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57 ABSTRACT

The present invention provides techniques that allow con-
current collection of cyclic garbage on reference counting
systems. In general, candidate objects are found that may be
part of cyclic garbage. Each candidate object has a reference
count. Two tests are performed to determine if concurrent
operations have affected the reference counts of the candi-
date objects. If concurrent operations have not affected the
reference counts, the candidate objects are collected as
garbage. Additionally, during garbage collection, the decre-
ments to reference counts are delayed so that increments
occur before decrements and so that decrements are held a
predetermined time before being applied. This prevents
decrementing a reference and collecting a cycle as garbage
right before a reference is added to an object in the cycle.
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CONCURRENT COLLECTION OF CYCLIC
GARBAGE IN REFERENCE COUNTING SYSTEMS

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of U.S. Provi-
sional Application No. 60/254,615, filed Dec. 11, 2000, and
U.S. Provisional Patent Application No. 60/254,691, filed
Dec. 11, 2000 and U.S. patent application Ser. No. 10/013,
148, filed Dec. 10, 2001.

FIELD OF THE INVENTION

[0002] The present invention relates to garbage collection
in computer systems and, more particularly, relates to con-
current collection of cyclic garbage in reference counting
systems.

BACKGROUND OF THE INVENTION

[0003] The term “garbage” is used to describe an object or
data element that is no longer accessible by a computer
program. Some systems are designed with no garbage detec-
tion and collection programs. In these systems, it is up to the
programmer to remember to reclaim objects and data that is
no longer accessible. Garbage occupies part of the memory
of a computer system but serves no purpose. If a computer
program does not run for very long or is infrequently run,
garbage collection is not a problem because the computer
system generally has plenty of memory. However, if the
program creates garbage and is run for a long time or
frequently, the extraneous garbage can grow to occupy all of
the useful memory of the computer system. This will cause
a system shutdown or other deleterious effects. Today,
programs are designed to run continuously all day, every
day. Business servers simply cannot experience unscheduled
shutdowns.

[0004] The effect of garbage has been known from the
beginning of the computer era. In fact, forty years ago, two
methods of automatic garbage collection for computer sys-
tems were introduced: reference counting and tracing. Ref-
erence counting is described in Collins, “A Method for
Overlapping and Erasure of Lists,” Communications of the
Ass’n of Computing Machinery (ACM) 3, 655-657 (1960),
while tracing is described in McCarthy, “Recursive Func-
tions of Symbolic Expressions and Their Computation by
Machine,” Communications of ACM 3, 184-195 (1960), the
disclosures of which are incorporated herein by reference.
Briefly, in reference counting, a reference count is used in an
object to track how many other objects reference this object.
Reference counts are incremented and decremented, and a
reference count of zero indicates that the object is garbage
because it is unreachable by any other object. In tracing, the
entire object graph is traced until garbage is found. Since
this early time, tracing collectors and their variants have
been much more widely used due to perceived deficiencies
in reference counting.

[0005] Changes in the relative costs of memory and pro-
cessing power, and the widespread adoption of languages
that employ garbage collection, have modified the land-
scape. As processor clock speeds increase while Random
Access Memory (RAM) becomes plentiful but not signifi-
cantly faster, certain properties of reference counting make
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it more appealing. Moreover, the purported extra processing
power required is likely to be less relevant.

[0006] At the same time, the incorporation of garbage
collection by the programming language Java has thrust the
problem into the mainstream. Now, large, mission-critical
systems are being built in Java. This stresses the flexibility
and scalability of the underlying garbage collection imple-
mentations used in Java. As a result, the supposed advan-
tages of tracing collectors, namely simplicity and low over-
head, are being eroded as they are being made ever more
complex in an attempt to address the real-world require-
ments of large and varied programs.

[0007] Furthermore, the fundamental assumption behind
tracing collectors, namely that it is acceptable to periodically
trace all of the live objects in the heap (an area of memory
reserved for data that is created during runtime), will not
necessarily scale to the very large main memories that are
becoming increasingly common.

[0008] There are three primary problems with reference
counting: (1) the storage overhead associated with keeping
a count for each object; (2) the runtime overhead of incre-
menting and decrementing the reference count each time a
pointer is copied; and (3) the inability to detect cyclic
garbage and consequent necessity of including a second
garbage collection technique to deal with cyclic garbage.

[0009] The inability to collect cyclic garbage (also called
“cycles” herein) is generally considered to be the greatest
weakness of reference counting collectors. It places the
burden on the programmer to break cycles explicitly,
requires special programming idioms, or requires a tracing
collector to collect the cycles.

[0010] The problem of cycles in reference counting sys-
tems is illustrated in FIGS. 1 and 2. FIG. 1 shows a subgraph
100 containing a number of nodes 110, 125, 130, 135, 140,
145, 150, and 155 therein. When a computer program runs,
it creates a number of objects or data structures or both. The
interrelationship between the program, the objects, and the
data structures is commonly called a graph. FIG. 1 shows a
subset of a graph created by an executing program (the
program is not shown). This subset is subgraph 100.

[0011] Subgraph 100, as discussed above, contains a num-
ber of nodes 110, 125, 130, 135, 140, 145, 150, and 155.
Each node represents an object ox part of a data structure.
Between each node is one or more edges. For instance,
between node 110 and node 125 is edge 115, and between
node 110 and node 140 is edge 120. Additionally, node 110
is connected to the rest of the graph (not shown) through
edge 105. Each edge represents a reference from one node
to another node. In FIG. 1, node 110 is referencing node 125
through edge 115, and it is also referencing node 140
through edge 120.

[0012] In a reference counting system, the reference count
for each node is tracked. For instance, node 125 has a
Reference Count (RC) of two because nodes 110 and 135
reference node 125. In FIG. 1, subgraph 160 represents a
cyclic structure, while subgraph 170 represents an acyclic
structure. Subgraph 160 represents a cyclic structure
because there is a series of edges that traverses nodes and
that starts at node 125 and ends at 125. In other words, one
can traverse this graph by starting at one node and ending at
the same node. Thus, subgraph 160 is cyclic. In subgraph
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170, conversely, there is no series of edges that traverses
nodes and that starts at one node and ends at the same node.
Thus, subgraph 170 is acyclic.

[0013] FIG. 2 shows a resultant subgraph 200 that occurs
after the program removes the references from node 110 that
created edges 115 and 120. Even though the program
explicitly removes the references, a “mutator” actually per-
forms the low level removal of references. The process
undertaken by the mutator is generally hidden from a
programmer. A garbage collector will easily recognize that
subgraph 170 is garbage, because the reference count for
node 140 is zero. A zero indicates that node 140 is no longer
being referenced by the program, and, therefore, the node
may be removed. Because node 140 can be removed, nodes
145, 150, and 155 can also be removed.

[0014] Subgraph 160 is more challenging for a garbage
collector. There is no node that contains a reference count of
zero. Even though this subgraph 160 cannot be accessed by
the program, the reference counts are non-zero. A garbage
collector in this instance will have to select a node and
search through the entire subgraph to determine that no node
in the subgraph is referenced by a node outside of the
subgraph. It can then eliminate subgraph 160 as garbage.

[0015] Many reference counting systems use a “stop the
world” type of synchronous garbage collection, where all
processes or threads other than the garbage collector are
stopped. This means that the reference counts are not
changing while the garbage collector collects garbage. How-
ever, “stop the world” garbage collection can take too much
time. In fact garbage collectors of this type have been known
to run for many seconds or even minutes on large systems,
which is too long for critical applications. Thus, concurrent
garbage collection, which allows processes to run during
garbage collection, is becoming increasingly necessary.

[0016] Concurrent collection of garbage creates additional
problems, however. One of these problems is illustrated in
FIG. 2. In FIG. 2, subgraph 160 is considered to be garbage
once edge 115 is removed. However, node 210 might add
edge 220 shortly before edge 115 is removed. This would
cause the reference count for node 130 to be increased to
two. If garbage collection occurs before edge 220 is added
but after edge 115 is removed, a garbage collector will
determine that subgraph 160 and its nodes 125, 130, and 135
are garbage. However, they are not garbage because node
210 has added or will add edge 220 to allow node 210 to
reference node 130.

[0017] Concurrent collection of garbage therefore adds
additional problems to garbage collection in reference
counting garbage collection systems. Techniques for con-
current collection of garbage exists, but these techniques do
not use reference counting.

[0018] Thus, better techniques are needed for concurrent
collection of cyclic garbage in reference counting computer
systems.

SUMMARY OF THE INVENTION

[0019] The present invention provides techniques that
allow concurrent collection of cyclic garbage on reference
counting systems. In general, candidate objects are found
that may be part of cyclic garbage. Each candidate object has
a reference count. Two tests are performed to determine if
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concurrent operations have affected the reference counts of
the candidate objects. If concurrent operations have not
affected the reference counts, the candidate objects are
collected as garbage. Additionally, during garbage collec-
tion, the decrements to reference counts are delayed so that
increments occur before decrements and so that decrements
are held a predetermined time before being applied. This
prevents decrementing a reference and collecting a cycle as
garbage right before a reference is added to an object in the
cycle

[0020] A more complete understanding of the present
invention, as well as further features and advantages of the
present invention, will be obtained by reference to the
following detailed description and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0021] FIGS. 1 and 2 are exemplary diagrams of a sub-
graph and data structures therein;

[0022] FIG. 3 is a block diagram of a system that performs
concurrent reference counting garbage collection in accor-
dance with one embodiment of the present invention;

[0023] FIG. 4 is a diagram of execution timelines for three
processors, one of which executes a garbage collector, in
accordance with one embodiment of the present invention;

[0024] FIG. 5 is a flowchart of a method of concurrent
garbage collection for cyclic data structures in a reference
counting computer system, in accordance with one embodi-
ment of the present invention;

[0025] FIG. 6 is a block diagram of the creation of a cycle
buffer from a root directory for one particular subgraph, in
accordance with one embodiment of the present invention;

[0026] FIG. 7 is a state transition graph for concurrent
garbage collection of cyclic data structures in a reference
counting computer system, in accordance with one embodi-
ment of the present invention;

[0027] FIGS. 8 and 9 are exemplary listings of
pseudocode instructions used to implement concurrent gar-
bage collection of cyclic data structures in a reference
counting computer system, in accordance with one embodi-
ment of the present invention;

[0028] FIGS. 10 and 11 are diagrams of cyclic data
structures and possible concurrent operations that can pos-
sibly create inaccuracies if both tests of the present invention
are not performed; and

[0029] FIG. 12 is a block diagram of an exemplary system
suitable fox carrying out embodiments of the present inven-
tion.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

[0030] The present invention provides techniques that
allow concurrent collection of cyclic garbage on reference
counting systems. In general, candidate objects are found
that may be part of cyclic garbage. To find candidate objects
that may be part of cyclic garbage, techniques in the
following reference may be used: D. Bacon, “Synchronous
Collection of Cyclic Garbage in Reference Counting Sys-
tems,” attorney docket number YOR920000850US2, filed
on Dec. 7, 2001, the disclosure of which is hereby incor-
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porated by reference. However, the tests of the present
invention do not depend on any property of the technique
that finds candidate objects. Thus, any technique that can
find candidate objects may be used.

[0031] Generally, a toot buffer is used to store objects that
may be roots of cyclic garbage. From the root buffer, a cycle
buffer is created. Basically, each root in the root buffer
describes a cycle that may be garbage. These cycles are
added to the cycle buffer. Thus, the cycle buffer contains a
number of complete cycles, where each cycle may be
garbage. The cycle buffet increases the speed at which
cycles are traversed. The root buffer and cycle buffer are not
necessary to the practice of the present invention, and other
types of data structures may be used.

[0032] Two tests are performed on the cycles in the cycle
buffer to determine if concurrent operations have affected
the reference counts of the candidate objects. These two tests
are called the “delta test,” or A-test, and “sigma test,” or
Z-test, herein. If concurrent operations have not affected the
reference counts, the candidate objects from the cycles in the
cycle buffer are collected as garbage.

[0033] Additionally, during garbage collection, the decre-
ments to reference counts are delayed so that increments
occur before decrements. Moreover, decrements are further
delayed a predetermined period. Generally, increments from
a current epoch are applied to reference counts, as are
decrements from a previous epoch. The definition of
“epoch” changes depending on the process being discussed.
For single processors, each “epoch” is separated by collec-
tions, which is where increments and decrements are sent to
a garbage collector. For a number of processors in a system
where a garbage collector runs on one of the processors, on
the processor running the garbage collector, each epoch is
separated by a period when the garbage collector has acted
on the increments and decrements. Each epoch ends when
all processors have again sent the contents of their mutator
buffers to the garbage collector. Decrements from the current
epoch are stored and applied in the next epoch. This prevents
decrementing a reference and collecting a cycle as garbage
right before a reference is added to an object in the cycle.

[0034] Before proceeding further, it is worthwhile to dis-
cuss some conventions used in this specification. The terms
“node” and “object” are considered interchangeable, as are
“edge” and “reference,” and “graph” and “object diagram.”
An edge connects one node to the same node or another node
in a graph, while a reference connects one object to itself or
another object in an object diagram. Graph theorists tend to
use the former terms, while software engineers use the latter
terms. Additionally, the term “cycle” will be used to indicate
a series of nodes that are cyclic and potentially garbage.

[0035] Also, nodes or objects will generally be “marked”
with a “color” in the upcoming discussion. The color anal-
ogy is widely used in literature that discusses garbage
collection, so it will be retained here. The meanings of the
colors used herein are as follows: black indicates that a node
is “in use” or “free”; gray indicates that a node is a possible
member of a cycle; white indicates that a node is a member
of a cycle; purple indicates a possible root of a cycle; red
indicates that a node is part of a candidate cycle undergoing
sigma computation; and orange indicates that a node is part
of a candidate cycle awaiting an epoch boundary.

[0036] Referring now to FIG. 3, a system 300 is shown
that performs concurrent reference counting garbage collec-
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tion in accordance with one embodiment of the present
invention. System 300 comprises three processors 310, 320,
and 330 that operate in parallel and independently, and
shared memory 380. Processors 310, 320, and 330 can each
access shared memory 380. Processor 310 comprises a
mutator 313 that keeps track of increments 317 and decre-
ments 319 to objects (not shown) on processor 310 The
increments 317 and decrements 319 are stored in mutator
buffet 314 for this purpose. Similarly, processor 320 com-
prises a mutator 323 that keeps track of increments 327 and
decrements 329 to objects (not shown) on computer system
320. The increments 327 and decrements 329 are stored in
a mutator buffer 324 for this purpose. Processor 330 com-
prises a garbage collector 340 that keeps track of decrements
from a previous epoch 345, increments from a current epoch
350, decrements from a current epoch 355, root buffer 360,
and cycle buffer 370. As shown, each processor includes
some type of memory that is used to store its respective
processes and data.

[0037] Periodically, mutator 313, 323 sends the contents
of its mutator buffer 314, 324 to garbage collector 340. This
occurs once each epoch. At the beginning of an epoch, the
garbage collector 340 applies the increments from the cur-
rent epoch 350. Then the garbage collector 340 applies the
decrements from the previous epoch 345. During this pro-
cess, the garbage collector 340 modifies root buffer 360. The
garbage collector 340 stores the decrements from the current
epoch in location 355. During the next epoch, these decre-
ments will be applied.

[0038] After the increments for the current epoch 350 and
decrements for the previous epoch 345 have been applied,
the garbage collector 340 will perform concurrent garbage
collection. Concurrent garbage collection is described in
more detail in reference to FIG. 5. What is important to note
is that mutators 313 and 323 act independently from them-
selves and from garbage collector 340. Therefore, while
garbage collector 340 is modifying reference counts of
objects, mutators 313 and 323 may be adding references to
these objects or removing references from these objects.
Moreover, because the mutators only periodically send
changes to reference counts to the garbage collector 340, the
garbage collector 340 has to act within the confines of this
delayed notice. Techniques for garbage collection under
these circumstances must take these conditions into account.
It is also important to note that, while mutators 313, 323
keep track of reference addition and deletions, only the
garbage collector 340 is allowed to modify the reference
count for objects.

[0039] Tt should be noted that the data in each computer
system may be separately stored from the software operating
on it. For example, the mutator buffer 314 is shown as part
of mutator 313, but mutator buffer 314 could be stored
separately from mutator 313. FIG. 3 is depicted to aid
understanding. It should also be noted that each processor
310, 320, and 330 could be part of a separate computer
system, and that portions or all of what is shown for each
processor may be stored in shared memory 380 For example,
mutator 313 may be stored in shared memory 380 and
moved from shared memory 380 into memory (e. g., L1 or
L2 cache) in processor 310 when the mutator 313 is
executed.

[0040] Turning now to FIG. 4, a diagram is shown of
execution timelines for three processors. There are three
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timelines shown: a timeline 410 that corresponds to proces-
sor 310 of FIG. 3; a timeline 420 that corresponds to
processor 320 of FIG. 3; and a timeline 430 that corresponds
to processor 330 of FIG. 3, FIG. 4 also helps to illustrate and
describe epochs.

[0041] Timeline 410 comprises areas 411, 412, 413, and
414 where processes or threads are executed, and interrup-
tions 415, 416 and 417 by a garbage collector thread running
on that computer system. Similarly, timeline 420 comprises
areas 421, 422, 423, and 424 where processes or threads are
executed, and interruptions 425, 426 and 427 by a collector
thread running on that computer system. Timeline 430
comprises areas 431, 432, 433, and 434, where processes or
threads are executed. Periods 435, 436, and 437 are times
when the garbage collector executes.

[0042] As previously discussed, the mutators produce
operations on reference counts, which are placed into buffers
and periodically turned over to the garbage collector (also
called “collector” herein), which runs on its own processor.
The collector is single-threaded, and is the only thread in the
system which is allowed to modify the reference count fields
of objects. Generally, a collector thread actually transmits
the contents of the mutator buffer. Thus, the mutator creates
increments and decrements and a collector thread sends the
contents of the mutator buffer to a garbage collector running
on its own processor.

[0043] For example, during interrupt 415, a collector
thread sends the contents of the mutator buffer created on
processor 310 (not shown), which creates timeline 410, to
the garbage collector. The garbage collector runs on proces-
sor 330, which creates timeline 430. During interrupt 425, a
second collector thread sends the contents of the mutator
buffer created on processor 320 (not shown), which creates
timeline 420, to the garbage collector. The garbage collector
then runs in period 435.

[0044] During mutator operation, updates to the stacks are
not reference-counted. Only heap updates are reference-
counted, and those operations are deferred with a write
barrier by storing the addresses of objects whose counts
must be adjusted into mutation buffers, which contain incre-
ments or decrements. Objects are allocated with a reference
count of one, and a corresponding decrement operation is
immediately written into the mutation buffer. In this manner,
temporary objects never stored into the heap are collected
quickly.

[0045] As has been discussed, time is divided into epochs,
which are separated by collections that comprise each pro-
cessor briefly running its collector thread. In FIG. 4, epochs
440, 450, 460 and 470 are shown. These epochs are deter-
mined from the point of view of timeline 430. Epoch
boundaries are staggered, the only restriction being that all
processors must participate in one collection before the next
collection can begin. Periodically, some event will trigger a
collection cycle. This trigger could occur because a certain
amount of memory has been allocated, because a mutation
buffet is full, or because a timer has expired. In normal
operation, none of these triggers will cause the mutator to
block; however, they will schedule the collector thread to
run on the first processor.

[0046] On the first processor, when the collector thread
wakes up, it scans the stacks of its local threads and places

Aug. 9, 2007

the addresses of objects in the stack into a stack buffer. It
then increments its local epoch number, allocates a new
mutation buffer, and schedules the collector thread on the
next processor to run. Finally, it dispatches to the thread that
was interrupted by collection. The collector thread performs
these same operations for each processor until it reaches the
last processor. The last processor actually performs the work
of collection.

[0047] This is shown in FIG. 4, where timeline 410
periodically runs a collector thread in interrupts 415, 416,
and 417 and where timeline 420 periodically runs a collector
thread in interrupts 425, 426, and 427. The garbage collector
then runs on the last processor, processor 330 that creates
timeline 430, in periods 435, 436, and 437.

[0048] The last processor scans the stacks of its local
threads into a stack buffer. Then it processes increments in
the following manner. The reference count of each object
addressed in the stack buffer, for the current epoch computed
by each processor, is incremented. Then the mutator buffer
for each processor for the current epoch is scanned, and the
increment operations it contains are performed.

[0049] To avoid race conditions that might cause the
collector to process a decrement before the corresponding
increment has been processed, the increment operations are
processed first and the decrement operations are processed
one epoch behind. So the last processor scans the stack
buffers of the previous epoch, and decrements the reference
counts of objects that they address, and then processes the
mutation buffers of the previous epoch, performing the
decrement operations.

[0050] During the decrement phase, any object whose
reference count drops to zero is immediately freed, and the
reference counts of objects it points to are recursively
decremented. Finally, the stack and mutation buffers of the
previous epoch are returned to the buffer pool, and the epoch
number is incremented. The collection has finished and all
processors have joined the new epoch, and now any pro-
cessor can trigger the next collection phase.

[0051] The reason for processing increments of the current
epoch and delaying decrements one epoch is shown in FIG.
4. Assume that increments and decrements are processed as
they arrive. Assume, at time 480, that a mutator running in
timeline 410 increments a reference to an object. This
increment will be sent to the garbage collector during
interrupt 417. Also assume that, at the same time 480, a
mutator running in timeline 420 decrements a reference to
the same object. This decrement will be sent to the garbage
collector during interrupt 426 This means that the garbage
collector could, if the decrement is immediately processed,
decrement the reference count for this object during period
436. If the reference count for the object drops to zero or if
the reference count is positive but the object is part of a
cycle, the object will be collected as garbage in period 436.

[0052] However, the object should not be garbage because
the mutator running in timeline 410 has incremented the
reference count to the object. This increment will not be
processed until it is sent in interrupt 417 and until the
garbage collector runs in period 437. Thus, increments from
the current epoch are performed first and decrements from a
previous epoch are performed last. In the previous scenario,
this means that the decrement at time 480 would not be
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processed until period 437 and also after the increment has
been processed in period 437.

[0053] Note that the definitions of epoch as used herein
mean that part of each period 435, 436, and 437 performs the
decrements and increments to the reference counts. This part
is in one epoch, while the part of each period 435, 436, and
437 that performs cyclic garbage collection is in another
epoch. Using this definition, an increment that occurs in
epoch 450 is acted upon in epoch 450. Other definitions may
be used, and the definition above is used herein solely to
maintain consistent terminology. For instance, all of periods
435, 436, and 437 could be considered as part of a current
epoch. Using this definition, increments from the immedi-
ately proceeding epoch are applied, then decrements from
two epochs ago are applied. In FIG. 4, in period 437,
increments from epoch 460 are applied and then decrements
from period 450 are applied. What is important is that an
increment created by one processor before its collection
period occurs will be processed prior to processing a dec-
rement created by another (or the same) processor before
two of its collection periods have occurred.

[0054] Referring now to FIG. 5, a method 500 is shown for
concurrent garbage collection of cyclic data structures in a
reference counting computer system, in accordance with one
embodiment of the present invention. Method 500 is per-
formed by a garbage collector after increments and decre-
ments from the current epoch have been transmitted by all
of the processors in a system. Method 500 is preferably
performed once each epoch and starts, as indicated in step
505, at the epoch boundary.

[0055] Thus, prior to step 505, the increments and decre-
ments for the current epoch have been sent by processors in
the system. Additionally, other steps are taken in step 505,
such as allocating memory and scanning stack buffers.

[0056] In step 510, the increments and decrements from
all of the processors are retrieved, generally from shared
memory. In step 515, increments from the current epoch are
applied, and, in step 520, decrements from the previous
epoch are applied. As discussed above, delaying processing
of decrements for one epoch ensures that increments will be
added before decrements. This prevents the possibility of a
cycle from being removed if an increment occurs after a
decrement.

[0057] In step 525, non-cyclic garbage is removed, which
means that any object whose reference count is zero is
collected as garbage. In step 530, decrements from the
current epoch are stored. These will be used the next time
method 500 is run. At that time (i e., an epoch later), these
will be decrements from a previous epoch.

[0058] As with other concurrent garbage collection algo-
rithms, method 500 must contend with the fact that the
object graph may be modified simultaneously with the
scanning of it by the garbage collector. In addition, the
reference counts may be as much as a two epochs out of date
(because decrements are deferred by an epoch).

[0059] Method 500 relies on the same basic premise as the
synchronous algorithm described in the filed application
entitled “Synchronous Collection of Cyclic Garbage in
Reference Counting Systems,” which has been incorporated
by reference above. This premise is that given a subset of
nodes, if deleting the internal edges between the nodes in
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this subset reduces the reference count of every node in the
subset to zero, then the whole subset of nodes is cyclic
garbage. The subset may represent more than one indepen-
dent cycle, but all of the cycles in the subset are all garbage
cycles.

[0060] However, since the graph may be modified, there
are three basic difficulties. Firstly, since one cannot rely on
being able to retrace the same graph, the repeated traversal
of the graph does not always define the same set of nodes.
Secondly, the deletion of edges can disconnect portions of
the graph, thus making the global test by graph traversal
difficult. Thirdly, reference counts may be out of date.

[0061] To deal with these difficulties, the cyclic garbage
collection portion of method 500 proceeds in two phases. In
the first phase, a candidate set of garbage nodes is discov-
ered. Then method 500 waits until an epoch boundary and
performs the second phase in which tests are performed to
ensure that the candidates do indeed satisty the criteria for
garbage cycles.

[0062] The two phases can be viewed as enforcing a
“liveness” and a “safety” property. The first phase enforces
liveness by ensuring that potential garbage cycles are con-
sidered for collection. The second phase ensures safety by
preventing the collection of false cycles induced by concur-
rent mutator activity. The liveness phase is performed by
steps 550 through 580, while the safety phase is performed
by steps 535 and 540 Before discussing the liveness and
safety phases, it is worthwhile to note that certain steps of
method 500 may not be performed for every epoch. For
example, the first time method 500 is run, steps 510 through
545 may not be performed if there are no increments or
decrements. If there are increments and decrements the first
time method 500 is performed, step 520 will not be per-
formed because there is no “previous” epoch. Additionally,
if there are no candidate cycles after step 525 is performed,
then steps 535 through 545 need not be performed. The
following discussion assumes that no candidate cycles
remain after step 525, such that steps 535 through 545 need
not be performed. This assumption is made simply to enable
description of the liveness phase prior to description of the
safety phase of method 500.

[0063] The liveness phase comprises steps 550 through
580. In step 550, candidate cycles are determined through
the use of a synchronous garbage collection algorithm. The
synchronous method described in “Synchronous Collection
of Cyclic Garbage in Reference Counting Systems,” incor-
porated by reference above, may be used to find candidate
cycles. Alternatively, other reference counting methods may
be used to find candidate cycles. Finding and marking
candidate cycles occurs in step 550. Candidate root nodes
are initially marked as purple and stored in a root buffer.
During step 550, the loot nodes are used to search cycles,
and cycles that are possibly garbage are collected and placed
into a cycle buffer (referred to as a “CycleBuffer” herein).
The objects in the cycle buffet are colored orange.

[0064] As previously discussed, due to concurrent mutator
activity, the graph may be changing and a synchronous
method of garbage collection may produce incorrect results.
To perform concurrent cycle collection, a second reference
count for each object, denoted CRC(S), is created. This
occurs in step 555. The Cyclic Reference Count (CRC) is a
hypothetical reference count that may become incorrect due
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to concurrent mutator activity. In one embodiment, the
reference counts, the cyclic reference count, the color, and a
buffered flag are placed into a single header word by using
a hash table to hold count overflows, which occur very
rarely. The buffered flag is described in “Synchronous
Collection of Cyclic Garbage in Reference Counting Sys-
tems,” and its use is optional but beneficial. The liveness
phase of the concurrent method 500 proceeds in a similar
manner to the synchronous cycle collection method
described in “Synchronous Collection of Cyclic Garbage in
Reference Counting Systems.” However, in the concurrent
method 500, when an object is marked gray, its cyclic
reference count is initialized to its true reference count and
the “true” reference count is not changed. The cyclic refer-
ence count is created in step 555. Henceforward, the mark,
scan, and collect phases, of the synchronous cycle collection
method described in “Synchronous Collection of Cyclic
Garbage in Reference Counting Systems,” operate upon the
cyclic reference count instead of the true reference count.

[0065] By using the cyclic reference count, it is ensured
that, in the event of concurrent mutator activity, the infor-
mation about the true reference count of the objects is never
lost. In absence of mutator activity, the liveness phase will
yield the set of garbage nodes, and the safety phase will
certify that this indeed is a set of garbage of nodes and these
garbage nodes can be collected.

[0066] However, the presence of concurrent mutator activ-
ity can cause live nodes to enter the list in three different
ways. Firstly, the mutator can add an edge, thus causing the
marking procedure of the synchronous method to incorrectly
infer that there are no external edges to a live object.
Secondly, the mutator can delete an edge, thus causing the
scan procedure of the synchronous method to incorrectly
infer a live object to be garbage. Thirdly, the deletion of
edges concurrent to running of the marking and scanning
procedure can create gray and white nodes with various
values of cyclic reference counts. While eventually the
reporting of the mutator activity will cause these nodes to be
detected and re-colored, if these nodes are encountered
before they are re-colored, they can mislead the runs of the
above procedures into inferring that they are garbage.

[0067] Another step in the liveness phase is a Z-prepara-
tion step, which is step 560. In the Z-preparation step 560,
which is preferably performed immediately after the candi-
date cycles have been found, each subset in the CycleBuffer
is iterated over and the cyclic reference count of every node
in the subset is initialized to the reference count of the node.
Then every node in the subset is iterated over again and the
cyclic reference count of any children of the node that are
also in the subset are decremented. At the end of the
Z-preparation computation, the cyclic reference count of
each node in the subset represents the number of references
to the node from nodes external to the subset. Step 580
effectively computes external reference counts for each
object. In step 580, method 500 ends until the next epoch
boundary occurs. In this step, such functions as deallocating
memory and returning control to the operating system may
be performed.

[0068] The output of the liveness phase is a set of nodes
believed to be garbage and placed in a CycleBuffer data
structure. The job of the liveness phase can be seen as
finding likely sets of candidates for garbage cycles. If the
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mutator activity is small in a given epoch, this would indeed
be very likely to be true. The CycleBuffer is divided into
discrete connected components, each of which forms a
potential garbage cycle. This is explained in more detail in
reference to FIG. 6. Due to mutator activity, the contents of
the CycleBuffer can be a superset of the actual set of garbage
nodes and can contain some nodes that fail tests in the safety
phase.

[0069] Assume now that the next epoch boundary has
occurred, that steps 505 through 530 have been performed,
and that the CycleBuffer is not empty. At this point, the
second phase of the algorithm is performed. The second
phase of the algorithm will now be described.

[0070] The second (“safety”) phase of the algorithm takes,
as input, a set of nodes and determines whether they form a
garbage cycle. These nodes have already been marked with
a special color, orange, which is used to identify a candidate
set in the concurrent cycle collector. The safety phase of
method 500 comprises two tests called the A-test and the
Z-test. The A-test is performed in step 535, and the Z-test is
performed in step 540. If a subset of nodes of the object
graph passes both the A-test and the 2-test, then it is assured
that the nodes in the subset are all garbage. Thus, correctness
of the safety phase of method 500 is not determined by any
property of the output of the liveness phase which selects the
subgraphs. This property of the safety phase of the algorithm
considerably simplifies the proof of correctness as well as
modularizing the code.

[0071] In step 535, the A-test is performed. This test
ensures that no new reference was added to an object in a
cycle. Because mutator activity can occur in parallel with
garbage collection, the reference count used during the
running of the preparation procedure may be outdated due to
an inclement to one of the nodes in a subset in the
CycleBuffer. Any increments are ascertained by the A-test in
step 535. It should be noted that, in step 515, increment
processing will re-color black all non-black nodes and their
reachable subgraphs. Then it is determined if the candidates
are still garbage in step 535. To do this, the nodes in the
candidate set are scanned and are tested to determine
whether their colors are still orange. If they are all orange,
there has been no inclement to the reference count since the
running of the preparation procedure (step 560) and the
candidate set passes the A-test. Any cycle or object that fails
the test is removed from the CycleBuffer in step 535.

[0072] The Z-test, as part of the safety phase of method
500, ensures that all references to objects in a set are from
objects within the set. In the 2-test, which is performed in
step 540, every node in the subset is iterated over and every
node is tested to determine if its cyclic reference count is
zero. If the cyclic reference count is zero for every member
of the set, then it is known that there exists no reference to
this subset from any other node. Therefore, any candidate set
that passes the Z-test is garbage, unless the reference count
used during the running of the preparation procedure is
outdated due to an inclement to one of the nodes in the
subset. However, the A-test, performed in step 535, has
already been performed and has removed any cycle of node
whose reference count is outdated due to an increment. In
step 540, any cycle that fails the 2-test is not garbage and is
removed from the CycleBuffer.

[0073] Any subset of garbage nodes that does not have any
external pointers to it will pass both the A-test and the Z-test.
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Note that method 500 does not have to be concerned with
concurrent decrements to the members of the subset, since
it is not possible fox the reference count of any node to drop
below zero. However, it is possible for a set of garbage to
have pointers to it from other garbage cycles. It is also
known that the garbage cycles in the cycle buffer cannot
have any forward pointers to other garbage cycles (if they
did, method 500 would have followed them and included
them in a previous garbage cycle). Hence, the candidate
cycles are processed in the cycle buffer in the reverse of the
order in which they were found. This reasoning is described
in reference to FIG. 6

[0074] When a candidate set passes both tests, and hence
is determined to be garbage, then the nodes in the cycle are
collected and freed (step 545), which causes the reference
counts of other nodes outside of the cycle to be decremented.
By the stability property of garbage, one can decrement such
reference counts without concern for concurrent mutation.
When a reference count to an orange node is decremented,
its cyclic reference count is also decremented. Therefore,
when the next candidate cycle is considered (the previous
cycle in the buffer), if it is garbage the A-test will succeed
because the computation has been augmented by the prepa-
ration procedure (step 560). Hence, when a candidate set is
reached, the cyclic reference count does not include the
count of any pointers from a known garbage node. This
ensures that all the nodes in would be collected.

[0075] Method 500 continues with steps 550 through 560,
which have already been described. The method ends, until
the next epoch, in step 580.

[0076] Turning now to FIG. 6, a block diagram is shown
of the creation of a cycle buffer 660 from a root directory
600 for one particular subgraph 630, in accordance with one
embodiment of the present invention. Root buffer 600 com-
prises root nodes 610, 615, and 620, which contain refer-
ences to objects 635, 640, and 645, respectively. Subgraph
630 comprises three objects 635, 640, and 645 As described
in “Synchronous Collection of Cyclic Garbage in Reference
Counting Systems,” an object may be a root of cyclic
garbage if the reference count for the object is decremented
to a non-zero value. In this example, which is a worst-case
example for cyclic garbage collection, all three objects have
had their reference counts decremented and are placed in
root buffer 600 as shown. This subgraph 630 is garbage.

[0077] Cycle buffer 660 comprises complete cycles that
may be garbage. In this case, there are three cycles 665, 670,
and 675 Each cycle in cycle buffer 660 is cleated and
determined from a cycle defined by a root node in root buffer
600. For example, root node 610 contains a reference to
object 635, and object 635 describes a subgraph that com-
prises one object, itself. Cycle 665 therefore contains a
reference to object 635. Root node 615 contains a reference
to object 640, which describes a subgraph comprised of two
objects, objects 640 and 630 Consequently, cycle 670 com-
prises references to objects 640 and 635. Finally, root node
620 comprises a reference to object 645, which describes
subgraph 630 comprising objects 645, 640, and 635. There-
fore, cycle 675 comprises references to objects 645, 640, and
635.

[0078] Cycle buffer 660 allows cycles to be easily and
quickly determined and searched. It does this at the expense
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of memory. However, because cyclic garbage collection can
be time-consuming, memory tends to be less important than
time.

[0079] If the safety tests of the present invention were
performed in the order of cycle 665, 670, and then 675 (i.e.,
the order in which the cycles are added to the cycle buffer),
an inefficiency occurs. Object 635 would be examined three
times, once for each cycle 665, 670, and 675, while object
640 would be examined twice, once for each cycle 670 and
675, and object 645 would be examined once for cycle 675.
To prevent this inefficiency, the cycles are examined in the
reverse order, starting with cycle 675 and ending with cycle
665. In this situation, at the end of performing the safety
tests on cycle 675, objects 635, 640, and 645 would be freed,
thereby obviating the performance of the safety tests for
cycles 670 and 665. This saves several steps in computation.

[0080] Referring now to FIG. 7, a state transition graph is
shown for concurrent garbage collection of cyclic data
structures in a reference counting computer system, in
accordance with one embodiment of the present invention.
All objects start as black. As previously described, the
meanings of the colors used herein are as follows: black
indicates that a node is “in use” or “free”; gray indicates that
a node is a possible member of a cycle; white indicates that
a node is a member of a cycle; purple indicates a possible
root of a cycle; orange indicates that the object is part of a
candidate cycle awaiting an epoch boundary; and red indi-
cates that the object is part of a candidate cycle undergoing
a Z-computation.

[0081] If the state is black, increments to the reference
count and decrements of the reference count to zero do not
change the state. A decrement of the reference count to a
non-zero value will cause the object to be colored purple.
While in the purple state, a decrement to the reference count
to a non-zero value does not change the state. A decrement
to zero or an increment will change the color to black. When
method 500 of FIG. 5 performs the liveness phase of
garbage collection, it will mark purple objects as gray if they
have been examined.

[0082] If state is black, method 500 of FIG. 5 will change
the color from black to gray during the marking phase, When
the object is gray, a scan will cause the object to be marked
white. A scan occurs during the scanning phase, when the
object has a zero reference count. Increments, decrements,
and an unscan will cause the object to be changed from gray
to black. An increment and decrement are possible during
concurrent mutator operation. An unscan occurs when it is
determined that a cycle is not garbage.

[0083] If the object is white, a flee operation, which
returns the object to the heap, will mark the object as black.
Additionally, increments, decrements, and unscan opera-
tions will cause the white object to be marked black.
Increments and decrements are caused by concurrent muta-
tor operation. An unscan operation occurs if a member of
garbage cycle really is not garbage. For example, if an
increment operation has incremented the reference count of
an object in a cycle, one of the safety tests will determine
this and mark black all other white objects in the cycle.

[0084] White objects can be collected, which means that
they are marked orange. If a free operation or an increment
operation occurs, the orange object is marked black. This
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can occur in the A-test. The 2 preparation marks an orange
object red. Red is used to mark objects that belong to a
particular candidate cycle.

[0085] Turning now to FIGS. 8 and 9, exemplary listings
of pseudocode instructions are shown that may be used to
implement concurrent garbage collection of cyclic data
structures in a reference counting computer system, in
accordance with one embodiment of the present invention.
The pseudocode is explained below.

[0086] The operation of CollectCycles and its subsidiary
procedures is very similar to the operation of the synchro-
nous algorithm of “Synchronous Collection of Cyclic Gar-
bage in Reference Counting Systems,” called the “synchro-
nous algorithm” herein, so for those procedures only the
differences will be focused on here.

[0087] Increment(S): The true reference count is incre-
mented Since the reference count is being incremented, the
node must be live, so any non-black objects reachable from
it are colored black by invoking ScanBlack. This has the
effect of re-blackening live nodes that were left gray or white
when concurrent mutation interrupted a previous cycle col-
lection.

[0088] Decrement(S): At the high level, decrementing
looks the same as with the synchronous algorithm: if the
count becomes zero, the object is released, otherwise it is
considered as a possible root.

[0089] PossibleRoot(S): For a possible root, first Scan-
Black is performed. As with Increment, this has the effect of
re-blackening leftover gray or white nodes. It may also
change the color of some purple nodes reachable from S to
black, but this is not a problem since they will be considered
when the cycle collector considers S. The rest of Possible-
Root is the same as for the synchronous algorithm.

[0090] ProcessCycles(): Invoked once per epoch after
increment and decrement processing due to the mutation
buffers from the mutator threads has been completed. First,
FreeCycles attempts to flee candidate cycles discovered
during the previous epoch. Then CollectCycles collects new
candidate cycles and SigmaPreparation prepares for the
Z-test to be run in the next epoch.

[0091] CollectCycles(): As in the synchronous algorithm,
three phases are invoked on the candidate roots: marking,
scanning, and collection.

[0092] MarkRoots(): This procedure is the same as in the
synchronous algorithm.

[0093] ScanRoots(): This procedure is the same as in the
synchronous algorithm.

[0094] CollectRoots(): For each remaining root, if it is
white a candidate cycle has been discovered starting at that
root. The CurrentCycle is initialized to be empty, and the
CollectWhite procedure is invoked to gather the members of
the cycle into the CurrentCycle and color them orange. The
collected cycle is then appended to the CycleBuffer. If the
root is not white, a candidate cycle was not found from this
root or it was already included in some previously collected
candidate, and the buffered flag is set to false. In either case,
the root is removed from the Roots buffer, so that at the end
of this procedure the Roots buffer is empty.
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[0095] MarkGray(S): This is similar to the synchronous
version of the procedure, with adaptations to use the cyclic
reference count (CRC) instead of the true reference count
(RC). If the color is not gray, it is set to gray and the CRC
is copied from the RC, and then MarkGray is invoked
recursively on the children. If the color is already gray, and
if the CRC is not already zero, the CRC is decremented (the
check for non-zero is necessary because concurrent mutation
could otherwise cause the CRC to underflow).

[0096] Scan(S): As with MarkGray, simply an adaptation
of'the synchronous procedure that uses the CRC. Nodes with
zero CRC are colored white; non-black nodes with CRC
greater than zero are recursively re-colored black.

[0097] ScanBlack(S): Like the synchronous version of the
procedure, but it does not need to re-increment the true
reference count because all reference count computations
were carried out on the CRC.

[0098] CollectWhite(S): This procedure recursively gath-
ers white nodes identified as members of a candidate gar-
bage cycle into the CurrentCycle and colors them orange as
it goes. The buffered flag is also set true since a reference to
the node will be stored in the CycleBuffer when Current-
Cycle is appended to it.

[0099] SigmaPreparation(): After the candidate cycles
have been collected into the CycleBuffer, this procedure
prepares for the execution of the Z-test in the next epoch. It
operates individually on each candidate cycle C. First, each
node S in C has its CRC initialized to its RC and its color
set to red. After this only the nodes of C are red. Then for
any pointer from one node in C to another node in C, the
CRC of the target node is decremented. Finally, the nodes in
C are re-colored orange. At the end of SigmaPreparation, the
CRC field of each node S contains a count of the number of
references to S from outside of C.

[0100] FreeCycles(): This procedure iterates over the can-
didate cycles in the reverse order in which they were
collected. It applies the safety tests (the Z-test and the A-test)
to each cycle and if it passes both tests then the cycle is
freed. Otherwise it is refurbished, meaning that it may be
reconsidered for collection in the next epoch.

[0101] DeltaTest(C): This procedure returns true if the
color of all nodes in the cycle awe orange, which indicates
that their have been no increments to any of the nodes in the
cycle

[0102] SigmaTest(C): This procedure calculates the total
number of external references to nodes in the cycle, using
the CRC fields computed by the SigmaPreparation proce-
dure. It returns true if the number of external references is
zero, false otherwise.

[0103] Refurbish(C): If the candidate cycle has not been
collected due to failing a safety test, this procedure re-colors
the nodes. If the first node in the candidate cycle (which was
the purple node from which the candidate was found) is still
orange, or if any node has become purple, then those nodes
are colored purple and placed in the Roots buffer. All other
nodes are colored black and their buffered flags are cleared

[0104] FreeCycle(C): This procedure actually frees the
members of a candidate cycle that has passed the safety tests
First, the members of C are colored red; after this, only the
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nodes in C are red. Then for each node S in C, CyclicDec-
rement decrements reference counts in non-red nodes
pointed to by S.

[0105] CyclicDecrement(M): If a node is not red, then it
either belongs to some other candidate cycle or not. If it
belongs to some other candidate cycle, then it is orange, in
which case both the RC and the CRC fields are decremented
(the CRC field is decremented to update the computation
performed previously by the SigmaPreparation procedure to
take the deletion of the cycle pointing to M into account). If
it does not belong to some other candidate cycle, it will not
be orange and a normal Decrement operation is performed.

[0106] For ease of presentation, the pseudocode has been
presented in a way that maximizes readability. However, this
means that, as presented, the code makes more passes over
the nodes than is strictly necessary. For instance, the first
pass by SigmaPreparation can be merged with CollectWhite,
and the passes performed by DeltaTest and SigmaTest can be
combined. In this implementation, the passes are combined
to minimize constant-factor overheads.

[0107] FIGS. 10 and 11 are diagrams of cyclic data
structures and possible concurrent operations that can pos-
sibly create inaccuracies if both tests of the present invention
are not performed. FIG. 10 illustrates a race condition
uniquely detected by the Z-test, while FIG. 11 illustrates a
race condition uniquely detected by the A-test

[0108] Referring now to FIG. 10, a subgraph 1000 is
shown that contains objects 1010, 1020, 1030, 1040, and
1050. Subgraph 100 is a cycle, but not a garbage cycle. The
subgraph 1000 is described by a root entered in the root
buffer because object 1010 has a decrement to its reference
count that is not to zero. Each object has two counts: the top
count is the reference count; and the bottom count is the
cyclic reference count.

[0109] This cycle was detected from the purple node 1010,
which is the starting point from which cycle collection is
run. If the edge between nodes 1030 and 1040 is cut
(indicated by cut 1060) between the MarkGray and the Scan
routines, then the nodes 1010 and 1020 will be collected by
the CollectWhite routine and form a cycle. These nodes are
not garbage. However, since there have been no increments
to the reference counts of either of these nodes, this set will
pass A-test. The decrements will be processed an epoch later,
at epoch i+1, so the decrement to node 1040 will not have
an effect on the nodes 1010 and 1020 in the FreeCycles
operation performed in epoch i. Even waiting fox an addi-
tional epoch does not guarantee that the fact that nodes 1010
and 1020 will be detected by A-test, since during epoch i the
edge from node 1040 to node 1050 could be cut. Indeed, by
making the chain of nodes {1030, 1040, 1050} be arbitrarily
long and having a malicious mutator cut edges at just the
tight moment, it is possible to have the non-garbage cycle of
nodes pass the A-test for arbitrarily many epochs. Hence the
A-test alone cannot detect all live nodes in the set of a
candidate cycles.

[0110] Now consider the subgraph 1100 of nodes 1110,
1120, and 1130 shown in FIG. 11. The cycle is detected
starting with the purple node 1110, from which cycle col-
lection is run. If a new edge is added from node 1130 to node
1120 (as noted by edge 1140) before the MarkGray routine
is run, the reference count of the node 1120 will be out of
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date. If the cycle collector observes the newly added edge,
the sum of the reference counts in {1110, 1120, 1130} will
equal the sum of the edges. Hence the set of nodes {1110,
1120, 1130} will be collected by the CollectWhite routine
and form a candidate cycle. If the increments are not
processed before the Z-test is done, then this candidate cycle
will pass the 2-test. Hence the Z-test alone cannot detect all
live nodes in the set of candidate cycles.

[0111] Notice that it is not claimed that the two race
conditions shown in FIG. 10 and 11 are an exhaustive list of
all possible race conditions the present invention will face.
But these two are sufficient to show the necessity of both the
tests. Thus, the two tests are both necessary and sufficient to
ensure the safety of the algorithm. That both tests are
necessary and sufficient is proven in Bacon et al., “Concur-
rent Cycle Collection in Reference Counting Systems,”
Proc. European Conf. on Object-Oriented Programming,
Lecture Notes in Computer Science (LNCS), vol. 2072
(2001), the disclosure of which is incorporated herein by
reference.

[0112] Turning now to FIG. 12, a block diagram is shown
of an exemplary system 1200 suitable for carrying out
embodiments of the present invention. System 1200 com-
prises a computer system 1210 and a Compact Disk (CD)
1250. Computer system 1210 comprises N processors
1220-1 through 1220-N (collectively, “processors 1220), a
memory 1230 and an optional video display 1240.

[0113] As is known in the art, the methods and apparatus
discussed herein may be distributed as an article of manu-
facture that itself comprises a computer-readable medium
having computer-readable code means embodied thereon.
The computer-readable program code means is operable, in
conjunction with a computer system such as computer
system 1210, to carry out all or some of the steps to perform
the methods or create the apparatuses discussed herein. The
computer-readable medium may be a recordable medium (e
g., floppy disks, hard drives, compact disks, such as CD
1250, or memory cards) or may be a transmission medium
(e g., a network comprising fiber-optics, the world-wide
web, cables, or a wireless channel using time-division
multiple access, code-division multiple access, or other
radio-frequency channel). Any medium known or developed
that can store information suitable for use with a computer
system may be used. The computer-readable code means is
any mechanism for allowing a computer to read instructions
and data, such as magnetic variations on a magnetic medium
or height variations on the surface of a compact disk, such
as compact disk 1250.

[0114] Memory 1230 configures the processor 1220 to
implement the methods, steps, and functions disclosed
herein. The memory 1230 could be distributed or local and
the processor 1220 could be distributed or singular. The
memory 1230 could be implemented as an electrical, mag-
netic or optical memory, or any combination of these or
other types of storage devices. Moreover, the term
“memory” should be construed broadly enough to encom-
pass any information able to be read from or written to an
address in the addressable space accessed by processor
1210. With this definition, information on a network is still
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within memory 1230 because the processor 1220 can
retrieve the information from the network. It should be noted
that each distributed processor that makes up processor 1220
generally contains its own addressable memory space. It
should also be noted that some or all of computer system
1210 can be incorporated into an application-specific or
general-use integrated circuit.

[0115] Optional video display 1240 is any type of video
display suitable for interacting with a human user of system
1200. Generally, video display 1240 is a computer monitor
or other similar video display

[0116] It is to be understood that the embodiments and
variations shown and described herein are merely illustrative
of the principles of this invention and that various modifi-
cations may be implemented by those skilled in the art
without departing from the scope and spirit of the invention.

What is claimed is:

1. A method useful for concurrent collection of cyclic
garbage in a reference counting system, the method com-
prising the steps of:

identifying candidate objects having associated reference
counts for garbage collection, wherein each candidate
object is potentially garbage; and

determining if the candidate objects are garbage, the step
of determining performed without preventing mutators
in the system from changing object references and the
step of determining further comprising the steps of:

determining, after a time period, if the candidate objects
are still potentially garbage; and

for those candidate objects that are still potentially gar-
bage, determining if the reference count associated
with the candidate object has changed.

2. The method of claim 1, wherein:

wherein each candidate object is potentially garbage;

the step of determining if the candidate objects are
garbage further comprises the steps of:

determining, after a time period, if the candidate objects
are still potentially garbage; and

for those candidate objects that are still potentially gar-
bage, determining if the reference count associated
with the candidate object has changed.

3. The method of claim 1, wherein the step of determining
if the reference count associated with the candidate object
has changed further comprises the step of determining, after
a time period, if the reference count associated with the
candidate object has changed.

4. The method of claim 3, wherein:

the step of determining, after a time period, if the candi-
date objects are still potentially garbage further com-
prises the step of for each candidate object, copying a
reference count associated with the object into a cyclic
reference count; and

the step of determining, after a second time period, if the
reference count associated with the candidate object
has changed further comprises the step of determining,
for each candidate object if the cyclic reference count
is zero.
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5. The method of claim 4, wherein:

the step of finding candidate objects for garbage collec-
tion comprises the steps of:

determining root objects by determining objects whose
reference count has been decremented to a non-zero
value;

for each root object, determining objects in a cycle
defined by the root object;

storing references to each object in a cycle, thereby
storing each cycle; and

the step of determining, after a second time period, if the
reference count associated with the candidate object
has changed further comprises the step of processing
the cycles in reverse order of an order in which they
were stored.

6. The method of claim 3, wherein the time period is an
epoch.

7. The method of claim 1, wherein each candidate object
is part of a cycle and wherein the step of determining, after
a time period, if the candidate objects are still potentially
garbage comprises the steps of:

for each candidate object, copying a reference count
associated with the object into a cyclic reference count;

for each candidate object, decrementing the cyclic refer-
ence count each time a reference from a referencing
object refers to the candidate object, wherein the ref-
erencing object resides in the cycle in which the
candidate object resides;

waiting the time period; and

for each candidate object, determining if the cyclic ref-
erence count associated with the candidate object is
Zero.

8. The method of claim 1, wherein:

the step of identifying candidate objects for garbage
collection further comprises the steps of:

identifying a plurality of roots for garbage collection,
wherein each root comprises a reference count and
wherein each root describes a set comprising objects
that are interconnected through references;

selecting one of the sets;
performing the following steps for the set:

for each object in the set, creating a copy of the reference
count; and

for each object in the set, decrementing the copy of the
reference count associated with the object for as many
times as the object is referenced by itself or another
object contained in the set;

the step of determining further comprises:

determining, after a time period, if the copies of the
reference counts for each object in the set are zero;

determining if one or more increments have made at least
one reference count for objects in the set outdated; and

collecting the set as garbage when the copies for each
object in the set are zero and when there are no outdated
reference counts.
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9. The method of claim 8, wherein the time period is an
epoch.

10. A method for processing changes to reference counts
in a reference counting system, each reference count asso-
ciated with a particular object and containing a number of
references that reference the particular object, the method
comprising the steps of:

determining increments and decrements of reference
counts for a current time period;

processing the increments of reference counts for the
current time period;

storing the decrements of reference counts for the current
time period; and

processing decrements of reference counts for a previous

time period.

11. The method of claim 10, wherein each of the current
and previous time periods are an epoch.

12. The method of claim 11, wherein each epoch is
separated by a period where increments and decrements to
reference counts are applied for all processors in a plurality
of processors.

13. A computer system comprising:

a memory that stores computer-readable code; and

a processor operatively coupled to the memory, the pro-
cessor configured to implement the computer-readable
code, the computer-readable code configured to:

identify candidate objects having associated reference
counts for garbage collection, wherein each candidate
object is potentially garbage; and
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determine if the candidate objects are garbage, the step of
determining performed without preventing mutators in
the system from changing object references and the
step of determining further comprising the steps of:

determining, after a time period, if the candidate objects
are still potentially garbage; and

for those candidate objects that are still potentially gar-
bage, determining if the reference count associated
with the candidate object has changed.

14. An article of manufacture comprising:

a computer-readable medium having computer-readable
program code means embodied thereon, the computer-
readable program code means comprising:

a step to identify candidate objects having associated
reference counts for garbage collection, wherein each
candidate object is potentially garbage; and

a step to determine if the candidate objects are garbage,
the step of determining performed without preventing
mutators in the system from changing object references
and the step of determining further comprising the steps
of:

determining, after a time period, if the candidate objects
are still potentially garbage; and

for those candidate objects that are still potentially gar-
bage, determining if the reference count associated
with the candidate object has changed.



