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LOW DIELECTRIC NANO-POROUS MATERIAL OBTAINABLE FROM POLYMER DECOMPOSITION

FIELD OF THE INVENTION
The present invention relates to novel low dielectric constant nanoporous films having

improved mechanical strength, and to improved processes for producing the same on
substrates suitable for use in the production of integrated circuits. The nanoporous films
of the invention are prepared using silicon-based starting materials and thermally

degradable polymers, copolymers and/or oligomers selected to be soluble in the employed
starting materials.

BACKGROUND OF THE INVENTION

As feature sizes in integrated circuits approach 0.25 um and below, problems with
interconnect RC delay, power consumption and signal cross-talk have become increasingly
difficult to resolve. It is believed that the integration of low dielectric constant materials
for interlevel dielectric (ILD) and intermetal dielectric (IMD) applications will help to
solve these problems. While there have been previous efforts to apply low dielectric
constant materials to integrated circuits, there remains a longstanding need in the art for
further improvements in processing methods and in the optimization of both the dielectric

and mechanical properties of such materials used in the manufacture of integrated circuits.

Nanoporous Films

One material with a low dielectric constant are nanoporous films prepared from silica, i.e.,
silicon-based materials. Air has a dielectric constant of 1, and when air is introduced into
a suitable silica material having a nanometer-scale pore structure, such films can be
prepared with relatively low dielectric constants ("k"). Nanoporous silica materials are
attractive because similar precursors, including organic-substituted silanes, e.g.,
tetracthoxysilane ("TEOS"), are used for the currently employed spin-on-glasses
("S.0.G.") and chemical vapor disposition ("CVD") of silica SiO,. Nanoporous silica
materials are also attractive because it is possible to control the pore size, and hence the
density, material strength and dielectric constant of the resulting film material. In addition
to a low k, nanoporous films offer other advantages including: 1) thermal stability to
900°C, 2) substantially small pore size, i... at least an order of magnitude smaller in scale
than the microelectronic features of the integrated circuit), 3) as noted above, preparation

from materials such as silica and TEOS that are widely used in semiconductors, 4) the
1
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ability to "tune" the dielectric constant of nanoporous silica over a wide range, and 5)
deposition of a nanoporous film can be achieved using tools similar to those employed for

conventional S.0.G. processing.

Thus, high porosity in silica materials leads to a lower dielectric constant than would
otherwise be available from the same materials in nonporous form. An additional
advantage, is that additional compositions and processes may be employed to produce
nanoporous films while varying the relative density of the material. Other materials
requirements include the need to have all pores substantially smaller than circuit feature
sizes, the need to manage the strength decrease associated with porosity, and the role of

surface chemistry on dielectric constant and environmental stability.

Density (or the inverse, porosity) is the key parameter of nanoporous films that controls
the dielectric constant of the material, and this property is readily varied over a continuous
spectrum from the extremes of an air gap at a porosity of 100% to a dense silica with a
porosity of 0%. As density increases, dielectric constant and mechanical strength increase
but the degree of porosity decreases, and vice versa. This suggests that the density range
of nanoporous films must be optimally balanced between for the desired range of low
dielectric constant, and the mechanical properties acceptable for the desired application.

Nanoporous silica films have previously been fabricated by a number of methods. For
example, nanoporous films have been prepared using a mixture of a solvent and a silica

precursor, which is deposited on a substrate suitable for the purpose.

When forming such nanoporous films, e.g., by spin-coating, the film coating is typically
catalyzed with an acid or base catalyst and additional water to cause
polymerization/gelation ("aging") and to yield sufficient strength so that the film does not
shrink significantly during drying.

Another previously proposed method for providing nanoporous silica films was based on
the observation that film thickness and density/dielectric constant can be independently
controlled by using a mixture of two solvents with dramatically different volatility. The
more volatile solvent evaporates during and immediately after precursor deposition. The

silica precursor, typically partially hydrolyzed and condensed oligomers of TEOS, is
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applied to a suitable substrate and polymerized by chemical and/or thermal means until it
forms a gel. The second solvent, called the Pore Control Solvent (PCS) is usually then
removed by increasing the temperature until the film is dry. Assuming that no shrinkage
occurs after gelation, the density/dielectric constant of the final film is fixed by the volume
ratio of low volatility solvent to silica, as described by EP patent application EP 0 775 669
A2. EP 0 775 669 A2 shows a method for producing a nanoporous silica film by solvent
evaporation of one or more polyol solvents, e.g., glycerol, from a metal-based aerogel
precursor, but nevertheless fails to provide a nanoporous silica film having sufficiently
optimized mechanical and dielectric properties, together with a relatively even distribution

of material density throughout the thickness of the film.

Yet another method for producing nanoporous dielectrics is through the use of sol-gel
techniques whereby a sol, which is a colloidal suspension of solid particles in a liquid,
transforms into a gel due to growth and interconnection of the solid particles. One
theory that has been advanced is that through continued reactions within the sol, one or
more molecules within the sol may eventually reach macroscopic dimensions so that they
form a solid network which extends substantially throughout the sol. At this point, called
the gel point, the substance is said to be a gel. By this definition, a gel is a substance that
contains a continuous solid skeleton enclosing a continuous liquid phase. As the skeleton
is porous, the term “gel” as used herein means an open-pored solid structure enclosing a

pore fluid. Removal of the pore fluid leaves behind empty pores.

Protecting the Surfaces of Nanometer Scale Pores

As the artisan will appreciate, a useful nanoporous film must meet a number of criteria,
including having a dielectric constant ("k") falling within the required value range, having
a suitable thickness ("t") (e.g., measured in Angstroms), having an ability to effectively fill
gaps, such as, e.g.. interconductor and/or intercomponent spaces, on patterned wafers,
and having an effective degree of hydrophobicity. If the film is not strong enough, despite
achieving the other requirements, the‘pore structure may collapse, resulting in high
material density and therefore an undesirably high dielectric constant. In addition, the
surfaces of the resulting nanometer-scale pores carry silanol functional groups or
moieties. Silanols, and the water that can be adsorbed onto the silanols from the

environment, are highly polarizable and will raise the dielectric constant of the film. Thus,
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the requirement for hydrophobicity arises from the requirement for a reduced range of
dielectric constant relative to previously employed materials. For this reason, preparation
of nanoporous dielectric films has previously required additional processing steps to
silylate free silanols on surfaces, including pore surfaces, of the film, with a capping
reagent, e.g., trimethylsilyl [TMS, (CH;)3SiO-] or other suitable, art-known
hydrophobic reagents.

Therefore, despite the availability of previous methods for preparing nanoporous silica
films, the art recognizes a need for further, ongoing improvements in both nanoporous
silica films and methods for preparing the same. In particular, there remains a continuing
need in the art for new processes which eliminate some or all of the aforementioned
problems, such as providing methods for making silica nanoporous films of sufficient
mechanical strength that are also optimized to have a desirably low and stable dielectric
constant, without the need for further processing to make the film hydrophobic.

SUMMARY OF THE INVENTION

In order to solve the above mentioned problems and to provide other improvements, the

invention provides novel nanoporous silica dielectric films with a low dielectric constant ("k"),

e.g., typically ranging from about 1.5 to about 3.8, as well as novel new methods of producing
these dielectric films.

Broadly, the dielectric nanoporous films of the invention are prepared by mixing a non-
volatile thermally degradable polymer with an organic and/or inorganic silicon-based
material or mixture of such materials suitable for forming dielectric films. Such suitable
organic and/or inorganic silicon-based material or materials are referred to herein, for
convenience and without limitation, as spin-on glass ("S.0.G.") material(s). The
resulting mixture of the base material, i.e., one or more S.0.G. materials, and the
thermally degradable component can optionally form a co-polymer, but, in any event, this
mixture is applied by any art-known methods to a substrate suitable for use in preparing
an integrated circuit. The thermally degradable component is then is then subjected to a
process of thermal treatments, leaving behind nanometer-scale voids in the solidified base
material. The incorporated nanometer scale voids reduce the density of the base material

to provide the desired low dielectric properties.
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Broadly, it has been found that a variety of solvent systems are readily employed in
preparing films according to the invention. In one preferred embodiment of the invention,
the thermally degradable component includes at least one polyalkylene oxide compound
that is soluble in both the base material and that is soluble in a nonpolar solvent system,
€.g., an organic-type solvent system. In another preferred embodiment, the low dielectric
nanoporous film is produced by the process of preparing a mixture of at least one spin-
on-glass material with a suitable thermally degradable polymer that is soluble in a polar

solvent.

More preferably, in one aspect of the invention, the S.0.G. base material is a compound
of Formula I

[(SiO2)x - (R;SiO; 5)y - (RyR3Si0), ] Formula I
wherein x, y, z and n are positive integers of independent values, R,, R, and R; are
independently H or organic, and at least one of R;, R, and R;is H; and
1>x>0;1>y>0;1>2z>0, provided that x+y+z is 1.0.

When any of Ry, R, and Rs are organic, the organic moiety is a C,.Cs alkyl. In addition, the
value of n ranges from about 100 to about 800. Other suitable S.0.G. materials for
preparing the dielectric films of the invention can include, simply by way of example,
hydrogensiloxanes, hydroorganosiloxanes, alkylsiloxanes and polyhydridosilsesquioxanes, to

name but a few.

Further, a thermally degradable polymer or mixture of polymers suitable for the
compositions and processes of the invention range in molecular weight from about 200 to
about 2,000,000 Daltons, but preferably from about 1,000 to about 30,000 Daltons.
Within these general parameters, a suitable component for use in the compositions and
methods of the invention includes one or more of the group consisting of a polyalkylene
oxide, an aliphatic polyester, an acrylic polymer, an acetal polymer, and/or combinations

thereof.

When the thermally degradable component is selected for solubility in a nonpolar solvent

system, a suitable component includes one or more of the group consisting of a

polyalkylene oxide, a poly(caprolatactone), a poly(valeractone), a poly(methyl

methacrylate), a poly (vinylbutyral) and/or combinations thereof, Preferably, when the
5
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component is a polyalkylene oxide, that compound includes a C, to about Cs alkyl, e.g.,
polypropylene oxide.

When the thermally degradable component is selected for solubility in a polar solvent system,
the thermally degradable polymer is advantageously a polyalkylene oxide, e.g.. a
polymethylene oxide or polyethylene oxide.

As mentioned above, the low dielectric films of the invention are produced using a heating
step to volatilize an oligomer and/or polymer component of the starting S.0.G. mixture.
Preferably, the heating step includes both a baking step and a curing step. In particular,
the baking step includes a plurality of heating steps, ranging in temperature from about
60°C to about 300, or even 350°C, and each heating step is conducted for a time period
ranging from about 0.5 to about 10 minutes or more particularly, from about 0.5 to about
4 minutes. For example, in one preferred aspect of the invention, the baking process
includes a first heating step of about 80°C, a second heating step of about 150°C, and a
third heating step of about 200°C, each heating step being applied for a duration of about

1 minutes at each respective temperature.

When the processes of the invention include a curing step, curing is accomplished by
heating the baked film at a temperature of at least 400°C and for a time period ranging
from about 10 to about 60 minutes.

The invention also provides for a substrate, e.g., an integrated circuit, that includes at
least one low dielectric nanoporous film formed by the processes of the invention.
Further, the invention provides for methods for producing the above-described low

dielectric nanoporous films on a substrate.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Accordingly, nanoporous silica dielectric films having a dielectric constant, or k value,
ranging from about 1.5 to about 3.8, can be produced by the methods of the invention.
The films produced by the processes of the invention have a number of advantages over
those previously known to the art, including improved mechanical strength to withstand
the further processing steps required to prepare integrated circuit on the treated substrate,
and a low and stable dielectric constant. The property of a stable dielectric constant is

6
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advantageously achieved without the need for further surface modification steps to render
the film surface hydrophobic, thus confirming that the silica dielectric films as produced

by the processes of the invention are sufficiently hydrophobic as initially formed.

As summarized in the "Description of the Prior Art" above, a number of methods for the
preparation of nanoporous silica films on substrates are known to the art. In addition, a
number of variations and improvement to these generally known methods for the preparation
of nanoporous films are taught by co-owned U.S. Patent Application Ser. Nos., 09/046,475
and 09/046,473, both filed on March 25, 1998; U.S. Patent Application Ser. No. 09/054,262,
filed on April 3, 1998; and U.S. Patent Application Ser. Nos. 09/055,244 and 09/055,516,
both filed on April 6, 1998, the disclosures of which are incorporated by reference herein in

their entireties.

In order to better appreciate the scope of the invention, it should be understood that unless the
"Si0," functional group is specifically mentioned when the term "silica" is employed, the
term "silica" as used herein, for example, with reference to nanoporous dielectric films, is
intended to refer to dielectric films prepared by the inventive methods from an organic or
inorganic glass base material, e.g., any suitable silicon-based material. It should also be
understood that the use of singular terms herein is not intended to be so limited, but, where
appropriate, also encompasses the plural, e.g., exemplary processes of the invention may be
described as applying to and producing a "film" but it is intended that multiple films can be
produced by the described, exemplified and claimed processes, as desired.

Broadly, the processes of the invention are conducted by mixing a first component, formed of
a suitable base material, such as a silicon-based S.0O.G. material or blend of materials, with a
second component that is susceptible to thermal degradation after the film-forming mixture
has been applied to a substrate and the resulting film is heated according to the processes
described below. Further, the second component is formed of one or more relatively non-
volatile, but thermally degradable, polymers, copolymers and/or oligomers, and is miscible
with the first component and any solvents, e.g., polar or nonpolar, that may be employed in
that mixture. Further still, the thermally degradable component is preferably substantially
nonvolatile at typical ambient environmental temperatures, e.g., from about 20 to about
200°C, so that no significant evaporation from the applied film will occur prior to heat

induced volatilization and solidification of the surrounding film composition.
7
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Thus, once the film-forming mixture is applied by art-standard methods to the substrate, the
substrate and the resulting film is heated to a temperature and for a time period sufficient to
thermally degrade and/or vaporize the second component so as to leave behind nanometer
scale pore structures in the film. In one preferred embodiment the film is then cured.
Optionally, the heating steps can be conducted in a plurality of stages, each stage utilizing
similar or differing times and temperatures, or combined into a single process step. In a further
option, the heating steps can also be conducted so as to combine the curing step and the
vaporization of the thermally degradable second component.

The compositions and processes of the invention are described in further detail, as follows.

STARTING MATERIALS
Substrates

Broadly speaking, a "substrate" as described herein includes any suitable composition
formed before a nanoporous silica film of the invention is applied to and/or formed on that
composition. For example, a substrate is typically a silicon wafer suitable for producing
an integrated circuit, and the base material from which the nanoporous silica film is
formed is applied onto the substrate by conventional methods, e.g., including, but not
limited to, the art-known methods of spin-coating, dip coating, brushing, rolling, and/or
spraying. Prior to application of the base materials to form the nanoporous silica film, the
substrate surface is optionally prepared for coating by standard, art-known cleaning

methods.

Suitable substrates for the present invention non-exclusively include semiconductor
materials such as gallium arsenide ("GaAs"), silicon and compositions containing silicon
such as crystalline silicon, polysilicon, amorphous silicon, epitaxial silicon, and silicon
dioxide ("SiO,") and mixtures thereof. On the surface of the substrate is an optional
pattern of raised lines, such as metal, oxide, nitride or oxynitride lines which are formed
by well known lithographic techniques. Suitable materials for the lines include silica,
silicon nitride, titanium nitride, tantalum nitride, aluminum, aluminum alloys, copper,
copper alloys, tantalum, tungsten and silicon oxynitride. These lines form the conductors
or insulators of an integrated circuit. Such are typically closely separated from one
another at distances of about 20 micrometers or less, preferably 1 micrometer or less, and

8
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more preferably from about 0.05 to about 1 micrometer. Other optional features of the
surface of a suitable substrate include an oxide layer, such as an oxide layer formed by
heating a silicon wafer in air, or more preferably, an SiO, oxide layer formed by chemical
vapor deposition of such art-recognized materials as, e.g., plasma enhanced
tetraethoxysilane ("PETEOS") silane oxide and combinations thereof, as well as one or

more previously formed nanoporous silica dielectric films.

The nanoporous silica film of the invention can be applied so as to cover and/or lie
between such optional electronic surface features, e.g., circuit elements and/or conduction
pathways that may have been previously formed features of the substrate. Such optional
substrate features can also be applied above the nanoporous silica film of the invention in
at least one additional layer, so that the low dielectric film serves to insulate one or more,
or a plurality of electrically and/or electronically functional layers of the resulting
integrated circuit. Thus, a substrate according to the invention optionally includes a
silicon material that is formed over or adjacent to a nanoporous silica film of the invention,

during the manufacture of a multilayer and/or multicomponent integrated circuit.

In a further option, a substrate bearing a nanoporous silica film or films according to the
invention can be further covered with any art known non-porous insulation layer, ¢.g., a

glass cap layer.

First Component - Silicon-Based Polymers

In one embodiment, the starting materials, i.e., the first component, or silica starting material(s)
for conducting the processes of the invention, includes organic and/or inorganic base materials
suitable for use in coating a substrate. These are typically materials that are suitable for use as
spin-on-glasses. Spin-on-glasses (S.0.G.) are silicon-based dielectric materials that are
prepared in a solution form to be used for insulation, planaﬁéation and gap-filling in the
fabrication of integrated circuits on a suitable substrate (e.g., wafer). S.0.G. solution materials
can be applied onto a substrate by any art-known methods, including dipping, brushing, rolling,
spraying, but are most typically applied by spin-coating.

Suitable S.0.G. materials for use in the methods of the invention are silicon-based materials

that can be prepared from appropriate functional units, including, for example, at least one of
the following.
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SiO, (silica unit) ;

Q;Si03), (silsesquioxane unit);
Q,QsS8i0, (siloxane unit); and
Q4Q5Q6SiO  (end group)

wherein Q;, Q,, Q;, Q4, Qsand Qg are organic, and can be the same or different. The term
"organic" encompasses any suitable organo-moiety, including alkyl, which can be straight,
branched and/or cyclic alkyl, as well as arylalkyl, any of which can be substituted or
unsubstituted, and combinations thereof. The "organic" term also encompasses aryl and
heteroaryl, substituted and unsubstituted organo-moieties.

Thus, in another embodiment of the invention, when any of Q;, Q,, Q3 Q4 Qsand Qg are
organic, it is preferred that such moiety be an alkyl, preferably a C, 4 alkyl. In another

embodiment, any of Qy, Q,, Q3, Q4 Qs and Qg can independently be an aryl moiety,
preferably a C¢-C,, aryl.

In yet a still further embodiment of the invention, the base material is a hydridosilsequioxane or
hydridosiloxane with the general structure of Formula I, as follows.
[(SiO02)« - (R;SiOy 5)y - (R2R3S10), 1o Formula I

wherein Ry, R; and R; are independently selected from H and/or an organic moiety, but at least
one of Ry, Ry and Ryis H. Preferably, the organic moiety is an alkyl selected so that the base
material is suitable for use as an S.0.G. material, as understood by the art. More preferably,
the base material is a C,.Cs alkyl; and §
X, y and z each independently range in value from 1 to zero, i.c.,

12x20;12y>0;1>2>0

provided that x+y+z is 1.0. _
In a preferred embodiment, n ranges from about 100 to about 800, yielding a molecular
weight of from about 5,000 to about 45,000. More preferably, n ranges from about 250
to about 650 yielding a molecular weight of from about 14,000 to about 36,000.

Further, particular types of base materials each have a preferred range of values for the above

described parameters of Formula I, as follows.

When the base material is a polyhydridosilsesquioxane ("PHSQ), y is 1 and R, is H.
When the base material is a silica, x is 1.
When the base material is a polymethylsilsesquioxane, y is 1 and R is methyl.

10



10

15

WO 00/61834 PCT/US00/10214

When the base material is a polymethylhydridosilsesquioxane, y is 1 and R, is a mixture of H
and methyl.

When the base material is a methylsiloxane such as, e.g., AMMS512B,
(Accuglass T-12B®), X, y and z> 0 and R}, R, and R; are methyl.

When the base material is a methylsiloxane such as, e.g., AMM311,
(Accuglass T-1 1%), x, y >0 and z= 0 and R; is methyl.

In one particular embodiment of the invention, as exemplified herein, the S.0.G. materials
include methylsiloxanes. Useful compositions that contain or include methylsiloxanes,
and that are suitable for use as S.0.G. base materials, are readily available commercially,
and include, for example, such products as AMM 311 (Accuglass T-1 1®); and 512B
(Accuglass T-12B®) S.0.G. materials. These are commercially available from Advanced
Microelectronic Materials, a subsidiary of the Electronic Materials Division of Honeywell

Corporation (Sunnyvale, California). The pertinent properties of AMM 311 and AMM
512B are set forth in Table 1, as follows.

11
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Table 1
Properties of Commercially Available Methylsiloxanes
Material Properties AMM 311 AMM 512B
Obtainable Film 2300-3500A 4900 - 5200 A
Thickness Range
Metal Impurities <10 ppb <20 ppb
Shelf-Life 6 Months at 40]C 6 Months at 400C
Filtration 0.1 pm 0.1 pm
% solid 10.5 14.7
Organic Content 10 wt% 14 wt%
Dielectric Constant 3.8 3.1
Refractive Index 1.39 1.38
Solvent System(wt%)
-- ethanol, 23 32
-- 2-propanol, 36 30
-- acetone, 18 14
-- water 8 10
Siloxanes: SiO, 58.0 mole %
CH;Si0; 5 42.0 46.3 mole %
(CH;),SiO 0 46.7
7.0
Empirical Si0;.78(CHz)o.42 SiO; 7(CHs)g6
composition after
baking at 80, 150 and
2500C, in sequence.

In a further embodiment of the invention, base materials useful for the invention also include:
hydrogensiloxanes polymers which have the structure of,

[(HSiO1 5)@Ow)ln FormulaII ;
hydroorganosiloxanes which have one of the following formulae,
[(HSiO],s)(a)O(b)(RSiol,5)(0)],, Formula II1

In each of polymer formulae (II and III), (a) ranges from about 6 to about 20, (b) ranges
from about 1 to about 3, (c) ranges from about 6 to about 20, n ranges from 1 to about
4,000, and each R (in Formula III, when n>1) is independently H, C,-C; alkyl or C¢-Cy,
aryl. The weight average molecular weight may range from about 1,000 to about
220,000. In a preferred embodiment, for Formulas I, IT and III, n ranges from about 100
to about 800, yielding a molecular weight of from about 5,000 to about 45,000. More
preferably, n ranges from about 250 to about 650 yielding a molecular weight of from
about 14,000 to about 36,000.
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In a still further embodiment of the invention, the alkylsiloxanes can also include hydrogen
alkylsiloxanes, such as, simply by way of example, hydrogenmethylsiloxane,
hydrogenethylsiloxane, hydrogenpropylsiloxane, hydrogenbutylsiloxane, hydrogentert-

butylsiloxane, hydrogenphenylsiloxane and combinations thereof, to name but a few.

In yet a still further embodiment of the invention, the S.0.G. materials for conducting the
processes of the invention include, for example hydrogensilsesquioxane,
hydrogenmethylsilsesquioxane, hydrogenethylsilsesquioxane,
hydrogenpropylsilsesquioxane, hydrogenbutylsilsesquioxane, hydrogenzert-

butylsilsesquioxane and hydrogenphenylsilsesquioxane.

In a preferred embodiment of the invention, as exemplified below, the S.0.G. materials include
polyhydridosilsesquioxane ("PHSQ") base materials. Porous polyhydridosilsequioxane
(PHSQ) film is produced from the decomposition of the thermally degradable organic
component in a polyhydridosilsequioxane/organic system. The polyhydridosilsequioxane
is prepared from the hydrolysis of trialkoxysilane or trichlorosilane in a controlled reaction
condition. The chemical composition of the polyhydridosilsesquioxane can be represented
by the following formula:

(HSiO3)n Formula IV
wherein n is an integer ranging from about 10 to about 4,000. In a preferred embodiment,

n is an integer ranging from about 20 to about 1,000.

Second Component - Thermally Degradable Polymers

The second component is a thermally degradable component for use in the processes of the
invention. The thermally degradable component is preferably miscible with the first
component, and can optionally form a co-polymer therewith. The thermally degradable
component is also sufficiently thermally degradable under the heating conditions employed
according to the invention, for forming a useful nanoporous dielectric film on a substrate, so as
to be useful for the manufacture of an integrated circuit. The thermally degradable component
is also optionally selected to be soluble in either a polar or nonpolar solvent.

The terms, "degradable” or "thermally degradable" as employed herein, in reference to the
component that is to be thermally degraded under the heating conditions of the inventive
13
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process, includes both physical evaporation of a relatively volatile fraction of the thermally
degradable component during the heating step(s) and/or degradation of the component(s) into
more volatile molecular fragments. Without wishing to be bound by any theory or hypothesis,
it is believed that the heating steps degrade the organic polymer component by either direct
vaporization or chemical disruption of the polymer by the applied heat, or disruption of the
polymer by any reactive species induced in the film structure by the applied heat. In any event,

the thermal degradation of the organic polymer component forms nanometer-scale voids in the
film structure.

It is also important that the thermally degradable component be substantially nonvolatile prior
to the heating step, i.e., at room temperature. Thus, the thermally degradable component is
not so volatile as to significantly evaporate prior to the time during the heating of the film when
the silicon polymer(s) begins to achieve cross-linking. As confirmed by the Examples provided
below, if significant evaporation does take place too early in the process, the resulting film
density, and therefore the dielectric constant, will be higher than would otherwise be produced
in that film. Thus, without meaning to be bound by any theory or hypothesis as to how the
invention operates, it is believed that undesirable "significant" pre-heating evaporation is
evaporation that takes place prior to the cross-linking of the S.0.G. material at such a rate and

in such a proportion of the applied film, so as to result in the production of an undesirably
dense dielectric film.

The term, "polymer" as employed herein also encompasses the terms oligomers and/or

copolymers, unless expressly stated to the contrary.

Preferred thermally degradable polymers according to the invention will have molecular
weights in a range that is effective to be thermally degraded in the temperature range of the
heating steps, but the molecular weight should not be so low as to allow significant
evaporation prior to the baking step(s), for the reasons discussed above. Preferably, thermally
degradable polymer(s) employed according to the invention will have a molecular weight
ranging from about 200 to about 2,000,000, or more, Daltons. More preferably, such a

polymer will have a molecular weight ranging from about 1,000 to about 30,000 Daltons, or
even from about 2,000 to about 10,000 Daltons.
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Nonpolar Solvent Systems

Thermally Degradable Polymers

For processes employing a nonpolar solvent or solvent system, the thermally degradable
polymer is soluble or miscible in the employed solvent and is, for example, a polyalkylene
oxide. Preferably, the polyalkylene oxide includes an alkyl moiety, ranging, e.g., from C; to
about Cs. More preferably, when the first component is a PHSQ, the degradable component is
a polypropylene oxide ("PPO"). Other suitable thermally degradable polymers include,
without limitation, aliphatic polyesters, including, for example, poly(caprolactone) and
poly(valeralactone); acrylic polymers, including, for example, poly(methyl methacrylate)
and acetal polymers, including, for example, poly (vinylbutyral), to name but a few.

The thermally degradable polymers can also be chemically bonded to the silicon-based
polymers to form a copolymer, including, simply by way of example, PHSQ-polypropylene
oxide copolymers, PHSQ-polycaprolactone copolymers and/or combinations thereof.

Nonpolar Solvents

In this embodiment of the invention, a suitable solvent or cosolvent optionally employed in the
film forming mixture that is applied to the substrate will, broadly, be a nonpolar solvent that has
a boiling point of, e.g., 200°C or less, and preferably the boiling point will range from about 80
to about 160°C. Simply by way of example, and without limitation, nonpolar solvents useful
according to the invention include acetates (ethyl acetate, isopropyl acetate, butyl acetate),

ethers (dibutyl ether), and ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone).

In one particular embodiment the acetate solvent is an organic acetate or mixture of
acetates. Preferably, the organic moiety of the organic acetate is a C; to Cs alkyl, a Cs to
C1. aryl and or derivatives or combinations thereof. As shown in the examples below, the
employed polypropylene oxide (PPO) is dissolved in ethyl acetate and/or a mixture of
ethyl and n-butyl acetate. The useful ratios of ethyl- to n-butyl acetate range generally
from about 20:80 (wt/wt) to about 80:20 (wt/wt), and more preferably from about 50:50
to about 60:40. As exemplified below, a ratio of ethyl- to n-butyl acetate of about 70:30
(wt/wt) is readily employed.
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The thermally degradable polymer is dissolved in the solvent in a percentage ranging,
simply by way of example, from about 3 wt% to about 50 wt% or more particularly in a
percentage ranging from about 5 wt% to about 30 wt%.

Polar Solvent Systems

Thermally Degradable Polymers
For processes employing a polar solvent or solvent system, the thermally degradable polymer

is soluble or miscible in the employed solvent, and is e.g., a polyalkylene oxide. The
polyalkylene oxide includes an alkyl moiety, ranging, e.g., from C, to about C4. Simply by
way of example, in one embodiment, the thermally degradable component will include a
polyethylene oxide and polypropylene oxide and copolymers thereof. Other thermally
degradable polymers suitable for use in polar solvent systems include, without limitation,

polyvinyl alcohol and water soluble polyethylene oxide/polypropylene oxide copolymers
and mixtures thereof.

Polar Solvents

In this embodiment, a suitable solvent or co-solvent optionally employed in the film
forming mixture that is applied to the substrate will, broadly, be a polar solvent that has a
boiling point of 200°C or less, and preferably the boiling point will range from about 80°C
to about 160°C. Simply by way of example, and without limitation, polar solvents useful

according to the invention include water; alcohols, e.g., ethanol or isopropanol; ketones,

e.g., acetone, and mixtures thereof.

Process Parameters
In the processes of the invention, a mixture of the S.0.G. ie., silicone-based polymer(s), and

thermally degradable polymer(s) and/or oligomers and optional solvent(s) is prepared in a
suitable ratio. The prepared mixture of S.0.G. and degradable polymers and/or oligomers and
optional solvent(s) is applied to a suitable substrate by an appropriate art-known means.

When the mixture is applied to the substrate by centrifugation, i.¢., when it is spun-on, the
conditions are those conventionally used for such application, e.g., the substrate is spun at
about 2,000 to 4,000 rpms. The artisan will appreciate that specific conditions for application
to a substrate will depend upon the selected materials, substrate and desired nanoscale pore

structure, as is readily determined by routine manipulation of these parameters.
16
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The applied film broadly has a composition that includes a thermally degradable polymer
component in a wt% ranging from about 10 wt% to about 80 wt%, more particularly from
about 15 wt% to about 70 wt%, and even more particularly from about 30 wt% to about
70wt%.

The applied film is then baked and thereafter cured to form the nanoscale pore structures
within the film, by thermally induced evaporation or decomposition of the thermally
degradable polymer component. Baking/curing is done at a temperature and for a time period
effective to degrade and/or vaporize the degradable component, e.g., PPO, PEO, etc., and
cause such nanometer scale pores to form. Preferably, the heating steps are conducted on a
hot plate and/or in a oven, and optionally on a conveyer belt moving through a suitable hot
zone. In a preferred embodiment, baking temperatures range from about 60°C to about 350°C,
more preferably from about 70°C to about 300°C or from about 80°C to about 250°C.

Baking times will depend upon the materials selected and the desired results, but will generally
range from about 30 seconds to about 10 minutes in the about 60°C to about 350°C
temperature range; from about 0.5 to about 6 minutes in the about 70°C to about 300°C
temperature range; and from about 0.5 to about 3 minutes in the about 80°C to about 250°C
temperature range.

The artisan will appreciate that specific temperature ranges and baking and/or curing conditions
will depend upon the selected materials, substrate and desired nanoscale pore structure, as is
readily determined by routine manipulation of these parameters. Generally, the curing step
comprises heating the baked film at a temperature of at least 400°C and for a time period
ranging from about 10 to about 60 minutes.

Properties Of the Produced Nanoporous Silica Films

Nanoporous dielectric films formed on a substrate according to the invention are generally
formed with a pore size that ranges from about 1 nm to about 100 nm, more preferably
from about 2 nm to about 30 nm, and most preferably from about 3 nm to about 20 nm.
The density of the silicon-containing composition, including the pores, ranges from about

0.1 to about 1.9 g/cm’, more preferably from about 0.25 to about 1.6 g/cm’, and most
preferably from about 0.4 to about 1.2 g/en?’.
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Thus, the percentage of the nanoporous dielectric film produced by the methods of the
invention that are represented by void space, i.e., nanometer scale pores, can range, €.g.,
from about 10 to about 70 percent, or greater, and preferably from about 20 to about 50

percent.

The refractive index is another indicator of the relative density of dielectric films produced
from S.0.G. materials. The dielectric of the hydridosilsesquioxane or methyl
silsesquioxane starting materials that are exemplified herein range from about 2.5 to about
3.3. The refractive index of dielectric films produced by the inventive methods range in

value from about 1.15 to about 1.4, and more preferably from about 1.9 to about 1.31.

Given the low densities achieved by the methods and compositions of the invention, low
dielectric constant or k values are attainable, ranging from about 1.5 to about 3.8, preferably

from about 2.0 to about 2.8, and more preferably from about 1.8 to about 2.8.
EXAMPLES

Examples 1-6

For Examples 1-6, below, the exemplified S.0.G. base materials are the methylsiloxanes,
AMM 512B and the AMM 311, discussed above. The exemplified organic component is
polyethylene oxide ("PEO"). The artisan will appreciate that PEOs and/or a mixture of
PEOs, are selected for use in the inventive processes to thermally degrade in a
temperature range that is relatively low compared to the thermal tolerances of the
employed substrate and S.0.G. materials, to be soluble in polar solvents that are
compatible with the inventive processes, and to be miscible with the selected S.0.G.
materials. Processing steps include dissolving the PEO in the S.0.G. in an appropriate
amount, then casting the mixture onto the substrate by spinning, and then baking and
optionally curing the spun film at a temperature range and for a time period or periods

appropriate for the selected S.0.G. material.

The following non-limiting examples serve to illustrate the invention.
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EXAMPLE 1
Films Formed by the Removal Of Polyethylene Oxide

Materials

A) Base Matrix Materials
Base matrix materials that form the backbone of the nanoporous foams were S.0.G.
methylsiloxanes AMM 512B and 311. Table 2, below, lists the properties of the
AMM methylsiloxanes.

Table 2
Properties of Methylsiloxanes

AMM 311 ' AMM 512B
% solid 10.5 14.7
% water 8 10
Organic Content 10 wt% 14 wt%
Dielectric Constant | 3.8 3.1
Refractive Index 1.39 , 1.38
Additional Solvents | Isopropyl alcohol, ethyl | isopropyl alcohol,

alcohol, acetone ethyl alcohol, acetone

A) Thermally Degradable Components
Three polyethylene glycols with different molecular weights were used:
) MW= 200 (PEO-200) — liquid
(i) =600 (PEO-600) — wax
(iii) MW=7500 (PEO-7500) ~ crystalline solid (mp=72°C)

A) Preparation of the Spin-On Solutions
Different amounts of PEO were employed, in amounts ranging from 1 to 22 percent

by weight, relative to the methylsiloxane solutions. To dissolve PEO-7500, the

solution was heated to above 60°C. For the other two PEOs, stirring at room
temperature was sufficient to complete dissolution. Symbol designated to describe the
coating solutions is (base matrix)-(MW of PEO)~(wt. % of PEO) in as-spun form.

For example, 512B-7500-26 represents a composition of 26 wt% of PEO-7500 and
74 wt% of 512B in the as-spun form (sample "I" in Table 3, below). For convenience
in description, each combination is also given an alphabetic designation. The

following samples were prepared, as listed in Table 3, below.
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Table 3
Coating Mixtures
Sample | Base Wt Base (Summary)
No. Matrix Solution Wt of PEO
Solution | (grams) MW PEO (grams)

A 311 10.10 200 0.55 311-200-34

B 311 10.21 200 1.18 311-200-51

C 311 30.00 600 1.71 311-600-35

D 311 30.67 600 3.15 311-600-49

E 311 30.05 7500 0.34 311-7500-10

F 311 21.78 7500 2.31 311-7500-49

G 311 16.99 7500 2.61 311-7500-57

H 311 19.50 7500 4.43 311-7500-65

1 512B 30.00 7500 1.55 512B-7500-
26

J 512B 21.68 7500 2.17 512B-7500-
39

K 512B 28.97 7500 4.35 512B-7500-
48

L 512B 29.10 7500 6.40 512B-7500-
56

The prepared samples, as described by Table 3, above, were then spun onto suitable
test substrates, which were flat wafers of about 4 or 6 inch oxide-coated silicon

wafers.

Bake/Cure Cycles
Hot plate bake temperatures were 80, 150, and 250°C for 2 minutes at each

temperature. The as-spun films were hazy, but the films became clear after the 250°C

bake. However, there was smoking during the 150 and 250°C bake steps, resulting
from the volatilization and removal of the PEG. The baked films were then cured at

400°C for 30 minutes in flowing nitrogen.

EXAMPLE 2
Analysis of Films by Fourier :
Transformed Infrared ("FTIR") Spectroscopy

The film samples were prepared as described above in Example 1 using the F and J

starting materials. The spun-on films were then treated with 80, 150 and 250°C, as
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baking steps and were subjected to FTIR analysis [spectra not shown] after each

baking step. A broad absorption peak was obtained between 2800 cm™ to 3000 cm’™
that confirmed the presence of the organic PEO in the film. The peak intensity, i.e.,

amplitude of the PEO signal, remained essentially constant until the 250°C baking

step, as is recorded in Table 4, below.

Table 4
FTIR Analysis
Peak High Ratio Between Peaks at 2830 cm™ to 1050 cm™
Baking Step Sample F Sample J
(311-7500-49) (512B-7500-39)
Peak Height Amplitude* Peak Amplitude*
80 Deg. C 0.322 0.243
150 Deg. C 0.332 0.257
250 Deg. C 0% 0**
*Absolute value above baseline
** Minor bump in nearly level curve at approximately 2970
cm’ - this is indicative of the organic moiety from the 311 or
512B

As shown in Table 4, above, peak measurements confirmed that PEO was still present in
the film in substantial amounts after the bake at 150°C, but was almost completely

removed after the last bake at 250°C. Therefore, it is believed that the porous structure |
took shape during the third bake step.

Additional FTIR of the films produced from F and J, after they were cured at 400°C,
showed virtually no trace of the PEO component in the 2800 cm™ to 3000 cm™ band
(except for a miniscule blip at approximately 2970 cm'l). Thus, the 400°C cured films

yielded FTIR spectra for both the 311 and the 512B derived films which are essentially
the same as those of pure AMM311 and AMMS512B.

EXAMPLE 3
Measurements Of Thickness Of Produced Films
Film thickness was measured using Nanospec, Tencor, and Gaertner instruments. Data

from Nanospec and Tencor appeared to give inconsistent results. A more reliable film
thickness can be obtained from the Gaertner machine in double-angle mode. Thickness of

one selected film was measured in SEM. The SEM thickness was in line with the result
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obtained from the Gaertner elipsometer. The major shrinkage occurred in the 250°C bake
step. The thickness of the nanoporous film that resulted after each processing step using
mixtures F and J, respectively, are listed in Table 5, as follows.

Table 5
Bake/Cure Film - Thickness in Angstroms

Sample | Total Spin | Thickness | Thickness | Thickness | Thickness

No. solid Speed | after 80°C | after after after
in (rpm) 150°C 250°C 400°C
Solutio
n (%)

19.1 3000 | 12860 A | 12350 A | 7770 A 7156 A

—

22.5 5000 | 12550 A 12100 A | 8400 A 7880 A

EXAMPLE 4
Measurements Of Refractive Index
Refractive indexes ("R.1.") were measured using a Gaertner elipsometer and are
tabulated in Table 6, below. The refractive indexes of the cured base materials
AMM311 and AMMS512B were determined by this method to be 1.39 and 1.38,
respectively.

EXAMPLE 5
Measurements Of Dielectric Constant

The dielectric constant (k) of the cured films was calculated from the capacitance of
each film with thickness (t) under aluminum dot, using a Hewlett-Packard LCR meter
model HP4275A. The dielectric constant (k) was calculated according to the
following equation:

k = Ct/E, A),
where A is the area of the Al dot (cm®), C is the capacitance (Farad), t is the film
thickness (cm) and E, is the permittivity of free space (8.85419 x 10™* F/cm).

Dielectric constants with an error bar of about +0.1 are listed in the last column of

Table 6, as follows.
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Table 6
Refractive Index and Dielectric Constant
Wt% Refractive Index Dielectric
Sample | Wt PEO constant
No. |%PEO| Inas-
in |[spun film
S.0.G.
512-7500{311-200{311-600| 311-7500

A 5.1 34 1.372 --*

B 10.4 51 1.314 --

C 54 35 1.268 --

D 9.5 49 1.224 --

D 9.5 49 1.219 2.63

E 1.1 10 1.326 --
F-1 9.5 49 1.186 2.32
F-2 9.5 49 1.202 2.43

G 13.5 57 1.19 2.19

H 18.5 65 1.173 2.11

I 4.9 26 1.309 2.73

J 9.1 39 1.235 2.36
K-1 13 48 1.228 2.18
K-2 13 48 1.214 2

L 18 56 1.197 2.02

* ".." no data
Analysis

As can be seen in Table 6, above, the resulting films have dielectric constants ranging
from 2 to 2.73. The degree of porosity of each film can be estimated from the weight
percent of the thermally degradable component (PEO), in the as-spun film by assuming
that the densities of the base material and the thermally degradable component are the
same and that no loss of the evaporative component either through evaporation or
degradation mechanism occurs before the crosslinking of the base material. The weight
percent of the PEO in various films is listed in the third column of Table 6 and can be
used as an indicator of the degree of porosity of the film, with the exception of the PEO
200 samples, where there was evidence, as discussed below, that the more volatile PEO
200 evaporated prior to the 200°C heating step. Thus, Samples I, J, K-1, K-2 and L,
prepared using AMM 512B, and which had PEO (7500) weight percentages in the as-
spun films of 26, 39, 48 and 56, respectively, were determined to have dielectric constant
values of 2.73, 2.36, 2.18, 2 and 2.02, respectively (two different films were produced
and measured using Sample K). Within this series, it can be appreciated that as the PEO
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weight percentages in the as-spun films increases, the measured dielectric constant
decreases. Analogous results were seen with samples F-1, F-2, G, and H, prepared using
AMM 311, and which had PEO (7500) weight percentages of 49, 57 and 65, with
measured dielectric constants declining from 2.43 to 2.11 as the weight percentages of
PEO in the as-spun film rose to 65, thus confirming the effectiveness of the instant
methods. In contrast, it should be noted that the dielectric constants of the base materials

400°C cured 311 and 512B are 3.8 and 3.1, respectively.

The dielectric constants for the films produced using the 311 series and the 512B series,
as shown in Table 6, were plotted against the weight percent of the PEO to produce
[plotted figures not shown]. The resulting plots of the Table 6 data confirm that dielectric
films produced using both the AMM 311 and 512B methylsiloxane S.0.G. materials
exhibit reduced dielectric constant properties in roughly linear proportion to the weight
percentage of the thermally degradable component of the as-spun film. The plotted data
also confirms that the nanoporous films produced using AMM 512B base material
exhibited k values that were lower, by about 0.3, than the k values of the nanoporous
films produced using the AMM base material 311. This lower range of k values seems to
be consistent with the lower dielectric constant of the unmodified 512B base material.
Since the exact degree of porosity is not determined, quantitative analysis of the
relationship between dielectric constant and porosity for these systems cannot be
established. However, as confirmed by the tabulated data, the dependence of k on the

percentage of PEO in the as-spun film is understood and controllable.

The refractive index vs. the weight percent of PEQ, as shown in Table 6, was plotted
[figure not shown] for the films produced using both the AMM 311 and AMM 512B
series of base materials. The plotted data confirms that the refractive index for both film
series falls into the same line. However, when the refractive index data for the film
produced using the PEO 200 starting mixture is compared to the linear plots of the other
data, the PEO 200 refractive index falls substantially outside of (and above) the values
predicted by the linear relationship between the refractive index and PEO weight % of the
other films. Without meaning to be bound by any theory or hypothesis, it is believed that
this non-linear elevation in refractive index confirms that the film formed using PEO 200
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is simply denser than would otherwise be expected, because less PEO 200 remained in the

film prior to formation of the pore structures.

Conclusions

(1) For the series of films produced using starting mixtures incorporating PEO
compounds having molecular weights of 600 and 7500, and the AMM311 and
AMMS512B base materials, respectively, the refractive indexes of the films are similar, at
the same respective PEO weight fraction. While not wishing to be bound by any theory
or hypothesis, it is believed that this may indicate a similar degree of porosity in the
respective films, since the refractive indexes of the two base materials are also very close
(1.38 vs. 1.39).

(2)  The dielectric constant of the series of films produced using the AMM512B base
material is lower than that of the 311 series when the respective films are compared at the
same PEO loading. Judging from results from the k and R.I. data, it can be inferred that
at the same loading of PEO 600 and 7500, a similar level of porosity is obtainable from
either 311 and 512B, but that the porous film of similar porosity exhibits different k value

due to the differences in base material.

(3)  PEO 200 is a viscous liquid with appreciable vapor pressure at 200°C. The
refractive indexes of the two films prepared from the PEO 200 were higher than the
predicted value based on the no-loss assumption. Although the dielectric constant of
these films was not measured it is reasonable to conclude that if a substantial amount of
the PEO 200 evaporated during the baking step due to its volatility, then the final porosity
will be much less than the value calculated from the proportion of PEO 200 present in the
as-spun film composition.

The absolute volume fraction in the porous film is not known, but the weight fraction of
PEO is believed to be proportional to the volume fraction, or the degree of porosity,
although the exact value of the porosity has not determined to date.
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EXAMPLE 6
Scanning Electron Microscopic

(SEM) Examination of Film Surface
A nanoporous film was prepared using sample K (512B-7500-13). A sufficient quantity
of sample K was spin-coated onto a substrate, which was a flat silicon wafer with a

thickness of 9580A, and the film was finished as described above for Example 1.

The surface of the film was then prepared for SEM by standard, art-known methods The
film surface was examined using a Joel JSM-6300 F scanning electron microscope
("SEM") at 2.5 kilovolts, with a magnification of 50,000, and a field width of 10 nm.
Under these conditions, the surface of the dielectric film exhibited a uniform texture, with

no cracking and no large pores [image not shown].

EXAMPLE 7
Stud Pull Test
Methods

The stud pull test was conducted by the following method.

A film to be tested is placed on substrate wafer, and an epoxy test stud was epoxied to the
top of the film. Once the epoxy has cured, the stud was pulled away from the film, with a
measured force, until some component broke. The measured pull force at the moment

just prior to breakage was the stud pull strength.

Tests
The stud pull test was performed on 7500-8000A films spun from the PEO 7500-
containing formulation. A 6” silicon wafer with a 500A thermal oxide layer was used. In

addition, a 1 Om layer of aluminum was deposited on top of the film prior to attaching the

stud to the wafer. Stud pull results are shown in Table 7, below.

Table 7
Stud Pull Results
AMM/PEG Stud Pull Strength, | Standard
Mixture Kpsi* Deviation
F 1.5 1.0
G 1.1 0.5
H 1.6 1.1
J 2.4 1.1
K 1.5 1.2
*kilopounds/inch®
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Analysis of Stud Pull Results

The tested films all failed at the interface between the thermal oxide and the film, not in
the film itself. However, it should be appreciated that the stud pull tests obtained even
under the interphase failure conditions are still significantly higher than respective porous
nanosilica films at the same k value. For example, the stud pull test result for sample H
having a k of2.11 was 1.6 Ksi, which would be much higher than the projected stud pull
of less than 0.5 Ksi for the corresponding nanosilica dielectric film having a k of 2.1.

Furthermore, for experimental convenience, in the test samples as prepared above, the
dielectric films were deposited on the substrate over a thermal oxide layer, formed by
simply heating the silicon wafer in air. For actual production of integrated circuits, art-
known chemical vapor deposition ("CVD") materials are preferably employed, such as,
€.2., plasma enhanced CVD tetraethoxysilane oxide ("PETEOS") or silane oxide and
combinations thereof, to form the layer between the wafer and the applied nanoporous
dielectric film. With these alternative materials, the adhesion between the oxide layer of
the wafer and the nanoporous film is significantly enhanced.

Conclusion

Porous methylsiloxane films were produced by heating a thermally degradable component
of a methylsiloxane precursor/polyethylene oxide blend, leaving behind a foam structure
with the methylsiloxane as the skeleton. A conventional, art known coater and furnace
were used for the processing. In this example, dielectric constants ranging from 2.8 to
2.0 were achieved by adjusting the amount of thermally degradable component in the
polymer blend. When methylsiloxane 512B was employed, the as-spun film, containing
50 wt% polyethylene oxide, produced a k value of about 2.1. Films with a k lower than
2.1 can be prepared by increasing the amount of polyethylene oxide at expense of further
decreasing the mechanical strength of the film. Of course, the above-described stud pull
test confirms that the nanoporous films produced by the process is internally cohesive, at
least in the tested ranges of PEO weight percentages. In conclusion, the foregoing
examples demonstrate that polyethylene oxide is an excellent thermally labile, thermally

degradable component for making low-k methylsiloxane spin-on dielectrics.
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Examples 8-9

For examples 8 and 9, porous methylsiloxane coatings are produced from the removal of
a thermally degradable, organic component from a film prepared from a mixture of an
S.0.G. and a thermally degradable organic polymer in a nonpolar solvent. The
exemplified S.0.G. base materials for the following examples are
polyhydridosilsesquioxanes ("PHSQs") and the exemplified thermally degradable polymer
is polypropylene oxide ("PPO"). The artisan will appreciate that PPOs and/or a mixture
of PPO and polyethylene oxide ("PEO") copolymers useful for the inventive processes,
are selected to thermally degrade in a temperature range that is relatively low compared to
the thermal tolerances of the employed substrate and S.0.G. materials. The PPO and/or a
mixture of PPO/PEOs are also selected to be soluble in nonpolar solvents that are

compatible with the inventive processes, and to be miscible with the selected S.0.G.

materials.

Processing steps include dissolving appropriate quantities of, e.g., a PPO into, e.g., a
PHSQ solution, then casting the mixture onto a substrate by a suitable method, such as
spinning, and then baking and optionally curing the spun film at a temperature range and
for a time period or periods appropriate for the selected PHSQ material.

EXAMPLE 8
Preparation of Polyhydridosilsesquioxane

160 gm of triethoxysilane was mixed with 800 gm acetone. 11.7 gm of water and 14.6
gm of 0.02N nitric acid were added to the triethoxysilane/water solution. The final
solution was stored at 22°C for 10 days.

After a 10-day reaction at 22°C, the by-product ethanol was vacuum distilled off at
temperature between 22 and 25°C while ethyl acetate was continuously adding to the
solution to replace the leaving ethanol. After distillation, n-butyl acetate was added to
adjust the final composition to be 10 wt% PHSQ resin, 63 wt% ethyl acetate, and 27
wt% n-butyl acetate. This is the PHSQ solution. These proportions are equivalent to
70 wt% ethyl acetate and 30 wt% n-butyl acetate, if the 10% PHSQ resin is omitted.
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EXAMPLE 9
Preparation and Composition of the Spinning Solutions

1. Base Matrix Materials

Polyhydridosilsesquioxane resin as prepared in Example 8 was dissolved in mixture of

ethyl acetate and butyl acetate in a ratio of 70:30, by weight was used.

2. Decomposable Components

Polypropylene oxide was dissolved in ethyl acetate at four different percents: 5, 10, 15,
and 20% (wt/wt). The PPO solutions were then mixed with the PHSQ solution as
prepared in Example 8, in a 50:50 (wt/wt) ratio.

Three polypropylene oxide polymers with molecular weights of 425, 1000 and 4000,

respectively, were used. The polypropylene oxide was dissolved in ethyl acetate.

3. Composition of the as-spun film

Symbols designated to describe the coating solutions are (base matrix)-(MW of the PPO)-
(wt. % of PPO). For example, PHSQ-1000-33.3 represents 33.3 wt. % of polypropylene
oxide of molecular weight 1000 and 66.7% PHSQ in the as-spun film. The following six

samples were prepared:
PHSQ (control)

PHSQ - 425-50%
PHSQ - 425-66.6%
PHSQ - 1000-33.3%
PHSQ - 1000-50%
PHSQ - 1000-60%
PHSQ - 4000- 50%
PHSQ - 1000-66.60%

4. Spin and Bake/Cure Cycles

Samples were spun at 3000 rpm for 20 seconds, baked at 80°C/150°C/200°C for 60

seconds and cured at 400°C for 30 minutes in flowing nitrogen.

5. Refractive Index and Dielectric Constant

Refractive index and film thickness was measured by a Woolam elipsometer and dielectric
constant was calculated from the capacitance using a Hewlett-Packard LCR meter (Model
HP4275A). The PPO%, and the measured thickness, refractive index and dielectric
constants of the cured films are listed in the following table.
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Table 7
Wt.% of Wit% of PPO | Cured Film | RI1* | k
PPO in SOG | in as-spun film | Thickness, *x
A

PHSQ 0 0 3280 1.383 | 3.1

PHSQ-425-50% 5 50 3980 1.341 | --

PHSQ-425-66.6% 10 66.6 5070 1.286 | --

PHSQ-1000- 2.5 333 2200 1.291 | 2.8
33.3%

PHSQ-1000-50% 5 50 3200 1.237 | 2.5

PHSQ-1000-60% 7.5 60 3300 1.226 | 2.3

PHSQ-4000-50% 5 50 3200 1.227 | 2.4

PHSQ-4000- 10 66.6 5200 1.175 | 2.0
66.6%

*Refractive Index; **Dielectric Constant

6. Discussion & Conclusion

It can be appreciated from the data presented by Table 2, above, that when the PPO
molecular weights are 1000 and 4000, the refractive index ("R.1.") and dielectric constant
("k") of the produced PHSQ films decrease proportionately as the amount of the PPO in
the initial composition is increased. Thus, a porous film with dielectric constant around

2.0 can be obtained at 66 weight percent of PPO in the solid of the as-spun film.

It should also be noted that the refractive index measurements for the PPO 425 series are
about 0.1 higher than the measurements obtained from similar loading with higher
molecular weight PPO. This increase corresponds to an increase of 0.5 in the measured
higher dielectric constant. This can be attributed to the partial physical evaporation of
volatile species in the low molecular weight PPO during baking steps, resulting in actually
less degradable component in the post-bake films.

Based on the same principle, it will be appreciated that films with a dielectric constant of
less than 2.0 can readily be obtained by incorporating a higher loading of the
decomposable polymer. This approach can also be applied to other low k silsesquioxane
films with a general structure of R SiO;;, where R can be chosen independently from
hydrogen or alkyl or mixture of both.
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WHAT IS CLAIMED IS:

1. A low dielectric nanoporous film comprising a spin-on-glass material, said film having
been produced by a process comprising the steps of

(a) preparing a mixture of at least one spin-on-glass material with a thermally degradable
polymer in a compatible solvent,

(b) applying the mixture of step (a) onto a substrate to produce a coated substrate,

(c) heating the coated substrate of step (b) for a time and at one or more temperatures

effective produce the desired low dielectric nanoporous film.

2. The low dielectric nanoporous film of claim 1 having a dielectric constant ranging from

about 1.5 to about 3.8.

3. The low dielectric nanoporous film of claim 1 having a refractive index ranging from
about 1.15 to about 1.40.

4. The low dielectric nanoporous film of claim 1 produced from a spin-on glass base
material of Formula I:

[(8i02)« - (RiSiO, 5)y - (R2R3Si0), ] Formula I
wherein X, y, z and n are posttive integers of independent values, R;, R; and R; are
independently H or organic, and at least one of R;, R; and R3 is H; and
1>x>0;1>y>0;1>z>0, provided that x+y+zis 1.0.

5. The low dielectric nanoporous film of claim 4 wherein the organic moiety is a C;.Ce
alkyl, and n ranges from about 100 to about 800.

6. The low dielectric nanoporous film of claim 1 produced from a hydrogensiloxane spin-
on glass base material of Formula IT

[(HSiO1 5)@Own FormulaII ;
wherein (a) ranges from about 6 to about 20, (b) ranges from about 1 to about 3, (c)
ranges from about 6 to about 20, and n ranges from 1 to about 4,000.

7. The low dielectric nanoporous film of claim 1 produced from a hydroorganosiloxane

spin-on glass base material of Formula III
[(HSiO]_s)@O(m(RSiO]vs)(c)]n Formula I1I
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wherein (a) ranges from about 6 to about 20, (b) ranges from about 1 to about 3, (c)
ranges from about 6 to about 20, and n ranges from 1 to about 4,000, and when n>1, each

R is independently H, C;-C; alkyl or Cs-C); aryl.

8. The low dielectric nanoporous film of claim 1 produced from an alkylsiloxane spin-on
glass base material selected from the group consisting of hydrogenmethylsiloxane,
hydrogenethylsiloxane, hydrogenpropylsiloxane, hydrogenbutylsiloxane, hydrogentert-

butylsiloxane, hydrogenphenylsiloxane and combinations thereof.

9. The low dielectric nanoporous film of claim 1 produced from an alkylsiloxane spin-on
glass base material selected from the group consisting of hydrogensilsesquioxane,
hydrogenmethylsilsesquioxane, hydrogenethylsilsesquioxane,
hydrogenpropylsilsesquioxane, hydrogenbutylsilsesquioxane, hydrogenter-

butylsilsesquioxane, hydrogenphenylsilsesquioxane, and combinations thereof.

10. The low dielectric nanoporous film of claim 1 produced from a
polyhydridosilsesquioxane spin-on glass base material of Formula IV
(HSi031)n Formula IV

wherein n is an integer ranging from about 10 to about 4,000.

11. The low dielectric nanoporous film of claim 1 wherein the thermally degradable
polymer ranges in molecular weight from about 200 to about 2,000,000 Daltons.

12. The low dielectric nanoporous film of claim 11 wherein the thermally degradable
polymer ranges in molecular weight from about 1,000 to about 30,000 Daltons.

13. The low dielectric nanoporous film of claim 1 wherein the compatible solvent is a

nonpolar solvent, and the thermally degradable polymer is soluble in the nonpolar solvent

and miscible with the spin-on-glass material.

14. The low dielectric nanoporous film of claim 13 wherein the thermally degradable

polymer is selected from the group consisting of polyalkylene oxide, aliphatic polyester,
acrylic polymer, acetal polymer, and combinations thereof.
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15. The low dielectric nanoporous film of claim 13 wherein the thermally degradable

polymer is selected from the group consisting of poly(caprolatactone), poly(valeractone),
poly(methyl methacrylate), poly (vinylbutyral).

16. The low dielectric nanoporous film of claim 14 wherein the polyalkylene oxide

comprises a C; to about Cs alkyl.

17. The low dielectric nanoporous film of claim 16 wherein the thermally degradable
polymer is a polypropylene oxide.

18. The low dielectric nanoporous film of claim 13 wherein the nonpolar solvent is an

organic acetate comprising a C, to C alkyl, a Cs to Cy, aryl and combinations and

derivatives thereof.

19. The low dielectric nanoporous film of claim 13 wherein the nonpolar solvent is
selected from the group consisting of ethyl acetate, isopropyl acetate, butyl acetate,

dibutyl ether, acetone, methyl ethyl ketone, methyl isobutyl ketone and combinations

thereof.

20. The low dielectric nanoporous film of claim 1 wherein the compatible solvent is a

polar solvent, and the thermally degradable polymer is soluble in the polar solvent and

miscible with the spin-on-glass material.

21. The low dielectric nanoporous film of claim 1 wherein the spin-on glass comprises a
silicon-based polymer comprising a subunit selected from the group consisting of, SiO,

Q,;Si0; ; Q,Q3Si0,; and Q4Q5Q¢SiO and combinations thereof, wherein Q;, Q2, Q3 Q4 Qs

and Qg are independently organic.

22. The low dielectric nanoporous film of claim 19 wherein when any of Q1, Q2, Q3, Q4,
Q5 and Q6 is organic, the organic moiety is a C1-6 alkyl.

23. The low dielectric nanoporous film of claim 4 wherein the spin-on-glass base material

comprises an SiO2 moiety, and x is 1.

24. The low dielectric nanoporous film of claim 4 wherein the spin-on-glass base material

comprises a polymethylsilsesquioxane, and y is 1 and R; is methyl.
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25. The low dielectric film coating of claim 4 wherein the spin-on-glass base material

comprises at least one alkylsiloxane.

26. The low dielectric nanoporous film of claim 25 wherein the alkylsiloxane is a

methylsiloxane.

27. The low dielectric nanoporous film of claim 26 wherein the methylsiloxane has a
formula according to Formula I, wherein x, y and z are all greater than zero, and Ry, R,

and R; are methyl.

28. The low dielectric nanoporous film of claim 20 wherein the thermally degradable
polymer is a polyalkylene oxide.

29. The low dielectric nanoporous film of claim 28 wherein the polyalkylene oxide is
selected from the group consisting of polyethylene oxide and polyethylene

oxide/propylene oxide copolymers.

30. The low dielectric nanoporous film of claim 20 wherein the polar solvent is selected

from the group consisting of water, alcohol, ketones and mixtures thereof.

31. The low dielectric nanoporous film of claim 1 wherein the heating of step (c)
comprises a baking step and a curing step.

32. The low dielectric nanoporous film of claim 30 wherein the baking step comprises a
plurality of heating steps, ranging in temperature from about 60°C to about 350°C, and

each heating step is for a time period ranging from about 0.5 to about 10 minutes.

33. The low dielectric nanoporous film of claim 30 wherein the baking comprises a first
heating step of about 800C, a second heating step of about 1500C, and a third heating
step of about 2000C, each heating step being applied for a duration of about 1 minutes at

each respective temperature.

34. The low dielectric nanoporous film of claim 1 wherein the substrate comprises a

semiconductor material selected from the group consisting of gallium arsenide, silicon,

and mixtures thereof.
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35. The low dielectric nanoporous film of claim 34 wherein the silicon material is
selected from the group consisting of crystalline silicon, polysilicon, amorphous silicon,

epitaxial silicon, and silicon dioxide.

36. The low dielectric nanoporous film of claim 34 wherein the substrate comprises a
surface layer applied by chemical vapor deposition selected from the group consisting of

plasma enhanced tetraethoxysilane, silane oxide and combinations thereof.

37. An integrated circuit comprising at least one low dielectric nanoporous film of claim
1.

38. A method of producing a low dielectric nanoporous film on a substrate comprising
the steps of

(a) preparing a mixture of at least one spin-on-glass material with a suitable thermally
degradable polymer soluble in a compatible solvent,

(b) applying the mixture of step (a) onto a substrate to produce a coated substrate,

(c) heating the coated substrate of step (b) for a time and at one or more temperatures

effective produce the desired low dielectric nanoporous film.
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