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SCALABLE ANALYSIS PLATFORM FOR SEMI-STRUCTURED DATA

CROSS-REFERENCE TO RELATED APPLICATION

[0001] This application claims priority to U.S. Utility Application No. 13/725,399,

filed December 2 1 , 201 2 and U.S. Provisional Application No. 61/580,1 93, filed

December 23, 201 1. The entire disclosure of the above application is incorporated

herein by reference.

FIELD

[0002] The present disclosure relates to a scalable interactive database platform

and more specifically to a scalable interactive database platform for semi-

structured data that incorporates storage and computation.

BACKGROUND

[0003] The background description provided herein is for the purpose of general

ly presenting the context of the disclosure. Work of the presently named inventors,

to the extent it is described in this background section, as well as aspects of the

background description that may not otherwise qualify as prior art at the time of

filing, are neither expressly nor impliedly admitted as prior art against the present

disclosure.

[0004] Traditional database systems feature a query execution engine that is

tightly integrated with the underlying storage back-end, which typically consists of

block-addressable persistent storage devices with no compute capabilities. These

devices (hard disk drives and/or solid state drives) are characterized by (a) access

times that differ significantly depending on whether the data is accessed sequen

tially or randomly, (b) access units that have a fixed minimum size, set at the

granularity of a block, and (c) significantly slower (orders of magnitude) access

time than main memory. These characteristics, along with the assumption that the

storage back-end does not have any non-trivial compute capabilities have had an

important impact on the design of database systems, from storage management

to query execution to query optimization.



[0005] Databases originally served as operational stores managing the day-to

day activities of businesses. As database technology improved both in perfor

mance and cost, businesses saw a need to keep an increasing amount of opera

tional history and business state for later analysis. Such analyses help businesses

gain insight into their processes and optimize them, thereby providing a competi

tive advantage and increasing profit.

[0006] Data warehousing arose out of this need. Business data is often well-

structured, fitting easily into relational tables. Data warehouses are essentially

scalable relational database systems offering a structured query language (SQL)

for offline analysis of this business data, and optimized for read-mostly workloads.

For example, data warehouses include traditional systems like Teradata and new

er vendors such as Vertica, Greenplum, and Aster Data. They provide a SQL in

terface, indexes, and fast columnar access.

[0007] Typically, data warehouses are loaded periodically, e.g., nightly or weekly,

with data ingested from various sources and operational systems. The process of

cleaning, curating, and unifying this data into a single schema and loading it into a

warehouse is known as extract-transform-load (ETL). As the variety of sources

and data increases, the complexity of the ETL process also increases. Success

fully implementing ETL, including defining appropriate schemas and matching in-

put data to the predetermined schemas, can take professionals weeks to months,

and changes can be hard or impossible to implement. There are a number of

tools, such as Abinitio, Informatica, and Pentaho, in the market to assist with the

ETL process. However, the ETL process generally remains cumbersome, brittle,

and expensive.

[0008] The data analytics market has exploded with a number of business inte lli

gence and visualization tools that make it easy for business users to perform ad

hoc, iterative analyses of data in warehouses. Business intelligence tools build

multidimensional aggregates of warehouse data and allow users to navigate

through and view various slices and projections of this data. For example, a busi-

ness user might want to see total monthly sales by product category, region, and

store. Then, they might want to dig deeper to weekly sales for specific categories

or roll-up to see sales for the entire country. Multidimensional aggregates may al-



so be referred to as online analytical processing (OLAP) cubes. A number of busi

ness intelligence (Bl) tools, such as Business Objects and Cognos, enable such

analyses, and support a language called Multidimensional Expressions (MDX) for

querying cubes. There are also a number of visualization tools, such as Mi-

croStrategy, Tableau, and Spotfire, that allow business users to intuitively nav i

gate these cubes and data warehouses.

[0009] More recently, the type of data that businesses want to analyze has

changed. As traditional brick and mortar businesses go online and new online

businesses form, these businesses need to analyze the types of data that leading

companies, such as Google and Yahoo, are inundated with. These include data

types such as web pages, logs of page views, click streams, RSS (Rich Site

Summary) feeds, application logs, application server logs, system logs, transac

tion logs, sensor data, social network feeds, news feeds, and blog posts.

[0010] These semi-structured data do not fit well into traditional warehouses.

They have some inherent structure, but the structure may be inconsistent. The

structure can change quickly over time and may vary across different sources.

They are not naturally tabular, and the analyses that users want to run over these

data—clustering, classification, prediction, and so on— are not easily expressed

with SQL. The existing tools for making effective use of these data are cumber-

some and insufficient.

[0011] As a result, a new highly scalable storage and analysis platform arose,

Hadoop, inspired by the technologies implemented at Google for managing web

crawls and searches. At its core, Hadoop offers a clustered file system for reliably

storing its data, HDFS (Hadoop Distributed File System), and a rudimentary paral-

lei analysis engine, MapReduce, to support more complex analyses. Starting with

these pieces, the Hadoop ecosystem has grown to include an indexed, operation

al store, HBase, and new query interfaces, Pig and Hive, that rely on MapReduce.

[0012] Hive is an Apache project that adds a query layer on top of Hadoop, w ith

out any of the optimizations found in traditional warehouses for query optimization,

caching, and indexing. Instead, Hive simply turns queries in a SQL-like language

(called Hive-QL) into MapReduce jobs to be run against the Hadoop cluster.

There are three main problems with Hive for traditional business users. Hive does



not support standard SQL, and does not have a dynamic schema. Further, Hive is

not fast enough to allow interactive queries, since each Hive query requires a

MapReduce job that re-parses all the source data, and often requires multiple

passes through the source data.

[0013] Impala is a real-time engine for Hive-QL queries on Cloudera's Hadoop

implementation. It provides analysis over Hive's sequence files and may eventual

ly support nested models. However, it does not have a dynamic schema, instead

requiring that a user still provide a schema upfront for the data to be queried.

[0014] Pig is another Apache project and offers a schema-free scripting lan-

guage for processing log files in Hadoop. Pig, like Hive, translates everything into

map-reduce jobs. Likewise, it doesn't leverage any indexes, and is not fast

enough for interactivity.

[0015] Jaql is a schema-free declarative language (in contrast to declarative la n

guages, like SQL) for analyzing JavaScript Object Notation (JSON) logs. Like Pig,

it compiles into map-reduce programs on Hadoop, and shares many of the same

drawbacks, including a non-interactive speed.

[0016] Hadoop itself is catching on fairly quickly, and is readily available in the

cloud. Amazon offers elastic map-reduce, which may be effectively equivalent to

Hadoop's MapReduce implementation running in the cloud. It works on data

stored in Amazon's cloud-based S3 (Simple Storage Service) and outputs results

to S3.

[0017] The advantages of the Hadoop ecosystem are three fold. First, the sys

tem scales to extreme sizes and can store any data type. Second, it is extremely

low cost compared to traditional warehouses (as much as twenty times less ex-

pensive). Third, it is open-source, which avoids lock-in with a single vendor. Users

want the ability to pick the right tool for the right job and avoid moving data be

tween systems to get their job done. Although Hadoop is more flexible, using Ha

doop requires specially skilled administrators and programmers with deep

knowledge, who are usually hard to find. Moreover, Hadoop is too slow to be in-

teractive. Even the simplest queries take minutes to hours to execute.



[0018] Dremmel is a tool developed internally at Google, which provides SQL-

based analysis queries over nested-relational or semi-structured data. The original

version handled data in ProtoBuf format. Dremmel requires users to define the

schema upfront for all records. BigQuery is a cloud-based commercialization of

Dremmel and is extended to handle CSV and JSON formats. Drill is an open-

source version of Dremmel.

[0019] Asterix is a system for managing and analyzing semi-structured data us

ing an abstract data model (ADM), which is a generalization of JSON, and annota

tion query language (AQL). Asterix does not support standard SQL, nor does it

have fast access afforded by the present disclosure.

SUMMARY

[0020] A method of operating a query system includes retrieving objects from a

data source, wherein each of the retrieved objects includes (i) data and (ii)

metadata describing the data. The method includes dynamically creating a cumu-

lative schema by inferring a schema from each of the retrieved objects and merg

ing the inferred schema with the cumulative schema. The method includes storing

the data of each of the retrieved objects in a storage service. The method includes

receiving, from a user, a query, and responding to the query based on data stored

by the storage service.

[0021] The method also includes converting the cumulative schema into a re la

tional schema, and presenting the relational schema to the user, wherein the que

ry from the user is constructed over the relational schema. The method also in

cludes storing the data of each of the retrieved objects in at least one of (i) a first

index and (ii) an array index, wherein the storage service includes the first index

and the array index. The method also includes responding to the query based on

data from at least one of the first index and the array index.

[0022] The method also includes storing a datum from a retrieved object in the

first index as a key-value pair, wherein the value of the key-value pair is the da

tum, and wherein the key of the key-value pair is based on (i) a path of the datum

consistent with the relational schema and (ii) a unique identifier of the retrieved

object. The key of the key-value pair is constructed so that the first index collo-



cates key-value pairs first by the path and then by the unique identifier. A datum

that is part of an array is stored in the array index. Data that is part of an array is

not stored in the first index.

[0023] The datum is stored in the array index as a key-value pair, wherein the

value of the key-value pair is the datum, and wherein the key of the key-value pair

is based on (i) a path of the datum consistent with the relational schema, (ii) a

unique identifier of the retrieved object, and (iii) an index of the datum's location in

the array. The key of the key-value pair is constructed so that the array index co l

locates key-value pairs first by the path, next by the unique identifier, and then by

the index. The key of the key-value pair is further based on a join key. The key of

the key-value pair is constructed so that the array index collocates key-value pairs

first by the path, next by the unique identifier, next by the join key, and then by the

index. The method also includes selectively storing the datum in an auxiliary array

index.

[0024] The datum is stored in the auxiliary array index as a key-value pair,

wherein the value of the key-value pair is the datum, and wherein the key of the

key-value pair is based on (i) a path of the datum consistent with the relational

schema, (ii) an index of the datum's location in the array, and (iii) a unique identi

fier of the object. The key of the key-value pair is constructed so that the auxiliary

array index collocates key-value pairs first by the path, next by the index, and then

by the unique identifier. The key of the key-value pair is further based on a join

key. The key of the key-value pair is constructed so that the auxiliary array index

collocates key-value pairs first by the path, next by the index, next by the unique

identifier, and then by the join key.

[0025] The method also includes storing the first index in an order-preserving in

dex store, wherein the storage service includes the order-preserving index store.

The method also includes storing the array index in the order-preserving index

store. The relational schema is a structured query language (SQL) schema, and

the query is an SQL query. The query is one of a Hive-QL query, a jaql query, and

XQuery.

[0026] The method also includes selectively identifying an object of the cumula

tive schema as a map. The object of the cumulative schema is identified as a map



based on frequencies of occurrence of fields of the object within the retrieved o b

jects. The method also includes tracking the occurrence frequencies while dynam

ically creating the cumulative schema. The object of the cumulative schema is

identified as a map in response to an average of the frequencies of occurrence

being below a threshold.

[0027] The method also includes storing a datum corresponding to the map into

a map index as a key-value pair, wherein the value of the key-value pair is the d a

tum, and wherein the key of the key-value pair is based on (i) a path of the datum

consistent with the relational schema, (ii) a unique identifier of the retrieved object

providing the datum, (iii) a join key of the map, and (iv) a map key of the datum in

the map. The key of the key-value pair is constructed so that the map index collo

cates key-value pairs first by the path, next by the unique identifier, next by the

join key, and then by the map key.

[0028] The method also includes storing a datum corresponding to the map into

an auxiliary map index as a key-value pair, wherein the value of the key-value pair

is the datum, and wherein the key of the key-value pair is based on (i) a path of

the datum consistent with the relational schema, (ii) a map key of the datum in the

map, (iii) a unique identifier of the retrieved object providing the datum, and (iv) a

join key of the map. The key of the key-value pair is constructed so that the auxil-

iary map index collocates key-value pairs first by the path, next by the map key,

next by the unique identifier, and then by the join key.

[0029] Converting the cumulative schema into the relational schema includes

creating a root table with a column for each element in a top level of the cumula

tive schema. Converting the cumulative schema into the relational schema in-

eludes creating an additional table in the relational schema for each array in the

cumulative schema. The additional table includes (i) a join key column, (ii) an in

dex column, and (iii) for each scalar type of data in the array, a value column.

[0030] The method also includes inserting a join key column into the additional

table and into the root table when the array is present at the top level of the cumu-

lative schema. The method also includes inserting a join key column into the add i

tional table and into an intermediate table when the array is nested in the cumula

tive schema below the top level. Converting the cumulative schema into the rela-



tional schema includes creating an additional table in the relational schema for

each map in the cumulative schema.

[0031] The additional table includes (i) a join key column, (ii) a key column, and

(iii) for each scalar type of data in the map, a value column. The key column is a

string type. The method also includes inserting a join key column into the add i

tional table and into the root table when the map is present at the top level of the

cumulative schema.

[0032] The method also includes inserting a join key column into the additional

table and into an intermediate table when the map is nested in the cumulative

schema below the top level. The method also includes selectively storing a data

value of a retrieved object in a value index as a key-value pair, wherein the key of

the key-value pair is based on (i) a path of the data value consistent with the re la

tional schema and (ii) the data value, wherein the value of the key-value pair is

based on a unique identifier of the retrieved object, and wherein the storage ser-

vice includes the value index.

[0033] The key of the key-value pair is constructed so that the value index collo

cates key-value pairs first by the path, and then by the data value. When the data

value is part of an array, the value of the key-value pair is further based on an in

dex of the data value in the array. The value of the key-value pair is further based

on a join key of the array. When the data value is part of a map, the value of the

key-value pair is further based on a map key of the data value in the map.

[0034] The value of the key-value pair is further based on a join key of the map.

The method also includes generating the retrieved objects by adding metadata to

raw data obtained from the data source. Inferring the schema for a retrieved ob-

ject is performed based on the metadata of the retrieved object and inferred types

of elements of the retrieved object. For each of the retrieved objects, the data of

the retrieved object includes values and the metadata of the retrieved object in

cludes names of the values.

[0035] Each of the retrieved objects is a JavaScript Object Notation (JSON) ob-

ject. The cumulative schema is a JavaScript Object Notation (JSON) schema. The

method also includes selectively storing each of the retrieved objects in a row in-



dex, wherein the storage service includes the row index. A retrieved object is

stored in the row index as a key-value pair, wherein the key of the key-value pair

is a unique identifier of the retrieved object, and wherein the value of the key-

value pair is a serialization of the entire retrieved object.

[0036] Further areas of applicability of the present disclosure will become appar

ent from the detailed description provided hereinafter. It should be understood that

the detailed description and specific examples are intended for purposes of illus

tration only and are not intended to limit the scope of the disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

[0037] The present disclosure will become more fully understood from the d e

tailed description and the accompanying drawings, wherein:

[0038] FIG. 1A depicts an example network architecture for a scalable analysis

platform for semi-structured data that leverages cloud resources;

[0039] FIG. 1B depicts an example network architecture for a scalable analysis

platform for semi-structured data with a server appliance at the user end;

[0040] FIG. 1C is a functional block diagram of a server system;

[0041] FIG. 2A is a functional block diagram of an example scalable analysis

platform for semi-structured data;

[0042] FIG. 2B is a functional block diagram of an example query system of a

scalable analysis platform for semi-structured data;

[0043] FIG. 3 is a flowchart depicting an example method of incorporating in

gested data;

[0044] FIG. 4 is a flowchart depicting an example method of inferring a schema;

[0045] FIG. 5 is a flowchart depicting an example method of merging two sche-

mas;

[0046] FIG. 6 is a flowchart depicting an example method of collapsing schemas;

[0047] FIG. 7 is a flowchart depicting an example method of populating indexes

with data;



[0048] FIG. 8 is a flowchart depicting an example method of performing map

adornment; and

[0049] FIG. 9 is a flowchart depicting an example method of creating a relational

schema from a JSON schema.

[0050] In the drawings, reference numbers may be reused to identify similar

and/or identical elements.

DETAILED DESCRIPTION

OVERVIEW

[0051] The present disclosure describes an analysis platform capable of offering

a SQL (structured query language)-compliant interface for querying semi-

structured data. For purposes of illustration only, semi-structured data is repre

sented in JSON (JavaScript Object Notation) format. Other self-describing, semi-

structured formats can be used according to the principles of the present disclo

sure. Source data does not need to be self-describing. The description can be

separated from the data, as would be the case with something like protocol buff

ers. As long as there are rules, heuristics, or wrapper functions to apply tags to

the data, any input data can be turned into objects similar to a JSON format.

[0052] In various implementations of the analysis platform according to the pre

sent disclosure, some or all of the following advantages are realized:

Speed

[0053] The analysis platform provides fast query response times to support ad-

hoc, exploratory, and interactive analysis. Users can use this system to quickly

discover hidden insights in the data, without having to submit a query and return

later in the day or the next day to view the results. The analysis platform relies on

an index store, storing all ingested data in indexes, which allows for fast response

times.

[0054] Two primary indexes are used, a Biglndex (Bl) and an Arraylndex (Al),

which are described in more detail below. These are a cross between path index

es and column-oriented stores. Like column-oriented stores, they allow queries to



retrieve data only in the relevant fields, thereby reducing I/O (input/output) de

mands and improving performance. Unlike column stores, however, these indexes

are suitable for complex nested objects and collections with numerous fields. For

other access patterns, the analysis platform engine maintains auxiliary indexes,

described in more detail below, including a Valuelndex (VI). Like traditional data

base indexes, the Valuelndex provides fast logarithmic access for specific field

values or ranges of values. These indexes significantly reduce the data necessary

to retrieve to satisfy a query, thereby improving response times.

Dynamic Schema

[0055] The analysis platform infers the schema from the data itself, so that users

do not have to know an expected schema a priori, and pre-declare the schema

before data can be loaded. Semi-structured data may have varying structure, both

over time and across different sources. So, the engine computes and updates the

schema (or structure) from the data dynamically as data arrives. A relational

schema based on this computed schema is presented to users, which they can

use to compose queries.

[0056] Unlike previous analysis engines that require programmers to specify the

schema of data collections before querying them, the present platform computes

(or, infers) the underlying schema amongst all the ingested objects. Because of

the dynamic schema property, there is a great deal of flexibility. Applications that

generate source data can change the structure as the application evolves. Ana

lysts can aggregate and query data from various periods without needing to speci

fy how the schema varies from period to period. Moreover, there is no need to d e

sign and enforce a global schema, which can take months, and often requires ex-

eluding data that does not fit the schema.

[0057] Other analysis systems like MapReduce or Pig that are sometimes d e

scribed as "schema-free" have two main drawbacks. First, they require users to

know the schema in order to query the data, instead of automatically presenting

an inferred schema to the user. Second, they parse and interpret objects and their

structure on every query, while the analysis platform parses and indexes objects

at load time. These indexes allow subsequent queries to run much faster, as men-



tioned above. Previous engines do not provide automatic inference of a precise

and concise schema from the underlying data.

SQL

[0058] The analysis platform exposes a standard SQL query interface (for exam-

pie, an interface compliant with ANSI SQL 2003) so that users can leverage exist

ing SQL tools (e.g., reporting, visualization, and Bl tools) and expertise. As a re

sult, business users familiar with SQL or SQL tools can directly access and query

semi-structured data without the need to load a data warehouse. Since traditional

SQL-based tools do not handle JSON or other semi-structured data formats, the

analysis platform presents a relational view of the computed schema of JSON o b

jects. It presents a normalized view and incorporates optimizations to keep the

view manageable in size. Although the relational views may present several tables

in the schema, these tables are not necessarily materialized.

[0059] In order to better accommodate representing semi-structured data in tabu-

lar form, the analysis platform can automatically identify "map" objects. Maps are

objects (or nested objects) in which both the field name and value can be

searched and queried. For example, an object may contain dates as field names

and statistics like page views for the values. In the relational view, maps are ex

tracted into separate tables and the data is pivoted such that keys are in a key

column and values are in a value column.

Scale and Elasticity

[0060] The analysis platform scales to handle large dataset sizes. The analysis

platform can automatically and dynamically distribute internal data structures and

processing across independent nodes.

[0061] The analysis platform is designed and built for virtualized "cloud" env i

ronments, including public clouds such as Amazon Web Services and private

clouds, such as virtualized server environments administered by the user's organ

ization or offered by third parties, such as Rackspace. Various components of

Amazon Web Services, including S3 (Simple Storage Service), EC2 (Elastic

Compute Cloud), and Elastic Block Storage (EBS), can be leveraged. The analysis



platform is elastic, meaning it can scale up and down to arbitrary sizes on d e

mand, and can hibernate by storing its internal data structures on long-term

stores, such as Amazon S3. The analysis platform also has multi-tenancy and

multi-user support.

[0062] The analysis platform uses a service-based architecture that has four

components: the proxy, the metadata service, the query executor, and the storage

service. To scale the analysis platform engine to support larger datasets, provide

faster responses, and support more users, the execution engine is parallelized

and the storage service is partitioned across independent, low-cost server nodes.

These nodes can be real servers or virtualized servers in a hosted environment.

Since the executor and storage service are de-coupled, they can be scaled inde

pendently. This de-coupled, scale-out architecture allows the user to leverage the

on-demand elasticity for storage and computing that a cloud environment like

AWS provides.

[0063] The storage service is configurable with various partitioning strategies.

Moreover, the underlying data structures (indexes and metadata) can be migrated

to long-term storage like Amazon S3, to hibernate the system when not in use,

thereby decreasing costs.

Synchronization

[0064] The analysis platform can be configured to automatically synchronize its

contents with, and thereby replicate, the source data from repositories like HDFS

(Hadoop Distributed File System), Amazon S3 (Simple Storage Service), and

noSQL stores, such as MongoDB. These sources can be continuously monitored

for changes, additions, and updates, so that the analysis platform can ingest the

changed data. This allows query results to be relatively up-to-date.

SCHEMA INFERENCE

[0065] The analysis platform takes the following actions in response to data a p

pearing in a source: ( 1) infer unified semi-structured (such as JSON) schema from

the data, (2) create a relational view for the schema, (3) populate physical indexes

with data, and (4) execute queries that leverage the indexes. Parts or all of actions



1, 2 , and 3 may be pipelined to allow only a single pass through the data from the

data source.

[0066] The first action, schema inference, is described first.

Introduction to Semi-structured Data

[0067] JSON is an increasingly popular self-describing, semi-structured data

format, and is very commonly used for data exchange on the internet. Again, while

JSON is described here for illustration, and to provide context for later examples

using the JSON format, the present disclosure is not limited to JSON.

[0068] Briefly, a JSON object consists of string fields (or columns) and corre-

sponding values of potentially different types: numbers, strings, arrays, objects,

etc. JSON objects can be nested and the fields can be multi-valued, e.g., arrays,

nested arrays, etc. A specification can be found at: http://JSON.org. Additional d e

tails are can be found in "A JSON Media Type for Describing the Structure and

Meaning of JSON Documents," IETF (Internet Engineering Task Force) draft-zyp-

json-schema-03, November 22, 201 0 , available at http://tools.ietf.org/html/draft-

zyp-json-schema-03, the entire disclosure of which is hereby incorporated by re f

erence. There are generalizations of JSON to include more types, e.g., BSON

(Binary JSON). Moreover, other semi-structured formats like XML, Protobuf, Thrift,

etc. can all be converted to JSON. When using XML, queries may conform to

XQuery instead of SQL.

[0069] Below is an example JSON object:

{ "player": { "fname": "George", "lname": "Ruth", "nickname" :

"Babe"}, "born": "February 6 , 1985",

"avg": 0.342, "HR" : 714,

"teams": [ { "name": "Boston Red Sox", "years": "1914-1919" } ,

{ "name": "New York Yankees", "years": "1920-1934" } ,

{ "name": "Boston Braves", "years": "1935" } ] }

[0070] The structure of semi-structured objects can vary from object to object.

So, in the same baseball data, the following object may be found:



{ "player": { "fname": "Sandy", "lname": "Koufax"}, "born":

"December 30, 1935",

"ERA": 2.76, "strikeouts": 2396,

"teams": [ { "name": "Brooklyn / LA Dodgers", "years": "1955-

1966" } ] }

[0071] A schema describes the possible structures and data types found in a d a

ta collection. This schema includes the names of the fields, the types for the co r

responding values, and the nesting relationships. Thus, the schema for the above

two objects would be:

{ "player": { "fname": string, "lname": string, "nickname"

} , "born": string, "avg" : number, "HR" : number, "ERA":

"strikeouts": number,

"teams": [ { "name": string, "years": string } ] }

[0072] Although the above is the notation used throughout the document for illus-

trating schemas, a more complete specification is JSON-schema, available at

http://JSON-schema.org. For example, types in the JSON-schema are generally

included in quotes, as in string or "int." For conciseness and readability in this d is

closure, the quotes will be omitted.

[0073] Semi-structured objects can alternatively be viewed as trees with fields as

nodes and leaves as atomic values. A path in the object or schema is a path in

this tree, e.g., "player.fname", "teams[].name".

Iterative Schema Inference

[0074] Before a user can ask questions of a data set, they need to know the

schema - i.e., what fields or dimensions are available for querying. In many cas-

es, the analyst is not responsible for generating the data, so they are unaware of

what has been recorded and available. For example, in the baseball example

above, an analyst may not know that the "ERA" field was available if only hitters

had been observed in the collection. So, the analysis platform computes (or, in

fers) a unified schema from the ingested data and presents a relational view of the

schema to assist the analyst in formulating queries.

[0075] The analysis platform aims to produce a schema aimed at optimizing the

precision and conciseness of the schema. Generally, precise means that the



schema represents all the structures in the observed or ingested data and does

not allow for structures not yet seen. Concise means that the schema is small

enough that it can be read and interpreted by a human.

[0076] The general approach to dynamically creating the schema is to start with

a "current" schema inferred from past objects and grow the schema as new o b

jects are ingested. We simply merge the current schema (S_curr) with the schema

(type) of a new object (0_new) to arrive at the new schema (S_new):

S_new = merge (S_curr, type(0_new))

[0077] Roughly speaking, the merging process takes the union of the two sche-

mas, collapsing common fields, sub-objects, and arrays, and adding new ones

when they appear. This is discussed in more detail below.

Objects

[0078] Some of the following examples use data that resembles the output of a

data stream from Twitter, referred to as the firehose. The Twitter firehose gives a

stream (unending sequence) of JSON objects that represent the tweets "tweeted"

and metadata about those tweets: e.g., user, location, topics, etc.). These tweets

are analogous to many other types of event log data, such as that generated by

modern web frameworks (e.g., Ruby on Rails), mobile applications, sensors and

devices (energy meters, thermostats), etc. Although similar to Twitter data, the fol-

lowing examples diverge from actual Twitter data for purposes of explanation.

[0079] Basic JSON objects are straightforward to deal with; we simply infer the

types seen in the object. For instance, consider the following object:

{ "created_at" : "Thu Nov 08", "id": 266353834,

"source": "Twitter for iPhone",

"text": "Oilstavrachi : would love dinner. Cook this:

http: //bit .ly/955Ffo",

"user": { "id": 29471497, "screenname": "Mashah08" } ,

"favorited" : false}

[0080] The schema inferred from that object would be:

{ "created_at" : string, "id": number, "source": string, "text":

string,



"user": { "id": number, "screen_name ": string } , "favorited":

boolean }

[0081] As new objects arrive, new fields can be added by performing a union on

the set of fields. Sometimes, a field will be repeated, but its type varies, a condi-

tion called type polymorphism. The schema uses multiple attributes with the same

key to represent type polymorphism.

[0082] Log formats often change and developers may add new fields, or change

the field type. As a concrete example, consider the "id" field identifying the tweet,

which was originally a number. However, as the number of tweets grew, certain

programming languages could not handle such large numbers, and so the "id"

field has been changed to a string. So, suppose we saw a new record of the form

{ "created_at" : "Thu Nov 10", "id": "266353840",

"source": "Twitter for iPhone",

"text": "Obinkert: come with me to Oilstavrachi place",

"user": { "id": 29471497, "screenname": "Mashah08" } ,

"retweet_count ": 0 }

[0083] Since a string "id" has now been seen, and a new field "retweet_count"

has appeared, the schema is augmented as follows:

{ "created_at" : string, "id": number, "id": string, "source":

string, "text": string,

"user": { "id": number, "screen_name ": string } ,

"retweet_count ": number }

[0084] Notice that "id" appears twice, once as a string and once as a number.

Sometimes, the structure of nested objects vary. For example, suppose we added

more profile information for the user:

{ "created_at" : "Thu Nov 10", "id": "266353875",

"source": "Twitter for iPhone",

"text": "Obinkert: come with me to Oilstavrachi place",

"user": { "id": "29471755", "screen_name ": "mashah08",

"location": "Saratoga, CA", "followers_count ": 22 } ,

"retweet_count ": 0 }

[0085] In that case, the platform recursively merges the "user" nested schema to

get the following schema:



{ "created_at" : string, "id": number, "id": string, "source":

string, "text": string,

"user": { "id": number, "id": string, "screen_name ": string,

"location": string, "followers_count ": number } ,

"retweet_count ": number }

Null Fields and Empty objects

[0086] Empty objects or null fields can be present in JSON records. For example,

the record for a person's coordinates (latitude and longitude) might be:

{ "coordinates": { } }

The schema has the identical type:

{ "coordinates": { } }

Strictly speaking, { } is termed instance, and the type is object. The examples and

explanations in this disclosure vary from strict JSON for ease of explanation.

[0087] Similarly, the following object

{ "geo": null }

has the identical type:

{ "geo": null }

[0088] If a subsequent record has a value for the object, the empty object is filled

in by applying the merge. For instance, the records:

{ "coordinates": { } }

{ "coordinates": {"type": "Point"} }

will produce the schema

{ "coordinates": {"type": string} }

[0089] A null type is similarly replaced by an observed type. For example, the

records

{ "geo": null }

{ "geo ": true }

will produce the schema:



{ "geo ": boolean }

Arrays

[0090] Tweets often contain items such as hashtags (highlighted topic words),

urls, and mentions of other Twitter users. The Twitter firehose, for example, may

parse and extract these items automatically for inclusion in the tweet's JSON o b

ject. In the following examples, hashtag metadata is used to illustrate how the

schema for arrays is inferred.

[0091] First, let's consider extracting and recording a list of starting offsets for

hashtags in the following tweet (or string):

"#donuts #muffins #biscuits"

Those offsets may be represented with an array as follows:

{ "offsets": [0, 8 , 17] }

[0092] An array in the source data is represented in the schema as an array con

taining the types of the elements found in the source array, in no particular order.

Thus, the schema for the above object is:

{ "offsets": [number] }

[0093] One may want to include the hashtag along with the offset for later pro

cessing. In that case, the tweet object may enumerate both the hashtag and offset

in the array as follows:

{ "tags": [0, "donuts", 8 , "muffins", 17, "biscuits"] }

The corresponding schema would include both types in the array:

{ "tags": [ number, string ] }

[0094] Alternatively, the tags and offsets could be reversed as follows:

{ "tags": ["donuts", 0 , "muffins", 8 , "biscuits", 17] }

and, because the "tags" array can contain either a string or number, the resulting

schema is:

{ "tags": [ string, number ] }



[0095] In fact, tag text and tag offsets can be included in adjacent objects:

{ "tags": ["donuts", "muffins", "biscuits"] } ,

{ "tags": [0, 8 , 17] }

There are now two schemas for "tags":

{ "tags": [string] } and { "tags": [number] }

In this case, the arrays are at the same depth and can be merged to yield the

same schema as above:

{ "tags": [ string, number ] }

[0096] Also, note that the following schemas are identical:

{ "tags": [string, number] }

{ "tags": [number, string] }

This is because the list of types is treated as a set. Types for array elements are

merged where possible, and merging is further performed for objects and arrays

inside arrays. In various other implementations, the order of types and dependen-

cies among types (in both arrays and objects) could be preserved. However, this

may make the schema much less concise.

Nested Objects

[0097] To illustrate nested objects, suppose both beginning and ending offsets

are recorded as follows:

{ "tags": [ { "text": "donuts", "begin": 0 } , { "text": "donuts",

"end": 6 }]}

The resulting schema is:

{ "tags": [{"text": string, "begin": number,

"end": number } ] }

As shown, the objects types are merged instead of typing the array elements sep

arately.

[0098] Similarly, in a case where the tag string and offsets are in nested arrays:

{ "tags": [ [ "donuts", "muffins" ] , [0 , 8 ] ] } ==>

{ "tags": [[string], [number]]},



The schema further reduces to:

{ "tags": [[string, number] ]}

This is the tradeoff made in various implementations of the present disclosure be

tween precision of the schema and conciseness of the schema.

[0099] Empty objects and empty arrays are treated as follows. Because empty

objects are filled in as described above, the following example schema reduction

is possible:

{ "parsed": { "tag": {} , "tag": { "offset": number } } }

=> { "parsed": { "tag": { "offset": number }}

Similarly, using the merging rules for arrays, the following schema reductions are

made:

{ "tags": [[], [ number ]] } => { "tags": [[ number ]] }

{ "tags": [[], [[ ] ]] } => { "tags": [[[ ] ]] }

{ "tags": [[], [[ ] ] , [number] ] } => { "tags": [[[ ] ] , [number] ] }

=> { "tags": [[[], number] ]] }

Merge Procedure

[0100] To create a new schema from a previous schema and a new object, the

analysis platform first types (i.e., computes the schema for) the new object. This

procedure is intended to specify the canonical semantics for typing, not describe

any particular implementation. In the following description, the variables v, w , v_i,

w range over any valid JSON value, while j , k , j_m, k_n range over valid strings.

The base rules for typing are:

type (scalar v ) = scalar_type of v

type ({ _ l : v_l, k_n: v_n } ) =

collapse ({ k_l : type(v_l), k_n: type(v_n) } )

type ([ v_l, ..., v_n ]) =

collapse ([ type(v_l) , type(v_n) ])

[0101] The first rule simply states that for a scalar, such as 3 or "a", the corre

sponding type is inferred directly from the value itself (number for 3 or string for

"a"). The second and third rules recursively type objects and arrays using the co l

lapse function.



[0102] The collapse function repeatedly merges types of the same field in o b

jects, and merges objects, arrays, and common types inside arrays. It continues

recursively until the scalar types are reached. For objects, the collapse function is:

collapse ({ _ l : v_l, k_n: v_n }):

while k_i == k_ :

if v_i, v_j are scalar types and v_i == v_j OR

v_i, v_j are objects OR v_i, v_j are arrays:

replace {..., k_i : v_i, ..., k_ : v_ , ...}

with {..., k_i : merge (v_i, v_ ), ...}

[0103] For arrays, the collapse function is:

collapse ([ v_l , ..., v_n ]):

while v_i, v_j are scalar types and v_i == v_j OR

v_i, v_j are objects OR v_i, v_j are arrays:

replace [..., v_i, v_j, ...]

with [..., merge (v_i, v_j ), ...]

[0104] The merge function describes how to pairwise combine values to remove

duplicates and combine arrays/maps. For objects, merge simply calls collapse re

cursively to collapse common fields:

merge ( , ) = v

merge ({} , { k_l : v_l, k_n : v_n } ) = { k_l : v_l, k_n: v_n

}
merge ({ j_l : v_l, j_n: v_n } , { k_l : w_l, k_m: w_m } )

= collapse ({ j_l : v_l, j_n: v_n, k_l : w_l, k_m: w_m

})

[0105] Similarly for arrays:

merge ([] , [v_l, v_n] ) = [v_l, v_n]

merge([v_l, v_n] , [w_l, w_m] )

= collapse ([v_l, v_n, w_l, w_m] )

[0106] Nulls are preserved, such as shown here:

merge ( { "coordinates": { } } , { "coordinates": null } ,

{ "coordinates": [ ] } )

= { "coordinates": {}, "coordinates": [], "coordinates": null }

A JSON null is a value, just as the number 9 is a value. In a relation, NULL ind i

cates that there was no value specified. In SQL, nulls are presented as



tags<null>: boolean, where the Boolean value is True if the null exists, and NULL

otherwise. To simplify the schema for a SQL user, the coordinates<null> column

can be omitted if the user does not need to differentiate JSON nulls from SQL

nulls.

Cumulative Example

[0107] With the above simple rules, it is possible to type deeply nested JSON

records. For instance, consider a complex hypothetical record that represents

page view statistics for a web page:

{ "stat": [ 10, "total_pageviews", { "counts": [1, [3]],

"page_attr": 7.0 } , { "page_attr": ["internal"]} ] }

The following schema would be produced:

{ "stat": [number,

string,

{ "counts": [number, [number]],

"page_attr" : number,

"page_attr" : [string]

} ] }

[0108] In various implementations, the JSON Schema format can be used to e n

code the inferred schema. This format is standardized, and can easily be extend-

ed to incorporate additional metadata (e.g., whether an object is a map). However,

it is quite verbose and space-inefficient, so it is not used for the examples in this

disclosure. For instance, in JSON-Schema format, the above schema is repre

sented as follows:

{

"type": "object",

"properties ": {

"stat": {

"items": {

"type": [

"number",

"string" ,

{

"type" : "obj ect",

"properties ": {

"counts" : {



"items ": {
"type" : [

"number" ,
{

"items ": {
"type" : "number"

} ,

"type" : "array"
}

]

} ,

"type" : "array"
} ,

"page_attr ": {
"type" : [

"number" ,
{

"items ": {
"type" : "string"

} ,

"type" : "array"

"type" "array"

MAP ADORNMENT

[0109] Developers and analysts can use JSON objects and arrays for many dif-

ferent purposes. In particular, JSON objects are frequently used both as objects

and as "maps." For example, a developer might create an object, where the fields

are dates and values are collected statistics like page views. Another example is

when fields are user ids and values are profiles. In these cases, the object is more

like a map data structure rather than a static object. A user does not always know

the possible fields names because there are so many of them, and the field



names are dynamically created. As a result, users may want to query fields in the

same way they query values.

[01 10] To support this use, the analysis platform is able to identify maps. The

analysis platform incorporates heuristics to identify maps, and also allows users to

specify which nested objects should and should not be treated as maps. Tagging

objects as maps is called adornment.

[01 11] Generally, adornment is performed after the initial load - that is, it is not

necessary to identify maps on the initial ingest. Adornment can be performed later

on a second pass, or after more data has been ingested. In addition, maps can be

reverted back to simply objects, if needed.

[01 12] By default, JSON objects are treated as objects (or, structs, in C nomen

clature). This can be explicitly indicated in the JSON Schema by annotating an

object with "obj_type": object. The shorthand notation used in examples below is

0{}.

[01 13] To flag maps, the heuristic looks for fields that as a group occur relatively

infrequently compared to their containing object (container). For maps, the short

hand M{} is used.

[01 14] While computing the schema on the first pass, the frequency that fields

occur is tracked. Consider an object (or nested-object) which occurs with frequen-

cy F in the data set. Let v_i be the frequency of field i in the object, and N be the

number of unique fields of the object (irrespective of its type). The ratio (sum(v_i) /

N) / F is the ratio of the average field frequency to the frequency of the container.

If this ratio is below a threshold, such as 0.01 , which may be user-configurable,

then the containing object is designated as a map. In various implementations,

empty objects in the JSON Schema are treated as maps.

CREATING RELATIONAL SCHEMA

[01 15] After the schema of the JSON objects in the source data set is inferred,

the analysis platform produces a relational schema that can be exposed to SQL

users and SQL-based tools. The goal is to create a concise schema that repre-

sents the containment relationships in the JSON schema, while giving the users

the power of standard SQL. This relational schema is produced from the adorned



JSON schema, and is a view over the underlying semi-structured data set. A few

examples of how a JSON schema is converted to a relational view are presented

here, before discussing a generalized procedure for performing the conversion.

Objects

[01 16] The simplest example is an object with simple scalar types, such as the

following schema:

{ "created_at" : string, "id": number, "text": string,

"source": string, "favorited": boolean }

In this case, the fields of the object translate directly into columns of a relation:

Root (created_at : str, id: num, text: str, source: str, favorited:

bool )

[01 17] The relation (or, table) of the top-level object is called "Root" here, a lt

hough it can be replaced by, for example, the name of the source collection, if

such a name exists. In the interest of space and readability, the type names string,

number, and boolean have been shortened to str, num, and bool.

[01 18] The type can be added to the attribute name in order to support type po l

ymorphism. For instance, consider the following schema:

{ "created_at" : string, "id": number, "id": string, "text":

string, "source": string, "favorited": boolean }

The resulting relational schema would then have separate "id" and "id" columns:

Root (created_at : str, id<num>: num, id<str>: str,

source: str, text: str, favorited: bool)

Nested Objects

[01 19] Nested objects produce new relations with foreign-key relationships. For

instance, consider the JSON schema:

{ "created_at" : string, "id": number, "source": string, "text":

string,

"user": { "id": number, "screen_name ": string } ,

"favorited": boolean }

The corresponding relational schema is



Root (created_at : str, id: num, source: str, text: str, favorited:

bool, user: join_key)

Root .user (id_ : join_key, id: num, screenname: str)

[0120] The nested object is "normalized" into a separate relation named by its

path, "Root.user" in this case. The column "Root.user"."idJk" in the new table that

represents the sub-object is a foreign-key for the column "Root.user" ("user" co l

umn in the table "Root"). The type is specified as "joinkey" to distinguish it from

other columns, but in actual implementations, the join_key type is typically an in

teger.

[0121] Objects can be nested several levels deep. For example, retweet objects

may include a retweeted status object, which includes the profile of the user that

retweeted, resulting in the following schema:

{ "created_at" : string, "id": number, "source": string, "text":

string,

"user": { "id": number, "screen_name ": string } ,

"retweeted_status" : { "created_at" : string, "id": number,

"user": { "id": number, "screen_name ": string } } ,

"favorited": boolean }

The corresponding relational view is:

Root (created_at : str, id: num, source: str,

text: str, favorited: bool,

user: join_key, retweeted_status : join_key)

Root .user (id_ k : join_key, id: num, screenname: str)

Root .retweeted_status (id_ k : join_key, created_at: str, id: num,

user: join_key)

Root .retweeted_status .user (id_jk : join_key, id: num, screenname:

str )

Note that "Root.user", "Root.retweeted_status", and "Root. retweeted_status. user"

are all separated into different tables.

Optimizing 1-to-1 Relationships

[0122] In nested object relationships, often there is a 1-to- relationship from

rows in the main table to the rows in the table for the nested object. As a result,

these can be collapsed 1-to-1 into a single table using dotted notation for the co l

umn names.



[0123] For example, the multi-relation examples above flatten into:

Root (created_at : str, id: num, source: str,

text: str, favorited: bool,

user. id: num, user .screen_name : str)

and, for the three-level nested object example,

Root (created_at : str, id: num, source: str,

text: str, favorited: bool,

user. id: num, user .screen_name : str,

retweeted_status .created_at : str,

retweeted_status .id : num,

retweeted_status .user .id : num,

retweeted_status .user .screen_name : str )

[0124] Note that, since the relational schema is simply a view over the JSON

schema, flattened, partially flattened, or separate (un-flattened) relational schema

can be presented to the user as desired by the analysis platform without modifying

the underlying data. The only limitation is that the user not be presented with con

flicting table definitions.

Maps

[0125] Without designating a set of fields as a map, the corresponding relational

schema may include a huge number of columns. In addition, the user may want to

query the field names; for example, they may want to find the average page views

in December.

[0126] To solve these issues, the tables for (nested) objects that are adorned as

maps can be "pivoted." For example, consider the following schema for keeping

track of various metrics (daily page views, clicks, time spent, etc.) for each page

on a web site:

0 { "page_url": string, "page_id" : number,

"stat_name": string,

"metric": M { "2012-01-01": number, "2012-01-02": number,

"2012-12-01": number, ...}}

[0127] Rather than producing a table with a separate column for each day, the

fields and values can be stored as key-value pairs in a relation:



Root (page_url : str, page_id: num, stat_name: str, metric<map>:

join_key )

Root .metric<map> (id_jk : join_key, key: string, val: num)

[0128] In this case, the id column is a foreign key; indicating within which record

each map entry was originally present. For a year's worth of page views, instead

of having 365 columns in table "Root.metric", there are only two. The "key" co l

umn stores the field names and the "val" column stores the values. For example,

for the above schema, the database may contain these records for

"www.noudata.com/jobs" (page_id 284):

Root ("www. noudata. com/ jobs", 284, "page_views ", 3),

Root .metric<map> (3, "2 012-12-01", 50),

Root .metric<map> (3, "2 012-12-02", 30), ...

[0129] Pivoting still works when there is type polymorphism in the map. For ex

ample, suppose the metric represents sentiment, which contains both a category

and a score indicating the strength of the category:

{ "page_url": "www.noudata.com/blog", "page_id": 285, "stat_name":

"sentiment "

"metric": { "2012-12-01": "agreement", "2012-12-01": 5 ,

"2012-12-05": "anger", "2012-12-05": 2 , ... } }

The JSON schema would be:

0 { "page_url": string, "page_id" : number,

"stat_name": string,

"metric": M { "2012-12-01": string, "2012-12-01": number,

"2012-12-05": string, "2012-12-05": number, ...}}

[0130] When creating the relational schema, a new "val" column can be added to

the map relation to include the new type. The other "val" columns can be append

ed with their types as well to distinguish the column names, as shown:

Root (page_url : str, page_id: num, stat_name: str, metric<map>:

join_key )

Root .metric<map> (id_jk : join_key, key: string,

val<str>: str, val<num>: num)

[0131] The entries resulting from the above JSON object would appear as:

Root .metric<map> (4, "2 012-12-01", "agreement", NULL),



Root .metric<map> (4, "2012-12-01", NULL, 5),

Root .metric<map> (4, "2012-12-05", "anger", NULL),

Root .metric<map> (4, "2012-12-05", NULL, 2 ) ...

Once these maps are pivoted, users can apply predicates and functions to the key

column as they would any other column.

Nested Maps

[0132] The basic principles are the same for nested maps. Consider a list of sta

tistics per day and per hour:

M {"2012-12-01" : M { "12:00": number,

"01:00": number,

"02:00": number,

... } ,

"2012-12-02" : M { ... },

... }

The resulting schema would be

Root(id_jk: join_key, key: string, val<map>: join_key)

Root .val<map> (id_ k : join_key, key: string, val<num> : num)

[0133] Objects can also be nested inside maps:

M {"2012-12-01" : 0 { "sentiment": string,

"strength": number }

"2012-12-02" : 0 { ... }

... }

The resulting flattened relational schema is:

Root(id_jk: join_key, key: string, val<map>: join_key)

Root .val<map> (id_ k : join_key, sentiment: string,

strength: number)

Empty Elements

[0134] Empty objects sometimes appear in the data. Consider the schema:

{ "created_at" : string, "id": number, "source": string, "text":

string,

"user": { "id": number, "screen_name ": string } }

A JSON object may be received without user information, as shown here:



{ "created_at" : "Thu Nov 08",

"id": 266353834,

"source": "Twitter for iPhone",

"text": "Oilstavrachi : would love dinner. Cook this:

http://bit.ly/955Ffo",

"user": { } }

[0135] The empty user object can be represented with the following relational t u

ples:

Root ("Thu Nov 08", 266353834, "Twitter for iPhone", "@ilstavrachi :

would love dinner. Cook this: http://bit.ly/955Ffo", join_key)

Root .user (join_key, NULL, NULL)

[0136] If all ingested user objects had an empty object in the ingested stream,

the resulting JSON schema would include an empty object. For example, see the

final field ("user") in this schema:

{"id": number, "user": {}}

In this case, empty object "user" can be treated as a map, resulting in the follow

ing relational schema:

Root (id: num, user<map>: join_key)

Root .user<map> (id_jk : join_key, key: string)

[0137] Note that Root.user<map> does not have any value columns, and initially

is empty. However, this design makes it straightforward to add columns later if the

schema changes as new objects are ingested, because each record in Root will

have already been assigned a join key.

Arrays

[0138] Arrays are treated similarly to maps, so the schema translation is quite

similar. The major difference is that the string "key" field of a map is replaced by

an "index" field of type integer (int) corresponding to the array index. A simple ex

ample is:

{ "tags ": [ string ] }

which leads to the relational schema:

Root (tags<arr> : join_key)



Root .tags<arr> (id_jk : join_key, index: int, val<str>: str)

[0139] Type polymorphism and nested arrays work the same way as for maps.

Consider the following schema:

{ "tags": [ number, string] }

which leads to the relational schema:

Root (tags<arr> : join_key)

Root .tags<arr> (id_jk : join_key, index: int,

val<num>: num, val<str>: str)

[0140] An object may be nested within in an array, as here:

{ "tags": [ { "text": string, "offset": number } ] }

The resulting relational schema can be created as:

Root (tags<arr> : join_key)

Root .tags<arr> (id_jk : join_key, index: int, val : join_key)

Root .tags<arr> . al (id_jk : join_key, text: str, offset: num)

[0141] Using the 1-to- flattening optimization, the relational schema becomes:

Root (tags<arr> : join_key)

Root .tags<arr> (id_jk : join_key, index: int,

val .text : str, val. offset: num)

Nested and Empty Arrays

[0142] Relational schemas can be created for nested and empty arrays in a sim i

lar manner to maps. For the following schema:

{ "tags": [string, [number]], "urls": []}

the relational schema would be:

Root (tags<arr> : join_key, urls<arr>: join_key)

Root .tags<arr> (id_jk : join_key, index: int,

val<str>: str, val<arr> : join_key)

Root .tags<arr> .val<arr> (id_ k : join_key, index: int,

val<num> : num)

Root .urls<arr> (id_jk : join_key, index: int)



[0143] Note that, for the nested array, a separate table is created with "val" a p

pended to the table name. For the empty array, a separate table is created with

only an "index" column, but no "val" column, which can be added later once the

contents of the array are observed and typed.

Type Inference on Atomic Values

[0144] The above type inference and conversion to relational schema procedure

relies on the basic types available in JSON. The same procedure applies equally

to whatever type system is selected. In other words, the analysis platform can in

fer narrower scalar types like integer, float, and time, as long as the atomic scalar

types can be inferred from the value. BSON and XML have such extended type

systems. Moreover, various heuristics (such as regular expressions) can be used

to detect more complex types such as dates and times.

[0145] Since ANSI SQL does not support the same types as JSON, the inferred

types are converted into the most specific types seen thus far for the relational

view. For example, if only integers have been seen for field "freq", then the num

ber type will be converted to integer in the relational schema for "freq". Similarly, if

both integers and floats have been observed, then the relational schema will show

the "freq" column as a float. Likewise, string fields convert to character varying

types in the relational schema. In other words, the more specific types than basic

JSON types may be tracked.

[0146] An alternative is to rely on type polymorphism and use the more specific

type system to infer the data value's types. That is, instead of using JSON primi

tive types, use ANSI SQL's primitive types.

[0147] Below are the list of types tracked during ingestion (on the left) and how

they are converted for the SQL schema (on the right). Most SQL databases sup

port additional types including text which can be used if desired by the client.

Note: the Objectld type is specific to BSON.

int32, — > INTEGER

int64, — > INTEGER

double, — > DOUBLE PRECISION

string, — > VARCHAR

date, — > DATE



bool , BOOLEAN

object . (BSON) > VARCHAR(24)

time > TIME

timestamp — > T ESTAMP

Procedure

[0148] Converting from a JSON schema to a relational schema can be accom

plished using a recursive unpacking of the nested JSON schema structure. A

pseudocode representation of an example implementation is shown here.

Call for every attribute in topmost object:

attr_schema, "Root", attr_name

create_schema (json_schema, rel_name, attr_name):

/* Creates a table (relation) if it's adorned as an object */

if json_schema is object:

Add join key called attr_name to relation rel_name

new_rel = rel_name + "." + attr_name

Create relation new_rel

add (id_jk: join_key) to new_rel

/* recursively add attributes to the table (relation) */

for attr, attr_schema in json_schema:

create_schema (attr_schema, new_rel, attr)

/* Creates appropriate attrs and table for (nested) map */

else if json_schema is map:

Add join key called 'attr_name + <map> ' to relation rel_name

new_rel = rel_name + "." + attr_name<map>

Create relation new_rel

Add (id_jk: join_key) and (key: string) to new_rel

/* recursively add attributes to the table (relation) */

for each distinct value type val_type in json_schema:

create_schema (val_type, new_rel, "val")

/* Creates appropriate attrs and table for array */

else if json_schema is array:

Add join key called 'attr_name + <arr> ' to relation rel_name

new_rel = rel_name + "." + attr_name<arr>

Create relation new_rel



Add (id_jk: join_key) and (index: int) to new_rel

/* recursively add attributes to the table (relation

for each distinct item type item_type in json_schema

create_schema (item_type, new_rel, "val")

/* Primitive type, add column to the table (relation) */

else :

If attr_name does not exist in relation rel_name:

Add column (attr_name, attr_name 's type) to relation

rel_name

else

Rename attribute attr_name to attr_name + "<orignal

attr_name 's type>" in relation rel_name

Add column (attr_name + "<" + attr_name's type + ">

attr_name 's type) to relation rel_name

[0149] The above procedure will create the relational schema without the 1-to-1

optimization. A second pass may be performed through the relational schema,

identifying object tables with 1-to-1 relationships and collapsing them. Alternative

ly, the 1-to-1 -optimization could be performed inline, but this was not shown for

clarity. When a sub-tree of the schema with nested objects is not "interrupted" by

arrays or maps, then the entire object sub-tree can be collapsed into a single table

with attributes named by their path to the root of the sub-tree. An attribute that is a

map or object remains in a separate table, but any sub-objects contained within

can be collapsed recursively. These principles apply to any arbitrary depth of

nested objects.

POPULATING INDEXES WITH DATA

[0150] Once the JSON and relational schemas have been updated in response

to a new object, the data contained within the object can be stored in indexes, as

described below.

[0151] The indexes in the analysis platform rely on order-preserving indexes that

store key-value pairs. The indexes support the operations: lookup(prefix), in-

sert(key, value), delete (key), update(key, value), and get_next() for range

searches. There are a number of data structures and low-level libraries that sup

port such an interface. Examples include BerkeleyDB, TokyoCabinet, KyotoCabi-



net, LevelDB, and so on. These internally use order-preserving, secondary store

data structures like B-trees, LSM (log-structured merge) trees, and Fractal trees.

There may be special cases where non-order-preserving indexes (such as hash

tables) are used, such as for object IDs. With non-order-preserving indexes,

get_next() and the ability to do range searches may be sacrificed.

[0152] In various implementations, the analysis framework uses LevelDB, which

implements LSM trees, does compression, and provides good performance for

data sets with high insert rates. LevelDB also makes performance trade-offs that

may be consistent with common use models for the analysis framework. For ex-

ample, when analyzing data such as log data, data will be frequently added, but

existing data will be infrequently, or, never, changed. Advantageously, LevelDB is

optimized for fast data insertion at the expense of slower data deletion and data

modification.

[0153] Order-preserving indexes have the property that they collocate the key-

value pairs in key order. Thus, when searching for key-value pairs nearby a ce r

tain key or retrieving items in order, the responses will return much faster than

when retrieving items out of order.

[0154] The analysis platform can maintain multiple key-value indexes for each

source collection, and in some implementations, between two and six indexes for

each source collection. The analysis platform uses these indexes for evaluating

SQL queries over the relational schema (the SQL schema does not need to be

materialized). Each object is assigned a unique id denoted by tid. The two indexes

from which the other indexes and the schemas can be reconstructed are the Big-

Index (Bl) and Arraylndex (Al).

Biglndex (Bl)

[0155] The Biglndex (Bl) is the base data store that stores all fields in the data

that are not embedded in an array. A value (val) can be retrieved from the Bl by a

key based on col_path and tid.

( col_path , t i d ) - > val



[0156] The col_path is the path to the field from the root object with the field's

type appended. For example, for the following records:

1 : { "text": "Tweet this", "user": { "id": 29471497,

"screenname" : "Mashah0 8 " } }

2 : { "text": "Tweet that", "user": { "id": 27438992,

"screenname ": "binkert" } }

the following key-value pairs are added to the Bl:

(root .text<str>, 1 ) — > "Tweet this"

(root .text<str>, 2 ) — > "Tweet that"

(root. user .id<num>, 1 ) — > 29471497

(root. user .id<num>, 2 ) — > 27438992

(root .user .screen_name<str>, 1 ) — > "Mashah08"

(root .user .screen_name<str>, 2 ) — > "binkert"

[0157] in various implementations, the underlying index store (such as LevelDB)

is unaware of the significance of the segments of the key. In other words, while

"root.text<str>, 1" signifies the first element of the string text field in the root table,

the index store may simply see an undifferentiated multi-character key. As a s im

ple example, the key could be created simply by concatenating the col_path and

tid (importantly, in that order). For example, the first key demonstrated above may

be passed to the index store as "root.text<str>1 ." The index store will collocate the

second key ("root.text<str>2") with the first key not because of any understanding

of the path similarity, but simply because the first 14 characters are the same.

Even though the column name and type are stored as part of every key, because

of the sort ordering, compression (such as prefix-based compression) can be

used to reduce the storage cost.

[0158] In the Bl, all columns of the source data are combined into a single struc

ture, unlike traditional column stores which create a separate column file for every

new column. The Bl approach allows for a single index instance and also enables

map detection to be delayed. Since new fields simply appear as entries in the Bl,

failing to pivot a map does not incur the physical cost of creating a large number

of physical files for each field later turned into a map.

[0159] In the Bl, the key-value pairs for each attribute or "column" are collocated.

Thus, like column files, the Bl allows the query executor to focus on the fields of



interest in a query rather than forcing it to sweep through data containing fields not

referenced in a query.

Arraylndex (Al)

[0160] Although fields from the normalized tables for arrays could be added to

the Bl, the array indices would then be from their corresponding values. Instead,

array fields can be added to a separate Arraylndex (Al) that preserves the index

information and allows entries in the same array to be collocated by the index

store, which provides good performance for many queries. The array values can

be stored in the Al using the following signature:

(col_path, tid, join_key, index) -> val

[0161] The col_path is the path of the array field: for example, "root.tags" for e l

ements in the tags array, or "root.tags. text" for the "text" field in an object inside

the tags array. The join_key and index are the array's foreign key and index of the

value. The tid is also stored, to avoid having to store a separate entry in the Bl for

each array. The tid can be used to look up values for corresponding columns in

the same object. Consider the objects that represent hashtags in different tweets:

1 : { "id": 3465345, "tags": [ "muffins" "cupcakes" ] }

2 : { "id": 3465376, "tags": [ "curry" "sauces" ] }

For these, the tags table has the following schema:

Root .tags<arr> (id_jk : join_key, index: int, val: string)

For that table, the entries in the Al would be:

(root .tags<arr>, 1 , 1 , 0 ) — > "muffins"

(root .tags<arr>, 1 , 1 , 1 ) — > "cupcakes"

(root .tags<arr>, 2 , 2 , 0 ) — > "curry"

(root .tags<arr>, 2 , 2 , 1 ) — > "sauces"

[0162] The array index allows for quickly iterating through the values of array

fields. This is useful, for example, when running statistics over these fields (e.g.,

sum, average, variance, etc.), finding specific values, etc.



Nested Array Example

[0163] Note that, for arrays in the root object (top-level arrays), the tid and

join_key fields are redundant (see above) and can be optimized away. However,

for nested arrays, a separate join_key is needed and not superfluous. For exam-

pie, consider this JSON object:

1 : {"id": 3598574, "tags": [[8,25,75], ["muffins", "donuts",

"pastries "]]}

The corresponding relational schema is:

Root .tags<arr> (id_jk : join_key, index: int, val<arr> : join_key)

Root .tags<arr> .val<arr> (id_ : join_key, index: int, val<num>:

num, val<str>: str)

Recall that the Al uses the following key-value pair

col_path, tid, join_key, index -> val

which results in these Al entries

tags<arr> .val<arr>, 1 , 1 , 0 -> 1

tags<arr> .val<arr>, 1 , 1 , 1 -> 2

(numbers array)

tags<arr> .val<arr> .val<num>, 1 , 1 , 0 -> 8

tags<arr> .val<arr> .val<num>, 1 , 1 , 1 -> 25

tags<arr> .val<arr> .val<num>, 1 , 1 , 2 -> 75

(string array)

tags<arr> .val<arr> .val<str>, 1 , 2 , 0 -> "muffins"

tags<arr> .val<arr> .val<str>, 1 , 2 , 1 -> "donuts"

tags<arr> .val<arr> .val<str>, 1 , 2 , 2 -> "pastries"

[0164] Note that if the join key were removed from the nested array key-value

pairs, then it would not be possible to know whether muffins was part of the first

nested array or the second. Thus, the join key is redundant for a top-level array,

but not for cases of nested arrays.

Array Index 2 (AI2)

[0165] Although these two indexes (Bl and Al) are sufficient to reconstruct all the

ingested data, there are access patterns that they do not support efficiently. For

these, we introduce the following indexes, which can optionally be created to im

prove performance at the cost of additional space.



[0166] This has the signature:

(col_path, index, tid, join_key) -> val

which allows specific index elements of an array to be found quickly. For example,

returning all tags at index 10 (tags[1 0]) is simple and fast using AI2.

Map Index (Ml)

[0167] The map index is similar to the array index in its functionality and signa

ture:

(col_path, tid, join_key, map_key) -> val

[0168] The primary difference is that the map index is not built during initial in-

gestion, and is instead constructed asynchronously. During initial loading, maps

will be treated as objects and inserted into the Bl as usual. Once both are popu

lated, there are entries available in both the Bl and Ml for more efficient query

processing. The Bl entries remain relevant in case a user or administrator re

quests that the map be unadorned. Only the relational schema needs to be

changed, and the original Bl entries corresponding to the unmapped data will then

be used in queries.

[0169] Like the Al, the Ml is useful when iterating through the elements of a map:

for applying statistical functions, for restricting to specific field names, etc. Consid

er again objects that maintain pageview statistics:

1 : { "url": "noudata.com/blog",

"page_views" : { "2012-12-01": 10, "2012-12-02": 12, ... "2012-

12-15": 10 }

2 : { "url": "noudata.com/jobs",

"page_views" : { "2012-12-01": 2 , "2012-12-02": 4 , ... "2012-

12-15": 7 }

The relational schema for the page_views table if flagged as a map is:

Root .page_views<map> (id_jk : join_key, key: string, val: num)

where key is the map's key and val is the associated value. For

the above objects, the entries in the M would be:

(root .page_views<map>, 1 , 1 , "2012-12-01") — > 10

(root .page_views<map>, 1 , 1 , "2012-12-02") --> 12



(root .page_views<map>, 1 , 1 , 2012-12-15") — > 10

(root .page_views<map>, 2 , 2 , 2012-12-01") — > 2

(root .page_views<map>, 2 , 2 , 2012-12-02") — > 4

(root .page_views<map>, 2 , 2 , "2012-12-05") --> 7

This ordering allows the values in the page_views map to be collocated for each

page, while in the Bl, the values would be collocated by date.

Map Index 2 (MI2)

[0170] In addition, an auxiliary map index may be implemented. The map index

is similar to the array index in its functionality and signature:

(col_path, map_key, tid, join_key) -> val

This allows efficient searches for specific map elements, such as "all the different

values coresponding to map key 201 2-1 2-05." A generic representation of both

AI2 and MI2 can be written as follows:

(col_path, key, tid, join_key) -> val

where key corresponds to the index of an array or the map_key of a map.

Valuelndex (VI)

[0171] Although the above indexes are useful for looking up values for specific

fields and iterating through those values, they do not allow fast access if queries

are looking only for specific values or ranges of values. For example, a query may

ask to return the text of tweets written by "mashah08". To assist such queries, a

Valuelndex can be built for some or all fields in the schema. The Valuelndex may

be built as data is ingested or be built asynchronously later. The key for the value

index is:

(col_path, val)

where val is the value of the attribute in the source data. The corresponding value

to that key in the V I depends on where the field for the value occurs. For each of

the indexes above, it varies:

BI: (col_path, val) — > tid



: (col_path, val ) — > tid, join_key, index

MI: (col_path, val) — > tid, join_key, key

[0172] For example, the tweets:

1 : { "text": "Tweet this", "user": { "id": 29471497,

"screenname ": "mashah0 8 " } }

2 : { "text": "Tweet that", "user": { "id": 27438992,

are stored as:

(root .text<string>, "Tweet this") — > 1

(root .text<string>, "Tweet that") — > 2

(root .user .id<num>, 29471497) — > 1

(root. user .id<num>, 27438992) — > 2

(root .user .screen_name<string>, "MashahO 8") — > 1

(root .user .screen_name<string>, "binkert") — > 2

Using the VI, one can search for all tweets authored by "mashah08" by looking for

the key: (root.user.screen_name, "mashah08") and retrieving all associate tids.

Then the Bl can be searched using the retrieved tids to return the corresponding

text of each tweet.

The cost of indexes, and especially the value index, is the additional storage

space, and the execution time needed to update them as new objects are added

to the system. Due to space or update overheads, the user may not want to index

all possible paths because of these. So, the user can specify which paths to index

in the VI.

Rowlndex (Rl)

[0173] To facilitate re-creation of an entire ingested object (similar to requesting

a record in a traditional row-based store), a Rowlndex (Rl) can be implemented.

The Rowlndex stores a key-value pair

tid — > JSON object

[0174] The JSON object may be stored as a string representation, as a BSON, or

as any other serialized format, such as a tree structure used for internal represen

tation of a JSON object. For the two tweets discussed above with respect to the

VI, the corresponding Rl entries would be:



> { "text": "Tweet this", "user": { "id": 29471497

screenname ": "mashah0 8 " } }

> { "text": "Tweet that", "user": { "id": 27438992

EXAMPLE

[0175] An example for the Bl, Al, Ml, and VI. Consider tweets similar to the

above, where a "retweet_freq" attribute is added, which keeps track of how many

times a tweet was retweeted in a day:

1 : { "text": "Love #muffins and #cupcakes: bit .ly/ 955Ff o",

"user": { "id": 29471497, "screen_name ": "mashah08" } ,

"tags": [ "muffins", "cupcakes" ] ,

"retweet_freq" : { "2012-12-01": 10, "2012-12-02": 13,

"2012-12-03": 1 } }

2 : { "text": "Love #sushi and #umami : bit .ly/955Ff o ",

"user": { "id": 28492838, "screen_name ": "binkert" } ,

"tags": [ "sushi", "umami" ] ,

"retweet_freq" : { "2012-12-04": 20, "2012-12-05": 1 } }

[0176] The schema for these records is:

0 { "text": string, "user": 0 { "id": number,

"screenname ": string } , "tags": [ string ] ,

"retweet_freq" : M { "2012-12-01": number ... "2012-12-05":

number } }

[0177] The JSON-Schema for these records will be

{

"type": "object",

"obj_type": "object",

"properties ": {

"text": {

"type": "string"

'user'

"type": "object",

"obj_type": "object",

"properties ": {

"id": {

"type": "number",

} ,

"screenname" : {

"type": "string",



"tags"

"type" :

"items ":

"type" "string"

"retweet_f req" : {

"type": "object",

"obj_type": "map",

"properties ": {

"2012-12-01": {

"type" : "number"

2012-12-05": {

"type" : "number"

[0178] If retweet_freq is not treated as a map, the relational schema is:

Root (text: str,

user. id: num, user .screen_name : str,

tags<arr>: join_key,

retweet_freq. 2012-12-01 : num,

retweet_freq. 2012-12-02 : num,

retweet_f req. 2012-12-03 : num,

retweet_freq. 2012-12-04 : num,

retweet_f req. 2012-12-05 : num)

Root .tags<arr> (id_jk: join_key,

index: int,

val: str)

[0179] In this case, the example records above would populate these relations as

follows:

Root :

("Love #muffins 29471497, mashah08, 1 , 10, 13, 1 , NULL,

NULL)



("Love #sushi 28492838, binkert, 2 , NULL, NULL, NULL,

20, 1 )

Root .tags<arr> :

(1, 0 , "muffins")

(1, 1 , "cupcakes")

(2, 0 , "sushi")

(2, 1 , "umami")

[0180] Note that these are the tuples the queries would return if a "select * " query

were run on these tables. These tuples are not necessarily materialized as such in

the storage engine. That is, this may simply be a virtual view over the underlying

data, and not physically stored as depicted.

[0181] If retweet_freq is identified as a map, the relational schema becomes

more concise (and more accommodating of additional data), as follows:

Root (text: str,

user. id: num, user .screen_name : str,

tags<arr>: join_key,

retweet_f req<map> : join_key)

Root .tags<arr> (id_jk: join_key,

index: int,

val: str)

Root .retweet_f req<map> (id_jk: join_key,

key: str,

val: num)

[0182] The corresponding tuples are:

Root :

("Love #muffins 29471497, mashah08, 1 , 1 )

("Love #sushi 28492838, binkert, 2 , 2 )

Root .tags<arr> :

(1, 0 , "muffins")

(1, 1 , "cupcakes")

(2, 0 , "sushi")

(2, 1 , "umami")

Root .retweet_f req<map> :

(1, "2 012- 12-01", 10)

(1, "2 012- 12-02", 13)

(1, "2 012- 12-03", 1 )

(2, "2 012- 12-04", 20)

(2, "2 012- 12-05", 1 )



[0183] The key-value pairs added to the Bl are:

(root .retweet_freq. 2012-12-01, 1 ) — > 10

(root .retweet_freq. 2012-12-02, 1 ) — > 13

(root .retweet_freq. 2012-12-03, 1 ) — > 1

(root .retweet_freq. 2012-12-04, 2 ) — > 20

(root .retweet_freq. 2012-12-05, 2 ) — > 1

(root. text, 1 ) --> "Love #muffins and #cupcakes"

(root. text, 2 ) --> "Love #sushi and #umami"

(root. user .id, 1 ) — > 29471497

(root. user .id, 2 ) — > 28492838

(root .user .screenname, 1 ) — > mashah08

(root .user .screenname, 2 ) --> binkert

[0184] The key-value pairs added to the Al are as follows. Note that in this case,

the join key is redundant (same as tid) since there are no nested arrays.

(root .tags<arr>, 1 , 1 , 0 ) — > "muffins"

(root .tags<arr>, 1 , 1 , 1 ) — > "cupcakes"

(root .tags<arr>, 2 , 2 , 0 ) — > "sushi"

(root .tags<arr>, 2 , 2 , 1 ) — > "umami"

[0185] The Rl will have the following two entries

1 — > { "text": "Love #muffins and #cupcakes: bit .ly/955Ff o ",

"user": { "id": 29471497, "screen_name ": "mashah08" } , "tags":

[ "muffins", "cupcakes" ] , "retweet_f req" : { "2012-12-01":

10, "2012-12-02": 13, "2012-12-03": 1 } }

2 — > { "text": "Love #sushi and #umami : bit .ly/ 955Ff o", "user": {

"id": 28492838, "screen_name ": "binkert" } , "tags": [ "sushi",

"umami" ] , "retweet_f req" : { "2012-12-04": 20, "2012-12-05": 1

} }

[0186] If and when it is built, the Ml will have the following entries:

(root retweet__freq<map>, 1 , 1 , "2012 -12- 01") — > 10

(root retweet__freq<map>, 1 , 1 , "2012 -12- 02") — > 13

(root retweet__freq<map>, 1 , 1 , "2012 -12- 03") — > 1

(root retweet__freq<map>, 2 , 2 , "2012 -12- 04") — > 20

(root retweet__freq<map>, 2 , 2 , "2012 -12- 05") — > 1

[0187] Similarly the V I will have the following entries (if all paths are indexed and

maps are treated like maps):

(root .retweet_freq<map>, 1 ) — > 2 , 2 , "2012-12-05"

(root .retweet_freq<map>, 1 ) — > 1 , 1 , "2012-12-03"



root .retweet_freq<map>, 10) — > 1 , 1 , "2012-12-01"

root .retweet_freq<map>, 13) — > 1 , 1 , "2012-12-02"

root .retweet_freq<map>, 20) — > 2 , 2 , "2012-12-04"

root .tags<arr>, "cupcakes") — > 1 , 1 , 1

root .tags<arr>, "muffins") — > 1 , 1 , 0

root .tags<arr>, "sushi") — > 2 , 2 , 0

root .tags<arr>, "umami") — > 2 , 2 , 1

root .text<str>, "Love #muffins and #cupcakes") — > 1

root .text<str>, "Love #sushi and #umami") — > 2

(root. user .id, 29471497) — > 1

root. user .id, 28492838) — > 2

root .user .screenname, "mashah08") — > 1

root .user .screenname, "binkert") — > 2

[0188] Although the actions above are described in phases, they can be pipe-

lined to allow the ingest to be performed in a single pass, loading the Bl, Al, and

Rl, and computing the JSON schema. The other indexes can be built asynchro

nously and can be enabled and disabled as desired.

SYSTEM ARCHITECTURE

[0189] The analysis platform is architected to be service-oriented. In various im-

plementations, there are five main services: a proxy, a metadata service, a query

executor, a storage service, and an ingestion service.

[0190] This decoupled approach may have several advantages. Since these se r

vices communicate only through external APIs (remote procedure calls), the se r

vices can be multiplexed and each shared independently. For example, multiple

proxies may be used per executor and multiple executors per storage service. The

metadata service can also be shared across multiple instances of executor and

storage services.

[0191] The executor, storage, and ingestion services are parallelized, and can

run the individual pieces in virtualized machine instances in either private or public

infrastructures. This allows suspending and scaling these services independently.

This is useful for reducing costs by adjusting service capacity based on fluctua

tions in demand. For example, the elasticity of a public cloud can be used to high

ly parallelize the ingestion service for fast overnight loading, while keeping the ex

ecution and storage service reduced in size for daily query workloads.



[0192] The proxy is the gateway to clients and supports one or more standard

protocols, such as ODBC (Open Database Connectivity), libpq, JDBC (Java Data

base Connectivity), SSL (secure sockets layer), etc. The gateway serves as a

firewall, authentication service, and a locus of control for the internal services. For

example, client connections (such as network sockets) can be kept open at the

proxy while the supporting execution and storage services are suspended to save

costs. When the client connection becomes active again, the needed services can

be woken on-demand with a relatively short start-up latency.

[0193] The metadata service is typically shared by many instances of the other

services. It stores metadata including schemas, source information, partitioning

information, client usernames, keys, statistics (histograms, value distributions,

etc.), and information about the current state of each service (number of instanc

es, IP addresses, etc.).

[0194] The storage service manages indexes and serves read and write re-

quests. In addition, the query executor can push down a number of functions into

the storage service. In various implementations, the storage service can evaluate

predicates and UDFs (user defined functions) to filter results, evaluate local joins

(e.g., to reconstruct objects), evaluate pushed-down joins (e.g., broadcast joins),

and evaluate local aggregations.

[0195] The storage service can be parallelized through a technique called part i

tioned parallelism. In this approach, numerous instances or partitions of the sto r

age service are created and the ingested objects are divided among the partitions.

Each partition stores each type of index, just as if it were a single whole instance.

However, each partition only indexes a subset of the ingested data.

[0196] The analysis engine supports one or more partitioning strategies. A s im

ple but effective strategy is to partition the objects by tid and store their respective

entries in the local indexes. In this way, ingested objects are not split across d if

ferent instances, which may consume significant network bandwidth when a query

relies on multiple portions of an object. The tid can be assigned in a number of

ways, including hash assignment, round robin, or range-based assignment. These

particular assignments distribute the most recent data across all the instances,

thereby spreading the load.



[0197] Another strategy is to partition by another field value (or combination of

field values), such as a user id or session id. Alternate partitioning fields (columns)

make it convenient to perform local joins with other tables or collections, e.g., user

profiles. The partitioning strategy may be hash partitioning or use sampling and

range partitioning. The former is used for efficient point lookups and the latter for

supporting efficient range searches.

[0198] Regardless of the partitioning strategy, an object or any subset of the o b

ject should be able to be reconstructed locally. Therefore, the storage service pa r

titions have no cross talk during query processing and only need to communicate

with the execution service via their API.

[0199] The storage service has a cache. We can increase the cache size in each

partition or increase the number of partitions to improve the performance of the

storage service. The storage service can cache the indexes in memory or on local

disk, and the indexes can live on external storage like Amazon S3. This feature

allows for shutting down and destroying the storage service nodes and redeploy

ing them whenever necessary. Moreover, it allows extreme elasticity: the ability to

hibernate the storage service to S3 at low cost and change storage service capac

ity as demand fluctuates.

[0200] The query execution service executes the query plan generated by the

query planning phase. It implements query operators, e.g., join, union, sort, a g

gregation, and so on. Many of these operations can be pushed down to the stor

age service, and are when possible. These include predicates, projection, colum

nar joins to reconstruct the projected attributes, and partial aggregations for d is

tributive and algebraic aggregation functions with group by statements.

[0201] The query execution service takes in data from the storage service and

computes the non-local operations: non-local joins, group by statements that need

repartitioning, sorts, and so on. The executor is similar to a partitioned parallel ex

ecutor. It uses exchange operators to repartition between query execution steps

and employs local storage for spilling intermediate results. For many queries, it is

possible to run most of the query in the storage service and require only a single

executor node to collect the results and perform any small non-local operations.



INGESTION SERVICE

[0202] The ingestion service is responsible for loading semi-structured data into

the storage service where it can be queried. Users provide data in a variety of

formats (e.g., JSON, BSON, CSV) from a variety of platforms (e.g., MongoDB,

Amazon S3, HDFS), optionally compressed with a compression mechanism (e.g.,

GZIP, BZIP2, Snappy). The basic procedure holds true regardless of the format

used.

[0203] The ingestion task can be roughly divided into two parts: the initial inges

tion task that loads a large volume of new user data, and incremental ingestion,

which occurs periodically when new data is available.

Initial Ingestion

[0204] The initial ingestion process can be broken into several steps. First, part i

tion input data into chunks. Users provide initial data in a collection of files or by

providing direct connections to their data sources. The location and format of the-

se files is recorded in the metadata service. Users may provide data that is a l

ready partitioned, for instance due to log file rotation, but if not, the files can be

partitioned into chunks to support parallel loading. These chunks are typically on

the order of several hundred megabytes and are processed independently.

[0205] The exact mechanism for partitioning the input files depends on the data

format. For uncompressed formats in which records are separated by newlines,

(e.g., JSON or CSV), a single file can be processed in parallel using a number of

processes equal to the target number of chunks. Processing starts at the appro

priate offset in the file (file_size / total_num_chunks) * chunk_num, and then

searching until a newline is found. For compressed data or data in a binary format

like BSON, each input file may need to be scanned sequentially. The location of

each chunk (file, offset, size) is stored in the metadata service.

[0206] Once the data is divided into chunks, the actual schema inference and

ingestion is performed. As part of this process, two services are launched: the in

gestion service and the storage service. These two services can employ multiple

servers to do the work. The two services can also be co-located on any given m a

chine. The ingestion service is transient and used only during the ingestion pro-



cess, while the storage service holds the actual data and must be persistent. The

servers involved in ingestion send data to the storage service servers and the

number of ingestion servers is independent of the number of storage servers

where the number is chosen to minimize imbalance between the throughput of

each service. The chunks are partitioned between the ingestion servers. Each in

gestion server is responsible for the following steps for each chunk assigned to it:

(i) parsing and type inference, (ii) communication with storage service, and

(iii) computing local schema and statistics.

[0207] First, the data record is parsed into an internal tree representation. A con-

sistent internal representation may be used for all the source formats (JSON,

BSON, etc.). Depending on the input format, type inferencing may also be pe r

formed. For instance, JSON does not have a representation of a date, so it is

common to store dates as strings. Since dates are very common, they are on ex

ample of a type detected during ingestion so that users can issue queries making

use of dates. For CSV input files, since the columns are not typed, basic types

such as integers must be detected as well.

[0208] Once the record has been parsed and types inferred, a compressed rep

resentation of the parse tree is sent to the storage service. This takes the form of

a preorder traversal of the tree. The storage service is responsible for determining

the values to store in each of the indexes (Bl, Al, etc), and for generating tuple ids

and join keys. Key generation is deferred to the storage service so that keys can

be generated sequentially, which improves ingestion performance to the underly

ing index store.

[0209] As records are ingested, a local JSON schema is updated using the rules

described above. The schema will reflect the records seen by a single ingestion

machine, and different machines may have different schemas.

[0210] In addition to computing the schema, statistics are maintained, which are

useful for query processing as well as identifying maps. These include metrics like

the number of times each attribute appears as well as its average size in bytes.

For example, the following records

{ i d : 35 46 73 2 9 84 }

{ i d : "3 48 72 3 423 4 " }



{ i d : 73 2 4 2 3 42 3 4 3 }

{ i d : 45 85 2 7 43 43 3 2 }

{ i d : " 2 3 4 2 3 42 3 4 3 " }

would produce the schema {id: int, id: string}, and id: int could be annotated with a

count of 3 and id: string with a count of 2 . Each ingestion machine stores the

schema and statistics it computed in the metadata service.

[021 1] Once all of the chunks have been ingested, the overall schema is com

puted, which will be used by the query engine and presented to the user. This can

be accomplished using a single process that reads the partial schemas from the

metadata service, merges them using the method described above, and stores

the result back in the metadata service. Since the number of schemas is limited to

the number of ingestion machines, this process is not performance-critical.

[0212] Determining maps is optional. As described previously, heuristics can be

used along with the statistics stored in the metadata service to determine which

attributes should be stored as maps in the Ml. Recall that this is not necessary for

query processing, but it makes some queries more natural to express and im

proves efficiency. Once maps have been identified, each storage server receives

a message identifying which attributes should be maps. The storage server then

scans these columns and inserts them into the Ml.

Incremental Updates

[0213] Some users may load the bulk of their data up front, but most will periodi

cally load new data over time, often as part of a regular (e.g., hourly or daily) pro

cess. Ingesting this data is largely similar to the initial ingestion. The new data is

split into chunks, the schema is computed per chunk, and the local schemas are

merged with the global schema maintained in the metadata service.

[0214] The system automatically detects new data as it is added. The method

depends on the source data platform. For example, for S3 files, the simplest case

is to detect changes in an S3 bucket. A special process periodically scans the

bucket for new key-value pairs (i.e., new files), and adds any that are found to the

metadata service. After a certain number of new files have been found or a certain



time period has elapsed, the process launches a new ingestion process to load

the data.

[0215] Operations performed in MongoDB can be stored in a special collection

called the operation log (or opiog). The opiog provides a consistent record of write

operations that is used by MongoDB internally for replication. The opiog is read

and used to create a set of flat files in S3 storing the new records. The above

method can then be used to ingest the new data.

[0216] The incremental ingestion process can handle both new data (e.g. new

JSON documents) and updates to existing documents (e.g. new attributes in exist-

ing JSON documents or new values for existing attributes). Each data source plat

form has different capabilities in terms of exposing updates in the source files. We

refer to this type of information as 'deltas' and it can take the form of flat files or

log files (e.g. MongoDB). The incremental ingestion process processes the infor

mation from the 'delta' files and combines that with the existing schema infor-

mation to generate new data that are sent to the storage service.

Subsetting Data

[0217] While the system described here for ingesting data and doing incremental

updates can ingest all data from the source, it is relatively simple to ingest only a

subset, by specifying up-front the JSON schema (or the relational schema) of the

data that we would like ingested. This is done by either providing the JSON sche

ma itself, or by providing queries that specify the subset. In this manner, the anal

ysis platform can be thought of as a materialized view of the source data.

[0218] It is also possible to specify data that the user does not want ingested. A

JSON schema or a relational schema can be provided, describing the portion of

the data that should not be ingested. Then it is simply a matter of recording that

information in the metadata service which tells the ingestion process to simply

skip those elements of all future rows. If this is done after data has already been

ingested, the already ingested data simply becomes unavailable and can be ga r

bage collected by a background task. This garbage collection would be incorpo-

rated into the compaction process of the index store (e.g., LevelDB).



Fault Tolerance

[0219] While it is possible to restart the loading process during the initial ingest,

the incremental ingestion process should not corrupt the existing data in the sys

tem, to prevent users from having to reload all data from scratch. Since ingesting

a file is not an idempotent operation, due to id generation, a simple fault-tolerance

scheme can be implemented based on taking snapshots of the underlying storage

system.

[0220] Taking snapshots may be straightforward when the underlying storage

system supports taking consistent snapshots at a point in time, as LevelDB does.

With this primitive, the steps for incremental loading are as follows. A single pro

cess directs each storage server to take a snapshot locally and directs all queries

to this snapshot for the duration of the load. Each chunk is loaded as described

above. When complete, the ingestion server responsible for loading a chunk

marks it as finished in the metadata service.

[0221] A process monitors the metadata service. When all chunks have been

loaded, it atomically redirects queries to the updated version of the state. The

snapshot taken in the first step can then be discarded. In the event of a failure, the

snapshot becomes the canonical version of the state and the partially updated

(and potentially corrupted) original version of the state is discarded. The ingestion

process is then restarted. Additionally, snapshots of the storage system disk vo l

ume can be used for recovery in the event of a server failure.

QUERY EXECUTION

Example Query

[0222] To show example execution, consider the simple query:

select count (*) from table as t where t.a > 10;

First, the proxy receives the query and issues it to an executor node for planning.

Next, an executor node creates a query plan calling the metadata service to d e

termine which collections and storage nodes are available for use. The executor

node typically distributes the plan to other executor nodes, but here, we only need

a single executor node.



[0223] Execution node then makes RPC calls to storage service nodes, pushing

down t.a > 10 predicate and count function. Next, storage nodes compute sub-

counts and return them to executor node. Executor node then returns result to the

proxy when proxy fetches the next result value.

Dynamic Typing

[0224] The storage engines of database systems (e.g., PostgreSQL) are strongly

typed, which means that all the values of a column (or attribute) must have the

exact same type (e.g., integer, string, timestamp, etc.). In the context of big-data

analytics this is a significant limitation because quite often applications need to

change the representation of a particular piece of information (attribute) and, con

sequently, the data type that they use to store it. For instance, an application may

initially store the values of a particular attribute using integers and then switch to

using floats. Database systems are not designed to support such operations.

[0225] One way to handle this problem is to use multiple relational columns for

each attribute - one for each different data type. For example, if we have seen the

attribute "user.id" with values 3 1432 and "31 433" (i.e., an integer and a string), we

can store "user.id<int>" and "user.id<string>" as separate columns. A single rec

ord will have a value for only one of these columns corresponding to the type of

"user.id" in that record. The values for the other columns for that record will be

NULL.

[0226] Presenting multiple columns for the same attribute is often too complicat

ed for users to use. To simplify the user experience, the analysis platform can d y

namically, at query time, infer the type the user intends to use. To this end, the

storage service keeps track of multiple types. For example, the storage service

uses a generic data type for numbers, called NUMBER, which covers both inte

gers and floats. When the NUMBER type is used, the more specific data type is

stored as part of the value. For example, the integer value 10 of attribute "Cus-

tomer.metric" is stored in the Bl as a key-value pair where (Customer.metric,

<NUMBER>, tid) is the key and ( 10 , INTEGER) is the value. The floating point

value 10.5 of the same attribute would be stored as key: (Custom-

er.metric,<NUMBER>, TID), value: ( 1 0.5, FLOAT).



[0227] Finally, at query time, the analysis platform can perform dynamic casting

between data types according to the properties of the query (predicates, casting

operations, etc.) as long as these operations do not result in information loss. A lt

hough "number" is not an ANSI SQL type, the flexible typing system allows clients

to treat it as a standard ANSI SQL float, integer, or numeric type from query con

text. For example, consider the query:

select user.lang from tweets where user. id = '31432'

In the case where we have both "user.id<int>" and "user.id<string>", the system

optionally converts integers (e.g. 3 1432) to a single string representation (e.g.

"31 432") at query time, thereby allowing the user to work with a single column

"user.id" with the ANSI SQL type VARCHAR.

[0228] Although ANSI (American National Standards Institute) / ISO (Internation

al Organization for Standardization) SQL:2003 is mentioned as an example, in

other implementations compliance with other standards, SQL or otherwise, can be

accomplished. For example only, the exposed interface could be compliant with

ANSI/ISO SQL201 1.

FIGURES

[0229] In FIG. 1A , an example cloud-based implementation of the analysis plat

form is shown. A local area network (LAN) or a wide area network (WAN) 100 of

an organization using the analysis framework connects to the internet 104. Com

pute needs and storage needs in this implementation are both provided by cloud-

based services. In the particular implementation shown, compute servers are

separate from storage servers. Specifically, a compute cloud 108 includes a p lu

rality of servers 112 that provide processing power for the analysis framework.

The servers 112 may be discrete hardware instances or may be virtualized serv

ers.

[0230] The servers 112 may also have their own storage on which the pro

cessing capability operates. For example, the servers 112 may implement both

the query executor and the storage service. While traditional columnar storage

systems store data as columns on disk, when that data is read into memory, rows

are reassembled from the columnar data. The indexes of present disclosure,



however, operate as columnar storage both on disk and in memory. Because of

the unique configuration of the indexes, benefits of fast columnar access can be

achieved with relatively little penalty.

[0231] A storage cloud 116 includes storage arrays 120 used for index data be-

cause according to the present disclosure data is stored in indexes and not in m a

terialized tables. When storage resources of the servers 112 are used the storage

arrays 120 may be used for backup and nearline storage, not for responding to

each query.

[0232] In various implementations, storage arrays 124 may include data on

which the analysis framework will operate. For example only, the storage arrays

124 may hold relevant data, such as log data, which users may want to query us

ing the analysis framework. Although storage arrays 120 and storage arrays 124

are shown in the same storage cloud 116 , they may be located in different clouds,

including private externally hosted clouds, public clouds, and organization-specific

internally-hosted virtualized environments.

[0233] For example only, the storage cloud 116 may be an Amazon Web Se r

vices (AWS) S3 cloud, which the business was already using to store data in the

storage arrays 124. As a result, transferring data into the storage arrays 120 may

be achieved with high throughput and low cost. The compute cloud 108 may be

provided by AWS EC2 in which case the compute cloud 108 and the storage

cloud 116 are hosted by a common provider. A user 130 constructs a query using

standard SQL tools, that query is run in the compute cloud 108, and a response is

returned to the user 130. The SQL tools may be tools already installed on a com

puter 134 of the user 130, and do not have to be modified in order to work with the

present analysis framework.

[0234] In FIG. 1B, another example deployment approach is shown. In this case,

a physical server appliance 180 is connected to the LAN/WAN 100 of the busi

ness. The server appliance 180 may be hosted onsite or may be hosted offsite

and connected, such as with a virtual private network, to the LAN/WAN 100. The

server appliance 180 includes compute capability as well as storage and receives

input data from sources, which may be local to the LAN/WAN 100. For example



only, a computer or server 184 may store logs, such as web traffic logs or intru

sion detection logs.

[0235] The server appliance 180 retrieves and stores index data for responding

to queries of the user 130. The storage cloud 116 may include additional data

sources 188, which may hold yet other data and/or may be a nearline data sto r

age facility for older data. The server appliance 180 may, in order to satisfy user

queries, retrieve additional data from the additional data sources 188. The server

appliance 180 may also store data, such as for backup purposes, in the storage

cloud 116 . In various other implementations, the additional data sources 188 may

be part of a Hadoop implementation in the cloud.

[0236] The analytical framework of the present disclosure is flexible such that

many other deployment scenarios are possible. For example only, software may

be provided to a business, and that software could be installed on owned or host

ed servers. In another implementation, virtual machine instances may be provid-

ed, which can be instantiated through virtualization environments. Still further, the

user could be provided with a user interface in a browser and the SQL portion

could be hosted by a service provider, such as Nou Data, and implemented on

their systems or in the cloud.

[0237] In FIG. 1C, hardware components of a server 200 are shown. A processor

204 executes instructions from a memory 208 and may operate on (read and

write) data stored in the memory 208. Generally, for speed, the memory 208 is

volatile memory. The processor 204 communicates, potentially via a chipset 2 12 ,

with nonvolatile storage 2 16 . In various implementations, nonvolatile storage 2 16

may include flash memory acting as a cache. Larger-capacity and lower-cost stor-

age may be used for secondary nonvolatile storage 220. For example, magnetic

storage media, such as hard drives, may be used to store underlying data in the

secondary nonvolatile storage 220, the active portions of which are cached in

nonvolatile storage 2 16 .

[0238] Input/output functionality 224 may include inputs such as keyboard and

mouse, and outputs such as a graphic display and audio output. The server 200

communicates with other computing devices using a networking card 228. In vari

ous implementations or at various times, the input/output functionality 224 may be



dormant, with all interaction between the server 200 and external actors being via

the networking card 228. For ease of illustration, additional well-known features

and variations are not shown, such as, for example only, direct memory access

(DMA) functionality between nonvolatile storage 2 16 and memory 208 or between

the networking card 228 and the memory 208.

[0239] In FIG. 2A, a process diagram shows one example of how data is ingest

ed into the analytical framework so that it can be queried by the user 130. Data

sources 300 provide data on which the analysis framework operates. If that raw

data is not self-describing, optional user-defined wrapper functions 304 may con-

vert the raw data into self-describing semi-structured data, such as JSON objects.

[0240] An administrator 308, which may be the user 130 operating in a different

capacity, is able to designate guidelines for implementing these wrapper func

tions. Administrator 308 can also designate which of the data sources 300 to use

and what data to retrieve from those data sources. In various implementations,

retrieving the data may include subsetting operations and/or other computations.

For example only, when one of the data sources 300 is Hadoop, a MapReduce

job may be requested prior to retrieving the data for the analysis framework.

[0241] The retrieved data is processed by a schema inference module 3 12 ,

which dynamically constructs the schema based on the observed structure of re-

ceived data. The administrator 308 may have the ability, in various implementa

tions, to provide typing hints to the schema inference module 3 12 . For example,

the typing hints may include requests to recognize particular formats, such as

dates, times, or other administrator-defined types, which may be specified by, for

example, regular expressions.

[0242] The data objects and the schema generated by the schema inference

module 3 12 are provided to an adornment module 3 16 as well as an index crea

tion module 320. Input objects include source data as well as metadata that d e

scribes the source data. The source data is stored in index storage 324 by the in

dex creation module 320.

[0243] The adornment module 3 16 identifies maps in the schema generated by

the schema module 3 12 . In implementations where map identification is not de-



sired, the adornment module 3 16 may be omitted. The administrator 308 may be

able to specify map criteria to adjust the heuristics performed by the adornment

module 3 16 used in identifying maps.

[0244] After maps have been identified, a relational schema creation module 328

generates a relational schema, such as an SQL-compliant schema. In addition,

the identified maps are provided to an auxiliary index creation module 332, which

is capable of creating additional indexes, such as the Maplndex, and map entries

in the Valuelndex, as described above. The auxiliary indexes may also be stored

in the index storage 324.

[0245] The administrator 308 may have the capability of requesting that the map

index be created and may specify which column to add to the value index. In add i

tion, the administrator may be able to specify which objects should be treated as

maps, and can dynamically change whether an object is treated as a map or not.

Such a change will result in changes to the relational schema.

[0246] A relational optimization module 336 optimizes the relational schema to

present a more concise schema to the user 130. For example, the relational opt i

mization module 336 may identify one-to-one relationships between tables and

flatten those tables into a single table, as described above. The resulting relational

schema is provided to a metadata service 340.

[0247] A query executor 344 interfaces with the metadata service 340 to execute

queries from a proxy 348. The proxy 348 interacts with an SQL-compliant client,

such as an ODBC client 352, which is, without special configuration, able to inte r

act with the proxy 348. The user 130 uses the ODBC client 352 to send queries to

the query executor 344 and to receive responses to those queries.

[0248] Via the ODBC client 352, the user 130 can also see the relational schema

stored by the metadata service 340 and construct queries over the relational

schema. Neither the user 130 or the administrator 308 are required to know the

expected schema or help create the schema. Instead, the schema is created d y

namically based on the retrieved data and then presented. Although the ODBC

client 352 is shown, mechanisms other than ODBC are available including JDBC,



and direct postgres queries. In various implementations, a graphical user interface

application may facilitate ease of use of the ODBC client 352 by the user.

[0249] The query executor 344 operates on data from a storage service 356,

which includes the index storage 324. The storage service 356 may include its

own local storage processing module 360, to which the query executor 344 can

delegate various processing tasks. The processed data is then provided by the

storage processing module 360 to the query executor 344 to construct a response

to a received query. In a cloud-based implementation, the storage service 356 and

the query executor 344 may both be implemented in a compute cloud, and the in-

dex storage 324 can be stored in the compute instances. The index storage 324

may be mirrored to nearline storage, such as in the storage cloud 116 as shown in

FIG. 1A .

[0250] In FIG. 2B, a high level functional diagram shows a storage service 356

with multiple nodes 402-1 , 402-2, and 402-3 (collectively nodes 402). Although

three nodes 402 are shown, more or fewer may be used, and the number used

may be varied dynamically based on the needs of the analysis framework. The

number of nodes 402 may be increased as more data needs to be stored as well

as in response to additional processing being required to execute queries and/or

to provide redundancy. The query executor 344 is shown with nodes 406-1 , 406-

2 , and 406-3 (collectively nodes 406). The number of nodes 406 can also be var

ied dynamically based on query load, and is independent of the number of nodes

402.

[0251] A proxy 348 provides the interface between the ODBC client 352 and the

query executor 344. The query executor 344 interacts with metadata service 340,

which stores schemas for the data residing in the storage service 356.

[0252] FIG. 3 shows an example process for data ingestion. Control begins at

504, where sources of data can be designated, such as by the user or administra

tor. In addition, certain data sets from the sources of data may be selected and

certain subsetting and reducing operations may be requested of the data sources.

Control continues at 508, where the designated data sources are monitored for

new data.



[0253] At 5 12 , if new data objects have been added to the data sources, control

transfers to 5 16 ; otherwise, control returns to 504, to allow the sources of data to

be modified if desired. At 5 16 , the schema of a new object is inferred, which may

be performed according to a type function such as is shown in FIG. 4 . At 520, the

inferred schema from 5 16 is merged with the already-existing schema. The merge

may be performed according to a merge function such as is shown in FIG. 5 .

[0254] At 524, if adornment is desired, control transfers to 528; otherwise, control

transfers to 532. At 528, maps are identified within the data, such as is shown in

FIG. 8 . At 536, if no new maps are identified, control continues at 532; otherwise,

if new maps have been identified, control transfers to 540. At 540, if a map index

is desired, control transfers to 544; otherwise, control continues at 532. At 544, for

each value in the Biglndex or Arraylndex associated with the new map attribute,

that value is added to the map index. Further, if desired by the user and/or admin

istrator, for the particular attribute, the values are added to the value index. Con-

trol then continues at 532.

[0255] In various implementations, adornment at 524 may wait until a first round

of objects is processed. For example, on an initial ingest, adornment may be d e

layed until all of the initial objects are ingested. In this way, sufficient statistics will

have been collected for use by the map heuristics. For incremental ingests of ad-

ditional objects, adornment may be performed after each new group of additional

objects.

[0256] At 532, if the JSON schema has changed as a result of the new objects,

control transfers to 548 where the schema is converted to a relational schema.

Control continues at 552 where the relational view is optimized, such as by flatten-

ing one-to-one relationships. Control then continues at 556. If the schema had not

changed at 532, control would directly transfer to 556. At 556, indexes are popu

lated with the data of the new object, which may be performed as shown in FIG. 7 .

Control then returns to 504.

[0257] Although population of the indexes is shown at 556 as being performed

after converting the inferred schema to relational schema at 548, in various im

plementations, the indexes may be populated prior to generating the relational

schema, as the relational schema is not required. The procedure can use the in-



ferred JSON schema to generate paths and join keys. The relational schema

serves as a relational view of the underlying semi-structured data.

[0258] FIG. 4 shows an example implementation of a type function relying on re

cursion. Control begins at 604 where, if the object to be typed is a scalar, control

transfers to 608. At 608, the type of the scalar is determined and that scalar type

is returned as an output of the function at 6 12 . The scalar type may be determined

based on self-description in the received object. In addition, further typing rules

may be used, which may recognize that certain strings are representative of data

such as dates or times.

[0259] If, at 604, the object is not a scalar, control transfers to 6 16 . At 6 16 , if the

object is an array, control transfers to 620 where the type function (FIG. 4) is re

cursively called on each element of the array. When the results of these type func

tions have been received, control continues at 624 where a collapse function,

such as is shown in FIG. 6 , is called on an array of the element types as deter-

mined at 620. When the collapsed array is returned by the collapse function, that

collapsed array is returned by the type function at 628.

[0260] If, at 6 16 , the object is not an array, control transfers to 632. At 632, the

type function (FIG. 4) is called recursively on each field of the object. Control con

tinues at 636, where the collapse function, is called on a concatenation of the field

types determined at 632. The collapsed object returned by the collapse function is

then returned by the type function at 640.

[0261] FIG. 5 shows an example implementation of a merge function that merges

two schema elements into a single schema element is shown. The merge function

is also recursive and when first called, the two schema elements are a previously

existing schema and a new schema inferred from a newly received object. In fu r

ther recursive calls of the merge function, the schema elements will be sub-

elements of these schemas. Control begins at 704 where, if the schema elements

to be merged are equivalent, control transfers to 708 and returns either one of the

equivalent schema elements. Otherwise, control transfers to 7 12 where, if the

schema elements to be merged are both arrays, control transfers to 7 16 ; other

wise, control transfers to 720.



[0262] At 7 16 , if one of the arrays to be merged is empty, the other array is re

turned at 724. Otherwise, control continues at 728, where a collapse function,

such as is shown in FIG. 6 , is called on an array containing the elements of both

arrays to be merged. The collapsed array returned by the collapse function is then

returned by the merge function at 732.

[0263] At 720, if one of the schema elements to be merged is empty, then the

other schema element is returned by the merge function at 736. If neither of the

schema elements to be merged is empty, control continues at 740 where the co l

lapse function is called on an object containing the key-value pairs of both schema

elements to be merged. The collapsed object returned by the collapse function is

then returned by the merge function at 744.

[0264] FIG. 6 shows an example implementation of a collapse function. Control

begins at 804 where, if the object to be collapsed is an array, control transfers to

808; otherwise, control transfers to 8 12 . At 808, if the array contains a pair of val-

ues that are both arrays, control transfers to 8 16 ; otherwise, control continues at

820. At 820, if the array contains a pair of values that are both objects, control

transfers to 8 16 ; otherwise, control continues at 824. At 824, if the array contains

a pair of values that are equal scalar types, control transfers to 8 16 ; otherwise, the

collapse is complete and the array is returned from the collapse function. At 8 16 , a

merge function, such as is shown in FIG. 5 , is called on the pair of values identi

fied by 808, 820, or 824. Control continues at 828, where the pair of values is re

placed with a single value returned by the merge function.

[0265] At 8 12 , if any of the keys in the object are the same, control transfers to

832; otherwise, collapse is complete and the object is returned. At 832, control se-

lects a pair of keys that are the same and continues in 836. If the values for the

pair of keys are both arrays or are both objects, control transfers to 840; other

wise, control transfers to 844. At 840, the merge function is called on the values

for the pair of keys. Control continues at 848, where the pair of keys is replaced

with a single key having a value returned by the merge function. Control then con-

tinues at 852 where, if any additional keys are the same, control transfers to 832;

otherwise, the collapse is done and the object as modified is returned. At 844, if

the values for the pair of keys are both scalars, control transfers to 856; otherwise,



control transfers to 852. At 856, if the scalar types of the values for the pair of

keys are equal, control transfers to 840 to merge those pair of keys; otherwise,

control transfers to 852.

[0266] FIG. 7 shows an example process for populating indexes with data from

newly retrieved objects. Control begins at 904 where, if the Rowlndex is desired,

control transfers to 908; otherwise, control transfers to 9 12 . At 908, the object is

added to the Rowlndex as described above, and control continues at 9 12 . At 9 12 ,

the object is flattened into relational tuples for the current relation schema and join

keys are created as needed. Control continues at 9 16 where control determines

whether more tuples to be added to the indexes are present. If so, control trans

fers to 920; otherwise, the indexes have been populated and so control ends.

[0267] At 920, control determines whether the tuple is for an array table. If so,

control transfers to 924; otherwise, control transfers 928. At 924, if there are more

value columns in the array table, control transfers to 932. At 932, if the column

value exists in the original retrieved object, the value is added to the Arraylndex at

936. Control then continues at 940. If the Valuelndex is desired for the column,

control transfers to 944; otherwise, control returns 924. If the column value does

not exist in the original retrieved object at 932, control returns to 924.

[0268] At 928, if the tuple is for a map table, control transfers to 948; otherwise,

control transfers to 952. At 948, control determines whether more value columns

are remaining in the map table. If so, control transfers to 956; otherwise, control

returns to 9 16 . At 956, control determines whether the column value exists in the

original retrieved object. If so, control transfers to 960; otherwise, control returns

to 948. At 960, the value is added to the Maplndex and control transfers to 964. At

964, if the Valuelndex is desired for the column, the value is added to the Value

lndex in 968; in either case, control then returns to 948.

[0269] In 952, control determines whether there are more columns present in a

table. If so, control transfers to 972; otherwise, control returns to 9 16 . At 972, con

trol determines whether column values exist in the original retrieved object. If so,

control transfers to 976; otherwise, control returns to 952. At 976, the value is

added to the Biglndex and control continues at 980. At 980, if the Valuelndex is



desired for the column, control transfers to 984, where the value is added to the

Valuelndex; in either case, control then returns to 952.

[0270] FIG. 8 shows an example process for identifying maps. Control begins at

1004 where a first object is selected. Control continues at 1008 where, if the ob-

ject is empty, the containing object is designated as a map at 10 12 ; otherwise,

control transfers to 10 16 . At 10 16 , control determines the ratio of the average field

frequency to the frequency of the containing object as described above. Control

continues at 1020 where, if the ratio is below a threshold, control transfers to 10 12

to designate the containing object as a map; otherwise, control transfers to 1024.

For example only, the threshold may be user adjustable and/or may be dynamic

based on observed data. In various implementations, the heuristic may be adjust

ed to more readily identify fields as maps as the relational schema grows larger.

At 10 12 , the containing object is designated as a map and control continues at

1024. If there are more objects to evaluate, control transfers to 1028, where the

next object is selected and control continues at 1008; otherwise, control ends.

[0271] FIG. 9 shows an example implementation of a create_schema function

relying on recursion to create a relational schema. When the create_schema func

tion is called, control incorporates a schema element (Schema_Element) into a

table (Current_Table). To this end, control begins at 1104 where, if Sche-

ma_Element is an object, control transfers to 1108; otherwise, control transfers to

1112 . At 1108, if the object is an empty object, the object is treated as a map and

control transfers to 1116 ; otherwise, control continues at 1120. At 1120, a new ta

ble (New_Table) is created for the nested object. At 1124, a join key (Join_Key) is

added to Current_Table and at 1128 a corresponding Join_Key is added to

New_Table. Control then continues at 1132 where, for each field in the nested o b

ject, the create_schema function is recursively called to add a field to the table.

Control then returns from the present invocation of the create_schema function at

1136.

[0272] At 1112 , if Schema_Element is a map, control transfers to 1116 ; other-

wise, control transfers to 1138. At 1116 , a new table (New_Table) is created for

the map. Control continues at 1140, where a Join_Key is added to Current_Table

and at 1144, a corresponding Join_Key is added to New_Table. At 1148, a key



field having a string type is added to New_Table. Control continues at 1152

where, for each value type in the map, the create_schema function is recursively

called to add the value type to New_Table. Control then returns at 1136.

[0273] At 1138, control determines whether Schema_Element is an array. If so,

control transfers to 1156; otherwise, control transfers to 1160. At 1156, a new ta

ble (New_Table) is created for the array, a Join_Key is added to Current_Table at

1164, and a corresponding Join_Key is added to New_Table at 1168. At 1172, an

index field having an integer type is added to New_Table. Control continues at

1176 where, for each item type in the array, the create_schema function is called

to add the item type to New_Table. Control then returns at 1136.

[0274] At 1160, Schema_Element, by process of elimination, is a primitive. If

there is already a field in Current_Table having the same name as the primitive,

control transfers to 1180; otherwise, control transfers to 1184. At 1184, the name

field is simply added to Current_Table and control returns at 1136. At 1180, type

polymorphism is present and therefore existing fields in Current_Table having the

same name as the primitive are renamed to append their type to the field name.

Control continues at 1188 where a new field is added based on the current primi

tive, with the type appended to the field name. Control then returns at 1136.

CONCLUSION

[0275] The foregoing description is merely illustrative in nature and is in no way

intended to limit the disclosure, its application, or uses. The broad teachings of the

disclosure can be implemented in a variety of forms. Therefore, while this disclo

sure includes particular examples, the true scope of the disclosure should not be

so limited since other modifications will become apparent upon a study of the

drawings, the specification, and the following claims. As used herein, the phrase

at least one of A , B, and C should be construed to mean a logical (A or B or C),

using a non-exclusive logical OR. It should be understood that one or more steps

within a method may be executed in different order (or concurrently) without alter

ing the principles of the present disclosure.

[0276] In this application, including the definitions below, the term module may

be replaced with the term circuit. The term module may refer to, be part of, or in-



elude an Application Specific Integrated Circuit (ASIC); a digital, analog, or mixed

analog/digital discrete circuit; a digital, analog, or mixed analog/digital integrated

circuit; a combinational logic circuit; a field programmable gate array (FPGA); a

processor (shared, dedicated, or group) that executes code; memory (shared,

dedicated, or group) that stores code executed by a processor; other suitable

hardware components that provide the described functionality; or a combination of

some or all of the above, such as in a system-on-chip.

[0277] The term code, as used above, may include software, firmware, and/or

microcode, and may refer to programs, routines, functions, classes, and/or ob-

jects. The term shared processor encompasses a single processor that executes

some or all code from multiple modules. The term group processor encompasses

a processor that, in combination with additional processors, executes some or all

code from one or more modules. The term shared memory encompasses a single

memory that stores some or all code from multiple modules. The term group

memory encompasses a memory that, in combination with additional memories,

stores some or all code from one or more modules. The term memory may be a

subset of the term computer-readable medium. The term computer-readable m e

dium does not encompass transitory electrical and electromagnetic signals propa

gating through a medium, and may therefore be considered tangible and non-

transitory. Non-limiting examples of a non-transitory tangible computer readable

medium include nonvolatile memory, volatile memory, magnetic storage, and opt i

cal storage.

[0278] The apparatuses and methods described in this application may be pa r

tially or fully implemented by one or more computer programs executed by one or

more processors. The computer programs include processor-executable instruc

tions that are stored on at least one non-transitory tangible computer readable

medium. The computer programs may also include and/or rely on stored data.



CLAIMS

1. A method of operating a query system, the method comprising:

retrieving objects from a data source, wherein each of the retrieved objects

includes (i) data and (ii) metadata describing the data;

dynamically creating a cumulative schema by inferring a schema from each

of the retrieved objects and merging the inferred schema with the cumulative

schema;

storing the data of each of the retrieved objects in a storage service;

receiving, from a user, a query; and

responding to the query based on data stored by the storage service.

2 . The method of claim 1, further comprising:

converting the cumulative schema into a relational schema; and

presenting the relational schema to the user, wherein the query from the user

is constructed over the relational schema.

3 . The method of claim 2 , further comprising:

storing the data of each of the retrieved objects in at least one of (i) a first

index and (ii) an array index, wherein the storage service includes the first index

and the array index; and

responding to the query based on data from at least one of the first index and

the array index.

4 . The method of claim 3 , further comprising storing a datum from a retrieved

object in the first index as a key-value pair, wherein the value of the key-value pair

is the datum, and wherein the key of the key-value pair is based on (i) a path of

the datum consistent with the relational schema and (ii) a unique identifier of the

retrieved object.

5 . The method of claim 4 , wherein the key of the key-value pair is constructed

so that the first index collocates key-value pairs first by the path and then by the

unique identifier.



6 . The method of claim 3 , wherein a datum that is part of an array is stored in

the array index.

7 . The method of claim 6 , wherein data that is part of an array is not stored in

the first index.

8 . The method of claim 6 , wherein the datum is stored in the array index as a

key-value pair, wherein the value of the key-value pair is the datum, and wherein

the key of the key-value pair is based on (i) a path of the datum consistent with

the relational schema, (ii) a unique identifier of the retrieved object, and (iii) an

index of the datum's location in the array.

9 . The method of claim 8 , wherein the key of the key-value pair is constructed

so that the array index collocates key-value pairs first by the path, next by the

unique identifier, and then by the index.

10 . The method of claim 8 , wherein the key of the key-value pair is further based

on a join key.

11. The method of claim 10 , wherein the key of the key-value pair is constructed

so that the array index collocates key-value pairs first by the path, next by the

unique identifier, next by the join key, and then by the index.

12 . The method of claim 6 , further comprising selectively storing the datum in an

auxiliary array index.

13 . The method of claim 12 , wherein the datum is stored in the auxiliary array

index as a key-value pair, wherein the value of the key-value pair is the datum,

and wherein the key of the key-value pair is based on (i) a path of the datum

consistent with the relational schema, (ii) an index of the datum's location in the

array, and (iii) a unique identifier of the object.



14 . The method of claim 13 , wherein the key of the key-value pair is constructed

so that the auxiliary array index collocates key-value pairs first by the path, next

by the index, and then by the unique identifier.

15 . The method of claim 13 , wherein the key of the key-value pair is further

based on a join key.

16 . The method of claim 15 , wherein the key of the key-value pair is constructed

so that the auxiliary array index collocates key-value pairs first by the path, next

by the index, next by the unique identifier, and then by the join key.

17 . The method of claim 3 , further comprising storing the first index in an order-

preserving index store, wherein the storage service includes the order-preserving

index store.

18 . The method of claim 17 , further comprising storing the array index in the

order-preserving index store.

19 . The method of claim 2 , wherein the relational schema is a structured query

language (SQL) schema, and the query is an SQL query.

20. The method of claim 2 , wherein the query is one of a Hive-QL query, a jaql

query, and XQuery.

2 1 . The method of claim 2 , further comprising selectively identifying an object of

the cumulative schema as a map.

22. The method of claim 2 1 , wherein the object of the cumulative schema is

identified as a map based on frequencies of occurrence of fields of the object

within the retrieved objects.

23. The method of claim 22, further comprising tracking the occurrence

frequencies while dynamically creating the cumulative schema.



24. The method of claim 22, wherein the object of the cumulative schema is

identified as a map in response to an average of the frequencies of occurrence

being below a threshold.

25. The method of claim 2 1 , further comprising storing a datum corresponding to

the map into a map index as a key-value pair, wherein the value of the key-value

pair is the datum, and wherein the key of the key-value pair is based on (i) a path

of the datum consistent with the relational schema, (ii) a unique identifier of the

retrieved object providing the datum, (iii) a join key of the map, and (iv) a map key

of the datum in the map.

26. The method of claim 25, wherein the key of the key-value pair is constructed

so that the map index collocates key-value pairs first by the path, next by the

unique identifier, next by the join key, and then by the map key.

27. The method of claim 2 1 , further comprising storing a datum corresponding to

the map into an auxiliary map index as a key-value pair, wherein the value of the

key-value pair is the datum, and wherein the key of the key-value pair is based on

(i) a path of the datum consistent with the relational schema, (ii) a map key of the

datum in the map, (iii) a unique identifier of the retrieved object providing the

datum, and (iv) a join key of the map.

28. The method of claim 27, wherein the key of the key-value pair is constructed

so that the auxiliary map index collocates key-value pairs first by the path, next by

the map key, next by the unique identifier, and then by the join key.

29. The method of claim 2 , wherein converting the cumulative schema into the

relational schema includes creating a root table with a column for each element in

a top level of the cumulative schema.

30. The method of claim 29, wherein converting the cumulative schema into the

relational schema includes creating an additional table in the relational schema for

each array in the cumulative schema.



3 1 . The method of claim 30, wherein the additional table includes (i) a join key

column, (ii) an index column, and (iii) for each scalar type of data in the array, a

value column.

32. The method of claim 30, further comprising inserting a join key column into

the additional table and into the root table when the array is present at the top

level of the cumulative schema.

33. The method of claim 32, further comprising inserting a join key column into

the additional table and into an intermediate table when the array is nested in the

cumulative schema below the top level.

34. The method of claim 29, wherein converting the cumulative schema into the

relational schema includes creating an additional table in the relational schema for

each map in the cumulative schema.

35. The method of claim 34, wherein the additional table includes (i) a join key

column, (ii) a key column, and (iii) for each scalar type of data in the map, a value

column.

36. The method of claim 35, wherein the key column is a string type.

37. The method of claim 34, further comprising inserting a join key column into

the additional table and into the root table when the map is present at the top level

of the cumulative schema.

38. The method of claim 37, further comprising inserting a join key column into

the additional table and into an intermediate table when the map is nested in the

cumulative schema below the top level.



39. The method of claim 2 , further comprising selectively storing a data value of a

retrieved object in a value index as a key-value pair, wherein the key of the key-

value pair is based on (i) a path of the data value consistent with the relational

schema and (ii) the data value, wherein the value of the key-value pair is based

on a unique identifier of the retrieved object, and wherein the storage service

includes the value index.

40. The method of claim 39, wherein the key of the key-value pair is constructed

so that the value index collocates key-value pairs first by the path, and then by the

data value.

4 1 . The method of claim 39, wherein when the data value is part of an array, the

value of the key-value pair is further based on an index of the data value in the

array.

42. The method of claim 4 1 , wherein the value of the key-value pair is further

based on a join key of the array.

43. The method of claim 39, wherein when the data value is part of a map, the

value of the key-value pair is further based on a map key of the data value in the

map.

44. The method of claim 43, wherein the value of the key-value pair is further

based on a join key of the map.

45. The method of claim 1, further comprising generating the retrieved objects by

adding metadata to raw data obtained from the data source.

46. The method of claim 1, wherein inferring the schema for a retrieved object is

performed based on the metadata of the retrieved object and inferred types of

elements of the retrieved object.



47. The method of claim 1, wherein, for each of the retrieved objects, the data of

the retrieved object includes values and the metadata of the retrieved object

includes names of the values.

48. The method of claim 1, wherein each of the retrieved objects is a JavaScript

Object Notation (JSON) object.

49. The method of claim 1, wherein the cumulative schema is a JavaScript

Object Notation (JSON) schema.

50. The method of claim 1, further comprising selectively storing each of the

retrieved objects in a row index, wherein the storage service includes the row

index.

5 1 . The method of claim 50, wherein a retrieved object is stored in the row index

as a key-value pair, wherein the key of the key-value pair is a unique identifier of

the retrieved object, and wherein the value of the key-value pair is a serialization

of the entire retrieved object.
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