
US 2011 0314127A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2011/0314127 A1

Vaidya et al. (43) Pub. Date: Dec. 22, 2011

(54) QUICK DEPLOY OF CONTENT Publication Classification

(51) Int. Cl.
(75) Inventors: Gautam Vishwas Vaidya, G06F 5/16 (2006.01)

Redmond, WA (US); Glen 52) U.S. C T09/217 Buhlmann, Kirkland, WA (US); (52) U.S. Cl. ..
Gunawan Herri, Sammamish, WA (57) ABSTRACT
(US); James S. Masson, Seattle, Non-administrators selectively move content from a source
WA (US); Viktoriya Taranov, network to a destination network. The source network
Bellevue, WA (US) includes a deployment server that can deploy an item and its

dependencies (if any) listed in a quick deploy list without
(73) Assignee: Microsoft Corporation, Redmond, having to get specific administrator authorization for the

WA (US) deployment. The deployment server can be configured to
check the quick deploy list relatively frequently so that any

(21) Appl. No.: 13/222,295 items listed in the quick deploy list are quickly deployed. The
listing of items in the quick deploy list is organized into jobs”

(22) Filed: Aug. 31, 2011 and identifies a path that indicates the Source and destination e a 9 for each job. A job is associated with one path and specifies
one or more items of the source to be deployed and a schedule
to deploy the specified item(s). The deployment server is
configured by the administrator with permissions for specific
authors to list items in the quick deploy list.

Related U.S. Application Data

(63) Continuation of application No. 1 1/205,739, filed on
Aug. 15, 2005, now Pat. No. 8,019,827.

Sir
i 3. 3.

Sire COLLECTION S
ESACN: i; ; ;ia.

--- Y 8
31st --- St E Co...ECTION

osusci 1:
SPATH 2: Nic R.A.

exy is a
38 Ns $8: X

N 12.
^

A 3 ick
Eoy JoE

--S320
-

OBJECT 11 rst ra--

CBE. K -

33.

STE Coty. Ection
elec 2

issery
S.

322 path 3: Norial
Eric E3

-
St Coach

C}ssac N.

-- 324
FATH 4: Norial
- gEPOYios 41

SE scii
- E is

Ahtis.S.
A

... 3
A :

is
is 3:

35 3... iB 3.

8 & 8 : E. Ssss
8 is

S. sick EP.3% is Sire
Collection 302-2
8 :
3.:E: 2y is, PA; 3

f

E. F.

ECYRif; AB
{ ER PAH)

Saii

Patent Application Publication Dec. 22, 2011 Sheet 1 of 6 US 2011/0314127 A1

-- ... --- - - - - - - - - - - - - - - - - --- ar. --- cer -w- wr-rr war --- r -r -r cre --- r -r-, -re re rrr, re r -y

Agri-EG
NWORK

{-R
SERVERS

28

CONEN
AABASE

SAANCER
8

4 - fe8 Mrrrrrrrrowworm
FREEWALL

SERVER OS

C interNET
106) : X - DATABASE Eric Y&N

Servci SERVER
o 8

FREWA

sa- -- a-- are as a lar an as a -a -ar an an a ran as are are as an an as an an as aaa alar as as an are arrs a

2
: ATABASE {R :

SERVER SERVERS
1 18

CNENT
ASAEASE

PERMETER :
NEWORK

Patent Application Publication Dec. 22, 2011 Sheet 2 of 6 US 2011/0314127 A1

Ativ NiSTRATOR
(CONSE

E.Y. EN: Oji.
syrus-s-s-s-s-s-s-s-s-s-s-s-s-ric 22.

CONSOE
Vir Ex R

Cia.
A f{}

S.
22.

28

CJCK EP.OY
iSf
2.

(JCK DEFCY
WERFER
26

A3.
(1 PER PATH)

{O3 SORY

A: Nig
OEs E

28

Fig. 2

Patent Application Publication

SORCE

its CCLECO is
{BEC

SEE 8...Elish
{E3, ECT 2:

OESSF 2Y

SEE COLLECCN
CBC N

(8.EC N:

32.

PAHS EST
A

O3 A
A 2:

S. 2 ... is
FA 3

CE: 3. ... iOS 3.
PA-4

8

--------------------s
CCK EPLOY EST (SE
CCLECON 32-3)
C3 :
(8.E: 2y O, PA - 3

s

is .

CSJSC; ; , PA, G :

s

DEF:YAN." ASE
(1 FER FAH)

Electii AES assi

28

Dec. 22, 2011 Sheet 3 of 6 US 2011/0314127 A1

3.

A- RAAA
s-- Es (YOS
31st

ESNACN

Cs. Ect it
PA 2: NORAA.

EPOY iO3

STE COLLECTION

E3, EEC Xi

PA 3: .
DEPLOY JoB RO

treal

- 5320

C. Y. 322 PATH 3: Normat."
SEPCY CE 3. 31.

--- f 3.24.
--- PAE & N3. Air

- E&Y 8 a. ra

326 -

CS Sir
O3 STATS

Fig. 3

Patent Application Publication Dec. 22, 2011 Sheet 4 of 6

RECEWE REQ ES: O AE AN EA N is
Qi K CRY ST

Y.

-1)st 412
- DOES AUTHOR s C

AVE Erii SSC No -
Qi CK DEP.OY -
s - N X.

Yes

a 8
r rx - 1. vio

a sivi SSci FOR Patric-wc
N ---

AD. Sevi AN: Arhi Ni Ueck EPOY
ES

Fig. 4

ROW:
ERROR
iFSSAGE

44.

48

US 2011/0314127 A1

- 4:

CCNFigu RATION
is: Agi.

...ST. NG TEAf
CPERATION

Patent Application Publication Dec. 22, 2011 Sheet 5 of 6 US 2011/0314127 A1

SC; Rice Opera iONA. FOW ? 5

502 receive NicACN TO EFOY AN i Eff ar

t 5 a.
N -a, - ar,7- C PATH ENABLED 2.

Yes

58 --...-s-Jois Earp 2 - C
SS w 50

-i. S-----...- joB YPE 2 co

...-- - - ra e.
s & Y S Sii"Y Cw - yar -

Yes --war" --- N -as" ru.
- r" R se c tMEour ylic c. ENCTE 3O8 compleTE 2 ce

529

-sc JoBTYPE 2
Cuick Deploy

—-
CEAN (CKECY Si

IEEE RERiCE 8 538 Fig. 5

Patent Application Publication Dec. 22, 2011 Sheet 6 of 6 US 2011/0314127 A1

ESNATION OPERATONA. F.W

RECEIVE NECAON C CEREAEA iO3

{:
N - RECEIVE -

- SAR O3 NCACN

s

-RECEIVE
--- cc crus-ce -- --- E.EE CB ND CATON ---

ar

Yes

82
EETE OF3

Fig. 6

US 2011/0314127 A1

QUICK DEPLOY OF CONTENT

BACKGROUND

0001 Content to be published can be created by authors on
one network (e.g., an authoring network) and then moved to
another network (e.g., a perimeter network) where the content
can be accessed by others. Typically, an administrator con
trols the movement of the content from the authoring network
to the perimeter network. The administrator can be a “bottle
neck” when trying to quickly move content from the author
ing network to the perimeter network. This background infor
mation is not intended to identify problems that must be
addressed by the claimed subject matter.

SUMMARY

0002 This summary is provided to introduce a selection of
concepts in a simplified form that are further described below
in the Detail Description Section. This summary is not
intended to identify key features or essential features of the
claimed Subject matter, nor is it intended to be used as an aid
in determining the scope of the claimed Subject matter.
0003. According to aspects of various described embodi
ments, non-administrators (including authors) can selectively
move content from a source network to a destination network.
In one aspect, the source network includes a deployment
server that can deploy an item and its dependencies (if any)
listed in a quick deploy list without having to get specific
administrator authorization for the deployment. The deploy
ment server can be configured to check the quick deploy list
relatively frequently (e.g., every five minutes) so that any
items listed in the quick deploy list are quickly deployed.
0004. In another aspect, the listing of items in the quick
deploy list is organized into jobs” and identifies a path that
indicates the source and destination for each job. A job is
associated with one path and specifies one or more items of
the Source to be deployed and a schedule to deploy the speci
fied item(s).
0005. In another aspect, the deployment server is config
ured by the administrator with permissions for specific
authors to list items in the quick deploy list. In some imple
mentations, the configuration can limit the paths that an
author is permitted to quick deploy content.
0006. In yet another aspect, the deployment server creates
a remote job on the destination network to import content
being exported by the deployment server.
0007 Embodiments may be implemented as a computer
process, a computer system (including mobile handheld com
puting devices) or as an article of manufacture such as a
computer program product. The computer program product
may be a computer storage medium readable by a computer
system and encoding a computer program of instructions for
executing a computer process. The computer program prod
uct may also be a propagated signal on a carrier readable by a
computing system and encoding a computer program of
instructions for executing a computer process.

BRIEF DESCRIPTION OF THE DRAWINGS

0008. Non-limiting and non-exhaustive embodiments are
described with reference to the following figures, wherein
like reference numerals refer to like parts throughout the
various views unless otherwise specified.

Dec. 22, 2011

0009 FIG. 1 is a block diagram representing an exemplary
system that Supports quick deployment of content between
networks, in accordance with an embodiment.
0010 FIG. 2 is a block diagram representing some com
ponents of a deployment server, in accordance with an
embodiment.
0011 FIG. 3 is a representation of data structures used in
deploying content between a source and a destination, in
accordance with an embodiment.
0012 FIG. 4 is a flow diagram representing operational
flow in creating and adding an item to a quick deploy list, in
accordance with an embodiment.
0013 FIG. 5 is a flow diagram representing operational
flow of a content source in deploying content, in accordance
with an embodiment.
0014 FIG. 6 is a flow diagram representing operational
flow of a content destination in deploying content, in accor
dance with an embodiment.

DETAILED DESCRIPTION

00.15 Various embodiments are described more fully
below with reference to the accompanying drawings, which
form apart hereof, and which show specific exemplary
embodiments for practicing various embodiments. However,
other embodiments may be implemented in many different
forms and should not be construed as limited to the embodi
ments set forth herein; rather, these embodiments are pro
vided so that this disclosure will be thorough and complete.
Embodiments may be practiced as methods, systems or
devices. Accordingly, embodiments may take the form of a
hardware implementation, an entirely software implementa
tion or an implementation combining software and hardware
aspects. The following detailed description is, therefore, not
to be taken in a limiting sense.
0016. The logical operations of the various embodiments
are implemented (1) as a sequence of computer implemented
steps running on a computing system and/or (2) as intercon
nected machine modules within the computing system. The
implementation is a matter of choice dependent on the per
formance requirements of the computing system implement
ing the embodiment. Accordingly, the logical operations
making up the embodiments described herein are referred to
alternatively as operations, steps or modules.

Exemplary Content Deployment System

0017 FIG. 1 illustrates a system 100 that supports quick
deployment of content between networks, in accordance with
an embodiment. In this exemplary embodiment, system 100
includes a perimeter network 102 and an authoring network
104. In some embodiments, perimeter network 102 and
authoring network 104 are independent server farms. In other
embodiments, system 100 includes one or more staging net
works (not shown) coupled between perimeter and authoring
networks 102 and 104. In still other embodiments, system
100 includes multiple perimeter networks. In yet other
embodiments, system 100 includes multiple authoring net
works. Content authored in authoring network 104 can be
deployed to perimeter network 102 for access via an external
network 106 such as, for example, the Internet.
0018. Further, in this embodiment, system 100 includes a
firewall 107 and a load balancer 108 coupled between perim
eter network 102 and external network 106. System 100 also
includes a firewall 109 coupled between authoring network

US 2011/0314127 A1

104 and perimeter network 102, in this embodiment. In some
other embodiments, one or more of load balancer 108 and
firewalls 107 and 109 may be omitted.
0019 Perimeter network 102, in this embodiment,
includes a web server 110, a database server 112, a content
database 114, and other servers 116. Content to be accessible
to external network is stored in content database 114. Users
connected to external network 106 can access the content
stored in content database 114 via web server 110 and data
base server 112. In some embodiments, servers 116 include
one or more of an application server, a domain controller
server, operations management servers, backup servers, etc.,
that are typically used in server farms. In some embodiments,
the deployment function including the quick deploy feature
may be implemented using any of the servers of perimeter
network 102.
0020 Authoring network 104, in this embodiment,
includes a web server 120, a database server 122, a content
database 124, other servers 126, and a deployment server 128.
Web server 120, database server 122, content database 124
and other servers 126, in one embodiment, are similar to
previously described web server 110, database server 112,
content database 114 and other servers 116. In accordance
with this embodiment, deployment server 128 includes a
quick deploy feature that allows deployment server 128 to
deploy content (e.g., an item and any of its dependencies)
listed in a quick deploy list (not shown) to another network
(e.g., perimeter network 102) without having to get specific
administrator authorization for the deployment. In some
embodiments, deployment server 128 may be omitted and the
deployment function (including the quick deploy feature)
may be implemented using any of the servers of authoring
network 104. Exemplary components to implement one
embodiment of the quick deploy feature are described below
in conjunction with FIG. 2.
0021. This quick deploy feature is advantageously used to
quickly deploy content that the author considers time sensi
tive, without having to find the administrator. For example, if
the author wants to deploy content related to an important
event that has recently occurred (e.g., a news story, an emer
gency, etc.), the author can quickly deploy updated content to
replace the previously deployed content. Another scenario in
which the quick deploy feature is useful is when the author
discovers that some previously deployed content should not
have been deployed because it contained inaccurate informa
tion, malicious code, confidential information, etc. The
author can use the quick deploy feature to replace the “defec
tive' content.

0022 FIG. 2 illustrates several components of a deploy
ment server 200 that can be used in implementing deployment
server 128 (FIG. 1), in accordance with an embodiment. In
this exemplary embodiment, deployment server 200 includes
a deployment module 202, an administrator console 204, an
author console 206, a timing module 208 and an import/
export module 210. Further, in this embodiment, deployment
module 202 includes a path/job list 212, a quick deploy list
214, a quick deploy verifier module 216, a deployment table
218 and a job history 220. These components are described
below.

0023 Administrator console 204, in this embodiment,
provides an interface for an administrator to enter settings of
deployment module 212. For example, an administrator can
use administer console 204 to: add, delete and modify paths
and jobs listed in path/job list 212. In this embodiment, a path

Dec. 22, 2011

identifies a source site collection and a destination site col
lection for deploying content. In addition, in this embodi
ment, a path can be disabled by setting a disabled property of
the path. In some implementations, a site collection can be a
web page. In addition, paths can contain authentication infor
mation, settings for how to handle user information (e.g., the
author who created or modified the content), and settings for
how to handle security settings and access control lists
(ACLs). Further, in this embodiment, deployment module
202 includes one deployment table 218 per path. In one
embodiment, a job (in this content deployment context) is
associated with one path and specifies one or more items of
the source site collection to be deployed and a schedule on
with to deploy the specified item(s). In one embodiment, a job
can be disabled by setting a disabled property of the job.
0024. Further, in accordance with this embodiment,
administrator console 204 can be used by the administrator to
set permissions for quick deploy list 214. For example, the
administrator can give permission to selected authors to add
items to quick deploy list 214. In some embodiments, an
administrator can limit which path(s) a particular author has
permission to use the quick deploy feature.
0025 Author console 206, in this embodiment, provides
an interface for an author to add content to a site collection
(e.g., site collections residing in the authoring, network). In
addition, author console 206 also provides an interface for an
author to make add content information (e.g., item and path
identifiers) to quick deploy list 214.
0026 Timing module 208, in this embodiment, provides a
signal to deployment module 202 whenever a job is to be
performed. In one embodiment, an administrator may use
administrator console 204 to configure timing module 208 to
“wake up' deployment module 202 at scheduled times.
0027. Import/export module 210, in this embodiment,
implements a transport mechanism to obtain the content from
a content datastore (e.g., content database 124 of FIG. 2),
package the content, and send the packaged content to the
destination. In this embodiment, import/export module 210
can also receive packaged content, unpack the content and
store the content in the content datastore. In one embodiment,
the content is packaged into a Microsoft cabinet (“CAB) file,
and sent using one or more Simple Object Access Protocol
(SOAP) HyperText Transfer Protocol (HTTP) messages
(e.g., according to SOAP Version 1.2 specification 24 Jun.
2003).
0028. In accordance with this embodiment, import/export
module 210 also includes in the package all of the dependen
cies of each item being packaged. As used in this context,
dependencies refer to other items that referred to by the item.
For example, the item may be a web page having links to other
web pages, images, etc. In one embodiment, a resource gal
lery (not shown) is used to identify the dependencies. Further,
when receiving a package (i.e., during an import), import/
export module 210 determines the proper references for the
dependencies when deployed in the destination network. For
example, if the item is a web page that includes a dependency
that is a link to another web page, at the destination, the link
is corrected so that it references an address in the destination
network (where the dependency web page is deployed)
instead of to an address in the source network.
0029 Deployment module 202, in this embodiment, con
trols what content is deployed and where it is deployed. In
accordance with one embodiment, deployment module 202,
when “woken up' by timing module 208, accesses path/job

US 2011/0314127 A1

list 212 and quick deploy list 214 to determine: if there are
jobs are scheduled to be performed at this time; the location of
the source content (e.g., the Source site collection), the loca
tion of the destination (e.g., the destination site collection),
the job type, etc. In one embodiment, deployment module 202
first checks quick deploy list 214 for any quick deploy jobs to
be performed, and then checks path/job list 212 for jobs
scheduled to be performed.
0030. Further, in accordance with this embodiment,
deployment module 202 also controls which items can be
added to quick deploy list 214 (by adding the item's reference
or identifier) via quick deploy verifier module 216. For
example, verifier module 216 can determine whether the
author attempting to add an item to quick deploy list 214 has
permission to do so. The verifier, in one embodiment,
includes an authentication component to ensure that the
author is not being “impersonated. In some embodiments,
verifier module 216 can also determine whether the author
has permission to quick deploy content for the path associated
with the job. For example, in a news website scenario, a
sportswriter may have permission to quick deploy sports sto
ries or scores, but not other types of news.
0031. In one implementation, in performing a job, deploy
ment module 202 inspects deployment table 218 correspond
ing to the job’s path to determine when an item of a site
collection was last deployed. In one embodiment, the deploy
ment table includes a listing of items and timestamps (each
timestamp represents the time the corresponding item was
last deployed). Depending on the job type and other job
settings, an item included in the job may not need to be
completely or canonically deployed; rather, only the data that
has changed since the last deployment of the item will be
deployed in Some embodiments. In Such embodiments,
deployment module 202 compares the current version of the
item to be deployed with the version corresponding to the
timestamp of the last deployment (from deployment table
218) and can then determine the “delta” between the two
versions. The deployment can then include just the “delta',
which can advantageously reduce the amount of data that
needs to be transferred and the time needed to deploy the item.
0032. Deployment module 202, in this embodiment, also
updates job history table 220 to include information related to
the job (e.g., a job identifier, the time that the job was started,
the time when the job ended, success or failure of the job,
etc.).
0033 FIG. 3 illustrates data structures used in deploying
content between a source 300 and a destination 310, in accor
dance with an embodiment. For example, source 300 can
reside in an authoring network Such as authoring network 104
(FIG.1) and destination 310 can reside in a perimeter network
such as perimeter network 102 (FIG. 1).
0034. In this exemplary embodiment, source 300 includes
a site collection 302-1 containing an object 11 through an
object 1Xas content items, a site collection 302-2 containing
an object 21 through an object 2Y as content items, and so on
to a site collection 302-N containing an object N1 through an
object NZ as content items. In this example embodiment,
source 300 also includes the aforementioned path/job list 212,
quick deploy list 214 for site collection 302-2 and deployment
table 218. In this embodiment, the other site collections of
Source 300 may each have a corresponding quick deploy list
(not shown).

Dec. 22, 2011

0035. As illustrated in FIG.3, path/job list 212 lists a Path
1 ID having a Job 11 through a Job 1A, ..., and so on to a path
ID Path 4 having a Job 41 through a Job C4E.
0036. In this example, quick deploy list 214 corresponds
to site collection 302-2 and lists a Job QD1 specifying an
Object 2Y and path ID for Path3,..., and so on to a Job QDW
specifying an Object 21 and path ID for Path G (not shown in
FIG. 3). In other embodiments, the path ID is omitted from
quick deploy list 214 because the path ID is implicit in the job
(i.e., a job belongs to only one path). Deployment table 218,
in this example, containing a list of object IDs and, corre
sponding to each objectID, the timestamp of the last deploy
ment time of the object identified by the object ID.
0037. Destination 310 includes a site collection 312-1
containing an object 11# through an object 1Xi as content
items, a site collection 312-2 containing objects as content
items, and so on to a site collection 312-M containing an
object M1 it through an object MYi. In this example embodi
ment, destination 310 also includes a job list314 used to track
jobs and their status (e.g., completed or failed).
0038 An object can be deployed to one or multiple site
collections in the destination using normal deployment jobs.
FIG.3 shows an example in which Object 11 of site collection
302-1 is deployed site collection 312-1 using Path 1 when a
Job 11 is performed, as indicated by an arrow 316. A deploy
ment module (not shown) residing in the network containing
destination 310 then processes the received package and
deploys Object 11 in destination 310, which is shown as
Object 11 it in destination 310. The deployment module then
updates job list 314.
0039. In addition, Object 11 is also deployed to site col
lection 312-2 using Path 2 when a Job 21 is performed, as
indicated by an arrow 318. Job 21 is commonly performed at
a different time than Job 11. The deployment module of
destination 310 deploys Object 11 as an Object 21 it in site
collection 312-2. After Job 21 is performed, the deployment
module updates job list 314. Jobs 11 and 21 are listed in
path/job list 212.
0040. An object can also be deployed to one or more site
collections in the destination using quick deploy jobs. In this
example, Job QD1 listed in quick deploy list 214 specifies that
Object 2Y is to be deployed using Path 3. Path 3 in this
example is the path from site collection 302-2 of source 300
to site collection 312-2 of destination 310. A deployment
module (not shown) such as deployment module 202 (FIG.2)
residing in the network containing source 300, when woken
up by timing module 208 (FIG. 2), inspects quick deploy list
214 and performs Job QD1 of quick deploy list 214. In this
example, the deployment module packages and exports
Object 2Y and its dependencies from site collection 302-1 to
site collection 312-1, as indicated by an arrow 320 in FIG. 3.
The deployment module residing in the network containing
destination 310 then processes the received package and
deploys Object 2Y in destination 310, which is shown as
Object 2Yi in FIG. 3. As previously mentioned, in some
embodiments the dependencies of Object 2Y are also
deployed in site collection 312-1 and the references to the
dependencies deployed in destination 310 are corrected in the
resource gallery. The destination's deployment module then
updates job list 314.
0041 Further, the same path and objects of a quick deploy
job can also be defined in a normal deployment job (which
would be performed at a different time compared to the quick
deploy job). In this example, Path 3 includes a Job 31 as

US 2011/0314127 A1

shown in path/job list 212. This normal deployment of Object
2Y and its dependencies to site collection 312-2 is indicated
by an arrow 322 in FIG. 3.
0042. Also shown in this example is the normal deploy
ment of content (i.e., a Job 41) alonga Path 4. In this example,
Path 4 is the path from site collection 302-N to site collection
312-M, and Job 41 is the deployment of multiple objects. In
this example, Object N1 of site collection 302-N is deployed
as Object M1 it of site collection 312-M as part of Job 41, as
indicated by an arrow 324 of FIG. 3. In addition, in this
example, Object NZ of site collection 312-N is deployed as
Object MY# of site collection 312-M. As previously
described, this job would be performed according to the
schedule, which is included in the jobs information in one
embodiment. In addition, in Some deployment jobs, the
deployment module would access the deployment table 218
corresponding to Path 4 to determine when Objects N1 and
NZ of site collection 302-2 were last deployed, and then
determine what content has changed or is new (i.e., the
“delta') and then deploy this delta rather than Objects N1 and
NZ and their dependencies in their entirety.

Exemplary Source Operational Flow in Deploying Content
0043 FIG. 4 illustrates an operational flow 400 in using a
quick deploy list, in accordance with an embodiment. Opera
tional flow 400 may be performed in any suitable computing
environment. For example, operational flow 400 may be
executed by a system such as system 200 (FIG. 2). Therefore,
the description of operational flow 400 may refer to at least
one of the components of FIG. 2. However, any such refer
ence to components of FIG. 2 is for descriptive purposes only,
and it is to be understood that the implementations of FIG. 2
are a non-limiting environment for operational flow 400.
0044. At a block 402, a schedule for deploying items in the
quick deploy list (such as quick deploy list 214 shown in FIG.
2) is received. In one embodiment, an administrator can use
an administrator console Such as administrator console 204
(FIG. 2) to set a schedule for deploying items listed in the
quick deploy list. For example, the administrator can set the
schedule so that a deployment module Such as deployment
module 202 (FIG. 2) will check the quick deploy list every
five minutes. In one embodiment, the schedule is set on a
per-quick deploy job basis. Thus, in scenarios in which the
quick deploy list contains entries for multiple items to be
deployed via multiple quick deploy jobs, the schedule may
assign different times for performing those quick deploy jobs.
In Some embodiments, multiple items may be quick deployed
in one quick deploy job.
0045. At a block 404, quick deploy permission for selected
author(s) is received. In some embodiments, the administra
tor can also use the administrator console to select which
author or author have permission to list items in the quick
deploy list. In one embodiment, the administrator can also
select the path(s) that each author has permission to use quick
deploy. After the quick deploy list is “configured with a
schedule and permissions, operational flow 400 can proceed
to a block 410.
0046. At block 410, a request to list an item in the quick
deploy list is received. In some embodiments, an author can
use an author console Such as author console 206 to select an
item and path for quick deploy. This request is then received
by the deployment module. In one embodiment, the request is
received by a verifier module, such as quick deploy verifier
module 216 (FIG. 2).

Dec. 22, 2011

0047. At a block 412, it is determined whether the author
making the request has permission to add items in the quick
deploy list (e.g., by adding the items identifiers or locators to
the quick deploy list). In one embodiment, the aforemen
tioned verifier module determines whether the author is
authorized to add items in the quick deploy list. If it is deter
mined that the author does not have permission to quick
deploy, operational flow 400 can proceed to a block 414 at
which the authoris given an error message or indicate and the
item is not added in the quick deploy list. However, if it is
determined that the author does have permission to quick
deploy, operational flow 400 can proceed to a block 416.
0048. At block 416, it is determined whether the author
making the request has permission to quick deploy along the
selected path of the request. In this embodiment, the verifier
module also makes this determination. If the selected path is
not permitted for the author, operational flow 400 can proceed
to previously described block 414. However, if it is deter
mined that the author is permitted to use the path, the item and
path are added to the quick deploy table as indicated by a
block 418.

0049. As previously described, each site collection of the
Source may have a corresponding quick deploy list. In some
Such embodiments, permissions are set on a per quick deploy
list basis. Thus, in scenarios in which there are multiple quick
deploy jobs originating from the same site collection but
going to different destination site collections, the quick
deploy jobs may have different schedules but share the same
permissions.
0050 Although operational flow 400 is illustrated and
described sequentially in a particular order, in other embodi
ments, the operations described in the blocks may be per
formed in different orders, multiple times, and/or in parallel.
Further, in some embodiments, one or more operations
described in the blocks may be separated into another block,
omitted or combined.

0051 FIG. 5 illustrates an operational flow 500 of a con
tent source in deploying content, in accordance with an
embodiment. Operational flow 500 may be performed in any
Suitable computing environment. For example, operational
flow 500 may be executed by a system such as system 200
(FIG. 2). Therefore, the description of operational flow 500
may refer to at least one of the components of FIG. 2. How
ever, any such reference to components of FIG. 2 is for
descriptive purposes only, and it is to be understood that the
implementations of FIG.2 area non-limiting environment for
operational flow 500.
0.052 At a block 502, an indication to deploy an item is
received. In one embodiment, a deployment module Such as
deployment module 202 (FIG. 2) receives a signal or message
from a timing module to wake-up and determine whether any
content needs to be deployed. In one embodiment, the timing
module is configured to wake-up the deployment module
according to a schedule that meets the scheduling require
ments of the quick deploy feature and all of the “normal
deployment jobs. The deployment module then determines
which job(s) are scheduled to be performed.
0053 At a block 504, it is determined whether the path
associated with the job is enabled. In one embodiment, the
aforementioned deployment module inspects a disabled
property of a set of global settings that apply to all paths. In
Some embodiments, a path can be disabled on a per-path basis
instead of or in addition to the global basis. If the path is

US 2011/0314127 A1

disabled, operational flow 500 can proceed to a block 506 to
exit. However, if the path is enabled, operational flow 500 can
proceed to a block 508.
0054) At block 508, it is determined whether the job is
enabled. In one embodiment, the aforementioned deployment
module inspects a disabled property of the aforementioned
global settings to determine whether all of the jobs are dis
abled. In some embodiments, a job can be disabled on a
per-job basis instead of or in addition to the global basis. If the
is disabled, operational flow 500 can proceed to block 506 to
exit. However, if the job is enabled, operational flow 500 can
proceed to a block 510.
0055. At block 510, the job type of the job is determined.
In this embodiment, the deployment module inspects a job
type property of the indication provided at block 502 to deter
mine whether the job type is a quick deploy type or a normal
deploy type. If it is determined that the job type is a quick
deploy type, operational flow proceeds to a block 512.
0056. At block 512, it is determined whether the quick
deploy list is empty. In one embodiment, the deployment
module inspects the quick deploy list to determine if there are
any quick deploy jobs to be performed. If it is determined that
the quick deploy list is empty, operational flow 500 can pro
ceed to block 506 to exit. However, if it is determined that the
quick deploy list is not empty, operational flow 500 can pro
ceed to a block 516.

0057. At block 516, all items listed in the quick deploy list
(for the particular quick deploy job being performed) is
exported. In one embodiment, the deployment module
obtains the item(s) and its dependencies (if any) from a con
tent database such as content database 124 (FIG. 1). In one
embodiment, the item(s) and its dependencies are then pack
aged for export to the destination specified in the quick deploy
job. In one embodiment, a module Such as import/export
module 210 (FIG.2) packages the item and dependencies into
a CAB file. This block can be repeated for each job listed in
the quick deploy list.
0058. At a block 518, a remote job is created at the desti
nation. In one embodiment, the deployment module provides
an indication to a deployment server of a networkin which the
destination resides to create the remote job. For example, the
destination's deployment server may implement a method
that the deployment module can call to create the remote job.
Returning to block 510, if it is determined that the job type is
a normal deploy type, operational flow 500 can proceed to a
block 520.

0059. At block 520, a deployment table such as deploy
ment table 218 (FIGS. 2 and 3) is read. In one embodiment,
the deployment module inspects a path/job list Such as path/
job list 212 (FIG. 2) to determine the path and job that is to be
performed. The deployment module can then read the deploy
ment table associated with the job’s path to determine when
the items were last deployed. As previously described, this
deployment information can then be selectively used to deter
mine the “delta' of the item(s) to be deployed.
0060. At a block522, the item(s) of the job are exported. In
one embodiment, the item(s) and their dependencies are then
packaged for export to the destination specified in the job
definition. In one embodiment, the aforementioned import/
export module packages the item(s) and dependencies into a
CAB file. Then operational flow 500 can proceed to previ
ously described block 518 to create a remote job at the des
tination.

Dec. 22, 2011

0061. At block 524, the package is uploaded to the desti
nation. In one embodiment, the module that packaged the
item(s) and dependencies also uploads the package to the
destination using one or more SOAP HTTP messages.
0062. At a block 526, the remote job created at block 518

is started. In one embodiment, the deployment module pro
vides an indication to the destination's deployment server to
start the remote job. For example, the destination's deploy
ment server may implement a method that the deployment
module can call to start the remote job. Block 526 causes the
destination to deploy the content contained in the package.
0063. At a block 528, it is determined whether the remote
job has completed or timed-out. In one embodiment, the
deployment module will poll the destination to determine
whether the remote job has completed. If the remote job has
timed-out, operational flow 500 can return to block 506 to
exit. However, if the remote job has completed, operational
flow 500 can proceed to a block 530.
0064. At block 530, the result of the remote job is written
to a job history such as job history 220 (FIG. 2). In one
embodiment, the deployment module writes the result to the
job history.
0065. At a block 532, the job type of the job is determined.
In one embodiment, block 532 is basically the same as pre
viously described block510. If the job type was determined to
be the quick deploy type, then operational flow 500 can pro
ceed to a block 534 at which the quick deploy list is cleared
because all of the quick deploy jobs were completed or timed
out. Operational flow 500 can then proceed to a block 536.
0066. At block 536, the remote job is deleted at the desti
nation. In one embodiment, the deployment component
causes the destination to delete the remote job. For example,
the destination's deployment server may implement a method
that the deployment module can call to delete the remote job.
0067. However, if at block 532 (or block 510) the job type
was determined to be the normal deploy type, then opera
tional flow 500 can proceed to a block 538 at which the
deployment table corresponding to the job's pathis updated to
reflect the time at which the item(s) were deployed, Opera
tional flow 500 can then proceed to previously described
block 536 to delete the remote job.
0068 Although operational flow 500 is illustrated and
described sequentially in a particular order, in other embodi
ments, the operations described in the blocks may be per
formed in different orders, multiple times, and/or in parallel.
Further, in some embodiments, one or more operations
described in the blocks may be separated into another block,
omitted or combined.

Exemplary Destination Operational Flow in Deploying Con
tent

0069 FIG. 6 illustrates an operational flow 600 of a con
tent destination in deploying content, in accordance with an
embodiment. Operational flow 600 may be performed in any
Suitable computing environment. For example, operational
flow 600 may be executed by a system such as system 100
(FIG. 1). Therefore, the description of operational flow 600
may refer to at least one of the components of FIG.1. How
ever, any such reference to components of FIG. 1 is for
descriptive purposes only, and it is to be understood that the
implementations of FIG.1 area non-limiting environment for
operational flow 600.
0070. At a block 602, an indication to create a job is
received by a content deployment destination. In this context,

US 2011/0314127 A1

a job refers to the process of receiving a package of content,
unpacking the package and storing the content and its depen
dencies at the destination. In one embodiment, the destination
is a network having a destination deployment server (e.g., a
web front end server as web server 110 of FIG. 1) that handles
content reception from another network. In this embodiment,
the destination deployment server has a destination deploy
ment component (not shown) that implements a method that
can be called by another component to create a job on the
destination, deployment server. In one embodiment, the
method also creates a job identifier for the job and adds it to a
job list such as job list 314 (FIG. 3). In one scenario, a
deployment component of a source calls the method to create
the job (e.g., see block 518 of FIG. 5).
(0071. At a block 604, operational flow 600 waits for an
indication to start the job that was created at block 602. In this
embodiment, the destination deployment component imple
ments another method that when called starts the job. In one
scenario, the deployment component that created the job also
starts the job when the content is ready to be transferred (e.g.,
see block 526 of FIG. 5). When the job is started, operational
flow 600 can proceed to a block 606.
0072 At block 606, the content specified by the job is
imported from the Source. In one embodiment, the destination
deployment component downloads the item(s) and depen
dencies (if any) that was package by the source and stores
them in a content database Such as content database 114.
Further, the destination deployment component also corrects
the references to the dependencies so that they reference
items residing in the destination rather than the source.
0073. At a block 608, the job list is updated. In one
embodiment, the destination deployment component writes
information into a status field of the job list to indicate success
or failure of the job. In one embodiment, the source can poll
the job list to determine whether the job has completed (e.g.,
see block 528 of FIG. 5).
0074 At a block 610, operational flow 600 waits for an
indication to delete the job. In one embodiment, the destina
tion deployment component implements another method that
deletes the job when called. In one scenario, the deployment
component that created the job also deletes the job when it
detects that the job has completed (e.g., see block 536 of FIG.
5). In one embodiment, the job is completed when the status
indicates either Success or failure or timed-out.

0075 Although operational flow 600 is illustrated and
described sequentially in a particular order, in other embodi
ments, the operations described in the blocks may be per
formed in different orders, multiple times, and/or in parallel.
Further, in some embodiments, one or more operations
described in the blocks may be separated into another block,
omitted or combined.

0076 Reference has been made throughout this specifica
tion to “one embodiment,” “an embodiment,” or “an example
embodiment’ meaning that a particular described feature,
structure, or characteristic is included in at least one embodi
ment. Thus, usage of such phrases may refer to more than just
one embodiment. Furthermore, the described features, struc
tures, or characteristics may be combined in any Suitable
manner in one or more embodiments.

0077 One skilled in the relevant art may recognize, how
ever, that embodiments may be practiced without one or more
of the specific details, or with other methods, resources, mate
rials, etc. In other instances, well known structures, resources,

Dec. 22, 2011

or operations have not been shown or described in detail
merely to avoid obscuring aspects of the embodiments.
0078 While example embodiments and applications have
been illustrated and described, it is to be understood that the
invention is not limited to the precise configuration and
resources described above. Various modifications, changes,
and variations apparent to those skilled in the art may be made
in the arrangement, operation, and details of the methods and
systems disclosed herein without departing from the scope of
the claimed invention.

1.-20. (canceled)
21. A computer-implemented method for deploying con

tent from a source to a destination, the method comprising:
creating, by a deployment module, a remote job at the

destination for deploying a first item;
uploading the first item to the destination;
starting, by the deployment module, the remote job at the

destination to import the uploaded first item, wherein
starting the remote job comprises calling a method to
start the remote job;

polling, by the deployment module, to determine a status of
the remote job at the destination;

tracking, by the deployment module, job history informa
tion, wherein the job history information comprises
information related to the remote job, and wherein the
information related to the remote job comprises a time
when the remote job was started, a time when the remote
job ended, and an indication whether the remote job
Succeeded; and

causing, by the deployment module, the destination to
delete the remote job.

22. The method of claim 21, further comprising:
controlling, by the deployment module, import of a job at

the destination, wherein the job is different from the
remote job.

23. The method of claim 22, further comprising determin
ing whether the job is listed in a quick deploy list.

24. The method of claim 23, wherein an author listed the
job in the list without having to seek permission from an
administrator.

25. The method of claim 23, further comprising clearing
the list in response to the job being completed.

26. The method of claim 21, further comprising determin
ing what data has changed in the first item since the first item
was last deployed.

27. The method of claim 26, further comprising updating a
table with information indicative of the first item's version.

28. An apparatus for deploying content from a source to a
destination, the apparatus comprising:

one or more processors for executing processor executable
instructions;

one or more computer storage media, wherein the com
puter storage media does not consist of a signal, for
storing the processor executable instructions that when
executed by the one or more processor perform a method
comprising:
creating, by a deployment module, a remote job at the

destination for deploying a first item;
uploading the first item to the destination;
starting, by the deployment module, the remote job at the

destination to import the uploaded first item, wherein
starting the remote job comprises calling a method to
start the remote job;

US 2011/0314127 A1

polling, by the deployment module, to determine a status
of the remote job at the destination;

tracking, by the deployment module, job history infor
mation, wherein the job history information com
prises information related to the remote job, and
wherein the information related to the remote job
comprises a time when the remote job was started, a
time when the remote job ended, and an indication
whether the remote job succeeded; and

causing, by the deployment module, the destination to
delete the remote job.

29. The apparatus of claim 28, further comprising further
comprising:

obtaining, by the deployment module, the first item and
one or more dependencies of the first item referred to by
the first item.

30. The apparatus of claim 29, further comprising a data
base in the destination network to store the one or more
dependencies and the uploaded first item with one or more
references to locations at which the dependencies are stored
in the database.

31. The apparatus of claim 28, further comprising a first list
identifying items that are to be deployed at a time scheduled,
and a second list containing paths and jobs, wherein items
identified in the second list are to be deployed according to a
schedule specified by one or more jobs.

32. The apparatus of claim 31, wherein an author is able to
list the first item in the first list without having to seek per
mission from an administrator.

33. A computer-readable storage medium, wherein the
computer storage media does not consist of a signal, storing
computer-executable instructions for deploying content from
a source to a destination, the method comprising the steps of

creating, by the deployment module, a remote job at the
destination for deploying the first item;

uploading the package to the destination;

Dec. 22, 2011

starting, by the deployment module, the remote job at the
destination to import the uploaded first item, wherein
starting the remote job comprises calling a method to
start the remote job;

polling, by the deployment module, to determine a status of
the remote job at the destination;

tracking, by the deployment module, job history informa
tion, wherein the job history information comprises
information related to the remote job, and wherein the
information related to the remote job comprises a time
when the remote job was started, a time when the remote
job ended, and an indication whether the remote job
Succeeded; and

causing, by the deployment module, the destination to
delete the remote job.

34. The computer-readable storage medium of claim 33,
further comprising:

controlling, by the deployment module, import of a job at
the destination, wherein the job is different from the
remote job.

35. The computer-readable storage medium of claim 34,
further comprising:

determining whether the job is listed in a quick deploy list.
36. The computer-readable storage medium of claim 35,

wherein an author listed the job in the list without having to
seek permission from an administrator.

37. The computer-readable storage medium of claim 35,
further comprising clearing the list in response to the remote
job being completed.

38. The computer-readable storage medium of claim 33,
further comprising determining what data has changed in the
first item since the first item was last deployed.

39. The computer-readable storage medium of claim 38,
further comprising updating a table with information indica
tive of the first item's version.

40. The computer-readable storage medium of claim 33,
further comprising updating, by the deployment module, a
job history table to indicate if the remote job is completed.

c c c c c

