
(12) STANDARD PATENT (11) Application No. AU 2015378729 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Systems and methods for exposing a result of a current processor instruction upon
exiting a virtual machine

(51) International Patent Classification(s)
G06F 21/53 (2013.0 1) G06F 12/14 (2006.01)
G06F 9/455 (2006.01) G06F 21/55 (2013.01)
G06F 12/08 (2006.01) G06F 21/56 (2013.01)
G06F 12/1027 (2016.01) HO4L 29/06 (2006.01)
G06F 12/109 (2016.01)

(21) Application No: 2015378729 (22) Date of Filing: 2015.08.11

(87) WIPO No: W016/118033

(30) Priority Data

(31) Number (32) Date (33) Country
62/038,476 2014.08.18 US
14/489,820 2014.09.18 US

(43) Publication Date: 2016.07.28
(44) Accepted Journal Date: 2020.07.09

(71) Applicant(s)
Bitdefender IPR Management Ltd

(72) Inventor(s)
Lukacs, Sandor;Lutas, Andrei-Vlad

(74) Agent / Attorney
Phillips Ormonde Fitzpatrick, PO Box 323, Collins Street West, VIC, 8007, AU

(56) Related Art
US 20070106986 Al
US 20130086299 Al
US 20140164746 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau
(10) International Publication Number

(43) International Publication Date W O 2016/118033 A3
28 July 2016 (28.07.2016) W IPOIPCT

(51) International Patent Classification: DO, DZ, EC, EE, EG, ES, Fl, GB, GD, GE, GH, GM, GT,
G06F 21/53 (2013.01) G06F 12/14 (2006.01) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
G06F 21/55 (2013.01) G06F12/109 (2016.01) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
G06F 21/56 (2013.01) G06F 12/1027 (2016.01) MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
G06F 9/455 (2006.01) HO4L 29/06 (2006.01) PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
G06F12/08 (2006.01) SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,

(21) International Application Number: TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

PCT/R02015/050009 (84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,

11 August 2015 (11.08.2015) TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
(25) Filing Language: English TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,

DK, EE, ES, Fl, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
(26) Publication Language: English LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

(30) Priority Data: SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,

62/038,476 18 August 2014 (18.08.2014) US GW, KM, ML, MR, NE, SN, TD, TG).

14/489,829 18 September 2014 (18.09.2014) US Declarations under Rule 4.17:

(71) Applicant: BITDEFENDER IPR MANAGEMENT - as to applicant's entitlement to applyfor and be granted a
LTD [CY/CY]; Kreontos 12, 1076 Nicosia (CY). patent (Rule 4.17(ii))

(72) Inventors: LUKACS, Sandor; Bld. Cetatea Fetei bl. B et. - as to the applicant's entitlement to claim the priority of the

3, Sat Floresti, Com. Floresti, Judetul, Cluj (RO). LUTAS, earlier application (Rule 4.17(iii))

Andrei-Vlad; Bld. Closca nr. 111, Judetul Satu Mare, Satu
Mare RO).Published:

- Mare (RO).
- with international search report (Art. 21(3))

(74) Agent: TULUCA, Doina; Bd. Lacul Tei 56, bl. 19, sc. B,
ap. 52, sector 2,020392 Bucuresti(RO). - before the expiration of the time limitfor amending the

claims and to be republished in the event of receipt of
(81) Designated States (unless otherwise indicated, for every amendments (Rule 48.2(h))

kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (88) Date of publication of the international search report:
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 27 October 2016

(54) Title: SYSTEMS AND METHODS FOR EXPOSING A RESULT OF A CURRENT PROCESSOR INSTRUCTION UPON
EXITING A VIRTUAL MACHINE

12 24-

1 Processor Memory

-11rpurdvie &mm 1k r Output1ckvicu

20 Ntwork
Storagedces.- aapItUs 22

[lo't 5s tcl

10

FIG. 1

(57) Abstract: Described systems and methods enable a host system to efficiently perform computer security activities, when operat

ing in a hardware virtualization configuration. A processor is configured to generate a VM suspend event (e.g., a VM exit or a virtu
f4 alization exception) when a guest instruction executing within a guest VM. performs a memory access violation. In some embodi

ments, the processor is further configured to delay generating the VM suspend event until the execution stage of the pipeline for the
guest instruction is complete, and to save results of the execution stage to a specific location (e.g. a specific processor register read
able by security-software) before generating the event.

Systems And Methods for Exposing A Result Of A Current

Processor Instruction Upon Exiting A Virtual Machine

RELATED APPLICATIONS

[0001] This application claims the benefit of the filing date of U.S. provisional patent

application No. 62/038,476, filed on Aug. 18, 2014, entitled "Systems And Methods for

Exposing A Current Processor Instruction Upon Exiting A Virtual Machine", the entire

contents of which are incorporated by reference herein.

FIELD OF THE INVENTION

[0002] The invention relates to computer security, and in. particular to performing

computer security operations in hardware virtualization - configurations.

BACKGROUND

[0003] Malicious software, also known as malware, affects a great number of computer

systems worldwide. In its many forms such as computer viruses, worms, rootkits, and

spyware, malware presents a serious risk to millions of computer users, making them

vulnerable to loss of data and sensitive information, identity theft, and loss of

productivity, among others.

[0004] Modem computing applications often employ hardware virtualization technology

to create simulated computer environments known as virtual machines (VM), which

behave in many ways as physical computer systems. In applications such as server

consolidation and infrastructure-as-a-service, several virtual machines may run

simultaneously on the same computer system, sharing the hardware resources among

them, thus reducing investment and operating costs. Each virtual machine may run its

own operating system and/or software, separately from other virtual machines. Due to the

steady proliferation of computer security threats such as malware and spyware, each such

virtual machine potentially requires protection.

[0005] Some security solutions protect a virtual machine by monitoring the manner in

which guest processes executing within the protected VM access memory, to identify

potential malicious activity. In one example, a computer security program may configure

1

the processor to generate an internal event (e.g., an exception or a VM exit event) when

an attempt is made to write to, or execute code from, a specific region of memory, e.g. a

region of memory used by a guest process. Such processor events typically suspend the

execution of the current thread and switch the processor to executing an event handler

routine, which may form part of the computer security program. The computer security

program may thus detect an attempt to access memory in a manner which may be

indicative of malware. After analyzing the event, the computer security program may

emulate the processor instruction which was under execution when the event occurred,

and may return execution to the original thread. Such methods are genetically known in

the art as trap-and-emulate.

[0006] Conventional trap-and-emulate methods may place a substantial computational

burden on the host computer system, potentially impacting user experience and

productivity. Therefore, there is considerable interest in developing efficient computer

security systems and methods suitable for virtualization environments.

[0006a] A reference herein to a patent document or any other matter identified as prior

art, is not to be taken as an admission that the document or other matter was known or

that the information it contains was part of the common general knowledge as at the

priority date of any of the claims.

SUMMARY

[0007] According to one aspect, a host system comprises at least one hardware processor

configured to execute a virtual machine and a computer security program. The at least

one hardware processor is further configured, in response to receiving a guest instruction

for execution, to determine whether executing the guest instruction within the virtual

machine causes a violation of a memory access permission, the guest instruction

instructing the at least one hardware processor to determine a result of applying an

operator to an operand, wherein executing the guest instruction in the absence of the

violation causes writing the result to a first location. The at least one hardware processor

is further configured, in response to determining whether executing the guest instruction

causes the violation, when executing the guest instruction causes the violation, write the

result to a second location distinct from the first location, the second location accessible

to the computer security program. The at least one hardware processor is further

configured, in response to writing the result to the second location, switch from executing

2

the guest instruction to executing the computer security program, wherein the computer

security program is configured to determine whether the violation is indicative of a

computer security threat.

[0008] According to another aspect, a method of protecting a host system from computer

security threats comprises, in response to receiving a guest instruction for execution,

employing at least one hardware processor of the host system to determine whether

executing the guest instruction causes a violation of a memory access permission, wherein

the guest instruction executes within a guest virtual machine exposed by the host system,

the guest instruction instructing the at least one hardware processor to determine a result

of applying an operator to an operand, wherein executing the guest instruction in the

absence of the violation causes writing the result to a first location. The method further

comprises, in response to determining whether executing the guest, instruction causes the

violation, when executing the guest instruction causes the violation, employing the at least

one hardware processor to write the result to a second location distinct from the first

location, the second location accessible to the computer security program. The method

further comprises, in response to writing the result to the second location, switching from

executing the guest instruction to executing the computer security program, wherein, the

computer security program is configured to determine whether the violation is indicative

of a computer security threat.

[0009] According to another aspect, at least one hardware processor of a host system is

configurable, in response to receiving a guest instruction for execution, to determine

whether executing the guest instruction causes a violation of a memory access permission,

wherein the guest instruction executes within a guest virtual machine exposed by the host

system, the guest instruction instructing the at least one hardware processor to determine

a result of applying an operator to an operand, wherein executing the guest instruction in

the absence of the violation causes writing the result to a first location. The at least one

hardware processor is further configurable, in response to determining whether executing

the guest instruction causes the violation, when executing the guest instruction causes the

violation, to write the result to a second location distinct from the first location, the second

location accessible to the computer security program. The at least one hardware processor

is further configurable, in response to writing the result to the second location, to switch

from executing the guest instruction to executing a computer security program, wherein

3

the computer security program is configured to determine whether the violation is

indicative of a computer security threat.

[0010] According to another aspect, a non-transitory computer-readable medium stores

instructions which, when executed by at least one hardware processor of: a host system,

cause the host system to form a computer security program configured to determine

whether a violation of a memory access permission is indicative of a computer security

threat. The at least one hardware processor is configurable, in. response to receiving a

guest instruction, for execution, to determine whether executing the guest instruction

causes the violation, wherein the guest instruction executes within a guest virtual machine

exposed by the host system, the guest instruction instructing the at least one hardware

processor to determine a result of applying an operator to an operand, wherein executing

the guest instruction in the absence of the violation causes writing the result to a first

location. The at least one hardware processor is further configurable, in response to

determining whether executing the guest instruction causes the violation, when executing

the guest instruction, causes the violation, write the result to a second location distinct

from the first location, the second location accessible to the computer security program,

and, in response to writing the result to a the second location switch from executing the

guest instruction to executing the computer security program.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The foregoing aspects and possible advantages of the present invention will

become better understood upon reading the following detailed description and upon

reference to the drawings where:

[0012] Fig. 1 shows an exemplary hardware configuration of a host computer system

according to some embodiments of the present invention.

[0013] Fig. 2-A shows an exemplary set of virtual machines exposed by a hypervisor

executing on the host system, and a computer security module (CSM) protecting the set

of virtual machines according to some embodiments of the present invention.

4

[0014] Fig. 2-B shows an alternative embodiment of the present invention, wherein a

CSM executes below a virtual machine, and wherein an. exception handler executes

within the protected virtual machine.

[0015] Fig. 2-C shows yet another embodiment of the present invention, wherein both

the CSM and the exception handier execute within the protected virtual machine.

[0016] Fig. 3 shows an exemplary configuration of virtualized hardware exposed as a

guest virtual machine according to some embodiments of the present invention.

[0017] Fig. 4 shows a set of exemplary memory address translations in a hardware

virtualization configuration as shown in Fig. 2-A, according to some embodiments of the

present invention.

4a

WO 2016/118033 PCT/R02015/050009

[0018] Fig.5 shows exemplary components of a processor according to some embodiments of

the present invention.

[00191 Fig. 6 shows an exemplary suspend event register of the processor according to some

embodiments of the present invention.

5 [00201 Fig. 7 shows an assembly language representation of an exemplary processor instruction

of the x86 instruction set, and its corresponding machine code representation.

[0021] Fig. 8 shows an exemplary sequence of steps performed by the processor to execute a

processor instruction according to some embodiments of the present invention.

[00221 Fig. 9 illustrates an exemplary sequence of steps performed by a computer security

10 module to protect a guest virtual machine according to some embodiments of the present

invention.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

[0023 In the following description, it is understood that all recited connections between

structures can be direct operative connections or indirect operative connections through

15 intermediary structures. A set of elements includes one or more elements. Any recitation of an

element is understood to refer to at least one element. A plurality of elements includes at least

two elements. Unless otherwise required, any described method steps need not be necessarily

performed in a particular illustrated order. A first element (e.g. data) derived from a second

element encompasses a first element equal to the second element, as well as a first element

20 generated by processing the second element and optionally other data. Making a determination

or decision according to a parameter encompasses making the determination or decision

according to the parameter and optionally according to other data. Unless otherwise specified,

an indicator of some quantity/data may be the quantity/data itself, or an indicator different from

the. quantity/data itself. A computer program is a sequence of processor instructions carrying out

25 a task. Computer programs described in some embodiments of the present invention may be

stand-alone software entities or sub-entities (e.g.. subroutines, libraries) of other computer

programs. Unless otherwise specified. a computer security program is a computer program that

protects equipment and data against unintended or unauthorized access, modification or

WO 2016/118033 PCT/R02015/050009

destruction. Unless otherwise specified, a process is an instance of a computer program, such as

an application or a part of an operating system, and is characterized by having at least an

execution thread and a virtual memory space assigned to it, wherein a content of the respective

virtual memory space includes executable code. Unless otherwise specified, a page represents

5 the smallest unit of virtual memory that can be individually mapped to a physical memory of a

host system. The term "logic" encompasses hardware circuitry having a fixed or a

reconfigurable functionality (e.g., field-programmable gate array circuits), but does not

encompass software emulating such functionality on a general-purpose computer. Unless

otherwise specified, a register represents a storage component integrated with or forming part of

10 a processor, and distinct from random-access memory (RAM). Computer readable media

encompass non-transitory media such as magnetic, optic, and semiconductor storage media (e.g.

hard drives, optical disks, flash memory, DRAM), as well as communication links such as

conductive cables and fiber optic links. According to some embodiments, the present invention

provides, inter alia, computer systems comprising hardware (e.g. one or more processors)

15 programmed to perform the methods described herein, as well as computer-readable media

encoding instructions to perform the methods described herein.

[0024] The following description illustrates embodiments of the invention by way of example

and not necessarily by way of limitation.

[0025] Fig. 1 shows an exemplary hardware configuration of a host system 10 according to some

20 embodiments of the present invention. Host system 10 may represent a corporate computing

device such as an enterprise server, or an end-user device such as a personal computer, tablet

computer, or smartphone. Other exemplary host systems include TVs, game consoles, wearable

computing devices, or any other electronic device having a memory and a processor. Host

system 10 may be used to execute a set of software applications, such as a browser, a word

25 processing application, and an electronic communication (e.g., email, instant messaging)

application, among others. In some embodiments, host system 10 is configured to support

hardware virtualization and to expose a set of virtual machines, as shown below.

(0026] Fig. I illustrates a computer system; the hardware configuration of other host systems,

such as smartphones and tablet computers, may differ. System 10 comprises a set of physical

6

WO 2016/118033 PCT/R02015/050009

devices, including a processor 12, a memory unit 14, a set of input devices 16, a set of output

devices 18, a set of storage devices 20, and a set of network adapters 22, all connected by a

controller hub 24. In some embodiments, processor 12 comprises a physical device (e.g. multi

core integrated circuit formed on a semiconductor substrate) configured to execute

5 computational and/or logical operations with a set of signals and/or data. In some embodiments,

such. logical operations are delivered to processor 12 in the form of a sequence of processor

instructions (e.g. machine code or other type of software). Some embodiments of the present

invention introduce changes to the structure and functionality of a conventional processor, the

respective changes enabling processor 12 to operate more efficiently in hardware virtualization

10 configurations.

[0027] Memory unit 14 may comprise volatile computer-readable media (e.g. RAM) storing

data/signals accessed or generated by processor 12 in the course of carrying out instructions.

Input devices 16 may include computer keyboards, mice, and microphones, among others,

including the respective hardware interfaces and/or adapters allowing a user to introduce data

15 and/or instructions into host system 10. Output devices 18 may include display devices such as

monitors and speakers, among others, as well as hardware interfaces/adapters such as graphic

cards, allowing host system 10 to communicate data to a user. In some embodiments, input

devices 16 and output devices 18 may share a common piece of hardware, as in the case of

touch-screen devices. Storage devices 20 include computer-readable media enabling the non

20 volatile storage, reading, and writing of processor instructions and/or data. Exemplary storage

devices 20 include magnetic and optical disks and flash memory devices, as well as removable

media such as CD and/or DVD disks and drives. The set of network adapters 22 enables host

system 10 to connect to a computer network and/or to other devices/computer systems.

Controller hub 24 generically represents the plurality of system, peripheral, and/or chipset buses,

25 and/or all other circuitry enabling the communication between processor 12 and devices 14. 16,

18, 20 and 22. For instance, controller hub 24 may include a memory management unit (MMU).,

an input/output (I/O) controller, and an interrupt controller, among others. In another example,

controller hub 24 may comprise a northbridge connecting processor 12 to memory 14 and/or a

southbridge connecting processor 12 to devices 16, 18, 20, and 22. In some embodiments, parts

7

WO 2016/118033 PCT/R02015/050009

of controller hub (such as the MMU) may be integrated with processor 12, i.e., may share a

common substrate with processor 12.

[00281 Fig. 2-A shows an exemplary functional configuration according to some embodiments

of the present invention, wherein host system10 uses hardware virtualization technology to

5 operate a set of guest virtual machines 52a-b exposed by a hypervisor 50. Such configurations

are common in applications such as cloud computing and server consolidation, among others. A

virtual machine (VM) is known in the art as an abstraction, e.g., a software emulation, of an

actual physical machine/computer system, the VM capable of running an operating system and

other software. In some embodiments, hypervisor 50 includes software configured to create or

10 enable a plurality of virtualized devices, such as a virtual processor and a virtual controller hub,

and to present such virtualized devices to software in place of the real, physical devices of host

system 10. Such operations of hypervisor 50 are commonly known in the art as exposing a

virtual machine. In some embodiments, hypervisor 50 allows a multiplexing (sharing) by

multiple virtual machines of hardware resources of host system 10. Hypervisor 50 may further

15 manage such multiplexing so that each guest VM 52a-b operates independently and is unaware

of other VMs executing concurrently executing on host system 10. Examples of popular

hypervisors include the VMware vSphereTM from VMware Inc. and the open-source Xen

hypervisor, among others.

[0029] Each VM 52a-b may execute a guest operating system (OS) 54a-b, respectively. A set of

20 exemplary applications 56a-d generically represent any software application, such as word

processing, image processing, media player, database, calendar, personal contact management,

browser, gaming, voice communication, data communication, and anti-malware applications,

among others. Operating systems 54a-b may comprise any widely available operating system

such as Microsoft Windows®, MacOS@, Linux., iOS, or AndroidI. among others. Each

25 OS 54a-b provides an interface between applications executing within the respective VM and the

virtualized hardware devices of the respective VM. In the following description, software

executing on a virtual processor of a virtual machine is said to execute within the respective

virtual machine. For instance, in the example of Fig. 2-A, applications 56a-b are said to execute

within guest VM 52a, while applications 56c-d are said to execute within guest VM 52b. In

30 contrast, hypervisor 50 is said to execute outside, or below, guest VMs 52a-b.

8

WO 2016/118033 PCT/R02015/050009

[0030] Fig. 3 shows an exemplary configuration of a virtual machine 52, as exposed by

hypervisor 50. VM 52 may represent any of VMs 52a-b of Fig. 2-A. VM 52 includes a

virtualized processor.112, a virtualized memory unit 114, virtualized input devices 116,

virtualized output devices 118, virtualized storage 120, virtualized network adapters 122, and a

5 virtualized controller hub 124. Virtualized processor 112 comprises an emulation of at least

some of the functionality of processor 12, and is configured to receive for execution processor

instructions forming part of software such as an operating system and other applications.

Software using processor 112 for execution is deemed to execute within virtual machine 52. In

some embodiments, virtualized memory unit 114 comprises addressable spaces for storing and

to retrieving data used by virtualized processor 112. Other virtualized devices (e.g., virtualized

input, output, storage. etc.) emulate at least some of the functionality of the respective physical

devices of host system10. Virtualized processor 112 may be configured to interact with such

virtualized devices as it would with the corresponding physical devices. For instance, software

executing within VM 52 may send and/or receive network traffic via virtualized network

15 adapter(s)122. In some embodiments, hypervisor 50 may expose only a subset of virtualized

devices to VM 52 (for instance, only virtualized processor 112, virtualized memory 114, and

parts of hub 124). Hypervisor 50 may also give a selected VM exclusive use of some hardware

devices of host system 10. In one such example, VM52a (Fig. 2-A) may have exclusive use of

input devices 16 and output devices 18, but lack a virtualized network adapter. Meanwhile,

20 VM 52b may have exclusive use of network adapter(s) 22. Such configurations may be

implemented, for instance, using VT-d@ technology from Intel@.

[0031] Modern processors implement a hierarchy of processor privilege levels,.also known in

the art as protection rings. Each such ring or level is characterized by a set of actions and/or

processor instructions that software executing within the respective ring is allowed to carry out.

25 Exemplary privilege levels/rings include user mode (ring 3) and kernel mode (ring 0). Some

host systems configured to support hardware virtualization may include an additional ring with

the highest processor privileges (e.g, ring -.1, root mode, or VMXroot on Intel@ platforms). In

some embodiments, hypervisor 50 takes control of processor 12 at the most privileged level (ring

-1), thus creating a hardware virtualization platform exposed as a virtual machine to other

30 software executing on host system 10. An operating system, such as guest OS 54a in Fig. 2-A,

9

WO 2016/118033 PCT/R02015/050009

executes within the virtual environment of the respective VM, typically with lesser processor

privilege than hypervisor 50 (e.g., in ring 0 or kernel mode). Common user applications, such as

56a-b, typically execute at lesser processor privilege than OS 34a (e.g., in ring 3 or user mode).

Some parts of applications 56a-b may execute at kernel privilege level, while some parts of

5 OS 34a may execute in user mode (ring 3). When a software object attempts to execute an

action or instruction requiring processor privileges higher than allowed by its assigned protection

ring, the attempt typically generates a processor event, such as an exception or a fault, which

transfers control of processor 12 to an entity (e.g., handler routine) executing in a ring with

enough privileges to carry out the respective action.

10 [00321 In particular, an attempt to perform certain actions or to execute certain instructions from

within a guest VM may trigger a special category of processor events, herein generically termed

VM suspend events. In some embodiments. a VM suspend event suspends execution of the

current thread within a guest VM and switches processor 12 to executing a handler routine.

Exemplary VM suspend events include, among others, a VM exit event (e.g.. VMExit on Intel@

15 platforms) and a virtualization exception (e.g. #VE on Intel@ platforms). VM exit events switch

processor 12 to executing a handler routine outside the respective guest VM, typically at the

level of hypervisor 50. Virtualization exception may switch processor 12 to executing a handler

routine within the respective guest VM, instead of exiting the respective VM.

[00331 Exemplary instructions triggering a VM suspend event include VMCALL on Intel®

20 platforms. VM suspend events may also be triggered by other events, such as memory access

violations. In one such example, when a software object executing within a VM attempts to

write to a section of memory marked as non-writable, or to execute code from a section of

memory marked as non-executable, processor 12 may generate a VM exit event. Such VM

switching mechanisms allow, for example, a computer security program to protect a virtual

25 machine from outside the respective VM. The computer security program may intercept VM

exit events occurring in response to certain actions performed by software running inside the

VM, actions which may be indicative of a security threat. The computer security program may

then block and/or further analyze such. actions, potentially without the knowledge of in-VM

software. Such configurations may substantially strengthen computer security.

10

WO 2016/118033 PCT/R02015/050009

[0034] In some embodiments (e.g., Fig. 2-A), hypervisor 50 includes a computer security

module (CSM)60, configured to perform such computer security operations, among others.

Module 60 may be incorporated into hypervisor 50 (for instance as a library), or may be

delivered as a computer program distinct and independent from hypervisor 50, but executing at

5 the privilege level of hypervisor 50. A single module 60 may be configured to protect multiple

guest VMs executing on host system 10. Security operations carried out by module 60 may

include detecting an action performed by a process executing within a guest VM.(e.g., calling

certain functions of the OS, accessing a registry of the OS, downloading a file from a remote

location, writing data to a file, etc.). Other security operations of module 60 may comprise

10 determining an address of a memory section containing a part of a software object executing

within a guest VM, accessing the respective memory section, and analyzing a content stored

within the respective memory section. Other examples of security operations include

interceptig and/or restricting access to such memory sections, e.g., preventing the over-writing

of code or data belonging to a protected process, and preventing the execution of code stored in

15 certain memory pages. In some embodiments, CSM 60 includes a VM exit event handler 61

configured to intercept VM exit events occurring within guest VMs 52a-b, In an alternative

embodiment, handler 61 may be a distinct module (e.g., a library) of hypervisor 50, separate

from CSM 60, which intercepts VM exit events and selectively transfers control to CSM 60 after

determining a reason and/or a type of each VM exit that occurred.

20 [0035] Fig. 2-B illustrates an alternative embodiment wherein computer security module 60

protects a guest VM 52c from outside the respective VM. In such embodiments, processor 12

may be configured to generate a virtualization exception (instead of a VM exit event, as

described above in relation to Fig. 2-A) when a memory access violation occurs. In the

exemplary embodiment of Fig. 2-B, a virtualization exception handler 63 executes within

25 VM52c, for instance at the privilege level of an operating system.54c, and is configured to

intercept virtualization exceptions and interface with CSM 60.

00361 Communication between handler 63 and CSM 60 may proceed according to any inter

process communication method known in the art. To transmit data from within the protected

VM to the level of hypervisor 50, some embodiments of handler 63 use a specialized instruction

30 (e.g., VMCALL on Intel® platforms) to transfer control of processor 12 from the respective VM

11

WO 2016/118033 PCT/R02015/050009

to hypervisor 50. The data being transmitted may be placed by exception handler 63 in a

predetermined section of memory shared with CSM 60. To transmit data to handler 63, some

embodiments of CSM 60 may inject an interrupt into VM 52c. the interrupt handled by

handler 63. The respective data may be transferred again through the shared memory section

5 described above.

[0037] In yet another embodiment, illustrated in Fig. 2-C, both CSM 60 and handler 63 execute

within the protected VM, for instance in kernel mode (ring 0). Such embodiments may also

employ virtualization exceptions to detect memory access violations. Deciding between

configurations 2-A-B-C may comprise evaluating a trade-off between performance and security.

[0 VM exit events are relatively costly in terms of computation, typically requiring loading and/or

unloading of large data structures into/from memory with each exit and re-entry cycle. Hence,

configurations such as2-A may require more computation to intercept an event than

configurations such as 2-B-C. On the other hand, keeping critical security components such as

CSM 60 and handlers 61-63 outside the protected VM (as in examples 2-A-B) may strengthen

15 security, since it may be more difficult for malware executing within the respective VM to

interfere with the operation of such components.

[0038] To be able to protect a guest VM in a configuration as illustrated in Figs. 2-A-B (i.e.,

from outside the respective VM), some embodiments of CSM 60 employ address translation data

structures and/or address translation mechanisms of processor 12. Virtual machines typically

20 operate with a virtualized physical memory (see, e.g., memory 114 in Fig. 3), also known in the

art as guest-physical memory. Virtualized physical memory comprises an abstract representation

of the actual physical memory 14, for instance as a contiguous space of addresses, commonly

termed guest-physical addresses (GPA). Each such address space is uniquely attached to a guest

VM, with parts of said address space mapped to sections of physical memory 14 and/or physical

25 storage devices 20. In systems configured to support virtualization. such mapping is typically

achieved using hardware-accelerated, dedicated data structures and mechanisms controlled by

processor 12, known as second level address translation (SLAT). Popular SLAT

implementations include extended page tables (EPT) on Intel@ platforms, and rapid

virtualization indexing (RV)/nested page tables (NPT) on AIMD platforms. In such systems.

30 virtualized physical memory may be partitioned in units known in the art as pages, a page

12

WO 2016/118033 PCT/R02015/050009

representing the smallest unit of virtualized physical memory individually mapped to physical

memory via mechanisms such as EPT/NPT, i.e., mapping between physical and virtualized

physical memory is performed with page granularity. All pages typically have a predetermined

size, e.g., 4 kilobytes, 2 megabytes, etc. The partitioning of virtualized physical memory into

5 pages is usually configured by hypervisor 50. In some embodiments, hypervisor 50 also

configures the SLAT structures, and therefore configures address translation between physical

memory and virtualized physical memory. Such address translations are known in the art as

guest-physical to host-physical (GPA-to-HPA) translations.

[00391 In some embodiments, the operating system executing within a VM sets up a virtual

10 memory space for each process executing within the respective VM, said virtual memory space

representing an abstraction of physical memory. Process virtual memory typically comprises a

contiguous space of addresses, commonly known in the art as guest-virtual addresses (GVA) or

guest-linear addresses (GLA). In some embodiments, process virtual memory spaces are also

partitioned into pages, such pages representing the smallest unit of virtual memory individually

15 mapped by the OS to the virtualized physical memory of the respective VM, i.e., virtual to

virtualized-physical memory mapping is performed with page granularity. The OS may

configure a dedicated data structure, such as a page table, used by the virtualized processor of the

respective VM to perform guest virtual to guest physical, or GVA-to-GPA address translations.

0040] Fig. 4 illustrates an exemplary memory address translation in the embodiment of Fig. 2

20 A. Following exposure by hypervisor 50, guest VM 52a sees a virtualized physical memory

space 114a as its own physical memory space. A process executing within guest VM 52a is

assigned a virtual memory space 214a by guest OS 54a. When the process attempts to access

memory at a guest-virtual address 62, GVA 62 is translated by the (virtualized) MMU of guest

VM 52a into a guest-physical address 64 within virtualized physical memory space 114a. GVA

25 to-GPA translation 70a may proceed, for instance, according to page tables configured and

controlled by guest OS 34a. GPA 64 is further mapped by the MMU to a host-physical address

(HPA) 66 within physical memory 14 of host system 10. GPA-to-HPA translation 70b may

proceed, for instance, according to SLAT structures configured by hypervisor 50.

13

WO 2016/118033 PCT/R02015/050009

[0041] Each process executing below guest VMs 52a-b is typically assigned a virtual memory

space addressable via what is known in the art as host-virtual addresses (HVA). In the example

of Fig. 4, hypervisor 50 sets up a virtual memory space 214b for computer security module 60.

CSM 60 may then reference HPA 66 via a HVA 68. When module 60 is integrated within

5 hypervisor 50, for instance as a library, memory space 214b may coincide with the virtual

memory space of hypervisor 50. To manage such spaces, hypervisor 50 may configure dedicated

data structures and mechanisms (e.g. page tables) used by the MMU to perform HVA-to-HPA

translations such as translation 70c.

[0042] In some embodiments, hypervisor 50 and/or CSM 60 may setaccess permissions for each

10 of a subset of physical memory pages. Such memory pages may be used, for instance, by certain

critical guest processes executing within a protected VM, such as processes of the OS and/or

anti-malware routines. Access permissions indicate, for instance, whether the respective page

may be read from and written to, and whether software is allowed to execute code from the

respective page. Access permissions may be indicated, for instance, as a part of the SLAT entry

15 representing the respective memory page. Some host systems may allow setting access

permissions with sub-page granularity.

[0043] Hypervisor 50 and/or CSM 60 may further configure processor 12 to generate a VM

suspend event when software executing within a guest VM attempts to access memory in a

manner that violates access permissions (e.g., to write to a memory paemarkedasnon

20 writable). Such an attempt is hereby termed memory access violation. The respective VM

suspend event may be a VM exit event in configurations such as Fig. 2-A, and a virtualization

exception in configurations such as Fig. 2-B-C.

[0044] Some embodiments of the present invention introduce changes to the structure and

functionality of a conventional hardware processor, to enable the processor to function more

25 efficiently in hardware virtualization configurations. Fig.5 shows exemplary hardware

components of processor 12 according to some embodiments of the present invention. The

illustrated components are meant as generic devices performing the described functionality;

structural details may vary substantially aong implementations. For instance, each illustrated

component may comprise multiple interconnected subsystems, not necessarily in physical

14

WO 2016/118033 PCT/R02015/050009

proximity to each other. The illustrated components are not exhaustive; processor 12 may

include many other components (e.g., scheduler, interrupt controller, various caches, etc.), which

were omitted from Fig. 5 to simplify presentation.

[00451 Processor 12 may include logic/circuitry configured to carry out various stages of a

5 processor pipeline. For instance, an instruction decoder30 performs instruction decoding

operations, which may include translating each processor instruction into a set of elementary

processor operations and/or micro-ops. A set of execution units 36 connected to decoder 30 may

perform the execution stage of the pipeline. Exemplary execution unit(s)36 include, among

others, an arithmetic logic unit (ALU) and a floating-point unit (FPU).

10 [00461 In some embodiments, the execution stage of the pipeline for an instruction comprises

determining a result of applying an operator of the respective instruction to an operand of the

respective instruction. Such results may comprise, among others, a memory address, a value to

be committed to a memory address or to a processor register (e.g., to a general purpose register

such as AX, a model-specific register - MSR, a control register such as EFLAGS, or a hidden

15 register such as the hidden part of an x86 segment register, also known as a descriptor cache), a

value of the instruction pointer (e.g., RIP), and a value of the stack pointer (e.g., RSP).

[00471 The operand(s) of an instruction may be explicit in the statement of the instruction, or

may be implicit. An exemplary x86 instruction with implicit operands is the STC instruction,

which sets the carry flag of the EFLAGS control register of the processor to . In some

20 embodiments, the register EFLAGS and the value I are interpreted as (implicit) operands,

although they do not appear explicitly in the statement of the STC instruction.

[0048] A commit unit 38 may perform the commit stage of the pipeline, i.e., to store the output

of execution unit(s)36 in memory 14 and/or to update the contents of certain processor registers

to reflect changes/results produced by the execution stage. Commit unit 38 may comprise logic

25 modules known in the art as retirement units.

100491 A memory access module 34 connected to decoder 30 and execution unit(s) 36 includes

logic configured to interface with memory 14, e.g., to fetch instructions from memory. to load

data from memory, and to store results of execution of processor instructions to memory. In

15

WO 2016/118033 PCT/R02015/050009

some embodiments, memory access module comprises an MMU configured to perform the

virtual-to-physical address translations necessary for memory access.

[00501 Modern processors typically support out-of-order and/or speculative execution of

processor instructions. In such systems, multiple instructions are concurrently fetched, decoded,

5 and executed by the same execution unit(s) 36. Results of such executions are then committed

in-order, to preserve the intended flow of the respective computer program. Such configurations

are used, for instance, in conjunction with branch prediction algorithms, to enhance the

performance of processor 12. In some embodiments configured for out-of-order execution,

processor 12 may further comprise a dispatcher unit 32 coupled to decoder 30 and to execution

to units 36, and a register file 40 coupled to execution unit(s) 36 and commit unit 38. Dispatcher

unit 36 may schedule individual micro-ops for execution, and maintain a mapping associating

each micro-op with its respective instruction, to control the order of execution and commit.

Register file 40 comprises an array of internal processor registers, organized, for instance, as a

reorder buffer. Register file40 may further comprise logic enabling dispatcher unit36 to

15 associate a row of registers of file 40 to each scheduled micro-op, an operation known in the art

as register renaming. In such configurations, each such row of registers may hold, for instance,

the values of the general purpose and/or status registers of processor 12, said values

corresponding to an intermediate stage of execution of a certain processor instruction.

[00511 Processor 12 may further include a virtual machine control unit 38 configured to manage

20 virtual machine state data. In some embodiments, a virtual machine state object (VMSO)

comprises a data structure used internally by processor 12 to represent the current state of each

virtualized processor exposed on host system 10. Exemplary VMSOs include the virtual

machine control structure (VMCS) on Intel@ platforms, and the virtual machine control block

(VMCB) on AMD@ platforms. VMSOs are typically set up by hypervisor 50 as part of

25 exposing each virtual machine. In some embodiments, processor 12 associates a region in

memory with each VMSO, so that software may reference a specific VMSO using a memory

address or pointer (e.g., VMCS pointer on Intel® platforms).

[00521 Each VMSO may comprise a guest state area and a host state area, the guest state area

holding the CPU state of the respective guest VM, and the host state area storing the current state

16

WO 2016/118033 PCT/R02015/050009

of hypervisor 50. In some embodiments, the guest-state area of the VMSO includes contents of

the control registers (e.g., CRO, CR3, etc.), instruction pointer (e.g., RIP), general-purpose

registers (e.g.. EAX, ECX, etc.), and status registers (e.g., EFLAGS) of the virtual processor of

the respective guest VM, among others. The host state area of the VMSO may include a pointer

5 (e.g., an EPT pointer on Intel@ platforms) to a SLAT data structure configured for GPA-to-HPA

address translations for the respective guest VM.

[00531 In some embodiments, processor 12 may store a part of a VMSO within dedicated

internal registers/caches, while other parts of the respective VMSO may reside in memory. At

any given time, at most one VMSO (herein termed the current VMSO) may be loaded onto the

10 processor, identifying the virtual machine currently having control of processor 12. Modern

processors are typically configured for multithreading. In such configurations, physical

processor 12 may operate a plurality of cores, each core further comprising multiple logical

processors, wherein each logical processor may process an execution thread independently of,

and concurrently with, other logical processors. Multiple logical processors may share some

15 hardware resources, for instance, a common MMU. In a multithreaded embodiment, a distinct

VMSO may be loaded onto each distinct logical processor.

[0054] When processor 12 switches from executing the respective VM to executing

hypervisor 50 (e.g., upon a VM exit), processor 12 may save the state of the respective VM to

the guest state area of the current VMSO. When processor 12 switches from executing a first

20 VM to executing a second VM, the VMSO associated to the first VM is unloaded, and the

VMSO associated to the second VM is loaded onto the processor, the second VMSO becoming

the current VMSO. In some embodiments, such loading/unloading of VMSO data to/from

processor 12 is performed by virtual machine control module 38. Module 38 may further carry

out the retrieval and/or saving of VMSO data from/to memory 14.

25 [0055] In some embodiments, processor 12 further comprises a suspend event register 44

connected to execution unit(s)36 and/or to commit unit 38, and configured to store instruction

specific data associated with a guest instruction, wherein execution of said guest instructions has

caused a VM suspend event (e.g., a VM exit or a virtualization exception). In some

embodiments, suspend event register 44 is an exposed register, accessible to software executing

17

WO 2016/118033 PCT/R02015/050009

on host system 10, i.e., data stored in register 44 may be readable by software such as security

module 60. In one such example, suspend event register 44 includes a model-specific register

(MSR) of processor 12. Some embodiments may restrict access to register 44 to a subset of

software objects, selected according to a criterion such as processor privilege (e.g., only ring -1

5 or root mode) or object type (e.g., only drivers). Some embodiments may restrict software

access to register 44 only to a subset of operations (e.g., read only).

[00561 Fig. 6 shows an exemplary set of fields of suspend event register 44 according to some

embodiments of the present invention. Register 44 may include a disassembly field 46a and an

execution result field 46b. Disassembly field 46a may store data resulting from disassembling

10 the respective guest instruction.

[00571 Fig. 7 shows an assembly language representation 45 of an exemplary Intel@ x86

processor instruction. The illustrated instruction instructs the processor to increment the content

stored in memory at the (virtual) address EBX + 4*ECX + 0x02, by the value currently stored in

register AX. The respective instruction is represented in memory as a machine code

15 representation 47; the translation between representations 45 and 47 is typically done by a

compiler or assembler. The machine code representation of x86 instructions has a generic

form 48, comprising a sequence of encoding fields, including, among others, a prefix, an opcode,

and a displacement field (representations of instructions of other ISAs may differ). Fig. 7 shows

the instance of each encoding field for the given exemplary x86 instruction. In some ISAs, the

20 machine code representation may vary in length, i.e., some encoding fields may appear in the

machine code representation of certain instructions, but may not appear in the representation of

other instructions.

[0058] In some embodiments, disassembling an instruction comprises parsing the machine code

representation of the instruction to identify and/or compute a set of semantic elements. Such

25 semantic elements may include an operator (e.g., OV, ADD, etc.) and an operand (e.g., AX

[EBX+4*ECX+0x02]) of the instruction, among others. In some embodiments, semantic

elements of an instruction include individual instruction encoding fields (such as Prefix, Opcode,

modR/M, SIB, Displacement, and Immediate, in the case of the x86 ISA). Such disassembly

may be carried out, at least in part, by instruction decoder 30 and/or by execution unit(s) 36.

18

WO 2016/118033 PCT/R02015/050009

[0059] In the example of Fig. 7, disassembling the instruction may comprise determining the

contents of individual encoding fields, as shown by the arrows indicating the correspondence

between machine code representation 47 and generic form 48. In some embodiments,

disassembling the illustrated instruction includes identifying the ADD operator and/or

5 determining according to machine code 47 that the respective instruction has two operands, that

one of the operands is the content of the AX register, that the second operand is a content of

memory, and determining an expression (e.g., EBX+4*ECX+0x02) of the respective memory

address. In some embodiments. disassembling the instruction further comprises computing a

memory address indicated by an operand of the respective instruction (e.g., the value of the

10 expression EBX+4*ECX+0x02 in the example of Fig. 7). In another example, wherein the

disassembled instruction is relative jump instruction (e.g.,JMP S+10 on x86 platforms,

represented in machine code as OxEB 0x08), disassembling the instruction may comprise

calculating an absolute memory address of the destination according to the address of the

instruction, to the length of the instruction, and/or to the size of the relative jump.

15 [0060] In some embodiments. disassembly field 46a of register 44 (Fig. 6) includes a content of

the instruction encoding fields of the respective instruction (see Fig. 7). Other exemplary content

of field 46a includes an operator identifier indicating the operator of the respective instruction,

and an indicator of an operand of the respective instruction. The operand indicator may further

include an identifier of a processor register (e.g., AX), and a flag indicating, for instance,

20 whether the respective operand is the content of a register or a content of memory. Disassembly

field 46a may further comprise a memory address (e.g., GVA, GPA, and/or HPA) indicated by

an operand. The structure of disassemble field 46a may be platform-specific. For instance, on

Intel@ platforms, disassembly field 46a may include a content of a prefix, opcode, modR/M,

SIB, displacement, and immediate encoding fields of the current guest instruction. On other

25 platforms, field 46a may store other values according to the. instruction set architecture (ISA) of

the respective platform.

[0061] In some embodiments, execution result field 46b of suspend event register 44 may store

data indicative of a result of executing the respective processor instruction. Such results may

include a value of a status register (e.g., FLAGS), a value of an instruction pointer (e.g., RIP),

30 and a value of a general purpose register (e.g., EAX) resulting from executing the respective

19

WO 2016/118033 PCT/R02015/050009

instruction. Field 46b may further comprise a value to be committed to memory as a result of

executing the respective instruction, a size of the respective value (e.g., byte, word, etc.) and/or a

memory address where the respective value is to be committed.

[0062] In some embodiments, execution unit(s) 36 and/or commit unit 38 may be configured to

5 determine whether execution of a guest instruction causes a VM processor event (such as a VM

exit of virtualization exception), and when yes, to save instruction disassembly data to suspend

event register 44 before generating the respective event. Processor 12 may be further configured

to delay the generation of the processor event until completion of the execution stage of the

respective guest instruction, and to save a result of executing the respective instruction to event

10 register 44 instead of committing such results to memory and/or to a general purpose register of

processor 12. To avoid committing results of such instructions, processor 12 may be configured

to generate the VM processor event before the commit stage of the pipeline for the respective

instruction. Such functionality will be further detailed below.

[0063] Fig.8 shows a detailed, exemplary sequence of steps performed by processor 12 to

15 execute a guest instruction according to some embodiments of the present invention. Fig. 8

shows an embodiment, wherein processor 12 is configured to generate a VM exit event in

response to a memory access violation. A skilled artisan will appreciate that the present

description may easily be modified to cover an embodiment, which generates other VM suspend

events (such as a virtualization exception) instead of a VM exit event. "Guest instruction" is a

20 term used herein to denote a processor instructions forming part of a computer program

executing within a guest VM, such as VMs 52a-b in Fig. 2-A.

[00641 A step 302 attempts to fetch. the guest instruction. When the fetch attempt fails, a

step 303 may determine whether the failure is caused by a memory access violation (for instance,

when the guest instruction resides in a memory page marked as non-executable in a SLAT

25 structure of the guest VM). When no, in a step 306, processor 12 generates a VM exit event and

transfers execution to an event handler, such as handler 61 in Fig. 2-A. When failure to fetch the

guest instruction is caused by a memory access violation, such a failure may be indicative of a

security program (e.g., anti-malware module) trying to protect a content of the respective

memory page. One exemplary memory section typically protected from execution in this

20

WO 2016/118033 PCT/R02015/050009

manner stores an execution stack of a guest process. Marking the stack as non-executable may

protect the guest process, for instance, from a stack exploit. In such situations, some

embodiments may re-attempt to fetch the guest instruction, ignoring the respective memory

access permissions (step 305). In a step 307, the fetched guest instruction is marked with a

5 dedicated flag, to indicate that the respective instruction was "force-fetched", i.e.. was fetched

while breaking memory access permissions. Processor 12 may then proceed to a step 308.

[00651 Following the fetch stage, step 308 decodes and dispatches the guest instruction. In a

step 310, the guest instruction is launched into execution. When executing the guest instruction

satisfies a criterion for VN exit, whereini the criterion is not related to memory access.

10 processor 12 proceeds to a step 322 detailed below. Such VM exits may be triggered in a variety

of situations. For instance, the guest instruction may be a specialized instruction, such as

VMCALL, which automatically trigger a VM exit event when called from within a guest VM.

Another exemplary reason for VM exit, which is not related to memory access, is the occurrence

of a hardware event (e.g., an interrupt) during execution of the guest instruction.

15 [00661 When executing the guest instruction causes a memory access violation (for instance,

when the guest instruction instructs the processor to write a result to a memory page marked as

non-writable), a conventional processor typically suspends execution of the guest instruction,

flushes the processor pipeline(s) and generates a VM suspend event (e.g. VMExit). In contrast,

in some embodiments of the present invention, execution of the guest instruction is not

20 suspended. Instead, in a step 318, the VM exit event is delayed until the execution stage of the

pipeline for the guest instruction finishes. However, in some embodiments, the results of the

completed execution stage are not committed, as would happen in conventional systems.

Instead, in a step 320, processor 12 may instruct commit unit 38 to store the results of the

completed execution stage of the guest instruction in suspend event register44. Such

25 functionality may be achieved, for instance, using an activation signal to switch commit unit 38

from committing results to memory and/or general purpose registers of processor 12, to storing

results in register 44 when a memory access violation has occurred. The control signal may

indicate whether execution of the guest instruction has caused a memory access violation.

Commit unit 38 may receive such a signal, for instance, from the MMU via memory access

21

WO 2016/118033 PCT/R02015/050009

module 34. In some embodiments, step 320 comprises commit unit38 retrieving a result of

executing the guest instruction from register file 40.

[00671 In an alternative embodiment, instead of saving execution results of the guest instruction

to register 44, step 320 may save such results to a dedicated memory region, such as the guest

5 state area of the VMSO of the respective guest VM. In yet another embodiment, processor 12

may transmit such results to VM exit handler 61 upon executing the VM exit (step 306).

[00681 In a step 322, processor 12 may store results of disassembling the guest instruction to

suspend event register 44 (and/or to memory as described above). Alternatively, instruction

disassembly data may be stored to a dedicated area of the VMSO of the currently-executing

1o guest VM. Instruction disassembly data may be produced by instruction decoder 30 and/or

execution unit(s) 36 in the process of decoding and/or executing the guest instruction; step 322

may include retrieving such data from the respective processor module. After storing execution

results and/or disassembly data for the guest instruction, processor 12 may generate a VM exit

event (step 306).

15 [0069] When execution of the current guest instruction proceeds without causing memory access

violations (step 314) and without non-memory related reasons for a VM exit (step 312), a

step 315 may determine whether the current guest instruction was force-fetched (see steps 305

307 above). When no, a step 316 commits results of the execution to memory and/or to general

purpose processor registers. When the current guest instruction is force-fetched, some

20 embodiments may treat the respective instruction as an instruction causing a memory access

violation, i.e., by waiting for the respective instruction to complete the execution stage of the

pipeline, storing results and/or instruction disassembly data to register 44, before generating a

VM exit event (see steps 318-320-322-306 above).

[00701 Fig. 9 shows an exemplary sequence of steps performed by a guest VM and/or by

25 computer security module 60 (Figs. 2-A-B) according to some embodiments of the present

invention related to computer security. A guest process, such as an application (e.g, 56a in

Fig. 2-A) or a process of the operating system (e.g., guest OS 54a in Fig. 2-A) may execute

within the guest VM, advancing stepwise through a sequence of guest instructions (step 332).

Execution of the guest process continues until a VM exit is generated, according, for instance, to

22

WO 2016/118033 PCT/R02015/050009

a scenario described above in relation to Fig. 8. A skilled artisan may appreciate how the

description may be adapted to a system wherein processor 12 generates a virtualization exception

instead of a VM exit event, and wherein an exception handler executing within the guest VM

(e.g., handler 63 in Fig. 2-B) is configured to intercept the respective exception.

5 [0071] In a step 336, handler 61 intercepts the VM exit event, which is analyzed for evidence of

a security threat. When the event indicates a security threat (e.g., an operation executed with

malicious intent), in a step 340, CSM 60 may take protective action against the guest process

and/or against the guest VM.. Such action may include, among others, blocking the execution of

the guest process, returning an error message or a set of dummy results to the guest process,and

10 alerting an administrator of the host system.

[0072] When the VM exit event is not indicative of a security threat, a step 342 determines

whether the results of executing the guest instruction are available (either in event register 44 of

processor 12 or in memory). When no, CSM 60 advances to a step 348 detailed below. When

yes, a step 344 retrieves the respective results from register 44 and/or memory (eg., guest state

15 area of the VMSO of the respective guest VM). In a step 346, CSM 60 may apply the results of

executing the current guest instruction. In some embodiments, step 346 comprises a set of

operations carried out in conventional systems at the commit stage. For instance, step 346 may

include updating values of general purpose, control, and status processor registers of the

virtualized processor of the respective guestM M. In some embodiments, such registers are

20 accessible within the guest state area of the VMSO of the respective guest VM. Step 346 may

further include saving some results to memory addresses indicated by an operand of the current

guest instruction. Step 346 may further include incrementing the instruction pointer (e.g., RIP in

x86 platforms), to show that execution of the current guest instruction is complete.

[0073] Some embodiments of the present invention add a dedicated instruction to the current

25 instruction set architecture (ISA) of processor 12, the new instruction instructing processor 12 to

apply a result of execution of a guest instruction directly, from below the guest VM executing

the respective guest instruction. The new instruction (an exemplary mnemonic is VMAPPLY)

may carry out operations of step 346 (Fig. 9). e.g., copy contents from suspend event register 44

to virtual registers of the virtualized processor of the respective guest VM and/or to memory.

23

WO 2016/118033 PCT/R02015/050009

[00741 In some embodiments, step 346 may further verify whether the current guest instruction

is an atomic instruction (e.g., as indicated by a LOCK prefix). When yes, instead of applying

results directly to registers of the guest and/or to memory, step 346 may force a re-execution of

the current guest instruction upon returning to guest VM (see step 356 below).

5 [00751 When execution results of the current guest instruction are not available (for instance,

when the current VM exit was caused by a privileged instruction such as VMCALL). in a

step 348, computer security module 60 determines whether disassembly data is available for the

current guest instruction. When yes, in a step 350, CSM 60 may retrieve such data, for instance

from disassembly field 46a of register 44 (see e.g., Fig. 6). CSM 60 may then proceed to

10 emulate the current guest instruction according to the retrieved disassembly data (step 354).

[0076] When no disassembly data is available, a step 352 may disassemble the current guest

instruction before proceeding with emulation. In a step 356, CSM 60 may re-launch the

respective guest VM (e.g., by issuing a VMRESUME instruction on Intel® platforms). In some

embodiments wherein step 346 includes a modification of the instruction pointer, execution of

15 the guest process will start with the processor instruction immediately following the current

guest instruction, or with a processor instruction indicated by the current guest instruction (e.g.,

in the case of control flow-changing instructions such as JMP, CALL, etc.).

[00771 The exemplary systems and methods described above allow a host system,. such as a

computer or a smartphone, to efficiently carry out computer security tasks when operating in a

20 hardware virtualization configuration. Security tasks may include, among others, protecting the

host system against malware such as computer viruses and spyware. In some embodiments, the

host system is configured to execute an operating system and a set of software applications

within a virtual machine. A security module may execute outside the respective virtual machine,

for instance at the level of a hypervisor, and may protect the respective virtual machine against

25 malware.

[00781 In some embodiments, the security module identiies a section of memory (e.g. a set of

memory pages) containing code and/or data which is critical to the security of the protected VM,

and configures access permissions for the respective section of memory. Such access

permissions may indicate, for instance, that the respective section of memory is non-writable

24

WO 2016/118033 PCT/R02015/050009

and/or non-executable. The security module may further configure the processor of the host

system to generate a VM suspend event (such as a VM exit or a virtualization exception) in

response to a memory access violation, e.g., when software executing within the protected VM

attempts to write to a section of memory marked as non-writable, or to execute code from a

5 section of memory marked as non-executable. The security module may then intercept such

processor events via an event handler, and may determine whether such events are indicative of a

computer security threat. In configurations wherein the security module executes outside the

protected VM, the activity of the security module is potentially invisible to software executing

within the protected VM, including malware.

10 [0079] In conventional svsterns. intercepting VM suspend events proceeds according to methods

generically known in the art as "trap-and-emulate". In one example of a conventional technique,

after determining which instruction caused the respective event (e.g., a VM exit), the anti

malware program emulates the respective instruction before returning execution to the protected

VM, and modifies the instruction pointer to indicate that the respective instruction has already

15 been executed. Without the emulation step, returning execution to the protected VM would

typically re-trigger the VM exit, thus creating an infinite loop.

[0080] Conventional trap-and-emulate systems and methods may therefore require the anti

malware program to include an instruction disassembler and/or an instruction emulator. Such

components may be complex to develop and maintain and may not be portable, for instance,

20 from one processor to another. Moreover, in conventional systems, the disassembly and/or

emulation steps are typically carried out for every VM suspend event, placing a considerable

computational burden onto the host system. In contrast, some embodiments of the present

invention eliminate the need for a disassembler and/or an emulator, substantially accelerating

computer security operations.

25 [00811 Some embodiments of the present invention introduce changes to the configuration and

operation of conventional processors, enabling such processors to operate more efficiently in

hardware virtualization configurations. In some embodiments, the processor is configured to

delay the generation of the VM suspend event until the execution phase of the pipeline for the

current instruction is complete, at least in certain situations (for instance when the VM suspend

25

event is triggered by a memory access violation). The processor may be further

configured to save a result of the execution stage of the current instruction to a special

processor register (distinct from the general purpose registers or control registers of the

processor) or to a special memory area (e.g., a guest state area of the VMSO of the

respective guest VM).

[0082] Such improvements may be especially beneficial for computer security

applications, enabling an efficient protection of a virtual machine from outside, e.g., from

the level of a hypervisor exposing the respective VM. When compared to a conventional

computer security solution, some embodiments of the present invention allow a

substantial reduction in computation, by eliminating the disassembly and emulation

stages from the operation of security software configured to intercept and analyze VM

suspend events. Instead of emulating the instruction which generated the respective event,

some embodiments enable the security software to read the respective results from a

processor register or memory location, and to apply such results directly.

[0083] In contrast to conventional systems, some embodiments of the present invention

generate a VM suspend event only after the current guest instruction completes the

execution stage of the pipeline. Such changes to the functionality of hardware components

may introduce a delay due to extra clock ticks needed to carry out the execution stage of

the respective instruction. However, such a performance penalty is substantially offset by

the elimination of the instruction emulation and/or disassembly operations needed in

conventional computer security software (potentially amounting to hundreds of additional

instructions for each VM suspend event).

[0084] It will be clear to a skilled artisan that the above embodiments may be altered in

many-ways without departing from the scope of the invention. Accordingly, the scope of

the invention should be determined by the following claims and their legal equivalents.

[0085] Where any or all of the terms "comprise", "comprises", "comprised" or

"comprising" are used in this specification (including the claims) they are to be interpreted

as specifying the presence of the stated features, integers, steps or components, but not

precluding the presence of one or more other features, integers, steps or components.

26

The claims defining the invention are as follows:

1. A host system comprising at least one hardware processor configured to execute

a virtual machine and a computer security program, wherein the at least one

hardware processor is further configured to:

in response to receiving a guest instruction for execution, determine whether

executing the guest instruction within the virtual machine causes a

violation of a memory access permission, the guest instruction instructing

the at least one hardware processor to determine a result of applying an

operator to an operand, wherein executing the guest instruction in the

absence of the violation causes writing the result to a first location;

in response to determining whether executing the guest instruction causes the

violation, when executing the guest instruction causes the violation,

write the result to a second location distinct from the first location, the

second location accessible to the computer security program; and

in response to writing the result to the second location, switch from executing

the guest instruction to executing the computer security program,

wherein the computer security program is configured to determine

whether the violation is indicative of a computer security threat.

2. The host system of claim 1, wherein the first location is a general purpose

register of the at least one hardware processor.

3. The host system of claim 1, wherein the first location is a control register of the

at least one hardware processor.

4. The host system of claim 1, wherein the first location comprises a section of a

memory of the host system.

27

5. The host system of any one of claims 1 to 4, wherein the result comprises a

memory address.

6. The host system of any one of claims 1 to 4, wherein the result comprises the

operand.

7. The host system of any one of claims 1 to 6, wherein the computer security

program executes within the virtual machine.

8. The host system of any one of claims 1 to 6, wherein the computer security

program executes outside the virtual machine.

9. The host system of any one of claims 1 to 8, wherein the second location

comprises a predetermined register of the at least one hardware processor.

10. The host system of any one of claims 1 to 8, wherein the second location

comprises a predetermined section of a memory of the host system.

11. The host system of any one of claims 1 to 8, wherein the second location

comprises a data structure indicative of a current state of the virtual machine.

12. The host system of any one of claims I to 11, wherein the at least one hardware

processor is further configured, in response to switching to executing the

computer security program, to read the result from the second location.

28

13. The host system of claim 12, wherein the at least one hardware processor is

further configured, in response reading the result, to write the result to a

destination determined according to the guest instruction.

14. The host system of any one of claims 1 to 11, wherein the computer security

program comprises an instruction which, when executed by the at least one

hardware processor, causes the at least one hardware processor to read the result

from the second location and to write the result to a destination determined

according to the guest instruction.

15. The host system of any one of claims I to 14, wherein the at least one hardware

processor is further configured, in response to switching to executing the

computer security program, to:

determine whether the guest instruction is an atomic instruction; and

in response, when the guest instruction is an atomic instruction, to execute the

guest instruction within the virtual machine.

16. A method of protecting a host system from computer security threats, the

method comprising:

in response to receiving a guest instruction for execution, employing at least one

hardware processor of the host system to determine whether executing

the guest instruction causes a violation of a memory access permission,

wherein the guest instruction executes within a guest virtual machine

exposed by the host system, the guest instruction instructing the at least

one hardware processor to determine a result of applying an operator

to an operand, wherein executing the guest instruction in the absence

of the violation causes writing the result to a first location;

in response to determining whether executing the guest instruction causes the

violation, when executing the guest instruction causes the violation,

employing the at least one hardware processor to write the result to a

29

second location distinct from the first location, the second location

accessible to the computer security program; and

in response to writing the result to the second location, switching from executing

the guest instruction to executing the computer security program,

wherein the computer security program is configured to determine

whether the violation is indicative of a computer security threat.

17. The method of claim 16, further comprising, in response to switching to

executing the computer security program, employing the at least one hardware

processor to read the result from the second location.

18. The method of claim 17, further comprising, in response to reading the result,

employing the at least one hardware processor to write the result to a destination

determined according to the guest instruction.

19. At least one hardware processor of a host system, the at least one hardware

processor configurable to:

in response to receiving a guest instruction for execution, determine whether

executing the guest instruction causes a violation of a memory access

permission, wherein the guest instruction executes within a guest virtual

machine exposed by the host system, the guest instruction instructing the

at least one hardware processor to determine a result of applying an

operator to an operand, wherein executing the guest instruction in the

absence of the violation causes writing the result to a first location;

in response to determining whether executing the guest instruction causes the

violation, when executing the guest instruction causes the violation,

write the result to a second location distinct from the first location, the

second location accessible to the computer security program; and

in response to writing the result to the second location, switch from executing

the guest instruction to executing a computer security program, wherein

30

the computer security program is configured to determine whether the

violation is indicative of a computer security threat.

20. A non-transitory computer-readable medium storing instructions which, when

executed by at least one hardware processor of a host system, cause the host

system to form a computer security program configured to determine whether a

violation of a memory access permission is indicative of a computer security

threat, and wherein the at least one hardware processor is configurable to:

in response to receiving a guest instruction for execution, determine whether

executing the guest instruction causes the violation, wherein the guest

instruction executes within a guest virtual machine exposed by the host

system, the guest instruction instructing the at least one hardware

processor to determine a result of applying an operator to an operand,

wherein executing the guest instruction in the absence of the violation

causes writing the result to a first location;

in response to determining whether executing the guest instruction causes the

violation, when executing the guest instruction causes the violation,

write the result to a second location distinct from the first location, the

second location accessible to the computer security program, and

in response to writing the result to the second location, switch from executing

the guest instruction to executing the computer security program.

31

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

