

Office de la Propriété

Intellectuelle
du Canada

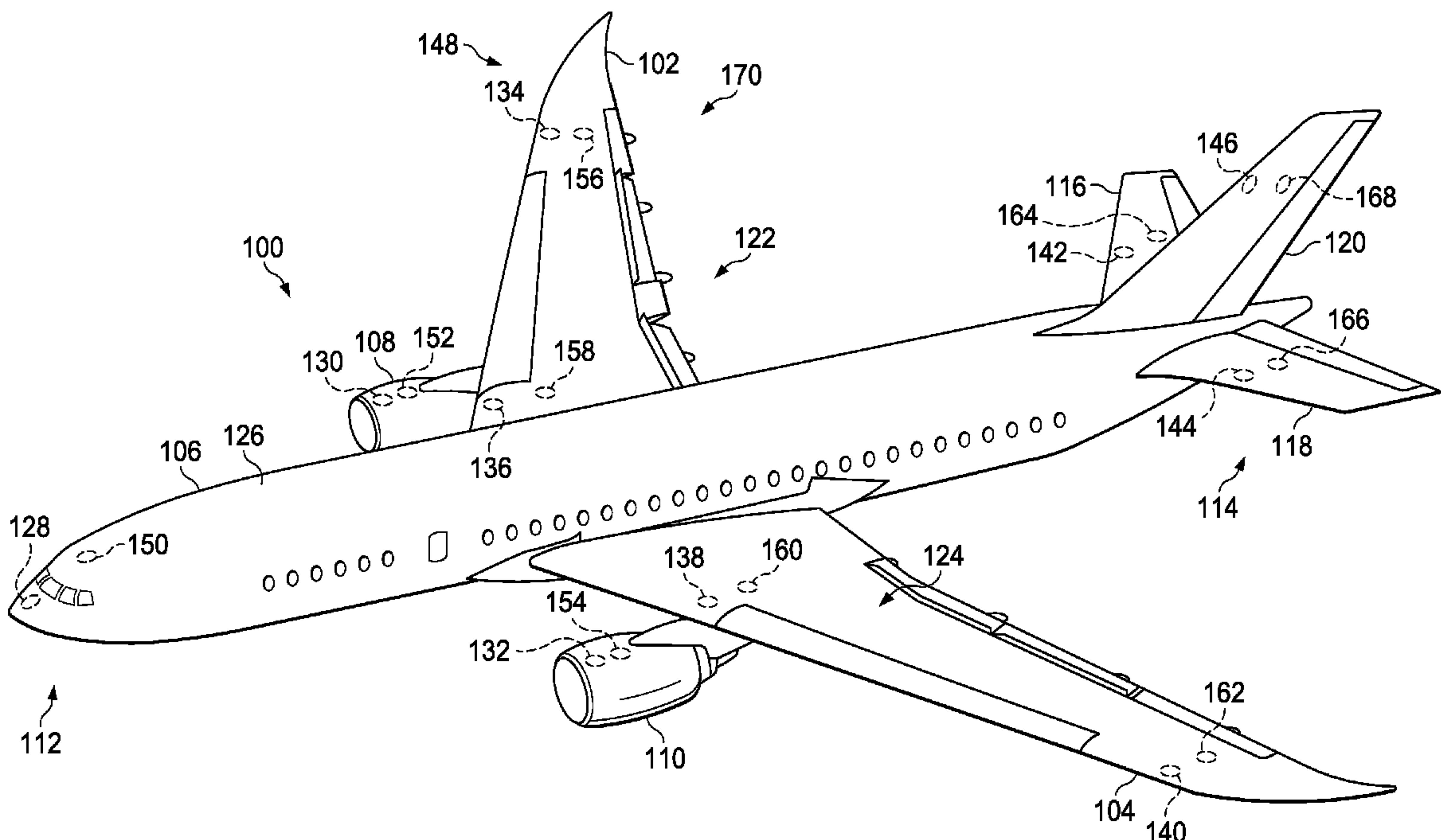
Un organisme
d'Industrie Canada

Canadian
Intellectual Property
Office

An agency of
Industry Canada

CA 2851393 C 2016/04/26

(11)(21) **2 851 393**


(12) **BREVET CANADIEN**
CANADIAN PATENT

(13) **C**

(86) Date de dépôt PCT/PCT Filing Date: 2012/11/26
(87) Date publication PCT/PCT Publication Date: 2013/07/11
(45) Date de délivrance/Issue Date: 2016/04/26
(85) Entrée phase nationale/National Entry: 2014/04/07
(86) N° demande PCT/PCT Application No.: US 2012/066515
(87) N° publication PCT/PCT Publication No.: 2013/103453
(30) Priorité/Priority: 2012/01/05 (US13/344,144)

(51) Cl.Int./Int.Cl. *B64D 15/00* (2006.01),
B64D 15/20 (2006.01), *B64D 15/22* (2006.01)
(72) Inventeurs/Inventors:
MEIS, CHARLES S., US;
BOSETTI, CRIS K., US
(73) Propriétaire/Owner:
THE BOEING COMPANY, US
(74) Agent: SMART & BIGGAR

(54) Titre : SYSTEME DE DETECTION D'UNE CONDITION DE GIVRAGE A GROSSES GOUTTES SURFONDUES
(54) Title: SUPERCOOLED LARGE DROP ICING CONDITION DETECTION SYSTEM

(57) Abrégé/Abstract:

An ice detection system (122) comprising a first group of sensors (148) and a second group of sensors (170). The first group of sensors (148) is located in a first group of locations on an aircraft (100). The first group of sensors (148) in the first group of locations is configured to detect a first type of icing condition for the aircraft (100). The second group of sensors (170) is located in a second group of locations on the aircraft (100). The second group of sensors (170) in the second group of locations is configured to detect a second type of icing condition for the aircraft (100).

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(10) International Publication Number

WO 2013/103453 A1

(43) International Publication Date
11 July 2013 (11.07.2013)

(51) International Patent Classification:
B64D 15/00 (2006.01) *B64D 15/22* (2006.01)
B64D 15/20 (2006.01)

(21) International Application Number:
PCT/US2012/066515

(22) International Filing Date:
26 November 2012 (26.11.2012)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
13/344,144 5 January 2012 (05.01.2012) US

(71) Applicant: THE BOEING COMPANY [US/US]; 100 North Riverside Plaza, Chicago, Illinois 60606-2016 (US).

(72) Inventors; and

(71) Applicants : MEIS, Charles S. [US/US]; 19640 SE 189th Place, Renton, Washington 98058 (US). BOSETTI, Cris K. [US/US]; 7735 10th Avenue NW, Seattle, Washington 98117 (US).

(74) Agent: COUSINS, Clifford G.; The Boeing Company, P.O. Box 2515, MC 110-SD54, Seal Beach, California 90740-1515 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))

(54) Title: SUPERCOOLED LARGE DROP ICING CONDITION DETECTION SYSTEM

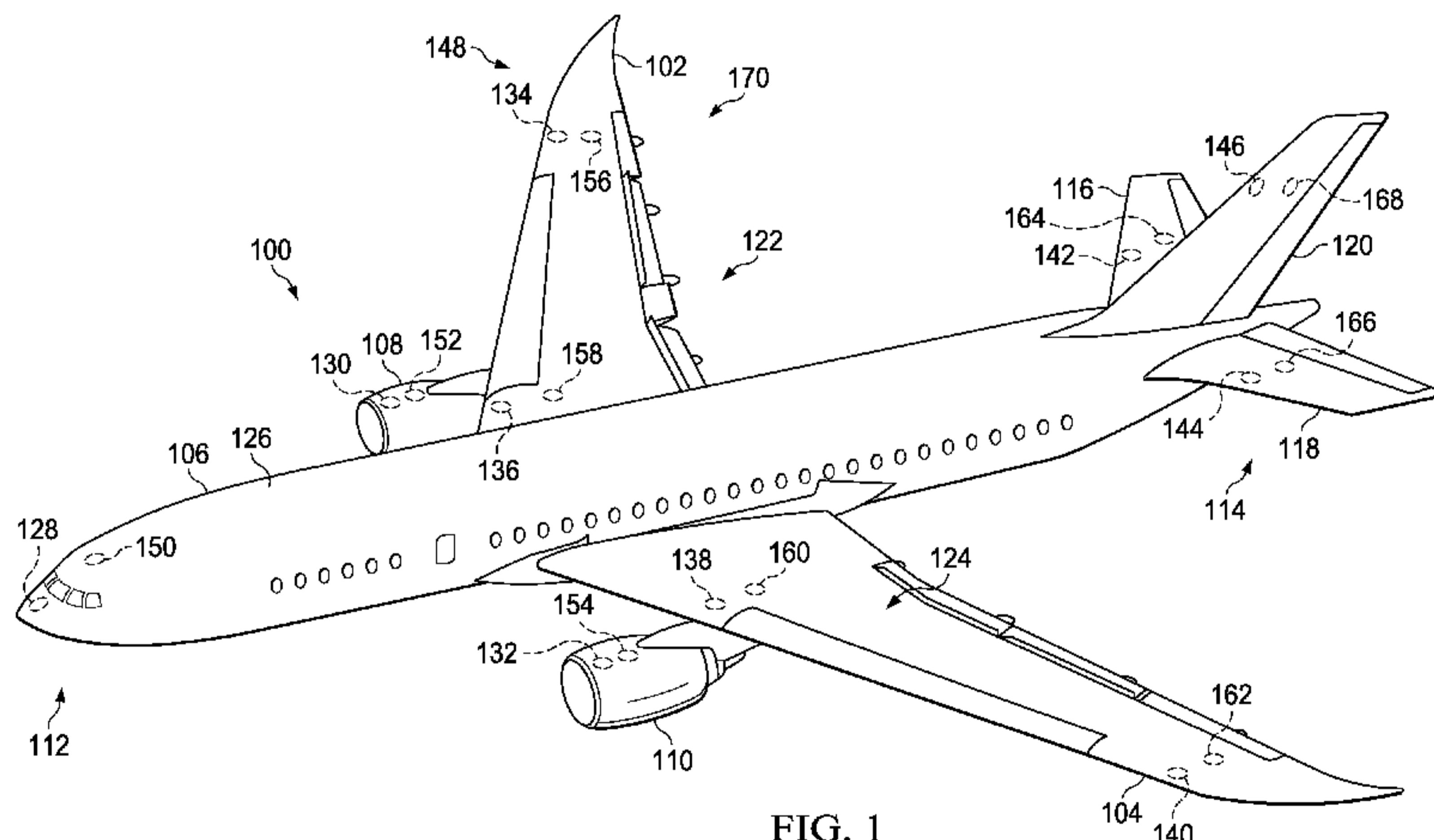


FIG. 1

(57) Abstract: An ice detection system (122) comprising a first group of sensors (148) and a second group of sensors (170). The first group of sensors (148) is located in a first group of locations on an aircraft (100). The first group of sensors (148) in the first group of locations is configured to detect a first type of icing condition for the aircraft (100). The second group of sensors (170) is located in a second group of locations on the aircraft (100). The second group of sensors (170) in the second group of locations is configured to detect a second type of icing condition for the aircraft (100).

WO 2013/103453 A1

5 **SUPERCOOLED LARGE DROP ICING CONDITION DETECTION SYSTEM****BACKGROUND**

10 The present disclosure relates generally to detecting icing conditions and, in particular, to icing conditions for an aircraft. Still more particularly, the present disclosure relates to detecting supercooled water drops, including supercooled large drops (SLD).

15 In aviation, icing on an aircraft may occur when the atmospheric conditions lead to the formation of ice on the surfaces of the aircraft. Further, this ice also may occur within the engine. Ice forming on the surfaces of the aircraft, on inlets of an engine, and other locations are undesirable and potentially unsafe for operating the aircraft.

20 Icing conditions may occur when drops of supercooled liquid water are present. In these illustrative examples, water is considered to be supercooled when the water is cooled below the stated freezing point for water but is still in a liquid form. Icing conditions may be characterized by the size of the drops, the liquid water content, air temperature, and other parameters. 25 These parameters may affect the rate and extent at which ice forms on an aircraft.

30 When icing occurs, the aircraft does not operate as desired. For example, ice on the wing of an aircraft will cause the aircraft to stall at a lower angle of attack and have an increased drag.

Aircraft may have mechanisms to prevent icing, remove ice, or some combination thereof to handle these icing conditions. For example, aircraft may include icing detection, prevention, and removal systems. Ice may be removed using deicing fluid, 35 infrared heating, and other suitable mechanisms.

Aircraft may be certified for operating during different types of icing conditions. Some aircraft may be certified to operate in normal icing conditions, but not those that include supercooled large drops. Currently used sensors are unable to differentiate 5 between normal and supercooled large drop icing conditions.

Therefore, it would be desirable to have a method and apparatus that takes into account one or more of the issues discussed above as well as possibly other issues.

10

SUMMARY

The disclosure describes an ice detection system for detecting a plurality of in-flight icing conditions. The system includes a 15 first group of sensors located in a first group of locations on an aircraft. The first group of sensors in the first group of locations is configured to detect a first type of icing condition for the aircraft. The first group of locations is selected to be on first areas of the aircraft where collision with water drops of a 20 first size range is expected to occur more frequently during flight of the aircraft than collision with water drops of a second size range. The first type of icing condition is associated with water drops of the first size range. The system further includes a second group of sensors located in a second group of locations on the 25 aircraft. The second group of sensors in the second group of locations is configured to detect a second type of icing condition for the aircraft. The second group of locations is selected to be on second areas of the aircraft where collision with water drops of the second size range is expected to occur more frequently during 30 flight of the aircraft than collision with water drops of the first size range. The second type of icing condition is associated with

water drops of the second size range. The first size range is less than the second size range. The system further includes a processor configured to monitor in-flight data from the first group of sensors and responsive to the first group of sensors detecting the 5 first type of icing condition for the aircraft, perform a first action in response to the data indicating a presence of at least one of the first type of icing condition. The first action includes generating, during flight, a first alert on a flight deck interface for the aircraft. The processor is further configured to monitor 10 in-flight data from the second group of sensors and responsive to the second group of sensors detecting the second type of icing condition for the aircraft, perform a second action in response to the data indicating a presence of at least one of the first type of icing condition. The second action includes generating, during 15 flight, a second alert on the flight deck interface for the aircraft.

The first group of locations may be a first number of locations in which first drops for the first type of icing 20 condition collide with a surface of the aircraft and the second group of locations may be a second number of locations in which second drops for the second type of icing condition collide with the surface of the aircraft.

The surface may be a surface of an airfoil for the aircraft. 25 The first drops may collide with the surface in a first region on the surface of the airfoil, the second drops may collide with the surface in a second region on the surface of the airfoil, and the first region may be further forward on the airfoil than the second region.

30 The second type of icing condition may be a supercooled large drop icing condition.

The action may be selected from at least one of generating an alert, generating a log entry, activating an anti-icing system, and sending a report.

The first group of locations and the second group of locations 5 may be on a structure for the aircraft and the structure may be selected from one of an airfoil, a wing, a horizontal stabilizer, a vertical stabilizer, a fuselage, an engine inlet, and a nose portion of the fuselage.

A first sensor in the first group of sensors and a second 10 sensor in the second group of sensors may form a sensor pair. The first sensor may be a forward sensor and the second sensor may be an aft sensor that may be located in a location that is aft of the forward sensor.

The sensors in the first group of sensors and the second group 15 of sensors may be configured to detect a presence of ice.

The aircraft may be selected from one of a commercial aircraft, a military aircraft, an airplane, and a helicopter.

20 The disclosure also describes an ice detection system for detecting a plurality of in-flight icing conditions. The system includes a group of sensors located in a group of locations on a surface of an aircraft. The group of sensors in the group of locations is configured to detect a supercooled large drop icing 25 condition on the surface of the aircraft. The group of locations is selected to be on first areas of the aircraft where collision with supercooled large water drops is expected to occur more frequently during flight of the aircraft than collision with smaller water drop sizes. The system further includes a processor configured to 30 monitor in-flight data from the group of sensors and perform an action in response to the data indicating a presence of the

supercooled large drop icing condition on the surface of the aircraft. The action includes generating, during flight, a first alert on a flight deck interface for the aircraft.

5 The group of sensors may be a second group of sensors and the system may further include a first group of sensors configured to detect another type of icing condition on the surface of the aircraft.

10 The surface may be a surface of an airfoil for the aircraft. The drops may collide with the surface in a region on the surface of the airfoil that may be further aft as compared to drops from another type of icing condition on the surface of the airfoil.

The drops may have a diameter from about 0.112 millimeters to about 2.2 millimeters.

15 The action may be selected from at least one of generating an alert, generating a log entry, activating an anti-icing system, and sending a report.

20 The disclosure also describes a method for detecting a plurality of in-flight icing conditions for an aircraft. The method involves monitoring, during flight of the aircraft, a first group of sensors located in a first group of locations on the aircraft for first data indicating a first type of icing condition in the icing conditions for the aircraft. The first group of locations is 25 selected to be on first areas of the aircraft where collision with water drops of a first size range is expected to occur more frequently than collision with water drops of a second size range. The first type of icing condition is associated with water drops of the first size range. The method further involves monitoring, 30 during flight of the aircraft, a second group of sensors located in a second group of locations on the aircraft for second data

indicating a second type of icing condition in the icing conditions for the aircraft. The second group of locations is selected to be on second areas of the aircraft where collision with water drops of the second size range is expected to occur more frequently than
5 collision with water drops of the first size range. The second type of icing condition is associated with water drops of the second size range. The first size range is less than the second size range. The method further involves initiating a first action in response to detecting the first type of icing condition from the
10 first data. The first action includes generating, during flight, a first alert on a flight deck interface for the aircraft, and initiating a second action in response to detecting the second type of icing condition from the second data. The second action includes generating, during flight, a second alert on the flight deck
15 interface for the aircraft.

The method may involve, responsive to detecting an icing condition from at least one of the first data and the second data, identifying a location on the aircraft in which the icing condition is detected.

20 Initiating the action in response to detecting the at least one of the first type of icing condition from the first data and the second type of icing condition from the second data may involve initiating the action in response to detecting the at least one of the first type of icing condition from the first data and the
25 second type of icing condition from the second data. The action may be selected from at least one of generating an alert, generating a log entry, activating an anti-icing system, and sending a report.

30 The disclosure also describes a method for detecting icing conditions for an aircraft. The method involves monitoring a first

group of sensors located in a first group of locations on the aircraft for first data signals indicating a first type of icing condition in the icing conditions for the aircraft, and monitoring a second group of sensors located in a second group of locations on the aircraft for second data signals indicating a second type of icing condition in the icing conditions for the aircraft. The first type of icing condition is caused by first drops having a first number of sizes, the second type of icing condition is caused by second drops having a second number of sizes, and the first number of sizes is smaller than the second number of sizes. The method further involves initiating an action in response to detecting at least one of the first type of icing condition from the first data signals and the second type of icing condition from the second data signals, wherein the action includes generating an alert signal.

The disclosure also describes an aircraft having an ice detection system configured to perform the methods herein.

The disclosure also describes an aircraft ice detection system. The system includes a first group of sensors located in a first group of locations on an aircraft, wherein the first group of sensors in the first group of locations is configured to detect a first type of icing condition for the aircraft, and a second group of sensors located in a second group of locations on the aircraft, wherein the second group of sensors in the second group of locations is configured to detect a second type of icing condition for the aircraft. The first group of sensors and the second group of sensors generate data. The system further includes a processor configured to monitor the data from the first group of sensors and the second group of sensors and perform an action in response to

the data indicating a presence of at least one of the first type of icing condition and the second type of icing condition, where the first type of icing condition is caused by first drops having a first number of sizes, the second type of icing condition is caused 5 by second drops having a second number of sizes, and the first number of sizes is smaller than the second number of sizes. The action includes generating an alert.

10 The disclosure also describes an aircraft having an ice detection system having the features described herein.

15 These and other features and functions may be achieved independently in various embodiments of the present disclosure or may be combined to form yet other embodiments as can be understood by reference to the following description and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

20 The novel features or functions believed to be characteristic of the illustrative embodiments are set forth in the appended claims. The illustrative embodiments, however, as well as preferred modes of use and further features and functions thereof 25 will best be understood by reference to the following detailed description of illustrative embodiments of the present disclosure when read in conjunction with the accompanying drawings, wherein:

Figure 1 is an illustration of an aircraft in accordance with an illustrative embodiment;

Figure 2 is an illustration of components in an ice detection system in accordance with an illustrative embodiment;

5 **Figure 3** is an illustration of an airfoil in accordance with an illustrative embodiment;

Figure 4 is an illustration of a block diagram of a design environment in accordance with an illustrative embodiment;

10 **Figure 5** is an illustration of a flowchart of a process for detecting icing conditions for an aircraft in accordance with an illustrative embodiment;

Figure 6 is an illustration of a flowchart of a process for designing an ice detection system in accordance with an illustrative embodiment;

15 **Figure 7** is an illustration of a data processing system in accordance with an illustrative embodiment;

Figure 8 is an illustration of an aircraft manufacturing and service method in accordance with an illustrative embodiment; and

20 **Figure 9** is an illustration of an aircraft in which an illustrative embodiment may be implemented.

DETAILED DESCRIPTION

Some illustrative embodiments may recognize or take into account a number of different considerations. For example, various illustrative embodiments may recognize or take into account that currently used systems for detecting icing conditions on an aircraft are unable to detect all of the different types of icing conditions that may occur. For example, some illustrative embodiments may recognize or take into account that as the size of the drops of water increase, currently used sensors may not detect

icing caused by those drops of water. Some illustrative embodiments may recognize or take into account that the locations at which different sizes of drops will collide with an airfoil during operation of an aircraft change depending on the size of the drops.

5 Various illustrative embodiments may recognize or take into account that it is desirable to detect different types of icing conditions that may be caused by different sizes of drops of water. In particular, some illustrative embodiments may recognize or take into account that it may be desirable to detect drops of
10 supercooled liquid water. These drops may take the form of supercooled large drops.

Thus, one or more illustrative embodiments provide a method and apparatus for detecting ice. In one illustrative embodiment, an ice detection system comprises a first group of sensors and a
15 second group of sensors. The first group of sensors is located in a first group of locations on an aircraft. The first group of sensors in the first group of locations is configured to detect a first type of icing condition for the aircraft.

A second group of sensors is located in a second group of locations on the aircraft. The second group of sensors in the second group of locations is configured to detect a second type of icing condition for the aircraft. These two types of icing conditions are examples of icing conditions that may occur in different locations on the aircraft.

25 With reference now to the figures and, in particular, with reference to **Figure 1**, an illustration of an aircraft is depicted in accordance with an illustrative embodiment. In this

5 illustrative example, aircraft **100** has wing **102** and wing **104** attached to fuselage **106**. Aircraft **100** also includes engine **108** attached to wing **102** and engine **110** attached to wing **104**.

Fuselage **106** has nose section **112** and tail section **114**.

10 Nose section **112** is the forward part of aircraft **100**, while tail section **114** is the aft part of aircraft **100**. Horizontal stabilizer **116**, horizontal stabilizer **118**, and vertical stabilizer **120** are attached to tail section **114** of fuselage **106**.

15 Aircraft **100** is an example of an aircraft in which ice detection system **122** may be implemented in accordance with an illustrative embodiment. In these illustrative examples, ice detection system **122** comprises sensors **124** on surface **126** of aircraft **100**. As depicted, sensors **124** include sensors **128**, **130**, **132**, **134**, **136**, **138**, **140**, **142**, **144**, and **146**. These sensors form first group of sensors **148** in sensors **124** for ice detection system **122**.

20 Additionally, sensors **124** also include sensors **150**, **152**, **154**, **156**, **158**, **160**, **162**, **164**, **166**, and **168**. These sensors form second group of sensors **170** in sensors **124** for ice detection system **122**. In the illustrative examples, sensors **124** may 25 detect when ice is formed on the sensors.

25 As depicted, first group of sensors **148** is in a first group of locations on surface **126** of aircraft **100**. First group of sensors **148** is configured to detect a first type of icing condition for aircraft **100**. Second group of sensors **170** is in a second group of locations on surface **126** of aircraft **100**. Second group of sensors **170** in the second locations is configured to detect a second type of icing condition for aircraft **100**.

35 In these illustrative examples, these icing conditions may occur at different altitudes and temperatures that cause the

5 formation of ice on aircraft **100**. For example, icing conditions
may be present at an altitude from about sea level to about
30,000 feet when the temperature is from about **-40** degrees
Celsius to about **0** degrees Celsius. Of course, other altitudes
and temperatures may be present at which ice may be formed from
10 water that contacts surface **126** of aircraft **100**. Icing
conditions also may be present when the liquid water content in
the drops is from about **0.4** to about **2.8** grams/cubic meter at
the altitude and temperature range described above.

15 As depicted, the first type of icing condition and the
second type of icing condition are caused by drops of water of
different sizes. Although the altitude, temperature, and liquid
water content ranges may be the same, one difference between the
first and second types of icing conditions is the drop size.

20 In these illustrative examples, the first type of icing
condition may be present when the size of the drops is from
about **0.00465** millimeters in diameter to about **0.111** millimeters
in diameter. Drops with these sizes may be referred to as
normal drops. The second type of icing condition may be present
when the size of the drops includes drops that have a diameter
25 greater than about **0.111** millimeters. Drops having a size
greater than about **0.111** millimeters may be referred to as large
drops and, in particular, may be called supercooled large drops
under the altitude, temperature, and liquid water content
conditions described above. For example, the drops may have a
30 diameter of a range from about **0.112** millimeters to about **2.2**
millimeters. In addition, the second type of icing condition
may include drops that are **0.111** millimeters or less when drops
greater than **0.111** millimeters are present.

35 As depicted, first group of sensors **148** in the first group
of locations may be configured to detect ice formed by drops of

5 water in a first number of sizes. Second group of sensors **170** in the second group of locations is configured to detect ice formed by drops of water having a second number of sizes. In these illustrative examples, the first number of sizes is smaller than the second number of sizes.

10 For example, the first number of sizes may be from about **0.00465** millimeters in diameter to about **0.111** millimeters in diameter. The second number of sizes may be from about **0.112** millimeters to about **2.2** millimeters in diameter.

15 The second number of sizes of the drops of water may be drops of water that are considered to be drops of supercooled water. These drops of supercooled water may be supercooled large drops (SLD). First group of sensors **148** is configured to detect drops of water that are not supercooled large drops in these illustrative examples. The type of icing condition 20 detected by sensors **124** is based on the locations for sensors **124** on surface **126** of aircraft **100** in these illustrative examples.

25 In the illustrative examples, the first type of icing condition may be referred to as a normal icing condition. The second type of icing condition may be referred to as a supercooled large drop icing condition.

30 In these illustrative examples, sensors **124** are depicted as flush-mounted sensors. In other words, sensors **124** are substantially flush or planar with surface **126** of aircraft **100**. Sensors **124** may be implemented using all of the same type of sensors or different types of sensors. Further, other numbers of sensors **124** and locations of sensors **124** may be used in addition to or in place of those illustrated for aircraft **100** in **Figure 1**.

Although particular conditions and sizes for drops have been described for the first icing condition and the second icing condition, the different illustrative embodiments are not limited to the conditions and sizes depicted. For example, other altitudes and drop sizes may be used to define when drops of water are present for the first icing condition and the second icing condition.

However, while **Figure 1** illustrates embodiments using a twin-engine aircraft for example, various illustrative embodiments may recognize or take into account that the information contained is also applicable to aircraft with different numbers of engines. Further, the illustrative example depicts aircraft **100** as a commercial aircraft. Various illustrative embodiments may be applied to other types of aircraft, such as military aircraft.

With reference now to **Figure 2**, an illustration of components in an ice detection system is depicted in accordance with an illustrative embodiment. In this illustrative example, ice detection system **122** further comprises processor unit **200**. Processor unit **200** is a hardware device configured to perform operations with respect to detecting icing conditions for aircraft **100**. These operations may be implemented in software, hardware, or a combination of the two.

As illustrated, processor unit **200** is connected to sensors **124**. In these illustrative examples, sensors **124** generate data **202**. Data **202** may indicate whether sensors **124** detect the formation of ice on surface **126** of aircraft **100**. Ice is detected by sensors **124** when ice forms on one or more of sensors **124**. Sensors **124** send data **202** to processor unit **200**.

In these illustrative examples, processor unit **200** is configured to monitor the data from first group of sensors **148**

5 and second group of sensors **170**. Further, processor unit **200** is configured to perform an action in response to the data indicating a presence of one of the icing conditions. The particular type of icing condition detected depends on which group of sensors generating data indicates a presence of ice.

10 In other words, the first icing condition, the second icing condition, or both the first icing condition and the second icing condition may be present depending on the data generated by sensors **124**.

The action may include at least one of generating an alert, 15 generating a log entry, activating anti-icing system **204**, sending a report, and other suitable actions. As used herein, the phrase "at least one of", when used with a list of items, means different combinations of one or more of the listed items may be used and only one of each item in the list may be needed.

20 For example, "at least one of item A, item B, and item C" may include, without limitation, item A, or item A and item B. This example also may include item A, item B, and item C, or item B and item C.

In these illustrative examples, the alert may be generated 25 on flight deck interface **206** for aircraft **100**. Flight deck interface **206** is a display system located in the flight deck of aircraft **100**. The display system comprises a number of displays on which information may be displayed to operators. These displays are hardware devices in the illustrative examples.

30 As used herein, a "number", when used with reference to items, means one or more items. For example, "a number of displays" is one or more displays. The number of displays may include, for example, without limitation, a primary flight display, a navigation display, and other suitable types of displays.

5 Further, the log entry may be generated in flight
management system **208**. Flight management system **208** is a
computer system in aircraft **100**. This computer system may be
comprised of a number of computers. When more than one computer
is present in the computer system, those computers may be in
10 communication with each other using a communications media, such
as a local area network.

Processor unit **200** may send a report to flight management
system **208**. Alternatively, the report may be sent to a remote
location in addition to or in place of sending the report to
15 flight management system **208**. In these illustrative examples,
the report may include an indication of what type of icing
condition or conditions is present. This report also may
include a location of the sensor or sensors detecting the icing
condition.

20 Another action that processor unit **200** may take is to
initiate the operation of anti-icing system **204**. Anti-icing
system **204** may be implemented using any currently available
anti-icing system. Anti-icing system **204** may employ different
types of mechanisms to remove or prevent the formation of ice on
25 surface **126** of aircraft **100**. For example, anti-icing system **204**
may employ mechanical systems, chemical systems, infrared
heating systems, and other types of systems to remove ice,
prevent the formation of ice, or both on surface **126** of aircraft
100.

30 In these illustrative examples, sensors **124** may be
configured in ice detection assemblies. For example, sensors
124 may be grouped as ice detection assemblies **220, 222, 224,**
226, 228, 230, 232, 234, 236, and 238. Each sensor in an ice
detection assembly may be configured to detect a particular type
35 of icing condition. This type of grouping of sensors **124** may be

5 used in selecting locations for sensors **124**. Of course, in some illustrative examples, sensors **124** may not be grouped in ice detection assemblies.

With reference now to **Figure 3**, an illustration of an airfoil is depicted in accordance with an illustrative embodiment. In this illustrative example, airfoil **300** is wing **104** seen taken along lines **3-3** in **Figure 2**. A flow of drops **301** with respect to airfoil **300** is illustrated. Locations where drops **301** collide with surface **302** are depicted in this illustrative example.

15 As depicted, sensor **138** and sensor **160** may be configured as ice detection assembly **230** on surface **302**. In this illustrative example, sensor **138** is a first sensor located in first location **304** while sensor **160** is a second sensor located in second location **306**.

20 In these illustrative examples, first location **304** is located in first region **308** and second location **306** is located in second region **310**. As depicted, first region **308** is further forward on airfoil **300** than second region **310**.

25 In these illustrative examples, first region **308** is comprised of a number of locations. This number of locations may be contiguous or non-contiguous with each other depending on the particular implementation. In this example, these locations are all contiguous. First region **308** is a region in which first drops **312** collide with surface **302** of airfoil **300** for aircraft **100**.

30 Second region **310** is also a number of locations that may be contiguous or non-contiguous with each other. In this example, these locations are non-contiguous. For example, a first portion of the number of locations may be in section **314**, while a second portion of the number of locations may be in section

5 **316.** Second region **310** is a region in which second drops **318**
collide with surface **302** of airfoil **300** for aircraft **100**. First
drops **312** collide with surface **302** in first region **308** when a
first type of icing condition is present. Second drops **318**
collide with surface **302** in second region **310** when a second type
10 of icing condition is present. In these illustrative examples,
first region **308** is further forward on airfoil **300** as compared
to second region **310**.

15 In these illustrative examples, sensor **138** in first
location **304** is configured to detect the formation of ice when a
first type of icing condition is present while sensor **160** in
second location **306** is configured to detect the formation of ice
when a second type of icing condition is present. In some
cases, both types of icing conditions may be present at the same
time.

20 In these illustrative examples, first drops **312** and second
drops **318** are supercooled drops of water. These drops of water
may be rain drops. The drops may have sizes ranging from about
0.00465 millimeters to about **2.2** millimeters in average
diameter.

25 In these illustrative examples, normal drops are drops of
water typically with sizes less than **0.111** millimeters in
average diameter. These drops may freeze when colliding with
first region **308** of surface **302** of airfoil **300**. Drops of water
in freezing drizzle drops may have a diameter that is less than
30 about **0.5** millimeters. These drops may freeze when colliding
with second region **310** of surface **302** of airfoil **300**. Drops of
freezing rain may have a diameter that is up to about **2.2**
millimeters. These drops may freeze when colliding even further
aft on second region **310** of surface **302** of airfoil **300**.

5 In these illustrative examples, freezing drizzle is drizzle
that may freeze on contact with surface **302** of airfoil **300**.
Freezing drizzle may have a diameter that is less than about **0.5**
millimeters. Freezing rain is rain that may freeze when
colliding with surface **302** of airfoil **300** and may have a
10 diameter that is up to about **2.2** millimeters.

Drops of water may be supercooled in various environments,
such as in stratiform and in cumulous clouds. However,
supercooled large drops typically only form in cumulous clouds.

15 In these illustrative examples, first drops **312** may be, for
example, normal supercooled drops. Normal supercooled drops are
drops of supercooled water that may have a diameter from about
0.00465 millimeters to about **0.111** millimeters. As depicted,
second drops **318** may be supercooled large drops. These drops
may have a diameter with a size from about **0.112** millimeters to
20 about **2.2** millimeters.

25 In these illustrative examples, the different sizes between
first drops **312** and second drops **318** result in first drops **312**
and second drops **318** colliding with surface **302** of airfoil **300**
in different locations. In these illustrative examples, the
locations for the different drops are defined by first region
30 **308** and second region **310**.

35 As a result, placement of sensor **138** is selected such that
sensor **138** will detect a first type of icing condition caused by
first drops **312**. Sensor **160** is in second location **306** and is
configured to detect a second type of icing condition caused by
second drops **318** in these illustrative examples. In other
words, the placement of sensor **138** and sensor **160** on surface **302**
of airfoil **300** may be selected to detect different types of
icing conditions. The location selected may depend on the
configuration of airfoil **300**.

5 The illustrations of aircraft **100** with ice detection system
122 in **Figures 1-3** are not meant to imply physical or
architectural limitations to the manner in which an illustrative
embodiment may be implemented. Other components in addition to
and/or in place of the ones illustrated may be used. Some
10 components may be unnecessary in some illustrative embodiments.
Also, some components are shown in physical implementations
while other components are shown as blocks. Blocks are
presented to illustrate some functional components. One or more
15 of the blocks illustrated may be combined, divided, or combined
and divided into different blocks when implemented in an
illustrative embodiment.

For example, aircraft **100** is shown in the form of an
airplane. Of course, aircraft **100** may take other forms. For
example, without limitation, aircraft **100** also may take the form
20 of a helicopter. Also, although aircraft **100** is illustrated as
a commercial aircraft, the different illustrative embodiments
may be applied to military aircraft and other types of aircraft
depending on the particular implementation. For example,
aircraft **100** also may be applied to an aircraft that may fly in
25 the air as well as enter outer space, although icing conditions
do not exist at altitudes that are considered outer space.

In still another illustrative example, although sensors **124**
are shown as grouped into ice detection assemblies, other
illustrative embodiments may not employ ice detection
30 assemblies. In other words, groupings of sensors into
assemblies may not be used, depending on the particular
implementation. In some illustrative examples, processor unit
200 may be considered part of flight management system **208**
instead of a separate component in the illustrative examples.

5 Further, other numbers of sensors may be used other than
those illustrated for aircraft **100**. The number of sensors used
may depend on the particular type of aircraft. For example, the
number of sensors and their locations may change depending on
the size and configuration of airfoils on aircraft **100**. In
10 still other illustrative examples, the sensors may all be of the
same type of sensors or different types of sensors. For
example, sensors **124** may be implemented using a sensor
configured to detect a presence or formation of ice in these
illustrative examples.

15 Turning now to **Figure 4**, an illustration of a block diagram
of a design environment is depicted in accordance with an
illustrative embodiment. Design environment **400** may be used to
design an ice detection system for an aircraft in which the ice
detection system is configured to detect a number of types of
20 icing conditions. In this illustrative example, designer **402**
may be implemented to generate ice detection system design **404**
for ice detection system **406**. Ice detection system **406** may be,
for example, without limitation, ice detection system **122** in
Figure 1.

25 As illustrated, designer **402** may be implemented using
software, hardware, or a combination of the two. In these
illustrative examples, designer **402** may be implemented in
computer system **408**. Computer system **408** comprises a number of
computers. When more than one computer is present in computer
30 system **408**, those computers may be in communication with each
other. This communication may be facilitated using a
communications medium, such as a network.

When designer **402** is implemented using software, designer
402 may take the form of program code that is configured to run
35 on one or more computers. When hardware is employed, the

5 hardware may include circuits that operate to perform the operations in designer **402**.

In the illustrative examples, the hardware may take the form of a circuit system, an integrated circuit, an application specific integrated circuit (ASIC), a programmable logic device, 10 or some other suitable type of hardware configured to perform a number of operations. With a programmable logic device, the device is configured to perform the number of operations. The device may be reconfigured at a later time or may be permanently configured to perform the number of operations. Examples of 15 programmable logic devices include, for example, a programmable logic array, a programmable array logic, a field programmable logic array, a field programmable gate array, and other suitable hardware devices. Additionally, the processes may be implemented in organic components integrated with inorganic 20 components and/or may be comprised entirely of organic components excluding a human being.

In this illustrative example, ice detection system design **404** may be generated using aircraft design **410** for aircraft **412**. In other words, aircraft design **410** may be an input to designer 25 **402** that is used to generate ice detection system **406**. In particular, parameters **414** in aircraft design **410** for components **416** in aircraft **412** may be used to generate parameters **418** for ice detection system **406** in ice detection system design **404**. Aircraft **412** may be, for example, aircraft **100** in **Figure 1**.

30 In this illustrative example, parameters **418** in ice detection system design **404** are for components **420** in ice detection system **406**. In these illustrative examples, components **420** in ice detection system **406** include processor unit **422** and sensor system **424**.

5 Sensor system **424** comprises sensors **426**. Sensors **426**
include first group of sensors **428** and second group of sensors
430. In these illustrative examples, parameters **418** include
locations **432** for sensors **426** in sensor system **424**. In
particular, locations **432** are locations on surface **434** of
10 aircraft **412**. Locations **432** may be defined using coordinates
for aircraft **412**.

In these illustrative examples, locations **432** include first
group of locations **436** and second group of locations **438**. First
group of locations **436** is for first group of sensors **428**.
15 Second group of locations **438** is for second group of sensors
430. Additionally, first group of sensors **428** and second group
of sensors **430** may be arranged in ice detection assemblies **440**
in which a first sensor in first group of sensors **428** and a
second sensor in second group of sensors **430** are in an ice
20 detection assembly in ice detection assemblies **440**.

Simulation **442** may be performed by computer system **408** to
identify locations **432** for sensors **426**. In these illustrative
examples, simulation **442** may simulate drops **444** for icing
conditions **446**.

25 For example, simulation **442** may be performed to identify
locations **448** on surface **434** of aircraft **412** where drops **444**
will collide with surface **434** of aircraft **412**. In these
examples, drops **444** include first drops **450** and second drops
452. In this manner, simulation **442** may be used to identify
30 first region **454** in which first drops **450** will collide with
surface **434** and second region **456** in which second drops **452** will
collide with surface **434** for different structures on aircraft
412. The identification of locations **448** in simulation **442** may
be used to identify locations **432** for sensors **426**.

5 In these illustrative examples, first group of locations
436 is selected such that first drops **450** in drops **444** for first
type of icing condition **458** in icing conditions **446** collide with
surface **434** in first group of locations **436**. Second group of
locations **438** is selected such that second drops **452** in drops
10 **444** for second type of icing condition **460** in icing conditions
446 collide with surface **434** of aircraft **412** in second group of
locations **438**. In these illustrative examples, first drops **450**
for first type of icing condition **458** may be normal supercooled
drops. Second drops **452** for second type of icing condition **460**
15 may be supercooled large drops in these illustrative examples.

 In the depicted examples, first group of locations **436** may
be within first region **454** on surface **434** of structure **462** in
structures **464** in aircraft **412**. Second group of locations **438**
may be located in second region **456** on surface **434** of structure
20 **462**. In these illustrative examples, structure **462** in aircraft
412 may take the form of airfoil **466**, fuselage **468**, engine
housing **470**, engine inlet **471**, and other suitable types of
structures on aircraft **412**.

 Further, simulation **442** also may be used to select the
25 number of sensors within sensors **426** in addition to locations
432 for sensors **426**. Also, simulation **442** may be used to
determine number of types of sensors **472** that may be used to
implement sensors **426** in sensor system **424**.

 The illustration of design environment **400** in **Figure 4** is
30 not meant to imply physical or architectural limitations the
manner in which an illustrative embodiment may be implemented.
Other components in addition to and/or in place of the ones
illustrated may be used. Some components may be unnecessary.

 Also, the blocks are presented to illustrate some functional
35 components. One or more of these blocks may be combined,

5 divided, or combined and divided into different blocks when implemented in an illustrative embodiment.

For example, ice detection system design **404** may be used to identify additional locations in locations **432** for sensors **426** to detect one or more additional types of icing conditions in 10 addition to first type of icing condition **458** and second type of icing condition **460**.

In still other illustrative examples, designer **402** may be used to modify ice detection system design **404** instead of creating ice detection system design **404**. For example, ice 15 detection system design **404** may already include first group of sensors **428** in first group of locations **436**. Ice detection system design **404** may be modified to identify second group of locations **438** for second group of sensors **430**. In this manner, designer **402** may be used to identify modifications to existing 20 ice detection systems in these illustrative examples. In still other illustrative examples, ice detection system design **404** may be part of aircraft design **410** instead of a separate design.

The different components illustrated in **Figures 1-3** may be combined with components shown in **Figure 4**, used with components 25 in **Figure 4**, or a combination of the two. Additionally, some of the components illustrated in **Figures 1-3** may be examples of how components shown in block form in **Figure 4** may be implemented as physical structures.

With reference now to **Figure 5**, an illustration of a 30 flowchart of a process for detecting icing conditions for an aircraft is depicted in accordance with an illustrative embodiment. The process illustrated in **Figure 5** may be implemented in an ice detection system such as ice detection system **406** as specified by ice detection system design **404** in 35 **Figure 4**. Further, the process may be implemented in ice

5 detection system **122** for aircraft **100** in **Figure 1**. In particular, one or more operations performed in this flowchart may be implemented using processor unit **200** in **Figure 2**.

10 The process begins by monitoring a first group of sensors located at a first group of locations on the aircraft for first data indicating a first type of icing condition in the icing conditions for the aircraft (operation **500**). The first group of sensors in operation **500** may be first group of sensors **148** in ice detection system **122** in **Figure 1**. The process then monitors 15 a second group of sensors located at a second group of locations on the aircraft for second data indicating a second type of icing condition for the aircraft (operation **502**). The second group of sensors in operation **502** may be second group of sensors **170** in ice detection system **122** in **Figure 1**.

20 A determination is made as to whether at least one of the first data and the second data indicates that an icing condition is present (operation **504**). If an icing condition is not present, the process returns to operation **500** as described above. Otherwise, the process initiates an action in response 25 to detecting at least one of the first type of icing condition from the first data and the second type of icing condition from the second data (operation **506**), with the process then returning to operation **500** as described above.

30 With reference now to **Figure 6**, an illustration of a flowchart of a process for designing an ice detection system is depicted in accordance with an illustrative embodiment. The process illustrated in **Figure 6** may be implemented in design environment **400** in **Figure 4**. In particular, the process may be implemented using designer **402** in **Figure 4**.

35 The process begins by identifying a structure for an aircraft (operation **600**). These structures may be any structure

5 on which ice may form when one or more types of icing conditions are present. The process then selects a structure from the aircraft for processing (operation **602**).

10 The process then identifies a first region and a second region on the structure (operation **604**). The first region is a region in which first drops for a first type of icing condition collide with the surface of the aircraft. The second region is a region in which second drops for a second type of icing condition collide with the surface of the aircraft. The process then identifies a number of sensors for placement in the first region and the second region (operation **606**). In some cases, sensors may be absent from one region on the structure depending 15 on the implementation.

20 The process then identifies a first group of locations in the first region for a first group of sensors in the sensors (operation **608**). The process then identifies a second group of locations in the second region for a second group of sensors in the sensors (operation **610**). A determination is made as to whether additional unprocessed structures are present for the aircraft (operation **612**). If additional unprocessed structures 25 are present, the process returns to operation **602** as described above. Otherwise, the process terminates. When the process is completed, the design for the ice detection system may be finished and ready for implementation.

30 The flowcharts and block diagrams in the different depicted embodiments illustrate the architecture, functionality, and operation of some possible implementations of apparatuses, methods, and computer program products. In this regard, each block in the flowcharts or block diagrams may represent a module, segment, or portion of computer usable or readable 35 program code, which comprises one or more executable

5 instructions for implementing the specified function or
functions. In some alternative implementations, the function or
functions noted in the block may occur out of the order noted in
the figures. For example, in some cases, two blocks shown in
succession may be executed substantially concurrently, or the
10 blocks may sometimes be executed in the reverse order, depending
upon the functionality involved.

Turning now to **Figure 7**, an illustration of a data
processing system is depicted in accordance with an illustrative
embodiment. Data processing system **700** may be used to implement
15 flight management system **208** in **Figure 2**, computer system **408** in
Figure 4, and other computers that may be used in different
illustrative embodiments. In this illustrative example, data
processing system **700** includes communications framework **702**,
which provides communications between processor unit **704**, memory
20 **706**, persistent storage **708**, communications unit **710**,
input/output (I/O) unit **712**, and display **714**. In this example,
communications framework **702** may take the form of a bus system.

Processor unit **704** serves to execute instructions for
software that may be loaded into memory **706**. Processor unit **704**
25 may be a number of processors, a multi-processor core, or some
other type of processor, depending on the particular
implementation. In these illustrative examples, processor unit
704 is an example of a processor unit that may be used to
implement processor unit **200** in **Figure 2**.

30 Memory **706** and persistent storage **708** are examples of
storage devices **716**. A storage device is any piece of hardware
that is capable of storing information such as, for example,
without limitation, data, program code in functional form, and
other suitable information either on a temporary basis or a
35 permanent basis. Storage devices **716** also may be referred to as

5 computer readable storage devices in these illustrative examples. Memory **706**, in these examples, may be, for example, a random access memory or any other suitable volatile or non-volatile storage device. Persistent storage **708** may take various forms, depending on the particular implementation.

10 For example, persistent storage **708** may contain one or more components or devices. For example, persistent storage **708** may be a hard drive, a flash memory, a rewritable optical disk, a rewritable magnetic tape, or some combination of the above. The media used by persistent storage **708** also may be removable. For 15 example, a removable hard drive may be used for persistent storage **708**.

20 Communications unit **710**, in these illustrative examples, provides for communications with other data processing systems or devices. In these illustrative examples, communications unit **710** is a network interface card.

Input/output unit **712** allows for input and output of data with other devices that may be connected to data processing system **700**. For example, input/output unit **712** may provide a connection for user input through a keyboard, a mouse, and/or 25 some other suitable input device. Further, input/output unit **712** may send output to a printer. Display **714** provides a mechanism to display information to a user.

30 Instructions for the operating system, applications, and/or programs may be located in storage devices **716**, which are in communication with processor unit **704** through communications framework **702**. The processes of the different embodiments may be performed by processor unit **704** using computer-implemented instructions, which may be located in a memory, such as memory **706**.

5 These instructions are referred to as program code, computer usable program code, or computer readable program code that may be read and executed by a processor in processor unit 10 **704**. The program code in the different embodiments may be embodied on different physical or computer readable storage media, such as memory **706** or persistent storage **708**.

Program code **718** is located in a functional form on computer readable media **720** that is selectively removable and may be loaded onto or transferred to data processing system **700** for execution by processor unit **704**. Program code **718** and computer readable media **720** form computer program product **722** in these illustrative examples. In one example, computer readable media **720** may be computer readable storage media **724** or computer readable signal media **726**.

In these illustrative examples, computer readable storage media **724** is a physical or tangible storage device used to store program code **718** rather than a medium that propagates or transmits program code **718**. Alternatively, program code **718** may be transferred to data processing system **700** using computer readable signal media **726**. Computer readable signal media **726** may be, for example, a propagated data signal containing program code **718**. For example, computer readable signal media **726** may be an electromagnetic signal, an optical signal, and/or any other suitable type of signal. These signals may be transmitted over communications links, such as wireless communications links, optical fiber cable, coaxial cable, a wire, and/or any other suitable type of communications link.

The different components illustrated for data processing system **700** are not meant to provide physical or architectural limitations to the manner in which different embodiments may be implemented. The different illustrative embodiments may be

5 implemented in a data processing system including components in addition to and/or in place of those illustrated for data processing system **700**. Other components shown in **Figure 7** can be varied from the illustrative examples shown. The different embodiments may be implemented using any hardware device or
10 system capable of running program code **718**.

Illustrative embodiments of the disclosure may be described in the context of aircraft manufacturing and service method **800** as shown in **Figure 8** and aircraft **900** as shown in **Figure 9**.

15 Turning first to **Figure 8**, an illustration of an aircraft manufacturing and service method is depicted in accordance with an illustrative embodiment. During pre-production, aircraft manufacturing and service method **800** may include specification and design **802** of aircraft **900** in **Figure 9** and material procurement **804**.

20 During production, component and subassembly manufacturing **806** and system integration **808** of aircraft **900** in **Figure 9** takes place. Thereafter, aircraft **900** in **Figure 9** may go through certification and delivery **810** in order to be placed in service **812**. While in service **812** by a customer, aircraft **900** in **Figure 25** **9** is scheduled for routine maintenance and service **814**, which may include modification, reconfiguration, refurbishment, and other maintenance or service.

30 Each of the processes of aircraft manufacturing and service method **800** may be performed or carried out by a system integrator, a third party, and/or an operator. In these examples, the operator may be a customer. For the purposes of this description, a system integrator may include, without limitation, any number of aircraft manufacturers and major-system subcontractors; a third party may include, without limitation, any number of vendors, subcontractors, and
35

5 suppliers; and an operator may be an airline, a leasing company, a military entity, a service organization, and so on.

With reference now to **Figure 9**, an illustration of an aircraft is depicted in which an illustrative embodiment may be implemented. In this example, aircraft **900** is produced by aircraft manufacturing and service method **800** in **Figure 8** and may include airframe **902** with plurality of systems **904** and interior **906**. Examples of systems **904** include one or more of propulsion system **908**, electrical system **910**, hydraulic system **912**, environmental system **914**, and ice detection system **916**.
10 Any number of other systems may be included. Although an aerospace example is shown, different illustrative embodiments may be applied to other industries, such as the automotive industry.
15

Apparatuses and methods embodied herein may be employed during at least one of the stages of aircraft manufacturing and service method **800** in **Figure 8**. In one illustrative example, components or subassemblies produced in component and subassembly manufacturing **806** in **Figure 8** may be fabricated or manufactured in a manner similar to components or subassemblies produced while aircraft **900** is in service **812** in **Figure 8**.
20
25

As yet another example, one or more apparatus embodiments, method embodiments, or a combination thereof may be utilized during different stages of aircraft manufacturing and service method **800**. For example, ice detection system **916** may be designed during specification and design **802**. Components for ice detection system **916** may be manufactured during component and subassembly manufacturing **806**. Ice detection system **916** may be installed in aircraft **900** during system integration **808**. Ice
30

5 detection system **916** may be used while aircraft **900** is in service **812**.

In another illustrative example, ice detection system **916** may be an existing ice detection system in aircraft **900**.

10 Upgrades, modifications, and other operations may be performed to modify ice detection system **916** on aircraft **900** to include features in accordance with an illustrative embodiment.

In the figures and the text, one or more aspect, variations, instances, and examples are illustrated below including:

15 In one aspect, an ice detection system **406** is disclosed including: a first group of sensors **428** located in a first group of locations **436** on an aircraft **412**, wherein the first group of sensors **428** in the first group of locations **436** is configured to detect a first type of icing condition **458** for the aircraft **412**,
20 and a second group of sensors **430** located in a second group of locations **438** on the aircraft **412**, wherein the second group of sensors **430** in the second group of locations **438** is configured to detect a second type of icing condition **460** for the aircraft **412**.

25 In one variant, the ice detection system **406** includes wherein the first group of sensors **428** and the second group of sensors **430** generate data **202** and further including: a processor unit **422** configured to monitor the data **202** from the first group of sensors **428** and the second group of sensors **430** and perform
30 an action in response to the data **202** indicating a presence of at least one of the first type of icing condition **458** and the second type of icing condition **460**. In another variant, the ice detection system **406** includes wherein the first group of locations **436** is a first number of locations **448** in which first drops **450** for the first type of icing condition **458** collide with

5 a surface **434** of the aircraft **412** and the second group of locations **438** is a second number of locations **432** in which second drops **452** for the second type of icing condition **460** collide with the surface **434** of the aircraft **412**.

In yet another variant, the ice detection system **406** includes wherein the surface **434** is a surface **434** of an airfoil **466** for the aircraft **412** and wherein the first drops **450** collide with the surface **434** in a first region **454** on the surface **434** of the airfoil **466**, the second drops **452** collide with the surface **434** in a second region **456** on the surface **434** of the airfoil **466**, and the first region **454** is further forward on the airfoil **466** than the second region **456**. In one example, the ice detection system **406** includes wherein the first type of icing condition **458** is caused by first drops **450** having a first number of sizes, the second type of icing condition **460** is caused by second drops **452** having a second number of sizes, and the first number of sizes is smaller than the second number of sizes.

In another example, the ice detection system **406** includes wherein the second type of icing condition **460** is a supercooled large drop icing condition. In one example, the ice detection system **406** includes wherein the action is selected from at least one of generating an alert, generating a log entry, activating an anti-icing system **204**, and sending a report. In yet another example, the ice detection system **406** includes wherein the first group of locations **436** and the second group of locations **438** are on a structure **462** for the aircraft **412** and the structure **462** is selected from one of an airfoil **466**, a wing, a horizontal stabilizer, a vertical stabilizer, a fuselage **468**, an engine inlet **471**, and a nose portion **112** of the fuselage **468**.

In one instance, the ice detection system **406** includes wherein a first sensor **138** in the first group of sensors **428** and

5 a second sensor **160** in the second group of sensors **430** form a
sensor pair, wherein the first sensor **138** is a forward sensor
and the second sensor **160** is an aft sensor that is located in a
location that is aft of the forward sensor. In another
instance, the ice detection system includes wherein sensors in
10 the first group of sensors **428** and the second group of sensors
430 are configured to detect a presence of ice. In yet another
instance, the ice detection system **406** includes wherein the
aircraft **412** is selected from one of a commercial aircraft, a
military aircraft, an airplane, and a helicopter.

15 In one aspect, an ice detection system **406** is disclosed
including: a group of sensors located in a group of locations on
a surface **434** of an aircraft **412**, wherein the group of sensors
in the group of locations is configured to detect a supercooled
large drop icing condition on the surface **434** of the aircraft
20 **412**; and a processor unit **422** configured to monitor data **202**
from the group of sensors and perform an action in response to
the data **202** indicating a presence of the supercooled large drop
icing condition on the surface **434** of the aircraft **412**. In one
variant, the ice detection system **406** includes wherein the group
25 of sensors **430** is a second group of sensors and further
including: a first group of sensors **428** configured to detect
another type of icing condition on the surface **434** of the
aircraft **412**. In one variant, the ice detection system **406**
includes wherein the group of locations is a number of locations
30 in which drops for the supercooled large drop icing condition
collide with the surface **434** of the aircraft **412**.

In another variant, the ice detection system **406** includes
wherein the surface **434** is a surface **434** of an airfoil **466** for
the aircraft **412** and wherein the drops collide with the surface

5 **434** in a region on the surface **434** of the airfoil **466** that is further aft as compared to drops from another type of icing condition on the surface **434** of the airfoil **466**. In yet another variant, the ice detection system **406** includes wherein the drops have a diameter from about **0.112** millimeters to about **2.2** millimeters. In still another variant, the ice detection system **406** includes wherein the action is selected from at least one of generating an alert, generating a log entry, activating an anti-icing system **204**, and sending a report.

10 In one aspect, a method is disclosed for detecting icing conditions for an aircraft **412**, the method includes: monitoring a first group of sensors **428** located in a first group of locations **436** on the aircraft **412** for first data **202** indicating a first type of icing condition **458** in the icing conditions for the aircraft **412**; monitoring a second group of sensors **430** located in a second group of locations **438** on the aircraft **412** for second data **202** indicating a second type of icing condition in the icing conditions **460** for the aircraft **412**; and initiating an action in response to detecting at least one of the first type of icing condition **458** from the first data and the second type of icing condition **460** from the second data **202**. In one variant, the method further includes: responsive to detecting an icing condition from at least one of the first data (**202**) and the second data **202**, identifying a location on the aircraft **212** in which the icing condition is detected.

15 In another variant, the method includes wherein initiating the action in response to detecting the at least one of the first type of icing condition **458** from the first data **202** and the second type of icing condition **460** from the second data **202** includes: initiating the action in response to detecting the at least one of the first type of icing condition **458** from the

first data **202** and the second type of icing condition **460** from the second data **202**, wherein the action is selected from at least one of generating an alert **204**, generating a log entry, activating an 5 anti-icing system, and sending a report.

Thus, one or more illustrative embodiments provide a method and apparatus for identifying different types of icing conditions. In particular, an illustrative embodiment provides an ability to identify a first type of icing condition and a second type of icing 10 condition. The first type of icing condition may be one typically encountered while the second type of icing condition may be a supercooled large drop icing condition. In these illustrative examples, the ability to identify more than one type of icing condition may allow an aircraft to be certified for flight in 15 different types of icing conditions under various regulations that may be present from government or other regulatory entities, such as the Federal Aviation Administration.

A description of various embodiments has been presented for purposes of illustration and description and is not intended to be 20 exhaustive or limited to the embodiments in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art. Further, different embodiments may provide different advantages as compared to other embodiments. The embodiment or embodiments selected are chosen and described in 25 order to best explain the principles of the embodiments, the practical application, and to enable others of ordinary skill in the art to understand the disclosure for various embodiments with various modifications as are suited to the particular use contemplated.

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE PROPERTY OR
PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:

1. An ice detection system for detecting a plurality of in-flight
5 icing conditions comprising:

10 a first group of sensors located in a first group of locations on an aircraft, wherein the first group of sensors in the first group of locations is configured to detect a first type of icing condition for the aircraft, wherein the first group of locations is selected to be on first areas of the aircraft where collision with water drops of a first size range is expected to occur more frequently during flight of the aircraft than collision with water drops of a second size range, and wherein the first type of icing condition is associated with water drops of the first size range; and

20 a second group of sensors located in a second group of locations on the aircraft, wherein the second group of sensors in the second group of locations is configured to detect a second type of icing condition for the aircraft, wherein the second group of locations is selected to be on second areas of the aircraft where collision with water drops of the second size range is expected to occur more frequently during flight of the aircraft than collision with water drops of the first size range, wherein the second type of icing condition is associated with water drops of the second size range, and wherein the first size range is less than the second size range; and

25

30

a processor configured to monitor in-flight data from the first group of sensors and responsive to the first group of sensors detecting the first type of icing condition for the aircraft, perform a first action in response to the data indicating a presence of at least one of the first type of icing condition, wherein the first action comprises generating, during flight, a first alert on a flight deck interface for the aircraft, wherein the processor is further configured to monitor in-flight data from the second group of sensors and responsive to the second group of sensors detecting the second type of icing condition for the aircraft, perform a second action in response to the data indicating a presence of at least one of the second type of icing condition, wherein the second action comprises generating, during flight, a second alert on the flight deck interface for the aircraft.

20 2. The ice detection system of claim 1, wherein the first group
of locations is a first number of locations in which first
drops for the first type of icing condition collide with a
surface of the aircraft and the second group of locations is a
second number of locations in which second drops for the
25 second type of icing condition collide with the surface of the
aircraft.

3. The ice detection system of claim 2, wherein the surface is a
surface of an airfoil for the aircraft and wherein the first
30 drops collide with the surface in a first region on the
surface of the airfoil, the second drops collide with the

surface in a second region on the surface of the airfoil, and the first region is further forward on the airfoil than the second region.

5 4. The ice detection system of claim 1, wherein the second type
of icing condition is a supercooled large drop icing
condition.

10 5. The ice detection system of claim 1, wherein the action
further comprises at least one of generating a log entry,
activating an anti-icing system, and sending a report.

15 6. The ice detection system of claim 1, wherein the first group
of locations and the second group of locations are on a
structure for the aircraft and the structure is selected from
one of an airfoil, a wing, a horizontal stabilizer, a vertical
stabilizer, a fuselage, an engine inlet, and a nose portion of
the fuselage.

20 7. The ice detection system of claim 1, wherein a first sensor in
the first group of sensors and a second sensor in the second
group of sensors form a sensor pair, wherein the first sensor
is a forward sensor and the second sensor is an aft sensor
that is located in a location that is aft of the forward
25 sensor.

8. The ice detection system of claim 1, wherein sensors in the
first group of sensors and the second group of sensors are
configured to detect a presence of ice.

9. The ice detection system of claim 1, wherein the aircraft is selected from one of a commercial aircraft, a military aircraft, an airplane, and a helicopter.

5 10. An ice detection system for detecting a plurality of in-flight icing conditions comprising:

10 a group of sensors located in a group of locations on a surface of an aircraft, wherein the group of sensors in the group of locations is configured to detect a supercooled large drop icing condition on the surface of the aircraft, wherein the group of locations is selected to be on first areas of the aircraft where collision with supercooled large water drops is expected to occur more frequently during flight of the aircraft than collision with smaller water drop sizes; and

15 a processor configured to monitor in-flight data from the group of sensors and perform an action in response to the data indicating a presence of the supercooled large drop icing condition on the surface of the aircraft wherein the action comprises generating, during flight, a first alert on a flight deck interface for the aircraft.

20 25 11. The ice detection system of claim 10, wherein the group of sensors is a second group of sensors, and further comprising:

30 a first group of sensors configured to detect another type of icing condition on the surface of the aircraft.

12. The ice detection system of claim 10, wherein the surface is a surface of an airfoil for the aircraft and wherein the drops collide with the surface in a region on the surface of the airfoil that is further aft as compared to drops from another type of icing condition on the surface of the airfoil.

5

13. The ice detection system of claim 10, wherein the drops have a diameter from about 0.112 millimeters to about 2.2 millimeters.

10

14. The ice detection system of claim 10, wherein the action further comprises at least one of generating a log entry, activating an anti-icing system, and sending a report.

15 15. A method for detecting a plurality of in-flight icing conditions for an aircraft, the method comprising:

monitoring, during flight of the aircraft, a first group of sensors located in a first group of locations on the aircraft for first data indicating a first type of icing condition in the icing conditions for the aircraft, wherein the first group of locations is selected to be on first areas of the aircraft where collision with water drops of a first size range is expected to occur more frequently than collision with water drops of a second size range, and wherein the first type of icing condition is associated with water drops of the first size range;

20

25

30

monitoring, during flight of the aircraft, a second group of sensors located in a second group of locations on the aircraft for second data indicating a second type of

icing condition in the icing conditions for the aircraft, wherein the second group of locations is selected to be on second areas of the aircraft where collision with water drops of the second size range is expected to occur more frequently than collision with water drops of the first size range, wherein the second type of icing condition is associated with water drops of the second size range, and wherein the first size range is less than the second size range; and

5

initiating a first action in response to detecting the first type of icing condition from the first data, wherein the first action comprises generating, during flight, a first alert on a flight deck interface for the aircraft, and initiating a second action in response to detecting the second type of icing condition from the second data, wherein the second action comprises generating, during flight, a second alert on the flight deck interface for the aircraft.

10

16. The method of claim **15** further comprising:

20 responsive to detecting an icing condition from at least one of the first data and the second data, identifying a 25 location on the aircraft in which the icing condition is detected.

17. The method of claim **15**, wherein initiating the action in response to detecting the at least one of the first type of icing condition from the first data and the second type of icing condition from the second data comprises:

5 initiating the action in response to detecting the at least one of the first type of icing condition from the first data and the second type of icing condition from the second data, wherein the action is selected from at least one of generating an alert, generating a log entry, activating an anti-icing system, and sending a report.

10 **18.** A method for detecting icing conditions for an aircraft, the method comprising:

15 monitoring a first group of sensors located in a first group of locations on the aircraft for first data signals indicating a first type of icing condition in the icing conditions for the aircraft; and

monitoring a second group of sensors located in a second group of locations on the aircraft for second data signals indicating a second type of icing condition in the icing conditions for the aircraft;

20 wherein the first type of icing condition is caused by first drops having a first number of sizes, the second type of icing condition is caused by second drops having a second number of sizes, and the first number of sizes is smaller than the second number of sizes; and

25 initiating an action in response to detecting at least one of the first type of icing condition from the first data signals and the second type of icing condition from the second data signals, wherein the action includes generating an alert signal.

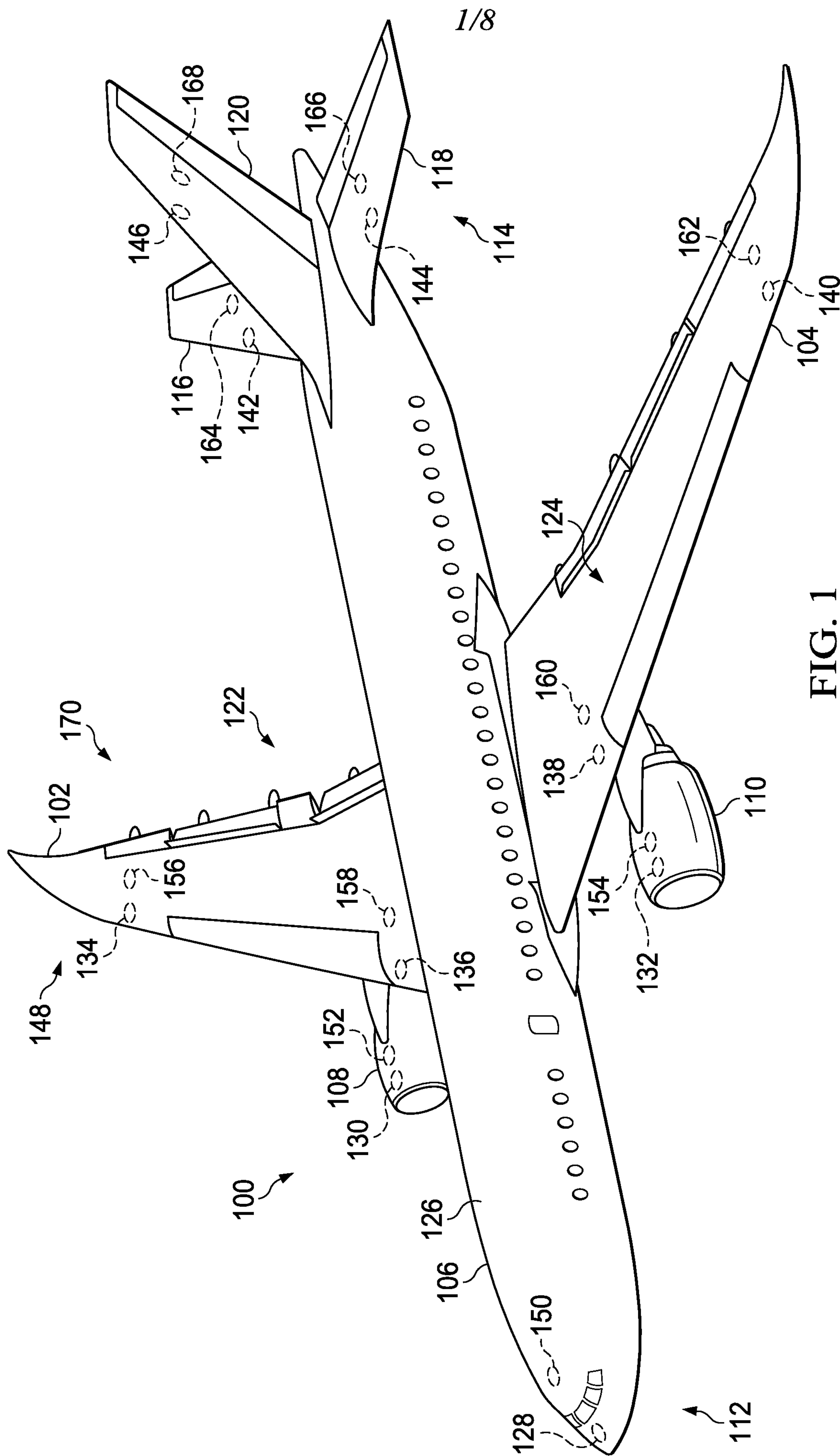
30 **19.** An aircraft comprising an ice detection system operably configured to perform the method of any one of claims **15** to **18**.

20. An aircraft ice detection system comprising:

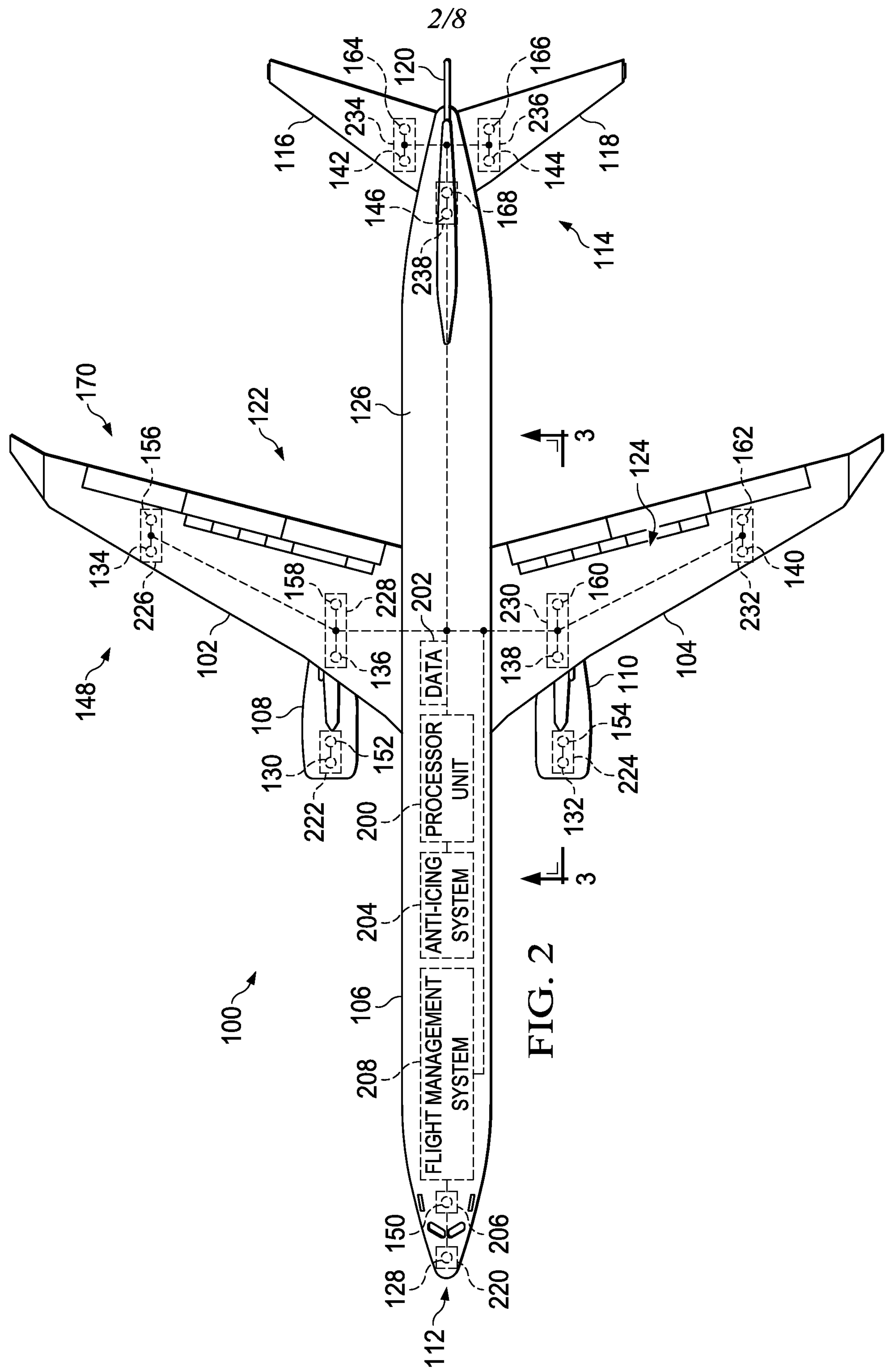
5 a first group of sensors located in a first group of locations on an aircraft, wherein the first group of sensors in the first group of locations is configured to detect a first type of icing condition for the aircraft; and

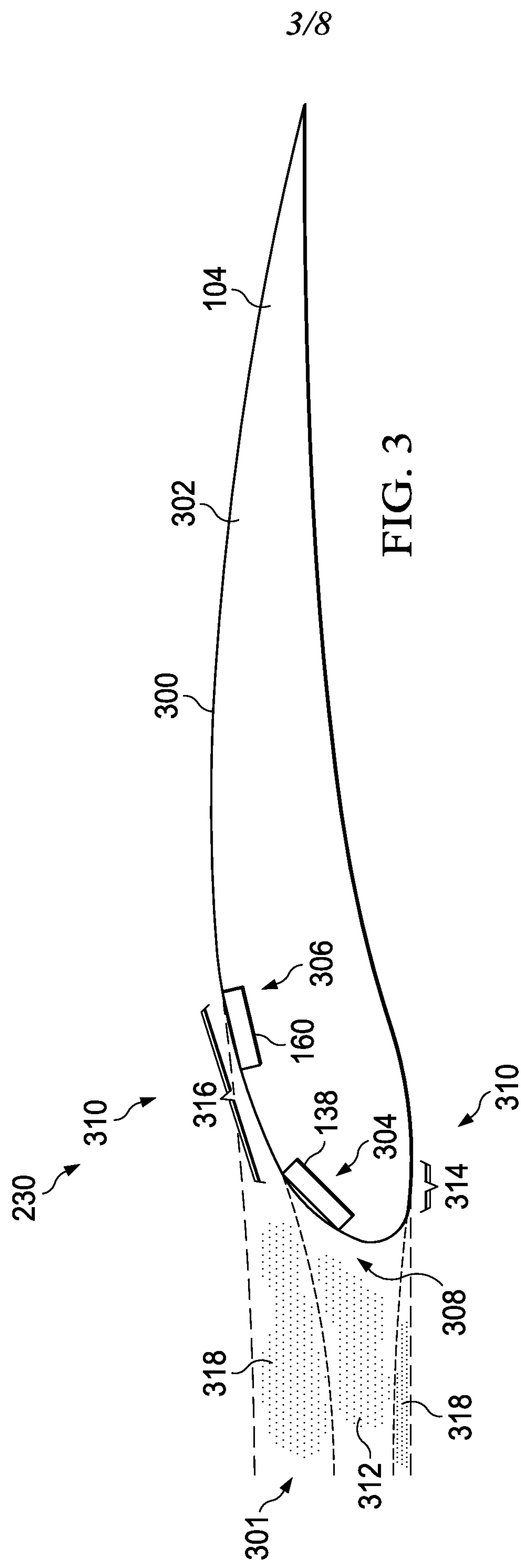
10 a second group of sensors located in a second group of locations on the aircraft, wherein the second group of sensors in the second group of locations is configured to detect a second type of icing condition for the aircraft;

 wherein the first group of sensors and the second group of sensors generate data; and further comprising:


15 a processor configured to monitor the data from the first group of sensors and the second group of sensors and perform an action in response to the data indicating a presence of at least one of the first type of icing condition and the second type of icing condition;

20 wherein the first type of icing condition is caused by first drops having a first number of sizes, the second type of icing condition is caused by second drops having a second number of sizes, and the first number of sizes is smaller than the second number of sizes; and


 wherein the action comprises generating an alert.


25

21. An aircraft comprising the ice detection system of any one of claims **1** to **14** and **20**.

FIG.

4/8

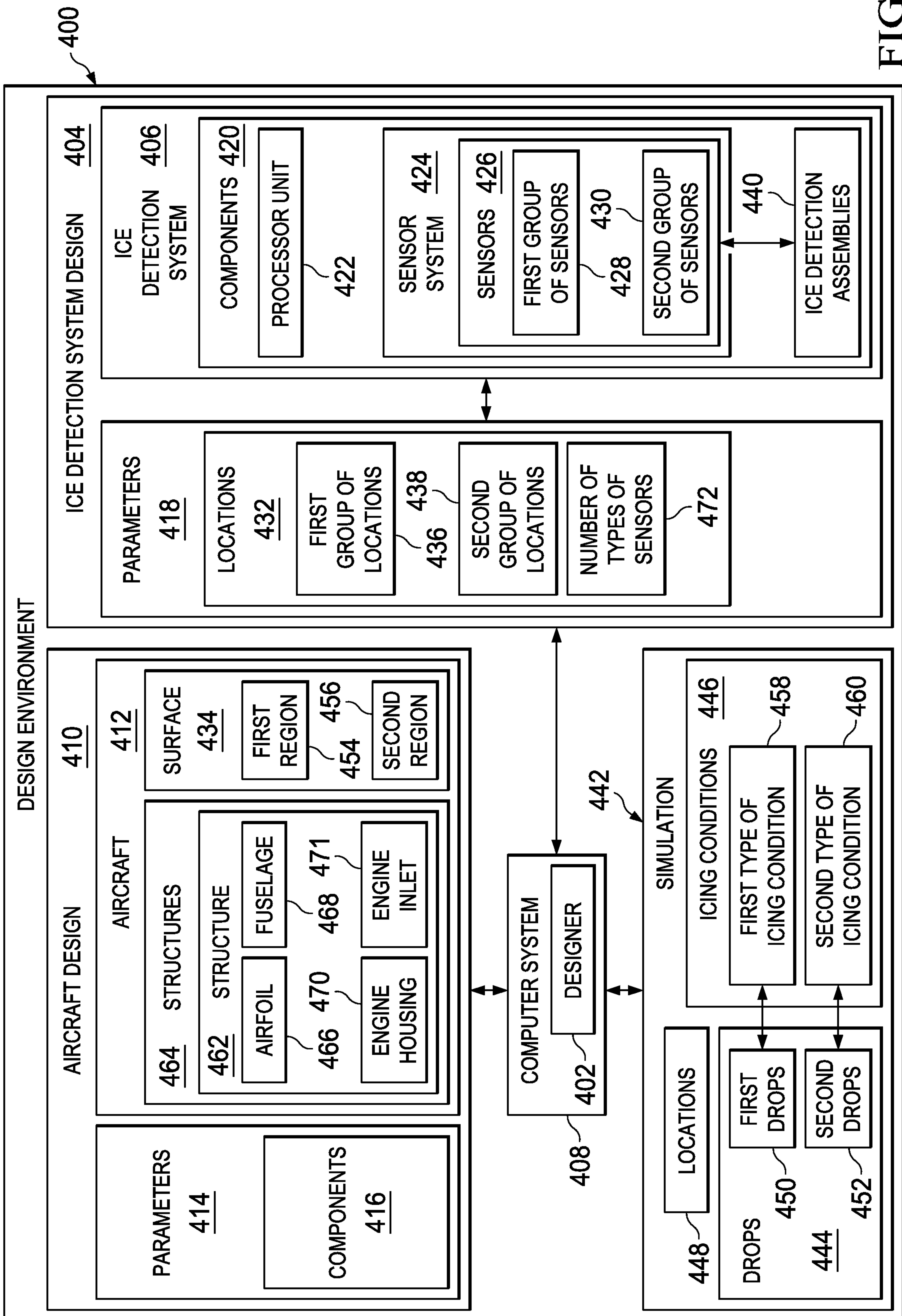


FIG. 4

5/8

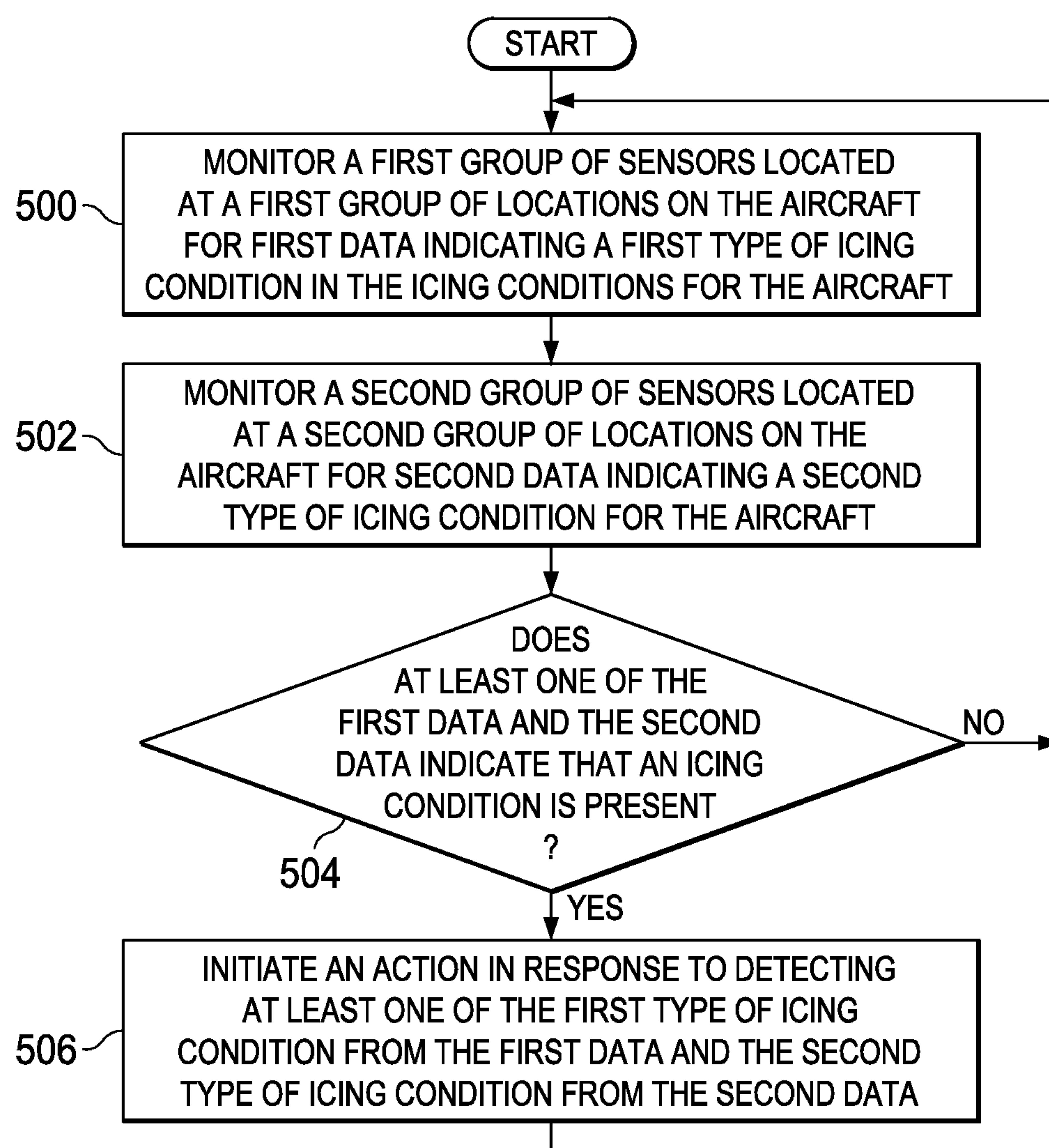


FIG. 5

6/8

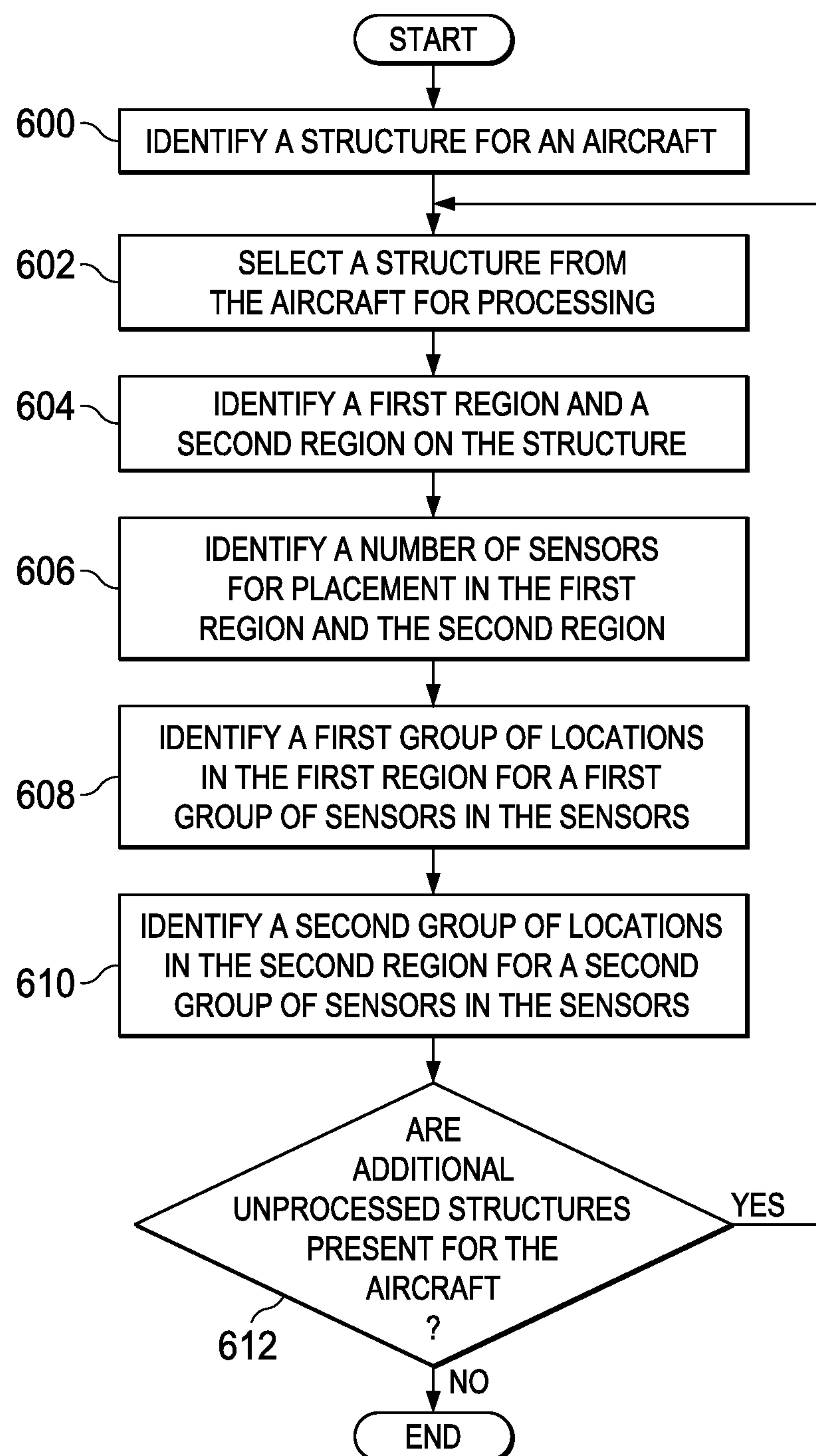


FIG. 6

7/8

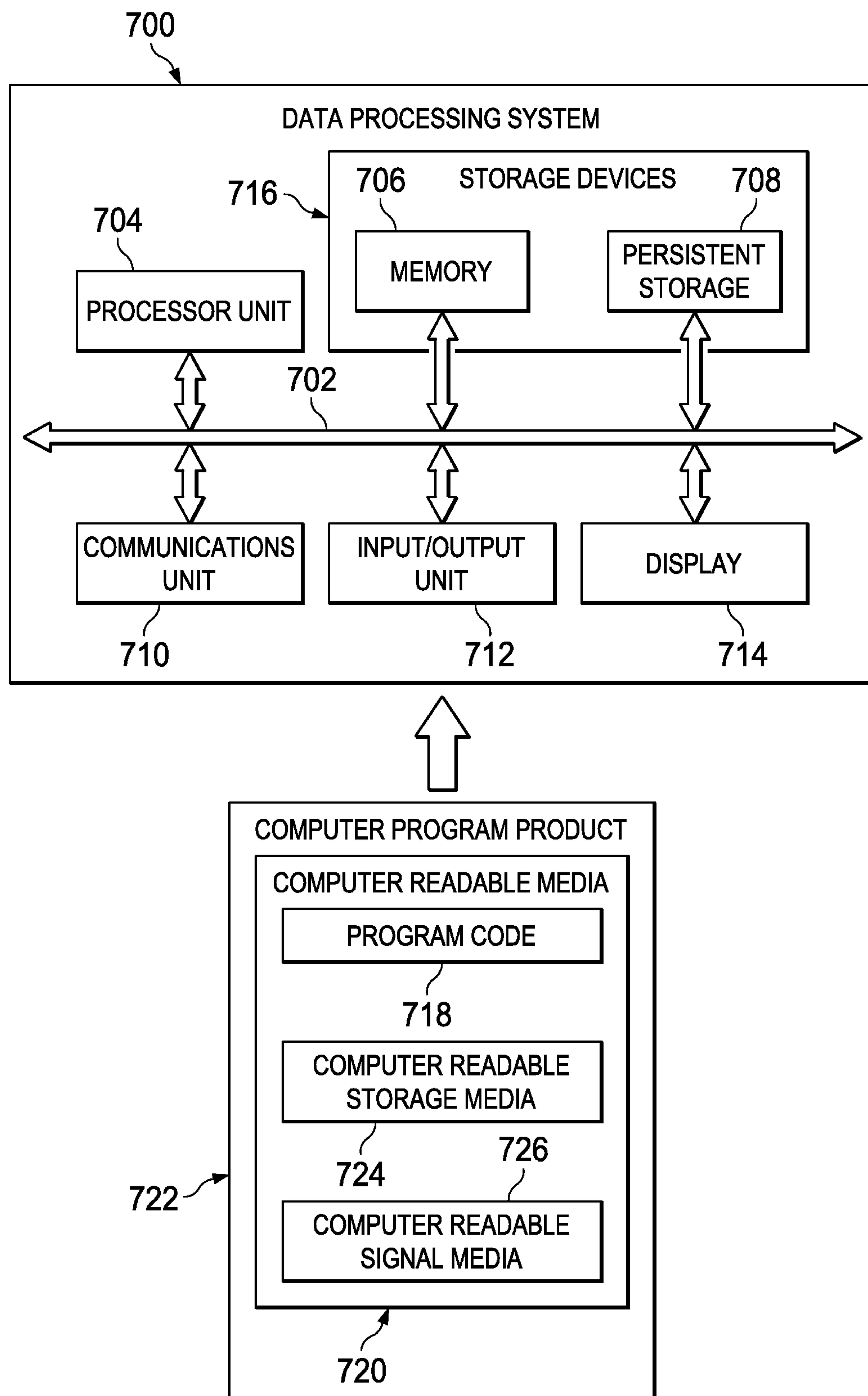


FIG. 7

8/8

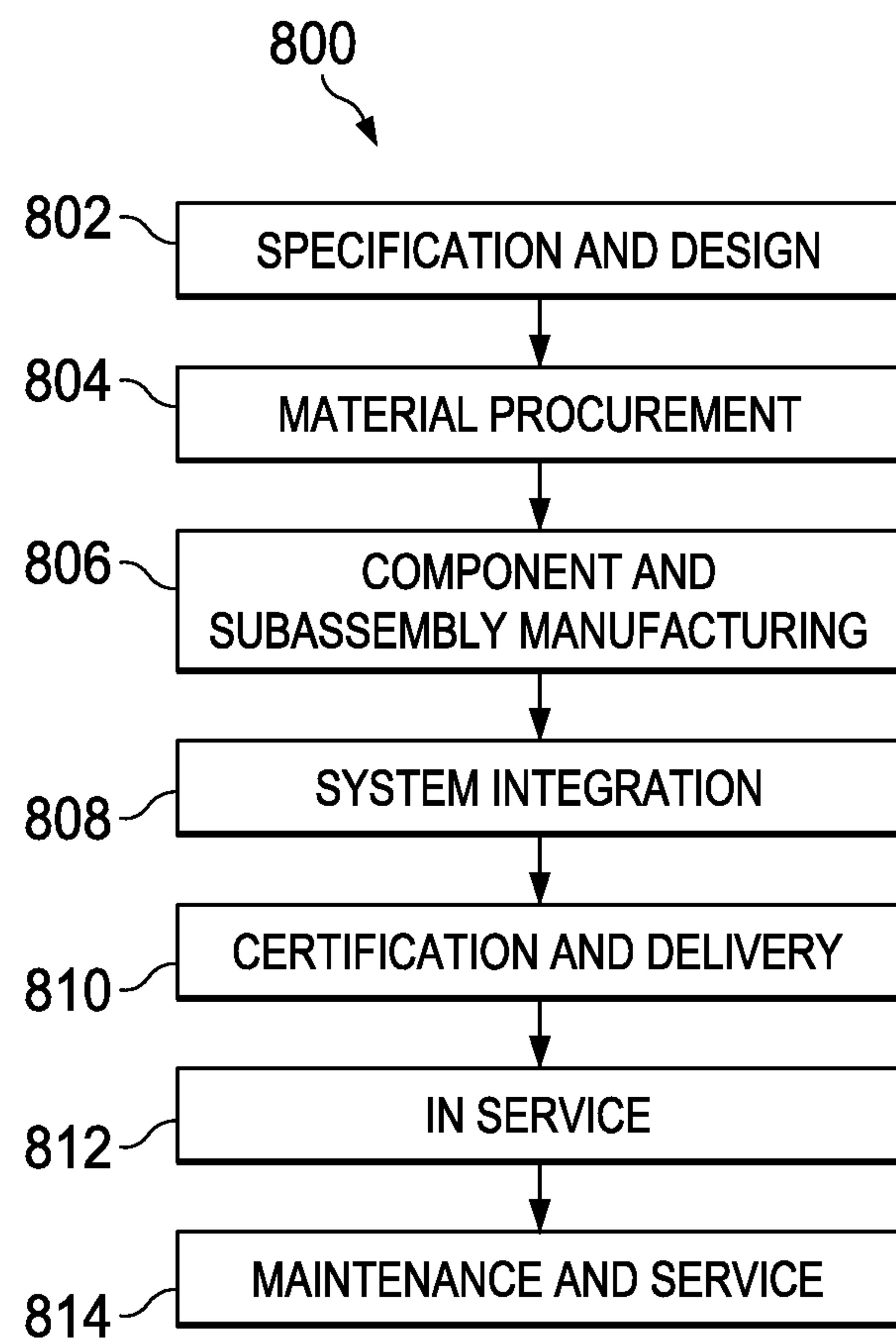


FIG. 8

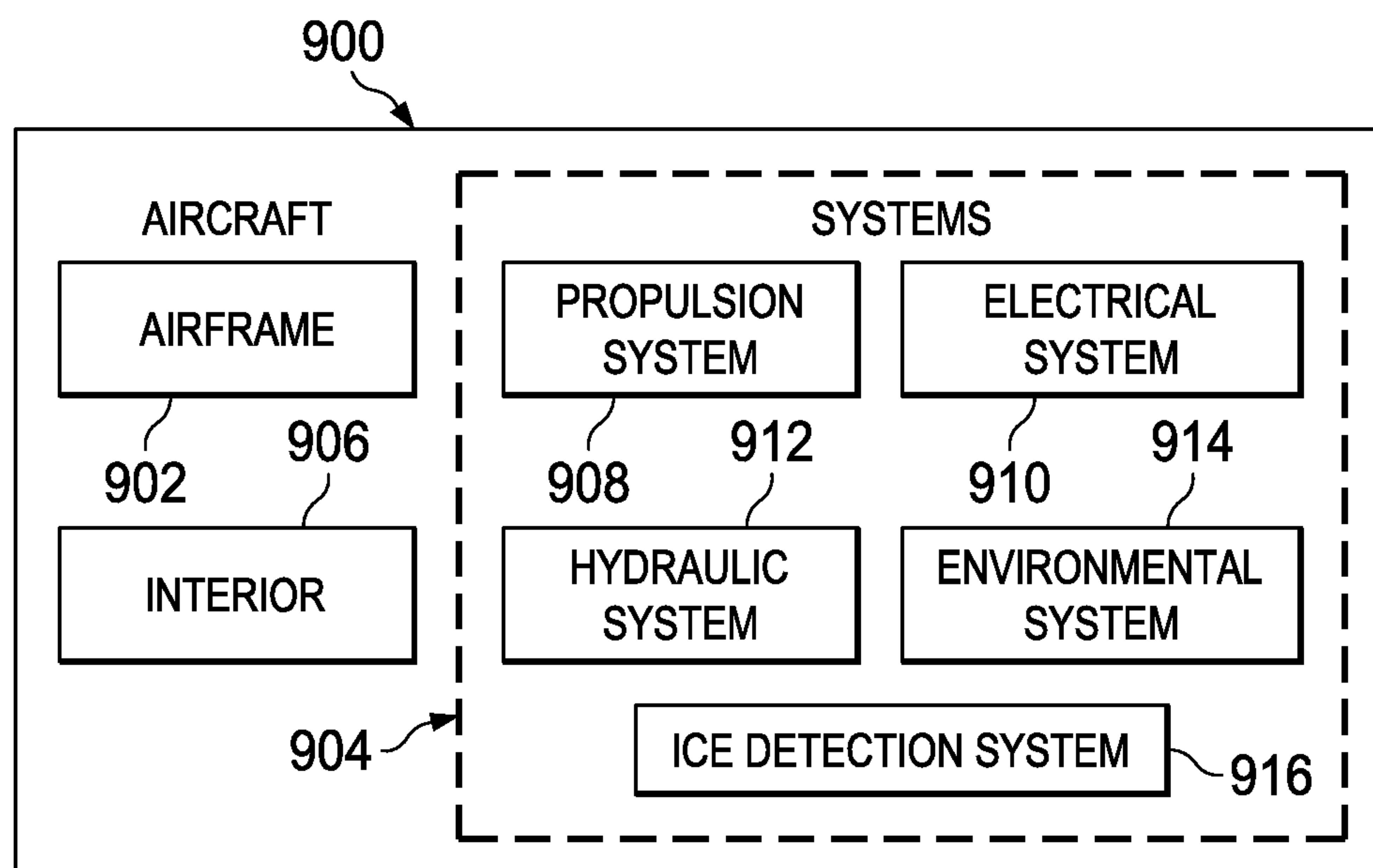
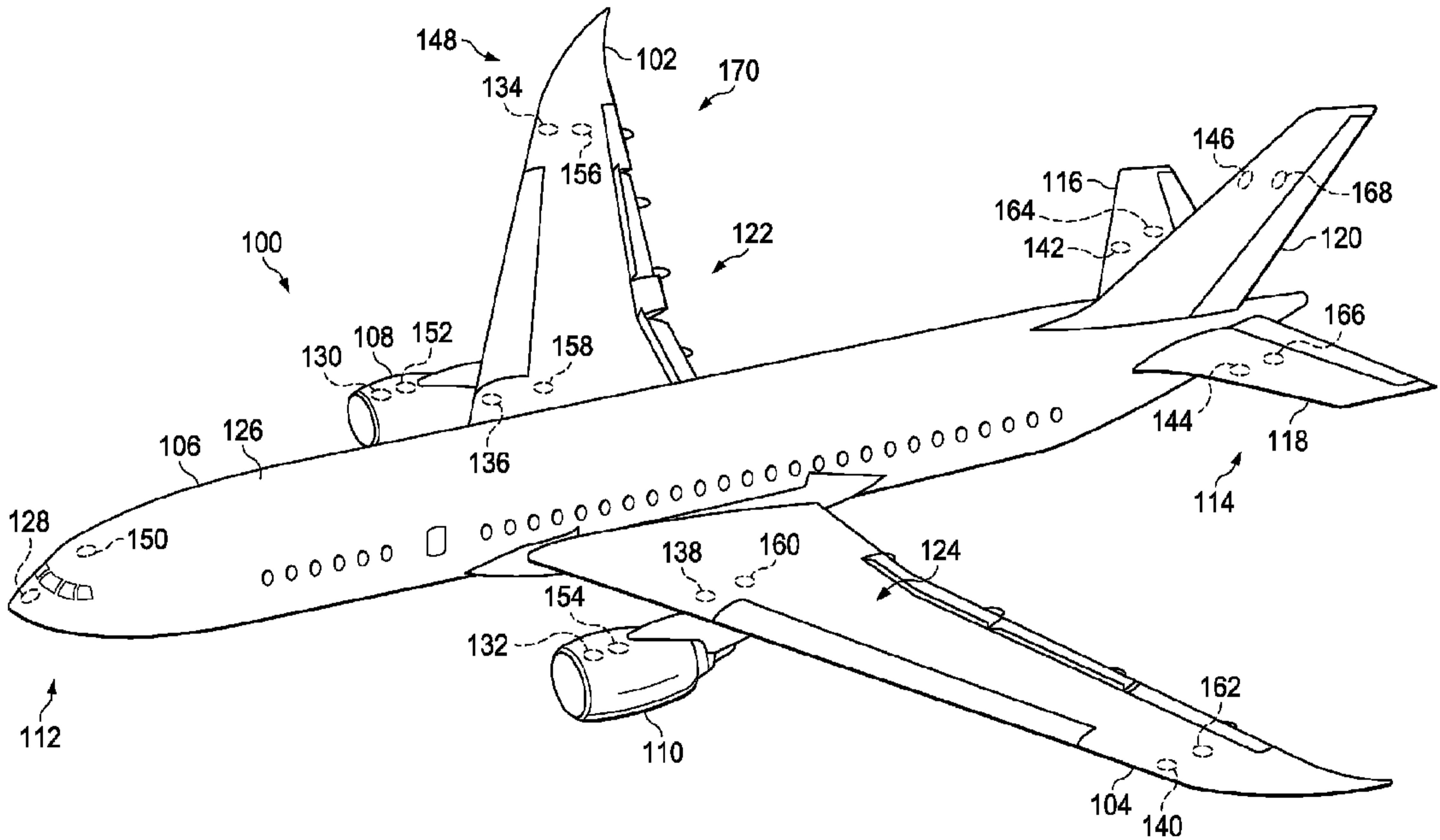



FIG. 9

