible for determining
the values to store in each of the indexes (BI, Al, etc), and for generating tuple ids
and join keys. Key generation is deferred to the storage service so that keys can

be generated sequentially, which improves ingestion performance to the underly-

ing index store.

[0209] As records are ingested, a local JSON schema is updated using the rules
described above. The schema will reflect the records seen by a single ingestion

machine, and different machines may have different schemas.

[0210] In addition to computing the schema, statistics are maintained, which are
useful for query processing as well as identifying maps. These include metrics like
the number of times each attribute appears as well as its average size in bytes.

For example, the following records

{ id: 3546732984 }
{ id: "3487234234" }
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{ id: 73242342343 }
{ id: 458527434332 }
{ id: "2342342343" }

would produce the schema {id: int, id: string}, and id: int could be annotated with a
count of 3 and id: string with a count of 2. Each ingestion machine stores the

schema and statistics it computed in the metadata service.

[021 1] Once all of the chunks have been ingested, the overall schema is com-
puted, which will be used by the query engine and presented to the user. This can
be accomplished using a single process that reads the partial schemas from the
metadata service, merges them using the method described above, and stores
the result back in the metadata service. Since the number of schemas is limited to

the number of ingestion machines, this process is not performance-critical.

[0212] Determining maps is optional. As described previously, heuristics can be
used along with the statistics stored in the metadata service to determine which
attributes should be stored as maps in the MI. Recall that this is not necessary for
query processing, but it makes some queries more natural to express and im-
proves efficiency. Once maps have been identified, each storage server receives
a message identifying which attributes should be maps. The storage server then

scans these columns and inserts them into the MI.

Incremental Updates

[0213] Some users may load the bulk of their data up front, but most will periodi-
cally load new data over time, often as part of a regular (e.g., hourly or daily) pro-
cess. Ingesting this data is largely similar to the initial ingestion. The new data is
split into chunks, the schema is computed per chunk, and the local schemas are

merged with the global schema maintained in the metadata service.

[0214] The system automatically detects new data as it is added. The method
depends on the source data platform. For example, for S3 files, the simplest case
is to detect changes in an S3 bucket. A special process periodically scans the
bucket for new key-value pairs (i.e., new files), and adds any that are found to the

metadata service. After a certain number of new files have been found or a certain
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time period has elapsed, the process launches a new ingestion process to load

the data.

[0215] Operations performed in MongoDB can be stored in a special collection
called the operation log (or opiog). The opiog provides a consistent record of write
operations that is used by MongoDB internally for replication. The opiog is read
and used to create a set of flat files in S3 storing the new records. The above

method can then be used to ingest the new data.

[0216] The incremental ingestion process can handle both new data (e.g. new
JSON documents) and updates to existing documents (e.g. new attributes in exist-
ing JSON documents or new values for existing attributes). Each data source plat-
form has different capabilities in terms of exposing updates in the source files. We
refer to this type of information as 'deltas’ and it can take the form of flat files or
log files (e.g. MongoDB). The incremental ingestion process processes the infor-
mation from the 'delta’ files and combines that with the existing schema infor-

mation to generate new data that are sent to the storage service.

Subsetting Data

[0217] While the system described here for ingesting data and doing incremental
updates can ingest all data from the source, it is relatively simple to ingest only a
subset, by specifying up-front the JSON schema (or the relational schema) of the
data that we would like ingested. This is done by either providing the JSON sche-
ma itself, or by providing queries that specify the subset. In this manner, the anal-

ysis platform can be thought of as a materialized view of the source data.

[0218] 1t is also possible to specify data that the user does not want ingested. A
JSON schema or a relational schema can be provided, describing the portion of
the data that should not be ingested. Then it is simply a matter of recording that
information in the metadata service which tells the ingestion process to simply
skip those elements of all future rows. If this is done after data has already been
ingested, the already ingested data simply becomes unavailable and can be gar-
bage collected by a background task. This garbage collection would be incorpo-

rated into the compaction process of the index store (e.g., LevelDB).
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Fault Tolerance

[0219] While it is possible to restart the loading process during the initial ingest,
the incremental ingestion process should not corrupt the existing data in the sys-
tem, to prevent users from having to reload all data from scratch. Since ingesting
a file is not an idempotent operation, due to id generation, a simple fault-tolerance
scheme can be implemented based on taking snapshots of the underlying storage

system.

[0220] Taking snapshots may be straightforward when the underlying storage
system supports taking consistent snapshots at a point in time, as LevelDB does.
With this primitive, the steps for incremental loading are as follows. A single pro-
cess directs each storage server to take a snapshot locally and directs all queries
to this snapshot for the duration of the load. Each chunk is loaded as described
above. When complete, the ingestion server responsible for loading a chunk

marks it as finished in the metadata service.

[0221] A process monitors the metadata service. When all chunks have been
loaded, it atomically redirects queries to the updated version of the state. The
snapshot taken in the first step can then be discarded. In the event of a failure, the
snapshot becomes the canonical version of the state and the partially updated
(and potentially corrupted) original version of the state is discarded. The ingestion
process is then restarted. Additionally, snapshots of the storage system disk vol-

ume can be used for recovery in the event of a server failure.

QUERY EXECUTION

Example Query
[0222] To show example execution, consider the simple query:

sel ect count (*) fromtable as t where t.a > 10;

First, the proxy receives the query and issues it to an executor node for planning.
Next, an executor node creates a query plan calling the metadata service to de-
termine which collections and storage nodes are available for use. The executor
node typically distributes the plan to other executor nodes, but here, we only need

a single executor node.
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[0223] Execution node then makes RPC calls to storage service nodes, pushing
down t.a > 10 predicate and count function. Next, storage nodes compute sub-
counts and return them to executor node. Executor node then returns result to the

proxy when proxy fetches the next result value.

Dynamic Typing

[0224] The storage engines of database systems (e.g., PostgreSQL) are strongly
typed, which means that all the values of a column (or attribute) must have the
exact same type (e.g., integer, string, timestamp, etc.). In the context of big-data
analytics this is a significant limitation because quite often applications need to
change the representation of a particular piece of information (attribute) and, con-
sequently, the data type that they use to store it. For instance, an application may
initially store the values of a particular attribute using integers and then switch to

using floats. Database systems are not designed to support such operations.

[0225] One way to handle this problem is to use multiple relational columns for
each attribute - one for each different data type. For example, if we have seen the
attribute "user.id" with values 31432 and "31433" (i.e., an integer and a string), we
can store "user.id<int>" and "user.id<string>" as separate columns. A single rec-
ord will have a value for only one of these columns corresponding to the type of
"user.id" in that record. The values for the other columns for that record will be

NULL.

[0226] Presenting multiple columns for the same attribute is often too complicat-
ed for users to use. To simplify the user experience, the analysis platform can dy-
namically, at query time, infer the type the user intends to use. To this end, the
storage service keeps track of multiple types. For example, the storage service
uses a generic data type for numbers, called NUMBER, which covers both inte-
gers and floats. When the NUMBER type is used, the more specific data type is
stored as part of the value. For example, the integer value 10 of attribute "Cus-
tomer.metric” is stored in the Bl as a key-value pair where (Customer.metric,
<NUMBER>, tid) is the key and (10, INTEGER) is the value. The floating point
value 10.5 of the same attribute would be stored as key: (Custom-

er.metric,c<NUMBER>, TID), value: (10.5, FLOAT).
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[0227] Finally, at query time, the analysis platform can perform dynamic casting
between data types according to the properties of the query (predicates, casting
operations, etc.) as long as these operations do not result in information loss. Alt-
hough "number" is not an ANSI SQL type, the flexible typing system allows clients
to treat it as a standard ANSI SQL float, integer, or numeric type from query con-

text. For example, consider the query:

select user.lang from tweets where user. id = '31432

In the case where we have both "user.id<int>" and "user.id<string>", the system
optionally converts integers (e.g. 31432) to a single string representation (e.g.
"31432") at query time, thereby allowing the user to work with a single column

"user.id" with the ANSI SQL type VARCHAR.

[0228] Although ANSI (American National Standards Institute) / ISO (Internation-
al Organization for Standardization) SQL:2003 is mentioned as an example, in
other implementations compliance with other standards, SQL or otherwise, can be
accomplished. For example only, the exposed interface could be compliant with

ANSI/ISO SQL201 1.

FIGURES

[0229] In FIG. 1A, an example cloud-based implementation of the analysis plat-
form is shown. A local area network (LAN) or a wide area network (WAN) 100 of
an organization using the analysis framework connects to the internet 104. Com-
pute needs and storage needs in this implementation are both provided by cloud-
based services. In the particular implementation shown, compute servers are

separate from storage servers. Specifically, a compute cloud 108 includes a plu-
rality of servers 112 that provide processing power for the analysis framework.

The servers 112 may be discrete hardware instances or may be virtualized serv-

ers.

[0230] The servers 112 may also have their own storage on which the pro-
cessing capability operates. For example, the servers 112 may implement both
the query executor and the storage service. While traditional columnar storage
systems store data as columns on disk, when that data is read into memory, rows

are reassembled from the columnar data. The indexes of present disclosure,
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however, operate as columnar storage both on disk and in memory. Because of
the unique configuration of the indexes, benefits of fast columnar access can be

achieved with relatively little penalty.

[0231] A storage cloud 116 includes storage arrays 120 used for index data be-

cause according to the present disclosure data is stored in indexes and not in ma-
terialized tables. When storage resources of the servers 112 are used the storage
arrays 120 may be used for backup and nearline storage, not for responding to

each query.

[0232] In various implementations, storage arrays 124 may include data on
which the analysis framework will operate. For example only, the storage arrays
124 may hold relevant data, such as log data, which users may want to query us-
ing the analysis framework. Although storage arrays 120 and storage arrays 124
are shown in the same storage cloud 116, they may be located in different clouds,
including private externally hosted clouds, public clouds, and organization-specific

internally-hosted virtualized environments.

[0233] For example only, the storage cloud 116 may be an Amazon Web Ser-
vices (AWS) S3 cloud, which the business was already using to store data in the
storage arrays 124. As a result, transferring data into the storage arrays 120 may
be achieved with high throughput and low cost. The compute cloud 108 may be
provided by AWS EC2 in which case the compute cloud 108 and the storage
cloud 116 are hosted by a common provider. A user 130 constructs a query using
standard SQL tools, that query is run in the compute cloud 108, and a response is
returned to the user 130. The SQL tools may be tools already installed on a com-
puter 134 of the user 130, and do not have to be modified in order to work with the

present analysis framework.

[0234] In FIG. 1B, another example deployment approach is shown. In this case,
a physical server appliance 180 is connected to the LAN/WAN 100 of the busi-
ness. The server appliance 180 may be hosted onsite or may be hosted offsite
and connected, such as with a virtual private network, to the LAN/WAN 100. The
server appliance 180 includes compute capability as well as storage and receives

input data from sources, which may be local to the LAN/WAN 100. For example
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only, a computer or server 184 may store logs, such as web traffic logs or intru-

sion detection logs.

[0235] The server appliance 180 retrieves and stores index data for responding
to queries of the user 130. The storage cloud 116 may include additional data
sources 188, which may hold yet other data and/or may be a nearline data stor-
age facility for older data. The server appliance 180 may, in order to satisfy user
gueries, retrieve additional data from the additional data sources 188. The server
appliance 180 may also store data, such as for backup purposes, in the storage
cloud 116. In various other implementations, the additional data sources 188 may

be part of a Hadoop implementation in the cloud.

[0236] The analytical framework of the present disclosure is flexible such that
many other deployment scenarios are possible. For example only, software may
be provided to a business, and that software could be installed on owned or host-
ed servers. In another implementation, virtual machine instances may be provid-
ed, which can be instantiated through virtualization environments. Still further, the
user could be provided with a user interface in a browser and the SQL portion
could be hosted by a service provider, such as Nou Data, and implemented on

their systems or in the cloud.

[0237] In FIG. 1C, hardware components of a server 200 are shown. A processor
204 executes instructions from a memory 208 and may operate on (read and
write) data stored in the memory 208. Generally, for speed, the memory 208 is
volatile memory. The processor 204 communicates, potentially via a chipset 212,
with nonvolatile storage 216. In various implementations, nonvolatile storage 216
may include flash memory acting as a cache. Larger-capacity and lower-cost stor-
age may be used for secondary nonvolatile storage 220. For example, magnetic
storage media, such as hard drives, may be used to store underlying data in the
secondary nonvolatile storage 220, the active portions of which are cached in

nonvolatile storage 216.

[0238] Input/output functionality 224 may include inputs such as keyboard and
mouse, and outputs such as a graphic display and audio output. The server 200
communicates with other computing devices using a networking card 228. In vari-

ous implementations or at various times, the input/output functionality 224 may be
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dormant, with all interaction between the server 200 and external actors being via
the networking card 228. For ease of illustration, additional well-known features
and variations are not shown, such as, for example only, direct memory access
(DMA) functionality between nonvolatile storage 216 and memory 208 or between

the networking card 228 and the memory 208.

[0239] In FIG. 2A, a process diagram shows one example of how data is ingest-
ed into the analytical framework so that it can be queried by the user 130. Data
sources 300 provide data on which the analysis framework operates. If that raw
data is not self-describing, optional user-defined wrapper functions 304 may con-

vert the raw data into self-describing semi-structured data, such as JSON objects.

[0240] An administrator 308, which may be the user 130 operating in a different
capacity, is able to designate guidelines for implementing these wrapper func-
tions. Administrator 308 can also designate which of the data sources 300 to use
and what data to retrieve from those data sources. In various implementations,
retrieving the data may include subsetting operations and/or other computations.
For example only, when one of the data sources 300 is Hadoop, a MapReduce

job may be requested prior to retrieving the data for the analysis framework.

[0241] The retrieved data is processed by a schema inference module 312,
which dynamically constructs the schema based on the observed structure of re-
ceived data. The administrator 308 may have the ability, in various implementa-
tions, to provide typing hints to the schema inference module 312. For example,
the typing hints may include requests to recognize particular formats, such as
dates, times, or other administrator-defined types, which may be specified by, for

example, regular expressions.

[0242] The data objects and the schema generated by the schema inference
module 312 are provided to an adornment module 316 as well as an index crea-
tion module 320. Input objects include source data as well as metadata that de-
scribes the source data. The source data is stored in index storage 324 by the in-

dex creation module 320.

[0243] The adornment module 316 identifies maps in the schema generated by

the schema module 312. In implementations where map identification is not de-
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sired, the adornment module 316 may be omitted. The administrator 308 may be
able to specify map criteria to adjust the heuristics performed by the adornment

module 316 used in identifying maps.

[0244] After maps have been identified, a relational schema creation module 328
generates a relational schema, such as an SQL-compliant schema. In addition,
the identified maps are provided to an auxiliary index creation module 332, which
is capable of creating additional indexes, such as the Mapindex, and map entries
in the Valuelndex, as described above. The auxiliary indexes may also be stored

in the index storage 324.

[0245] The administrator 308 may have the capability of requesting that the map
index be created and may specify which column to add to the value index. In addi-
tion, the administrator may be able to specify which objects should be treated as
maps, and can dynamically change whether an object is treated as a map or not.

Such a change will result in changes to the relational schema.

[0246] A relational optimization module 336 optimizes the relational schema to
present a more concise schema to the user 130. For example, the relational opti-
mization module 336 may identify one-to-one relationships between tables and
flatten those tables into a single table, as described above. The resulting relational

schema is provided to a metadata service 340.

[0247] A query executor 344 interfaces with the metadata service 340 to execute
queries from a proxy 348. The proxy 348 interacts with an SQL-compliant client,

such as an ODBC client 352, which is, without special configuration, able to inter-
act with the proxy 348. The user 130 uses the ODBC client 352 to send queries to

the query executor 344 and to receive responses to those queries.

[0248] Via the ODBC client 352, the user 130 can also see the relational schema
stored by the metadata service 340 and construct queries over the relational
schema. Neither the user 130 or the administrator 308 are required to know the
expected schema or help create the schema. Instead, the schema is created dy-
namically based on the retrieved data and then presented. Although the ODBC

client 352 is shown, mechanisms other than ODBC are available including JDBC,
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and direct postgres queries. In various implementations, a graphical user interface

application may facilitate ease of use of the ODBC client 352 by the user.

[0249] The query executor 344 operates on data from a storage service 356,
which includes the index storage 324. The storage service 356 may include its
own local storage processing module 360, to which the query executor 344 can
delegate various processing tasks. The processed data is then provided by the
storage processing module 360 to the query executor 344 to construct a response
to a received query. In a cloud-based implementation, the storage service 356 and
the query executor 344 may both be implemented in a compute cloud, and the in-
dex storage 324 can be stored in the compute instances. The index storage 324
may be mirrored to nearline storage, such as in the storage cloud 116 as shown in

FIG. 1A.

[0250] In FIG. 2B, a high level functional diagram shows a storage service 356
with multiple nodes 402-1, 402-2, and 402-3 (collectively nodes 402). Although
three nodes 402 are shown, more or fewer may be used, and the number used
may be varied dynamically based on the needs of the analysis framework. The
number of nodes 402 may be increased as more data needs to be stored as well
as in response to additional processing being required to execute queries and/or
to provide redundancy. The query executor 344 is shown with nodes 406-1 , 406-
2, and 406-3 (collectively nodes 406). The number of nodes 406 can also be var-
ied dynamically based on query load, and is independent of the number of nodes

402.

[0251] A proxy 348 provides the interface between the ODBC client 352 and the
query executor 344. The query executor 344 interacts with metadata service 340,

which stores schemas for the data residing in the storage service 356.

[0252] FIG. 3 shows an example process for data ingestion. Control begins at
504, where sources of data can be designated, such as by the user or ad ministra-
tor. In addition, certain data sets from the sources of data may be selected and
certain subsetting and reducing operations may be requested of the data sources.
Control continues at 508, where the designated data sources are monitored for

new data.
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[0253] Ats512,if new data objects have been added to the data sources, control
transfers to 516 ; otherwise, control returns to 504, to allow the sources of data to
be modified if desired. At 516, the schema of a new object is inferred, which may
be performed according to a type function such as is shown in FIG. 4. At 520, the
inferred schema from 516 is merged with the already-existing schema. The merge

may be performed according to a merge function such as is shown in FIG. 5.

[0254] At 524, if adornment is desired, control transfers to 528; otherwise, control
transfers to 532. At 528, maps are identified within the data, such as is shown in
FIG. 8. At 536, if no new maps are identified, control continues at 532; otherwise,
if new maps have been identified, control transfers to 540. At 540, if a map index
is desired, control transfers to 544; otherwise, control continues at 532. At 544, for
each value in the BigIindex or Arraylndex associated with the new map attribute,
that value is added to the map index. Further, if desired by the user and/or admin-
istrator, for the particular attribute, the values are added to the value index. Con-

trol then continues at 532.

[0255] In various implementations, adornment at 524 may wait until a first round
of objects is processed. For example, on an initial ingest, adornment may be de-
layed until all of the initial objects are ingested. In this way, sufficient statistics will
have been collected for use by the map heuristics. For incremental ingests of ad-
ditional objects, adornment may be performed after each new group of additional

objects.

[0256] At 532, if the JSON schema has changed as a result of the new objects,
control transfers to 548 where the schema is converted to a relational schema.
Control continues at 552 where the relational view is optimized, such as by flatten-
ing one-to-one relationships. Control then continues at 556. If the schema had not
changed at 532, control would directly transfer to 556. At 556, indexes are popu-
lated with the data of the new object, which may be performed as shown in FIG. 7.

Control then returns to 504.

[0257] Although population of the indexes is shown at 556 as being performed
after converting the inferred schema to relational schema at 548, in various im-
plementations, the indexes may be populated prior to generating the relational

schema, as the relational schema is not required. The procedure can use the in-
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ferred JSON schema to generate paths and join keys. The relational schema

serves as a relational view of the underlying semi-structured data.

[0258] FIG. 4 shows an example implementation of a type function relying on re-
cursion. Control begins at 604 where, if the object to be typed is a scalar, control
transfers to 608. At 608, the type of the scalar is determined and that scalar type
is returned as an output of the function at 612. The scalar type may be determined
based on self-description in the received object. In addition, further typing rules
may be used, which may recognize that certain strings are representative of data

such as dates or times.

[0259] If, at 604, the object is not a scalar, control transfers to 616. At 616, if the
object is an array, control transfers to 620 where the type function (FIG. 4) is re-
cursively called on each element of the array. When the results of these type func-
tions have been received, control continues at 624 where a collapse function,

such as is shown in FIG. 6, is called on an array of the element types as deter-
mined at 620. When the collapsed array is returned by the collapse function, that

collapsed array is returned by the type function at 628.

[0260] If, at 616, the object is not an array, control transfers to 632. At 632, the

type function (FIG. 4) is called recursively on each field of the object. Control con-
tinues at 636, where the collapse function, is called on a concatenation of the field
types determined at 632. The collapsed object returned by the collapse function is

then returned by the type function at 640.

[0261] FIG. 5 shows an example implementation of a merge function that merges
two schema elements into a single schema element is shown. The merge function
is also recursive and when first called, the two schema elements are a previously
existing schema and a new schema inferred from a newly received object. In fur-
ther recursive calls of the merge function, the schema elements will be sub-
elements of these schemas. Control begins at 704 where, if the schema elements
to be merged are equivalent, control transfers to 708 and returns either one of the
equivalent schema elements. Otherwise, control transfers to 712 where, if the
schema elements to be merged are both arrays, control transfers to 716; other-

wise, control transfers to 720.
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[0262] At 716, if one of the arrays to be merged is empty, the other array is re-
turned at 724. Otherwise, control continues at 728, where a collapse function,
such as is shown in FIG. 6, is called on an array containing the elements of both
arrays to be merged. The collapsed array returned by the collapse function is then

returned by the merge function at 732.

[0263] At 720, if one of the schema elements to be merged is empty, then the
other schema element is returned by the merge function at 736. If neither of the
schema elements to be merged is empty, control continues at 740 where the col-
lapse function is called on an object containing the key-value pairs of both schema
elements to be merged. The collapsed object returned by the collapse function is

then returned by the merge function at 744.

[0264] FIG. 6 shows an example implementation of a collapse function. Control
begins at 804 where, if the object to be collapsed is an array, control transfers to
808; otherwise, control transfers to 8 12. At 808, if the array contains a pair of val-
ues that are both arrays, control transfers to 816; otherwise, control continues at
820. At 820, if the array contains a pair of values that are both objects, control
transfers to 8 16; otherwise, control continues at 824. At 824, if the array contains
a pair of values that are equal scalar types, control transfers to 816, otherwise, the
collapse is complete and the array is returned from the collapse function. At 816, a
merge function, such as is shown in FIG. 5, is called on the pair of values identi-
fied by 808, 820, or 824. Control continues at 828, where the pair of values is re-

placed with a single value returned by the merge function.

[0265] Ats12,if any of the keys in the object are the same, control transfers to
832; otherwise, collapse is complete and the object is returned. At 832, control se-
lects a pair of keys that are the same and continues in 836. If the values for the
pair of keys are both arrays or are both objects, control transfers to 840; other-
wise, control transfers to 844. At 840, the merge function is called on the values
for the pair of keys. Control continues at 848, where the pair of keys is replaced
with a single key having a value returned by the merge function. Control then con-
tinues at 852 where, if any additional keys are the same, control transfers to 832;
otherwise, the collapse is done and the object as modified is returned. At 844, if

the values for the pair of keys are both scalars, control transfers to 856; otherwise,
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control transfers to 852. At 856, if the scalar types of the values for the pair of
keys are equal, control transfers to 840 to merge those pair of keys; otherwise,

control transfers to 852.

[0266] FIG. 7 shows an example process for populating indexes with data from
newly retrieved objects. Control begins at 904 where, if the Rowlndex is desired,
control transfers to 908; otherwise, control transfers to 912. At 908, the object is
added to the Rowlndex as described above, and control continues at 912. At 912,
the object is flattened into relational tuples for the current relation schema and join
keys are created as needed. Control continues at 916 where control determines
whether more tuples to be added to the indexes are present. If so, control trans-

fers to 920; otherwise, the indexes have been populated and so control ends.

[0267] At 920, control determines whether the tuple is for an array table. If so,
control transfers to 924; otherwise, control transfers 928. At 924, if there are more
value columns in the array table, control transfers to 932. At 932, if the column
value exists in the original retrieved object, the value is added to the Arraylndex at
936. Control then continues at 940. If the Valuelndex is desired for the column,
control transfers to 944; otherwise, control returns 924. If the column value does

not exist in the original retrieved object at 932, control returns to 924.

[0268] At 928, if the tuple is for a map table, control transfers to 948; otherwise,
control transfers to 952. At 948, control determines whether more value columns
are remaining in the map table. If so, control transfers to 956; otherwise, control
returns to 916. At 956, control determines whether the column value exists in the
original retrieved object. If so, control transfers to 960; otherwise, control returns
to 948. At 960, the value is added to the Maplndex and control transfers to 964. At
964, if the Valuelndex is desired for the column, the value is added to the Value-

Index in 968; in either case, control then returns to 948.

[0269] In 952, control determines whether there are more columns present in a
table. If so, control transfers to 972; otherwise, control returns to 916. At 972, con-
trol determines whether column values exist in the original retrieved object. If so,
control transfers to 976; otherwise, control returns to 952. At 976, the value is

added to the Biglndex and control continues at 980. At 980, if the Valuelndex is
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desired for the column, control transfers to 984, where the value is added to the

Valuelndex; in either case, control then returns to 952.

[0270] FIG. 8 shows an example process for identifying maps. Control begins at
1004 where a first object is selected. Control continues at 1008 where, if the ob-
ject is empty, the containing object is designated as a map at 1012; otherwise,
control transfers to 1016. At 1016, control determines the ratio of the average field
frequency to the frequency of the containing object as described above. Control
continues at 1020 where, if the ratio is below a threshold, control transfers to 1012
to designate the containing object as a map; otherwise, control transfers to 1024.
For example only, the threshold may be user adjustable and/or may be dynamic
based on observed data. In various implementations, the heuristic may be adjust-
ed to more readily identify fields as maps as the relational schema grows larger.
At 1012, the containing object is designated as a map and control continues at
1024. if there are more objects to evaluate, control transfers to 1028, where the

next object is selected and control continues at 1008; otherwise, control ends.

[0271] FIG. 9 shows an example implementation of a create_schema function
relying on recursion to create a relational schema. When the create_schema func-
tion is called, control incorporates a schema element (Schema_Element) into a
table (Current_Table). To this end, control begins at 1104 where, if Sche-
ma_Element is an object, control transfers to 1108; otherwise, control transfers to
1112. At 1108, if the object is an empty object, the object is treated as a map and
control transfers to 1116; otherwise, control continues at 1120. At 1120, a new ta-
ble (New_Table) is created for the nested object. At 1124, a join key (Join_Key) is
added to Current_Table and at 1128 a corresponding Join_Key is added to

New Table. Control then continues at 1132 where, for each field in the nested ob-
ject, the create_schema function is recursively called to add a field to the table.
Control then returns from the present invocation of the create_schema function at

1136.

[0272] At 1112, if Schema_Element is a map, control transfers to 1116; other-
wise, control transfers to 1138. At 1116, a new table (New_Table) is created for
the map. Control continues at 1140, where a Join_Key is added to Current_Table

and at 1144, a corresponding Join_Key is added to New_Table. At 1148, a key
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field having a string type is added to New_Table. Control continues at 1152
where, for each value type in the map, the create_schema function is recursively

called to add the value type to New_Table. Control then returns at 1136.

[0273] At 1138, control determines whether Schema_Element is an array. If so,
control transfers to 1156; otherwise, control transfers to 1160. At 1156, a new ta-
ble (New_Table) is created for the array, a Join_Key is added to Current_Table at
1164, and a corresponding Join_Key is added to New_Table at 1168. At 1172, an
index field having an integer type is added to New_Table. Control continues at
1176 where, for each item type in the array, the create_schema function is called

to add the item type to New_Table. Control then returns at 1136.

[0274] At 1160, Schema_Element, by process of elimination, is a primitive. If
there is already a field in Current_Table having the same name as the primitive,
control transfers to 1180; otherwise, control transfers to 1184. At 1184, the name
field is simply added to Current_Table and control returns at 1136. At 1180, type
polymorphism is present and therefore existing fields in Current_Table having the
same name as the primitive are renamed to append their type to the field name.
Control continues at 1188 where a new field is added based on the current primi-

tive, with the type appended to the field name. Control then returns at 1136.

CONCLUSION

[0275] The foregoing description is merely illustrative in nature and is in no way
intended to limit the disclosure, its application, or uses. The broad teachings of the
disclosure can be implemented in a variety of forms. Therefore, while this disclo-
sure includes particular examples, the true scope of the disclosure should not be
so limited since other modifications will become apparent upon a study of the
drawings, the specification, and the following claims. As used herein, the phrase
at least one of A, B, and C should be construed to mean a logical (A or B or C),
using a non-exclusive logical OR. It should be understood that one or more steps
within a method may be executed in different order (or concurrently) without alter-

ing the principles of the present disclosure.

[0276] In this application, including the definitions below, the term module may

be replaced with the term circuit. The term module may refer to, be part of, or in-
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elude an Application Specific Integrated Circuit (ASIC); a digital, analog, or mixed
analog/digital discrete circuit; a digital, analog, or mixed analog/digital integrated
circuit; a combinational logic circuit; a field programmable gate array (FPGA); a
processor (shared, dedicated, or group) that executes code; memory (shared,
dedicated, or group) that stores code executed by a processor; other suitable
hardware components that provide the described functionality; or a combination of

some or all of the above, such as in a system-on-chip.

[0277] The term code, as used above, may include software, firmware, and/or
microcode, and may refer to programs, routines, functions, classes, and/or ob-
jects. The term shared processor encompasses a single processor that executes
some or all code from multiple modules. The term group processor encompasses
a processor that, in combination with additional processors, executes some or all
code from one or more modules. The term shared memory encompasses a single
memory that stores some or all code from multiple modules. The term group
memory encompasses a memory that, in combination with additional memories,
stores some or all code from one or more modules. The term memory may be a
subset of the term computer-readable medium. The term computer-readable me-
dium does not encompass transitory electrical and electromagnetic signals propa-
gating through a medium, and may therefore be considered tangible and non-
transitory. Non-limiting examples of a non-transitory tangible computer readable
medium include nonvolatile memory, volatile memory, magnetic storage, and opti-

cal storage.

[0278] The apparatuses and methods described in this application may be par-
tially or fully implemented by one or more computer programs executed by one or
more processors. The computer programs include processor-executable instruc-
tions that are stored on at least one non-transitory tangible computer readable

medium. The computer programs may also include and/or rely on stored data.
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CLAIMS

1. A method of operating a query system, the method comprising:

retrieving objects from a data source, wherein each of the retrieved objects
includes (i) data and (ii) metadata describing the data;

dynamically creating a cumulative schema by inferring a schema from each
of the retrieved objects and merging the inferred schema with the cumulative
schema,;

storing the data of each of the retrieved objects in a storage service;

receiving, from a user, a query; and

responding to the query based on data stored by the storage service.

2. The method of claim 1, further comprising:
converting the cumulative schema into a relational schema; and
presenting the relational schema to the user, wherein the query from the user

is constructed over the relational schema.

3. The method of claim 2, further comprising:

storing the data of each of the retrieved objects in at least one of (i) a first
index and (ii) an array index, wherein the storage service includes the first index
and the array index; and

responding to the query based on data from at least one of the first index and

the array index.

4. The method of claim 3, further comprising storing a datum from a retrieved
object in the first index as a key-value pair, wherein the value of the key-value pair
is the datum, and wherein the key of the key-value pair is based on (i) a path of
the datum consistent with the relational schema and (i) a unique identifier of the

retrieved object.

5. The method of claim 4, wherein the key of the key-value pair is constructed
so that the first index collocates key-value pairs first by the path and then by the

unique identifier.
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6. The method of claim 3, wherein a datum that is part of an array is stored in

the array index.

7. The method of claim 6, wherein data that is part of an array is not stored in

the first index.

8. The method of claim 6, wherein the datum is stored in the array index as a
key-value pair, wherein the value of the key-value pair is the datum, and wherein
the key of the key-value pair is based on (i) a path of the datum consistent with
the relational schema, (ii) a unique identifier of the retrieved object, and (iii)) an

index of the datum's location in the array.

9. The method of claim 8, wherein the key of the key-value pair is constructed
so that the array index collocates key-value pairs first by the path, next by the

unique identifier, and then by the index.

10. The method of claim 8, wherein the key of the key-value pair is further based

on ajoin key.

11. The method of claim 10, wherein the key of the key-value pair is constructed
so that the array index collocates key-value pairs first by the path, next by the

unique identifier, next by the join key, and then by the index.

12. The method of claim 6, further comprising selectively storing the datum in an

auxiliary array index.

13. The method of claim 12, wherein the datum is stored in the auxiliary array
index as a key-value pair, wherein the value of the key-value pair is the datum,
and wherein the key of the key-value pair is based on (i) a path of the datum

consistent with the relational schema, (ii) an index of the datum's location in the

array, and (iii) a unique identifier of the object.
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14. The method of claim 13, wherein the key of the key-value pair is constructed
so that the auxiliary array index collocates key-value pairs first by the path, next

by the index, and then by the unique identifier.

15. The method of claim 13, wherein the key of the key-value pair is further

based on ajoin key.

16. The method of claim 15, wherein the key of the key-value pair is constructed
so that the auxiliary array index collocates key-value pairs first by the path, next

by the index, next by the unique identifier, and then by the join key.

17. The method of claim 3, further comprising storing the first index in an order-
preserving index store, wherein the storage service includes the order-preserving

index store.

18. The method of claim 17, further comprising storing the array index in the

order-preserving index store.

19. The method of claim 2, wherein the relational schema is a structured query

language (SQL) schema, and the query is an SQL query.

20. The method of claim 2, wherein the query is one of a Hive-QL query, a jagl

guery, and XQuery.

21. The method of claim 2, further comprising selectively identifying an object of

the cumulative schema as a map.

22. The method of claim 21, wherein the object of the cumulative schema is
identified as a map based on frequencies of occurrence of fields of the object

within the retrieved objects.

23. The method of claim 22, further comprising tracking the occurrence

frequencies while dynamically creating the cumulative schema.
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24. The method of claim 22, wherein the object of the cumulative schema is
identified as a map in response to an average of the frequencies of occurrence

being below a threshold.

25. The method of claim 21, further comprising storing a datum corresponding to
the map into a map index as a key-value pair, wherein the value of the key-value
pair is the datum, and wherein the key of the key-value pair is based on (i) a path
of the datum consistent with the relational schema, (ii) a unique identifier of the
retrieved object providing the datum, (iii) a join key of the map, and (iv) a map key

of the datum in the map.

26. The method of claim 25, wherein the key of the key-value pair is constructed
so that the map index collocates key-value pairs first by the path, next by the

unique identifier, next by the join key, and then by the map key.

27. The method of claim 21, further comprising storing a datum corresponding to
the map into an auxiliary map index as a key-value pair, wherein the value of the

key-value pair is the datum, and wherein the key of the key-value pair is based on
(i) a path of the datum consistent with the relational schema, (ii) a map key of the

datum in the map, (iii) a unique identifier of the retrieved object providing the

datum, and (iv) ajoin key of the map.

28. The method of claim 27, wherein the key of the key-value pair is constructed
so that the auxiliary map index collocates key-value pairs first by the path, next by

the map key, next by the unique identifier, and then by the join key.

29. The method of claim 2, wherein converting the cumulative schema into the
relational schema includes creating a root table with a column for each element in

a top level of the cumulative schema.

30. The method of claim 29, wherein converting the cumulative schema into the
relational schema includes creating an additional table in the relational schema for

each array in the cumulative schema.
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31. The method of claim 30, wherein the additional table includes (i) a join key
column, (ii) an index column, and (iii) for each scalar type of data in the array, a

value column.

32. The method of claim 30, further comprising inserting a join key column into
the additional table and into the root table when the array is present at the top

level of the cumulative schema.

33. The method of claim 32, further comprising inserting a join key column into
the additional table and into an intermediate table when the array is nested in the

cumulative schema below the top level.

34. The method of claim 29, wherein converting the cumulative schema into the
relational schema includes creating an additional table in the relational schema for

each map in the cumulative schema.

35. The method of claim 34, wherein the additional table includes (i) a join key
column, (ii) a key column, and (iii) for each scalar type of data in the map, a value

column.

36. The method of claim 35, wherein the key column is a string type.

37. The method of claim 34, further comprising inserting a join key column into
the additional table and into the root table when the map is present at the top level

of the cumulative schema.

38. The method of claim 37, further comprising inserting a join key column into
the additional table and into an intermediate table when the map is nested in the

cumulative schema below the top level.
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39. The method of claim 2, further comprising selectively storing a data value of a
retrieved object in a value index as a key-value pair, wherein the key of the key-
value pair is based on (i) a path of the data value consistent with the relational
schema and (ii) the data value, wherein the value of the key-value pair is based
on a unique identifier of the retrieved object, and wherein the storage service

includes the value index.

40. The method of claim 39, wherein the key of the key-value pair is constructed
so that the value index collocates key-value pairs first by the path, and then by the

data value.

41. The method of claim 39, wherein when the data value is part of an array, the
value of the key-value pair is further based on an index of the data value in the

array.

42. The method of claim 41, wherein the value of the key-value pair is further

based on ajoin key of the array.

43. The method of claim 39, wherein when the data value is part of a map, the
value of the key-value pair is further based on a map key of the data value in the

map.

44. The method of claim 43, wherein the value of the key-value pair is further

based on ajoin key of the map.

45. The method of claim 1, further comprising generating the retrieved objects by

adding metadata to raw data obtained from the data source.

46. The method of claim 1, wherein inferring the schema for a retrieved object is
performed based on the metadata of the retrieved object and inferred types of

elements of the retrieved object.
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47. The method of claim 1, wherein, for each of the retrieved objects, the data of
the retrieved object includes values and the metadata of the retrieved object

includes names of the values.

48. The method of claim 1, wherein each of the retrieved objects is a JavaScript
Object Notation (JSON) object.

49. The method of claim 1, wherein the cumulative schema is a JavaScript
Object Notation (JSON) schema.

50. The method of claim 1, further comprising selectively storing each of the
retrieved objects in a row index, wherein the storage service includes the row

index.

51. The method of claim 50, wherein a retrieved object is stored in the row index
as a key-value pair, wherein the key of the key-value pair is a unique identifier of
the retrieved object, and wherein the value of the key-value pair is a serialization

of the entire retrieved object.
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