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CONCURRENT COLLECTION OF CYCLC 
GARBAGE IN REFERENCE COUNTING SYSTEMS 

CROSS REFERENCE TO RELATED 
APPLICATIONS 

0001) This application claims the benefit of U.S. Provi 
sional Application No. 60/254,615, filed Dec. 11, 2000, and 
U.S. Provisional Patent Application No. 60/254,691, filed 
Dec. 11, 2000 and U.S. patent application Ser. No. 10/013, 
148, filed Dec. 10, 2001. 

FIELD OF THE INVENTION 

0002 The present invention relates to garbage collection 
in computer systems and, more particularly, relates to con 
current collection of cyclic garbage in reference counting 
systems. 

BACKGROUND OF THE INVENTION 

0003. The term "garbage' is used to describe an object or 
data element that is no longer accessible by a computer 
program. Some systems are designed with no garbage detec 
tion and collection programs. In these systems, it is up to the 
programmer to remember to reclaim objects and data that is 
no longer accessible. Garbage occupies part of the memory 
of a computer system but serves no purpose. If a computer 
program does not run for very long or is infrequently run, 
garbage collection is not a problem because the computer 
system generally has plenty of memory. However, if the 
program creates garbage and is run for a long time or 
frequently, the extraneous garbage can grow to occupy all of 
the useful memory of the computer system. This will cause 
a system shutdown or other deleterious effects. Today, 
programs are designed to run continuously all day, every 
day. Business servers simply cannot experience unscheduled 
shutdowns. 

0004 The effect of garbage has been known from the 
beginning of the computer era. In fact, forty years ago, two 
methods of automatic garbage collection for computer sys 
tems were introduced: reference counting and tracing. Ref 
erence counting is described in Collins, “A Method for 
Overlapping and Erasure of Lists.” Communications of the 
Ass’n of Computing Machinery (ACM) 3, 655-657 (1960), 
while tracing is described in McCarthy, “Recursive Func 
tions of Symbolic Expressions and Their Computation by 
Machine.” Communications of ACM3, 184-195 (1960), the 
disclosures of which are incorporated herein by reference. 
Briefly, in reference counting, a reference count is used in an 
object to track how many other objects reference this object. 
Reference counts are incremented and decremented, and a 
reference count of Zero indicates that the object is garbage 
because it is unreachable by any other object. In tracing, the 
entire object graph is traced until garbage is found. Since 
this early time, tracing collectors and their variants have 
been much more widely used due to perceived deficiencies 
in reference counting. 
0005 Changes in the relative costs of memory and pro 
cessing power, and the widespread adoption of languages 
that employ garbage collection, have modified the land 
scape. As processor clock speeds increase while Random 
Access Memory (RAM) becomes plentiful but not signifi 
cantly faster, certain properties of reference counting make 
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it more appealing. Moreover, the purported extra processing 
power required is likely to be less relevant. 
0006. At the same time, the incorporation of garbage 
collection by the programming language Java has thrust the 
problem into the mainstream. Now, large, mission-critical 
systems are being built in Java. This stresses the flexibility 
and scalability of the underlying garbage collection imple 
mentations used in Java. As a result, the Supposed advan 
tages of tracing collectors, namely simplicity and low over 
head, are being eroded as they are being made ever more 
complex in an attempt to address the real-world require 
ments of large and varied programs. 
0007 Furthermore, the fundamental assumption behind 
tracing collectors, namely that it is acceptable to periodically 
trace all of the live objects in the heap (an area of memory 
reserved for data that is created during runtime), will not 
necessarily scale to the very large main memories that are 
becoming increasingly common. 
0008. There are three primary problems with reference 
counting: (1) the storage overhead associated with keeping 
a count for each object; (2) the runtime overhead of incre 
menting and decrementing the reference count each time a 
pointer is copied; and (3) the inability to detect cyclic 
garbage and consequent necessity of including a second 
garbage collection technique to deal with cyclic garbage. 
0009. The inability to collect cyclic garbage (also called 
“cycles' herein) is generally considered to be the greatest 
weakness of reference counting collectors. It places the 
burden on the programmer to break cycles explicitly, 
requires special programming idioms, or requires a tracing 
collector to collect the cycles. 
0010. The problem of cycles in reference counting sys 
tems is illustrated in FIGS. 1 and 2. FIG. 1 shows a subgraph 
100 containing a number of nodes 110, 125, 130, 135, 140, 
145, 150, and 155 therein. When a computer program runs, 
it creates a number of objects or data structures or both. The 
interrelationship between the program, the objects, and the 
data structures is commonly called a graph. FIG. 1 shows a 
Subset of a graph created by an executing program (the 
program is not shown). This subset is subgraph 100. 
0011 Subgraph 100, as discussed above, contains a num 
ber of nodes 110, 125, 130, 135, 140, 145, 150, and 155. 
Each node represents an object OX part of a data structure. 
Between each node is one or more edges. For instance, 
between node 110 and node 125 is edge 115, and between 
node 110 and node 140 is edge 120. Additionally, node 110 
is connected to the rest of the graph (not shown) through 
edge 105. Each edge represents a reference from one node 
to another node. In FIG. 1, node 110 is referencing node 125 
through edge 115, and it is also referencing node 140 
through edge 120. 

0012. In a reference counting system, the reference count 
for each node is tracked. For instance, node 125 has a 
Reference Count (RC) of two because nodes 110 and 135 
reference node 125. In FIG. 1, subgraph 160 represents a 
cyclic structure, while subgraph 170 represents an acyclic 
structure. Subgraph 160 represents a cyclic structure 
because there is a series of edges that traverses nodes and 
that starts at node 125 and ends at 125. In other words, one 
can traverse this graph by starting at one node and ending at 
the same node. Thus, Subgraph 160 is cyclic. In Subgraph 
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170, conversely, there is no series of edges that traverses 
nodes and that starts at one node and ends at the same node. 
Thus, subgraph 170 is acyclic. 
0013 FIG. 2 shows a resultant subgraph 200 that occurs 
after the program removes the references from node 110 that 
created edges 115 and 120. Even though the program 
explicitly removes the references, a “mutator actually per 
forms the low level removal of references. The process 
undertaken by the mutator is generally hidden from a 
programmer. A garbage collector will easily recognize that 
subgraph 170 is garbage, because the reference count for 
node 140 is zero. A Zero indicates that node 140 is no longer 
being referenced by the program, and, therefore, the node 
may be removed. Because node 140 can be removed, nodes 
145, 150, and 155 can also be removed. 
0014 Subgraph 160 is more challenging for a garbage 
collector. There is no node that contains a reference count of 
Zero. Even though this subgraph 160 cannot be accessed by 
the program, the reference counts are non-zero. A garbage 
collector in this instance will have to select a node and 
search through the entire subgraph to determine that no node 
in the subgraph is referenced by a node outside of the 
Subgraph. It can then eliminate subgraph 160 as garbage. 
0.015 Many reference counting systems use a “stop the 
world' type of synchronous garbage collection, where all 
processes or threads other than the garbage collector are 
stopped. This means that the reference counts are not 
changing while the garbage collector collects garbage. How 
ever, “stop the world” garbage collection can take too much 
time. In fact garbage collectors of this type have been known 
to run for many seconds or even minutes on large systems, 
which is too long for critical applications. Thus, concurrent 
garbage collection, which allows processes to run during 
garbage collection, is becoming increasingly necessary. 
0016 Concurrent collection of garbage creates additional 
problems, however. One of these problems is illustrated in 
FIG. 2. In FIG. 2, subgraph 160 is considered to be garbage 
once edge 115 is removed. However, node 210 might add 
edge 220 shortly before edge 115 is removed. This would 
cause the reference count for node 130 to be increased to 
two. If garbage collection occurs before edge 220 is added 
but after edge 115 is removed, a garbage collector will 
determine that subgraph 160 and its nodes 125, 130, and 135 
are garbage. However, they are not garbage because node 
210 has added or will add edge 220 to allow node 210 to 
reference node 130. 

0017 Concurrent collection of garbage therefore adds 
additional problems to garbage collection in reference 
counting garbage collection systems. Techniques for con 
current collection of garbage exists, but these techniques do 
not use reference counting. 
0018 Thus, better techniques are needed for concurrent 
collection of cyclic garbage in reference counting computer 
systems. 

SUMMARY OF THE INVENTION 

0019. The present invention provides techniques that 
allow concurrent collection of cyclic garbage on reference 
counting systems. In general, candidate objects are found 
that may be part of cyclic garbage. Each candidate object has 
a reference count. Two tests are performed to determine if 
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concurrent operations have affected the reference counts of 
the candidate objects. If concurrent operations have not 
affected the reference counts, the candidate objects are 
collected as garbage. Additionally, during garbage collec 
tion, the decrements to reference counts are delayed so that 
increments occur before decrements and so that decrements 
are held a predetermined time before being applied. This 
prevents decrementing a reference and collecting a cycle as 
garbage right before a reference is added to an object in the 
cycle 
0020. A more complete understanding of the present 
invention, as well as further features and advantages of the 
present invention, will be obtained by reference to the 
following detailed description and drawings. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0021 FIGS. 1 and 2 are exemplary diagrams of a sub 
graph and data structures therein; 
0022 FIG. 3 is a block diagram of a system that performs 
concurrent reference counting garbage collection in accor 
dance with one embodiment of the present invention; 
0023 FIG. 4 is a diagram of execution timelines for three 
processors, one of which executes a garbage collector, in 
accordance with one embodiment of the present invention; 
0024 FIG. 5 is a flowchart of a method of concurrent 
garbage collection for cyclic data structures in a reference 
counting computer system, in accordance with one embodi 
ment of the present invention; 
0025 FIG. 6 is a block diagram of the creation of a cycle 
buffer from a root directory for one particular subgraph, in 
accordance with one embodiment of the present invention; 
0026 FIG. 7 is a state transition graph for concurrent 
garbage collection of cyclic data structures in a reference 
counting computer system, in accordance with one embodi 
ment of the present invention; 
0027 FIGS. 8 and 9 are exemplary listings of 
pseudocode instructions used to implement concurrent gar 
bage collection of cyclic data structures in a reference 
counting computer system, in accordance with one embodi 
ment of the present invention; 
0028 FIGS. 10 and 11 are diagrams of cyclic data 
structures and possible concurrent operations that can pos 
sibly create inaccuracies if both tests of the present invention 
are not performed; and 
0029 FIG. 12 is a block diagram of an exemplary system 
Suitable fox carrying out embodiments of the present inven 
tion. 

DETAILED DESCRIPTION OF PREFERRED 
EMBODIMENTS 

0030 The present invention provides techniques that 
allow concurrent collection of cyclic garbage on reference 
counting systems. In general, candidate objects are found 
that may be part of cyclic garbage. To find candidate objects 
that may be part of cyclic garbage, techniques in the 
following reference may be used: D. Bacon, “Synchronous 
Collection of Cyclic Garbage in Reference Counting Sys 
tems,” attorney docket number YOR920000850US2, filed 
on Dec. 7, 2001, the disclosure of which is hereby incor 
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porated by reference. However, the tests of the present 
invention do not depend on any property of the technique 
that finds candidate objects. Thus, any technique that can 
find candidate objects may be used. 
0031 Generally, a toot buffer is used to store objects that 
may be roots of cyclic garbage. From the root buffer, a cycle 
buffer is created. Basically, each root in the root buffer 
describes a cycle that may be garbage. These cycles are 
added to the cycle buffer. Thus, the cycle buffer contains a 
number of complete cycles, where each cycle may be 
garbage. The cycle buffet increases the speed at which 
cycles are traversed. The root buffer and cycle buffer are not 
necessary to the practice of the present invention, and other 
types of data structures may be used. 
0032. Two tests are performed on the cycles in the cycle 
buffer to determine if concurrent operations have affected 
the reference counts of the candidate objects. These two tests 
are called the “delta test,” or A-test, and "sigma test,” or 
X-test, herein. If concurrent operations have not affected the 
reference counts, the candidate objects from the cycles in the 
cycle buffer are collected as garbage. 
0033 Additionally, during garbage collection, the decre 
ments to reference counts are delayed so that increments 
occur before decrements. Moreover, decrements are further 
delayed a predetermined period. Generally, increments from 
a current epoch are applied to reference counts, as are 
decrements from a previous epoch. The definition of 
"epoch’ changes depending on the process being discussed. 
For single processors, each "epoch’ is separated by collec 
tions, which is where increments and decrements are sent to 
a garbage collector. For a number of processors in a system 
where a garbage collector runs on one of the processors, on 
the processor running the garbage collector, each epoch is 
separated by a period when the garbage collector has acted 
on the increments and decrements. Each epoch ends when 
all processors have again sent the contents of their mutator 
buffers to the garbage collector. Decrements from the current 
epoch are stored and applied in the next epoch. This prevents 
decrementing a reference and collecting a cycle as garbage 
right before a reference is added to an object in the cycle. 
0034. Before proceeding further, it is worthwhile to dis 
cuss Some conventions used in this specification. The terms 
“node' and “object' are considered interchangeable, as are 
"edge” and “reference,” and “graph” and “object diagram.” 
An edge connects one node to the same node or another node 
in a graph, while a reference connects one object to itself or 
another object in an object diagram. Graph theorists tend to 
use the former terms, while software engineers use the latter 
terms. Additionally, the term “cycle' will be used to indicate 
a series of nodes that are cyclic and potentially garbage. 
0035 Also, nodes or objects will generally be “marked 
with a "color” in the upcoming discussion. The color anal 
ogy is widely used in literature that discusses garbage 
collection, so it will be retained here. The meanings of the 
colors used herein are as follows: black indicates that a node 
is “in use or “free'; gray indicates that a node is a possible 
member of a cycle; white indicates that a node is a member 
of a cycle; purple indicates a possible root of a cycle; red 
indicates that a node is part of a candidate cycle undergoing 
sigma computation; and orange indicates that a node is part 
of a candidate cycle awaiting an epoch boundary. 
0036) Referring now to FIG. 3, a system 300 is shown 
that performs concurrent reference counting garbage collec 
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tion in accordance with one embodiment of the present 
invention. System 300 comprises three processors 310,320, 
and 330 that operate in parallel and independently, and 
shared memory 380. Processors 310,320, and 330 can each 
access shared memory 380. Processor 310 comprises a 
mutator 313 that keeps track of increments 317 and decre 
ments 319 to objects (not shown) on processor 310 The 
increments 317 and decrements 319 are stored in mutator 
buffet 314 for this purpose. Similarly, processor 320 com 
prises a mutator 323 that keeps track of increments 327 and 
decrements 329 to objects (not shown) on computer system 
320. The increments 327 and decrements 329 are stored in 
a mutator buffer 324 for this purpose. Processor 330 com 
prises a garbage collector 340 that keeps track of decrements 
from a previous epoch 345, increments from a current epoch 
350, decrements from a current epoch 355, root buffer 360, 
and cycle buffer 370. As shown, each processor includes 
Some type of memory that is used to store its respective 
processes and data. 
0037 Periodically, mutator 313, 323 sends the contents 
of its mutator buffer 314, 324 to garbage collector 340. This 
occurs once each epoch. At the beginning of an epoch, the 
garbage collector 340 applies the increments from the cur 
rent epoch 350. Then the garbage collector 340 applies the 
decrements from the previous epoch 345. During this pro 
cess, the garbage collector 340 modifies root buffer 360. The 
garbage collector 340 stores the decrements from the current 
epoch in location 355. During the next epoch, these decre 
ments will be applied. 
0038 After the increments for the current epoch 350 and 
decrements for the previous epoch 345 have been applied, 
the garbage collector 340 will perform concurrent garbage 
collection. Concurrent garbage collection is described in 
more detail in reference to FIG. 5. What is important to note 
is that mutators 313 and 323 act independently from them 
selves and from garbage collector 340. Therefore, while 
garbage collector 340 is modifying reference counts of 
objects, mutators 313 and 323 may be adding references to 
these objects or removing references from these objects. 
Moreover, because the mutators only periodically send 
changes to reference counts to the garbage collector 340, the 
garbage collector 340 has to act within the confines of this 
delayed notice. Techniques for garbage collection under 
these circumstances must take these conditions into account. 
It is also important to note that, while mutators 313, 323 
keep track of reference addition and deletions, only the 
garbage collector 340 is allowed to modify the reference 
count for objects. 
0039. It should be noted that the data in each computer 
system may be separately stored from the Software operating 
on it. For example, the mutator buffer 314 is shown as part 
of mutator 313, but mutator buffer 314 could be stored 
separately from mutator 313. FIG. 3 is depicted to aid 
understanding. It should also be noted that each processor 
310, 320, and 330 could be part of a separate computer 
system, and that portions or all of what is shown for each 
processor may be stored in shared memory 380 For example, 
mutator 313 may be stored in shared memory 380 and 
moved from shared memory 380 into memory (e.g., L1 or 
L2 cache) in processor 310 when the mutator 313 is 
executed. 

0040 Turning now to FIG. 4, a diagram is shown of 
execution timelines for three processors. There are three 
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timelines shown: a timeline 410 that corresponds to proces 
sor 310 of FIG. 3; a timeline 420 that corresponds to 
processor 320 of FIG. 3; and a timeline 430 that corresponds 
to processor 330 of FIG. 3, FIG. 4 also helps to illustrate and 
describe epochs. 

0041 Timeline 410 comprises areas 411, 412, 413, and 
414 where processes or threads are executed, and interrup 
tions 415, 416 and 417 by a garbage collector thread running 
on that computer system. Similarly, timeline 420 comprises 
areas 421,422,423, and 424 where processes or threads are 
executed, and interruptions 425, 426 and 427 by a collector 
thread running on that computer system. Timeline 430 
comprises areas 431,432, 433, and 434, where processes or 
threads are executed. Periods 435, 436, and 437 are times 
when the garbage collector executes. 
0042. As previously discussed, the mutators produce 
operations on reference counts, which are placed into buffers 
and periodically turned over to the garbage collector (also 
called “collector herein), which runs on its own processor. 
The collector is single-threaded, and is the only thread in the 
system which is allowed to modify the reference count fields 
of objects. Generally, a collector thread actually transmits 
the contents of the mutator buffer. Thus, the mutator creates 
increments and decrements and a collector thread sends the 
contents of the mutator buffer to a garbage collector running 
on its own processor. 
0043. For example, during interrupt 415, a collector 
thread sends the contents of the mutator buffer created on 
processor 310 (not shown), which creates timeline 410, to 
the garbage collector. The garbage collector runs on proces 
sor 330, which creates timeline 430. During interrupt 425, a 
second collector thread sends the contents of the mutator 
buffer created on processor 320 (not shown), which creates 
timeline 420, to the garbage collector. The garbage collector 
then runs in period 435. 
0044. During mutator operation, updates to the stacks are 
not reference-counted. Only heap updates are reference 
counted, and those operations are deferred with a write 
barrier by storing the addresses of objects whose counts 
must be adjusted into mutation buffers, which contain incre 
ments or decrements. Objects are allocated with a reference 
count of one, and a corresponding decrement operation is 
immediately written into the mutation buffer. In this manner, 
temporary objects never stored into the heap are collected 
quickly. 

0045. As has been discussed, time is divided into epochs, 
which are separated by collections that comprise each pro 
cessor briefly running its collector thread. In FIG. 4, epochs 
440, 450, 460 and 470 are shown. These epochs are deter 
mined from the point of view of timeline 430. Epoch 
boundaries are staggered, the only restriction being that all 
processors must participate in one collection before the next 
collection can begin. Periodically, Some event will trigger a 
collection cycle. This trigger could occur because a certain 
amount of memory has been allocated, because a mutation 
buffet is full, or because a timer has expired. In normal 
operation, none of these triggers will cause the mutator to 
block; however, they will schedule the collector thread to 
run on the first processor. 

0046. On the first processor, when the collector thread 
wakes up, it scans the Stacks of its local threads and places 
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the addresses of objects in the stack into a stack buffer. It 
then increments its local epoch number, allocates a new 
mutation buffer, and schedules the collector thread on the 
next processor to run. Finally, it dispatches to the thread that 
was interrupted by collection. The collector thread performs 
these same operations for each processor until it reaches the 
last processor. The last processor actually performs the work 
of collection. 

0047. This is shown in FIG. 4, where timeline 410 
periodically runs a collector thread in interrupts 415, 416, 
and 417 and where timeline 420 periodically runs a collector 
thread in interrupts 425, 426, and 427. The garbage collector 
then runs on the last processor, processor 330 that creates 
timeline 430, in periods 435, 436, and 437. 
0048. The last processor scans the stacks of its local 
threads into a stack buffer. Then it processes increments in 
the following manner. The reference count of each object 
addressed in the stack buffer, for the current epoch computed 
by each processor, is incremented. Then the mutator buffer 
for each processor for the current epoch is scanned, and the 
increment operations it contains are performed. 

0049. To avoid race conditions that might cause the 
collector to process a decrement before the corresponding 
increment has been processed, the increment operations are 
processed first and the decrement operations are processed 
one epoch behind. So the last processor scans the stack 
buffers of the previous epoch, and decrements the reference 
counts of objects that they address, and then processes the 
mutation buffers of the previous epoch, performing the 
decrement operations. 
0050. During the decrement phase, any object whose 
reference count drops to Zero is immediately freed, and the 
reference counts of objects it points to are recursively 
decremented. Finally, the stack and mutation buffers of the 
previous epoch are returned to the buffer pool, and the epoch 
number is incremented. The collection has finished and all 
processors have joined the new epoch, and now any pro 
cessor can trigger the next collection phase. 
0051. The reason for processing increments of the current 
epoch and delaying decrements one epoch is shown in FIG. 
4. Assume that increments and decrements are processed as 
they arrive. Assume, at time 480, that a mutator running in 
timeline 410 increments a reference to an object. This 
increment will be sent to the garbage collector during 
interrupt 417. Also assume that, at the same time 480, a 
mutator running in timeline 420 decrements a reference to 
the same object. This decrement will be sent to the garbage 
collector during interrupt 426 This means that the garbage 
collector could, if the decrement is immediately processed, 
decrement the reference count for this object during period 
436. If the reference count for the object drops to zero or if 
the reference count is positive but the object is part of a 
cycle, the object will be collected as garbage in period 436. 

0052. However, the object should not be garbage because 
the mutator running in timeline 410 has incremented the 
reference count to the object. This increment will not be 
processed until it is sent in interrupt 417 and until the 
garbage collector runs in period 437. Thus, increments from 
the current epoch are performed first and decrements from a 
previous epoch are performed last. In the previous scenario, 
this means that the decrement at time 480 would not be 
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processed until period 437 and also after the increment has 
been processed in period 437. 
0053 Note that the definitions of epoch as used herein 
mean that part of each period 435, 436, and 437 performs the 
decrements and increments to the reference counts. This part 
is in one epoch, while the part of each period 435, 436, and 
437 that performs cyclic garbage collection is in another 
epoch. Using this definition, an increment that occurs in 
epoch 450 is acted upon in epoch 450. Other definitions may 
be used, and the definition above is used herein solely to 
maintain consistent terminology. For instance, all of periods 
435, 436, and 437 could be considered as part of a current 
epoch. Using this definition, increments from the immedi 
ately proceeding epoch are applied, then decrements from 
two epochs ago are applied. In FIG. 4, in period 437, 
increments from epoch 460 are applied and then decrements 
from period 450 are applied. What is important is that an 
increment created by one processor before its collection 
period occurs will be processed prior to processing a dec 
rement created by another (or the same) processor before 
two of its collection periods have occurred. 
0054) Referring now to FIG. 5, a method 500 is shown for 
concurrent garbage collection of cyclic data structures in a 
reference counting computer system, in accordance with one 
embodiment of the present invention. Method 500 is per 
formed by a garbage collector after increments and decre 
ments from the current epoch have been transmitted by all 
of the processors in a system. Method 500 is preferably 
performed once each epoch and starts, as indicated in step 
505, at the epoch boundary. 
0055 Thus, prior to step 505, the increments and decre 
ments for the current epoch have been sent by processors in 
the system. Additionally, other steps are taken in step 505, 
Such as allocating memory and scanning stack buffers. 
0056. In step 510, the increments and decrements from 

all of the processors are retrieved, generally from shared 
memory. In step 515, increments from the current epoch are 
applied, and, in step 520, decrements from the previous 
epoch are applied. As discussed above, delaying processing 
of decrements for one epoch ensures that increments will be 
added before decrements. This prevents the possibility of a 
cycle from being removed if an increment occurs after a 
decrement. 

0057. In step 525, non-cyclic garbage is removed, which 
means that any object whose reference count is Zero is 
collected as garbage. In step 530, decrements from the 
current epoch are stored. These will be used the next time 
method 500 is run. At that time (i.e., an epoch later), these 
will be decrements from a previous epoch. 
0.058 As with other concurrent garbage collection algo 
rithms, method 500 must contend with the fact that the 
object graph may be modified simultaneously with the 
scanning of it by the garbage collector. In addition, the 
reference counts may be as much as a two epochs out of date 
(because decrements are deferred by an epoch). 
0059 Method 500 relies on the same basic premise as the 
synchronous algorithm described in the filed application 
entitled “Synchronous Collection of Cyclic Garbage in 
Reference Counting Systems, which has been incorporated 
by reference above. This premise is that given a subset of 
nodes, if deleting the internal edges between the nodes in 
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this subset reduces the reference count of every node in the 
subset to zero, then the whole subset of nodes is cyclic 
garbage. The Subset may represent more than one indepen 
dent cycle, but all of the cycles in the Subset are all garbage 
cycles. 

0060. However, since the graph may be modified, there 
are three basic difficulties. Firstly, since one cannot rely on 
being able to retrace the same graph, the repeated traversal 
of the graph does not always define the same set of nodes. 
Secondly, the deletion of edges can disconnect portions of 
the graph, thus making the global test by graph traversal 
difficult. Thirdly, reference counts may be out of date. 
0061. To deal with these difficulties, the cyclic garbage 
collection portion of method 500 proceeds in two phases. In 
the first phase, a candidate set of garbage nodes is discov 
ered. Then method 500 waits until an epoch boundary and 
performs the second phase in which tests are performed to 
ensure that the candidates do indeed satisfy the criteria for 
garbage cycles. 
0062) The two phases can be viewed as enforcing a 
“liveness” and a “safety” property. The first phase enforces 
liveness by ensuring that potential garbage cycles are con 
sidered for collection. The second phase ensures safety by 
preventing the collection of false cycles induced by concur 
rent mutator activity. The liveness phase is performed by 
steps 550 through 580, while the safety phase is performed 
by steps 535 and 540 Before discussing the liveness and 
safety phases, it is worthwhile to note that certain steps of 
method 500 may not be performed for every epoch. For 
example, the first time method 500 is run, steps 510 through 
545 may not be performed if there are no increments or 
decrements. If there are increments and decrements the first 
time method 500 is performed, step 520 will not be per 
formed because there is no “previous epoch. Additionally, 
if there are no candidate cycles after step 525 is performed, 
then steps 535 through 545 need not be performed. The 
following discussion assumes that no candidate cycles 
remain after step 525, such that steps 535 through 545 need 
not be performed. This assumption is made simply to enable 
description of the liveness phase prior to description of the 
safety phase of method 500. 
0063. The liveness phase comprises steps 550 through 
580. In step 550, candidate cycles are determined through 
the use of a synchronous garbage collection algorithm. The 
synchronous method described in “Synchronous Collection 
of Cyclic Garbage in Reference Counting Systems, incor 
porated by reference above, may be used to find candidate 
cycles. Alternatively, other reference counting methods may 
be used to find candidate cycles. Finding and marking 
candidate cycles occurs in step 550. Candidate root nodes 
are initially marked as purple and stored in a root buffer. 
During step 550, the loot nodes are used to search cycles, 
and cycles that are possibly garbage are collected and placed 
into a cycle buffer (referred to as a “CycleBuffer herein). 
The objects in the cycle buffet are colored orange. 
0064. As previously discussed, due to concurrent mutator 
activity, the graph may be changing and a synchronous 
method of garbage collection may produce incorrect results. 
To perform concurrent cycle collection, a second reference 
count for each object, denoted CRC(S), is created. This 
occurs in step 555. The Cyclic Reference Count (CRC) is a 
hypothetical reference count that may become incorrect due 



US 2007/01 85943 A1 

to concurrent mutator activity. In one embodiment, the 
reference counts, the cyclic reference count, the color, and a 
buffered flag are placed into a single header word by using 
a hash table to hold count overflows, which occur very 
rarely. The buffered flag is described in "Synchronous 
Collection of Cyclic Garbage in Reference Counting Sys 
tems, and its use is optional but beneficial. The liveness 
phase of the concurrent method 500 proceeds in a similar 
manner to the synchronous cycle collection method 
described in “Synchronous Collection of Cyclic Garbage in 
Reference Counting Systems.” However, in the concurrent 
method 500, when an object is marked gray, its cyclic 
reference count is initialized to its true reference count and 
the “true' reference count is not changed. The cyclic refer 
ence count is created in step 555. Henceforward, the mark, 
Scan, and collect phases, of the synchronous cycle collection 
method described in "Synchronous Collection of Cyclic 
Garbage in Reference Counting Systems, operate upon the 
cyclic reference count instead of the true reference count. 
0065. By using the cyclic reference count, it is ensured 
that, in the event of concurrent mutator activity, the infor 
mation about the true reference count of the objects is never 
lost. In absence of mutator activity, the liveness phase will 
yield the set of garbage nodes, and the safety phase will 
certify that this indeed is a set of garbage of nodes and these 
garbage nodes can be collected. 

0.066 However, the presence of concurrent mutator activ 
ity can cause live nodes to enter the list in three different 
ways. Firstly, the mutator can add an edge, thus causing the 
marking procedure of the synchronous method to incorrectly 
infer that there are no external edges to a live object. 
Secondly, the mutator can delete an edge, thus causing the 
scan procedure of the synchronous method to incorrectly 
infer a live object to be garbage. Thirdly, the deletion of 
edges concurrent to running of the marking and scanning 
procedure can create gray and white nodes with various 
values of cyclic reference counts. While eventually the 
reporting of the mutator activity will cause these nodes to be 
detected and re-colored, if these nodes are encountered 
before they are re-colored, they can mislead the runs of the 
above procedures into inferring that they are garbage. 

0067. Another step in the liveness phase is a X-prepara 
tion step, which is step 560. In the X-preparation step 560, 
which is preferably performed immediately after the candi 
date cycles have been found, each subset in the CycleBuffer 
is iterated over and the cyclic reference count of every node 
in the subset is initialized to the reference count of the node. 
Then every node in the subset is iterated over again and the 
cyclic reference count of any children of the node that are 
also in the subset are decremented. At the end of the 
X-preparation computation, the cyclic reference count of 
each node in the subset represents the number of references 
to the node from nodes external to the subset. Step 580 
effectively computes external reference counts for each 
object. In step 580, method 500 ends until the next epoch 
boundary occurs. In this step, such functions as deallocating 
memory and returning control to the operating system may 
be performed. 

0068 The output of the liveness phase is a set of nodes 
believed to be garbage and placed in a CycleBuffer data 
structure. The job of the liveness phase can be seen as 
finding likely sets of candidates for garbage cycles. If the 
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mutator activity is Small in a given epoch, this would indeed 
be very likely to be true. The CycleBuffer is divided into 
discrete connected components, each of which forms a 
potential garbage cycle. This is explained in more detail in 
reference to FIG. 6. Due to mutator activity, the contents of 
the CycleBuffer can be a superset of the actual set of garbage 
nodes and can contain some nodes that fail tests in the safety 
phase. 
0069 Assume now that the next epoch boundary has 
occurred, that steps 505 through 530 have been performed, 
and that the CycleBuffer is not empty. At this point, the 
second phase of the algorithm is performed. The second 
phase of the algorithm will now be described. 
0070 The second (“safety') phase of the algorithm takes, 
as input, a set of nodes and determines whether they form a 
garbage cycle. These nodes have already been marked with 
a special color, orange, which is used to identify a candidate 
set in the concurrent cycle collector. The safety phase of 
method 500 comprises two tests called the A-test and the 
X-test. The A-test is performed in step 535, and the X-test is 
performed in step 540. If a subset of nodes of the object 
graph passes both the A-test and the X-test, then it is assured 
that the nodes in the Subset are all garbage. Thus, correctness 
of the safety phase of method 500 is not determined by any 
property of the output of the liveness phase which selects the 
Subgraphs. This property of the safety phase of the algorithm 
considerably simplifies the proof of correctness as well as 
modularizing the code. 
0071. In step 535, the A-test is performed. This test 
ensures that no new reference was added to an object in a 
cycle. Because mutator activity can occur in parallel with 
garbage collection, the reference count used during the 
running of the preparation procedure may be outdated due to 
an inclement to one of the nodes in a Subset in the 
CycleBuffer. Any increments are ascertained by the A-test in 
step 535. It should be noted that, in step 515, increment 
processing will re-color black all non-black nodes and their 
reachable subgraphs. Then it is determined if the candidates 
are still garbage in step 535. To do this, the nodes in the 
candidate set are scanned and are tested to determine 
whether their colors are still orange. If they are all orange, 
there has been no inclement to the reference count since the 
running of the preparation procedure (step 560) and the 
candidate set passes the A-test. Any cycle or object that fails 
the test is removed from the CycleBuffer in step 535. 
0072 The X-test, as part of the safety phase of method 
500, ensures that all references to objects in a set are from 
objects within the set. In the X-test, which is performed in 
step 540, every node in the subset is iterated over and every 
node is tested to determine if its cyclic reference count is 
Zero. If the cyclic reference count is zero for every member 
of the set, then it is known that there exists no reference to 
this subset from any other node. Therefore, any candidate set 
that passes the X-test is garbage, unless the reference count 
used during the running of the preparation procedure is 
outdated due to an inclement to one of the nodes in the 
subset. However, the A-test, performed in step 535, has 
already been performed and has removed any cycle of node 
whose reference count is outdated due to an increment. In 
step 540, any cycle that fails the X-test is not garbage and is 
removed from the CycleBuffer. 
0073. Any subset of garbage nodes that does not have any 
external pointers to it will pass both the A-test and the X-test. 



US 2007/01 85943 A1 

Note that method 500 does not have to be concerned with 
concurrent decrements to the members of the Subset, since 
it is not possible fox the reference count of any node to drop 
below zero. However, it is possible for a set of garbage to 
have pointers to it from other garbage cycles. It is also 
known that the garbage cycles in the cycle buffer cannot 
have any forward pointers to other garbage cycles (if they 
did, method 500 would have followed them and included 
them in a previous garbage cycle). Hence, the candidate 
cycles are processed in the cycle buffer in the reverse of the 
order in which they were found. This reasoning is described 
in reference to FIG. 6 

0074. When a candidate set passes both tests, and hence 
is determined to be garbage, then the nodes in the cycle are 
collected and freed (step 545), which causes the reference 
counts of other nodes outside of the cycle to be decremented. 
By the stability property of garbage, one can decrement Such 
reference counts without concern for concurrent mutation. 
When a reference count to an orange node is decremented, 
its cyclic reference count is also decremented. Therefore, 
when the next candidate cycle is considered (the previous 
cycle in the buffer), if it is garbage the A-test will succeed 
because the computation has been augmented by the prepa 
ration procedure (step 560). Hence, when a candidate set is 
reached, the cyclic reference count does not include the 
count of any pointers from a known garbage node. This 
ensures that all the nodes in would be collected. 

0075 Method 500 continues with steps 550 through 560, 
which have already been described. The method ends, until 
the next epoch, in step 580. 

0.076 Turning now to FIG. 6, a block diagram is shown 
of the creation of a cycle buffer 660 from a root directory 
600 for one particular subgraph 630, in accordance with one 
embodiment of the present invention. Root buffer 600 com 
prises root nodes 610, 615, and 620, which contain refer 
ences to objects 635, 640, and 645, respectively. Subgraph 
630 comprises three objects 635, 640, and 645 As described 
in “Synchronous Collection of Cyclic Garbage in Reference 
Counting Systems, an object may be a root of cyclic 
garbage if the reference count for the object is decremented 
to a non-Zero value. In this example, which is a worst-case 
example for cyclic garbage collection, all three objects have 
had their reference counts decremented and are placed in 
root buffer 600 as shown. This subgraph 630 is garbage. 
0077 Cycle buffer 660 comprises complete cycles that 
may be garbage. In this case, there are three cycles 665, 670, 
and 675 Each cycle in cycle buffer 660 is cleated and 
determined from a cycle defined by a root node in root buffer 
600. For example, root node 610 contains a reference to 
object 635, and object 635 describes a subgraph that com 
prises one object, itself. Cycle 665 therefore contains a 
reference to object 635. Root node 615 contains a reference 
to object 640, which describes a subgraph comprised of two 
objects, objects 640 and 630 Consequently, cycle 670 com 
prises references to objects 640 and 635. Finally, root node 
620 comprises a reference to object 645, which describes 
subgraph 630 comprising objects 645, 640, and 635. There 
fore, cycle 675 comprises references to objects 645, 640, and 
635. 

0078 Cycle buffer 660 allows cycles to be easily and 
quickly determined and searched. It does this at the expense 
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of memory. However, because cyclic garbage collection can 
be time-consuming, memory tends to be less important than 
time. 

0079 If the safety tests of the present invention were 
performed in the order of cycle 665, 670, and then 675 (i.e., 
the order in which the cycles are added to the cycle buffer), 
an inefficiency occurs. Object 635 would be examined three 
times, once for each cycle 665, 670, and 675, while object 
640 would be examined twice, once for each cycle 670 and 
675, and object 645 would be examined once for cycle 675. 
To prevent this inefficiency, the cycles are examined in the 
reverse order, starting with cycle 675 and ending with cycle 
665. In this situation, at the end of performing the safety 
tests on cycle 675, objects 635, 640, and 645 would be freed, 
thereby obviating the performance of the safety tests for 
cycles 670 and 665. This saves several steps in computation. 

0080 Referring now to FIG. 7, a state transition graph is 
shown for concurrent garbage collection of cyclic data 
structures in a reference counting computer system, in 
accordance with one embodiment of the present invention. 
All objects start as black. As previously described, the 
meanings of the colors used herein are as follows: black 
indicates that a node is “in use or “free'; gray indicates that 
a node is a possible member of a cycle; white indicates that 
a node is a member of a cycle; purple indicates a possible 
root of a cycle; orange indicates that the object is part of a 
candidate cycle awaiting an epoch boundary; and red indi 
cates that the object is part of a candidate cycle undergoing 
a X-computation. 

0081. If the state is black, increments to the reference 
count and decrements of the reference count to Zero do not 
change the state. A decrement of the reference count to a 
non-zero value will cause the object to be colored purple. 
While in the purple state, a decrement to the reference count 
to a non-Zero value does not change the state. A decrement 
to Zero or an increment will change the color to black. When 
method 500 of FIG. 5 performs the liveness phase of 
garbage collection, it will mark purple objects as gray if they 
have been examined. 

0082) If state is black, method 500 of FIG. 5 will change 
the color from black to gray during the marking phase. When 
the object is gray, a scan will cause the object to be marked 
white. A scan occurs during the scanning phase, when the 
object has a Zero reference count. Increments, decrements, 
and an unscan will cause the object to be changed from gray 
to black. An increment and decrement are possible during 
concurrent mutator operation. An unscan occurs when it is 
determined that a cycle is not garbage. 
0083) If the object is white, a flee operation, which 
returns the object to the heap, will mark the object as black. 
Additionally, increments, decrements, and unscan opera 
tions will cause the white object to be marked black. 
Increments and decrements are caused by concurrent muta 
tor operation. An unscan operation occurs if a member of 
garbage cycle really is not garbage. For example, if an 
increment operation has incremented the reference count of 
an object in a cycle, one of the safety tests will determine 
this and mark black all other white objects in the cycle. 

0084. White objects can be collected, which means that 
they are marked orange. If a free operation or an increment 
operation occurs, the orange object is marked black. This 
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can occur in the A-test. The X preparation marks an orange 
object red. Red is used to mark objects that belong to a 
particular candidate cycle. 

0085 Turning now to FIGS. 8 and 9, exemplary listings 
of pseudocode instructions are shown that may be used to 
implement concurrent garbage collection of cyclic data 
structures in a reference counting computer system, in 
accordance with one embodiment of the present invention. 
The pseudocode is explained below. 

0.086 The operation of CollectCycles and its subsidiary 
procedures is very similar to the operation of the synchro 
nous algorithm of “Synchronous Collection of Cyclic Gar 
bage in Reference Counting Systems.” called the “synchro 
nous algorithm' herein, so for those procedures only the 
differences will be focused on here. 

0087 Increment(S): The true reference count is incre 
mented Since the reference count is being incremented, the 
node must be live, so any non-black objects reachable from 
it are colored black by invoking ScanBlack. This has the 
effect of re-blackening live nodes that were left gray or white 
when concurrent mutation interrupted a previous cycle col 
lection. 

0088 Decrement(S): At the high level, decrementing 
looks the same as with the synchronous algorithm: if the 
count becomes Zero, the object is released, otherwise it is 
considered as a possible root. 

0089) PossibleRoot(S): For a possible root, first Scan 
Black is performed. As with Increment, this has the effect of 
re-blackening leftover gray or white nodes. It may also 
change the color of Some purple nodes reachable from S to 
black, but this is not a problem since they will be considered 
when the cycle collector considers S. The rest of Possible 
Root is the same as for the synchronous algorithm. 

0090 ProcessCycles(): Invoked once per epoch after 
increment and decrement processing due to the mutation 
buffers from the mutator threads has been completed. First, 
FreeCycles attempts to flee candidate cycles discovered 
during the previous epoch. Then CollectCycles collects new 
candidate cycles and SigmaPreparation prepares for the 
X-test to be run in the next epoch. 
0.091 CollectCycles(): As in the synchronous algorithm, 
three phases are invoked on the candidate roots: marking, 
scanning, and collection. 

0092 MarkRoots(): This procedure is the same as in the 
synchronous algorithm. 

0093 ScanRoots(): This procedure is the same as in the 
synchronous algorithm. 

0094 CollectRoots(): For each remaining root, if it is 
white a candidate cycle has been discovered starting at that 
root. The CurrentCycle is initialized to be empty, and the 
CollectWhite procedure is invoked to gather the members of 
the cycle into the CurrentCycle and color them orange. The 
collected cycle is then appended to the CycleBuffer. If the 
root is not white, a candidate cycle was not found from this 
root or it was already included in Some previously collected 
candidate, and the buffered flag is set to false. In either case, 
the root is removed from the Roots buffer, so that at the end 
of this procedure the Roots buffer is empty. 
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0095 MarkGray(S): This is similar to the synchronous 
version of the procedure, with adaptations to use the cyclic 
reference count (CRC) instead of the true reference count 
(RC). If the color is not gray, it is set to gray and the CRC 
is copied from the RC, and then MarkGray is invoked 
recursively on the children. If the color is already gray, and 
if the CRC is not already Zero, the CRC is decremented (the 
check for non-zero is necessary because concurrent mutation 
could otherwise cause the CRC to underflow). 
0096 ScanCS): As with MarkGray, simply an adaptation 
of the synchronous procedure that uses the CRC. Nodes with 
Zero CRC are colored white; non-black nodes with CRC 
greater than Zero are recursively re-colored black. 

0097 ScanBlack(S): Like the synchronous version of the 
procedure, but it does not need to re-increment the true 
reference count because all reference count computations 
were carried out on the CRC. 

0.098 CollectWhite(S): This procedure recursively gath 
ers white nodes identified as members of a candidate gar 
bage cycle into the CurrentCycle and colors them orange as 
it goes. The buffered flag is also set true since a reference to 
the node will be stored in the CycleBuffer when Current 
Cycle is appended to it. 

0099 SigmaPreparation(): After the candidate cycles 
have been collected into the CycleBuffer, this procedure 
prepares for the execution of the X-test in the next epoch. It 
operates individually on each candidate cycle C. First, each 
node S in C has its CRC initialized to its RC and its color 
set to red. After this only the nodes of C are red. Then for 
any pointer from one node in C to another node in C, the 
CRC of the target node is decremented. Finally, the nodes in 
Care re-colored orange. At the end of SigmaPreparation, the 
CRC field of each node S contains a count of the number of 
references to S from outside of C. 

0.100 FreeCycles(): This procedure iterates over the can 
didate cycles in the reverse order in which they were 
collected. It applies the safety tests (the X-test and the A-test) 
to each cycle and if it passes both tests then the cycle is 
freed. Otherwise it is refurbished, meaning that it may be 
reconsidered for collection in the next epoch. 
0101 DeltaTest(C): This procedure returns true if the 
color of all nodes in the cycle awe orange, which indicates 
that their have been no increments to any of the nodes in the 
cycle 

0102 SigmaTest(C): This procedure calculates the total 
number of external references to nodes in the cycle, using 
the CRC fields computed by the SigmaPreparation proce 
dure. It returns true if the number of external references is 
Zero, false otherwise. 

0103) Refurbish(C): If the candidate cycle has not been 
collected due to failing a safety test, this procedure re-colors 
the nodes. If the first node in the candidate cycle (which was 
the purple node from which the candidate was found) is still 
orange, or if any node has become purple, then those nodes 
are colored purple and placed in the Roots buffer. All other 
nodes are colored black and their buffered flags are cleared 
0.104 FreeCycle(C): This procedure actually frees the 
members of a candidate cycle that has passed the safety tests 
First, the members of C are colored red; after this, only the 
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nodes in C are red. Then for each node S in C, CyclicDec 
rement decrements reference counts in non-red nodes 
pointed to by S. 

0105 CyclicDecrement(M): If a node is not red, then it 
either belongs to some other candidate cycle or not. If it 
belongs to Some other candidate cycle, then it is orange, in 
which case both the RC and the CRC fields are decremented 
(the CRC field is decremented to update the computation 
performed previously by the SigmaPreparation procedure to 
take the deletion of the cycle pointing to Minto account). If 
it does not belong to Some other candidate cycle, it will not 
be orange and a normal Decrement operation is performed. 
0106 For ease of presentation, the pseudocode has been 
presented in a way that maximizes readability. However, this 
means that, as presented, the code makes more passes over 
the nodes than is strictly necessary. For instance, the first 
pass by SigmaPreparation can be merged with CollectWhite, 
and the passes performed by DeltaTest and SigmaTest can be 
combined. In this implementation, the passes are combined 
to minimize constant-factor overheads. 

0107 FIGS. 10 and 11 are diagrams of cyclic data 
structures and possible concurrent operations that can pos 
sibly create inaccuracies if both tests of the present invention 
are not performed. FIG. 10 illustrates a race condition 
uniquely detected by the X-test, while FIG. 11 illustrates a 
race condition uniquely detected by the A-test 
01.08 Referring now to FIG. 10, a subgraph 1000 is 
shown that contains objects 1010, 1020, 1030, 1040, and 
1050. Subgraph 100 is a cycle, but not a garbage cycle. The 
subgraph 1000 is described by a root entered in the root 
buffer because object 1010 has a decrement to its reference 
count that is not to Zero. Each object has two counts: the top 
count is the reference count; and the bottom count is the 
cyclic reference count. 
0109) This cycle was detected from the purple node 1010, 
which is the starting point from which cycle collection is 
run. If the edge between nodes 1030 and 1040 is cut 
(indicated by cut 1060) between the MarkGray and the Scan 
routines, then the nodes 1010 and 1020 will be collected by 
the CollectWhite routine and form a cycle. These nodes are 
not garbage. However, since there have been no increments 
to the reference counts of either of these nodes, this set will 
pass A-test. The decrements will be processed an epoch later, 
at epoch i-1, so the decrement to node 1040 will not have 
an effect on the nodes 1010 and 1020 in the FreeCycles 
operation performed in epoch i. Even waiting foX an addi 
tional epoch does not guarantee that the fact that nodes 1010 
and 1020 will be detected by A-test, since during epoch i the 
edge from node 1040 to node 1050 could be cut. Indeed, by 
making the chain of nodes {1030, 1040, 1050} be arbitrarily 
long and having a malicious mutator cut edges at just the 
tight moment, it is possible to have the non-garbage cycle of 
nodes pass the A-test for arbitrarily many epochs. Hence the 
A-test alone cannot detect all live nodes in the set of a 
candidate cycles. 

0110. Now consider the subgraph 1100 of nodes 1110, 
1120, and 1130 shown in FIG. 11. The cycle is detected 
starting with the purple node 1110, from which cycle col 
lection is run. If a new edge is added from node 1130 to node 
1120 (as noted by edge 1140) before the MarkGray routine 
is run, the reference count of the node 1120 will be out of 

Aug. 9, 2007 

date. If the cycle collector observes the newly added edge, 
the sum of the reference counts in 1110, 1120, 1130} will 
equal the sum of the edges. Hence the set of nodes 1110, 
1120, 1130 will be collected by the CollectWhite routine 
and form a candidate cycle. If the increments are not 
processed before the X-test is done, then this candidate cycle 
will pass the X-test. Hence the X-test alone cannot detect all 
live nodes in the set of candidate cycles. 

0.111 Notice that it is not claimed that the two race 
conditions shown in FIG. 10 and 11 are an exhaustive list of 
all possible race conditions the present invention will face. 
But these two are sufficient to show the necessity of both the 
tests. Thus, the two tests are both necessary and sufficient to 
ensure the safety of the algorithm. That both tests are 
necessary and Sufficient is proven in Bacon et al., "Concur 
rent Cycle Collection in Reference Counting Systems.” 
Proc. European Conf. on Object-Oriented Programming, 
Lecture Notes in Computer Science (LNCS), vol. 2072 
(2001), the disclosure of which is incorporated herein by 
reference. 

0112 Turning now to FIG. 12, a block diagram is shown 
of an exemplary system 1200 suitable for carrying out 
embodiments of the present invention. System 1200 com 
prises a computer system 1210 and a Compact Disk (CD) 
1250. Computer system 1210 comprises N processors 
1220-1 through 1220-N (collectively, “processors 1220), a 
memory 1230 and an optional video display 1240. 

0113 As is known in the art, the methods and apparatus 
discussed herein may be distributed as an article of manu 
facture that itself comprises a computer-readable medium 
having computer-readable code means embodied thereon. 
The computer-readable program code means is operable, in 
conjunction with a computer system Such as computer 
system 1210, to carry out all or some of the steps to perform 
the methods or create the apparatuses discussed herein. The 
computer-readable medium may be a recordable medium (e 
g., floppy disks, hard drives, compact disks, such as CD 
1250, or memory cards) or may be a transmission medium 
(e.g., a network comprising fiber-optics, the world-wide 
web, cables, or a wireless channel using time-division 
multiple access, code-division multiple access, or other 
radio-frequency channel). Any medium known or developed 
that can store information Suitable for use with a computer 
system may be used. The computer-readable code means is 
any mechanism for allowing a computer to read instructions 
and data, Such as magnetic variations on a magnetic medium 
or height variations on the Surface of a compact disk, Such 
as compact disk 1250. 

0114 Memory 1230 configures the processor 1220 to 
implement the methods, steps, and functions disclosed 
herein. The memory 1230 could be distributed or local and 
the processor 1220 could be distributed or singular. The 
memory 1230 could be implemented as an electrical, mag 
netic or optical memory, or any combination of these or 
other types of storage devices. Moreover, the term 
“memory” should be construed broadly enough to encom 
pass any information able to be read from or written to an 
address in the addressable space accessed by processor 
1210. With this definition, information on a network is still 
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within memory 1230 because the processor 1220 can 
retrieve the information from the network. It should be noted 
that each distributed processor that makes up processor 1220 
generally contains its own addressable memory space. It 
should also be noted that some or all of computer system 
1210 can be incorporated into an application-specific or 
general-use integrated circuit. 
0115 Optional video display 1240 is any type of video 
display Suitable for interacting with a human user of system 
1200. Generally, video display 1240 is a computer monitor 
or other similar video display 
0116. It is to be understood that the embodiments and 
variations shown and described herein are merely illustrative 
of the principles of this invention and that various modifi 
cations may be implemented by those skilled in the art 
without departing from the scope and spirit of the invention. 

What is claimed is: 
1. A method useful for concurrent collection of cyclic 

garbage in a reference counting system, the method com 
prising the steps of 

identifying candidate objects having associated reference 
counts for garbage collection, wherein each candidate 
object is potentially garbage; and 

determining if the candidate objects are garbage, the step 
of determining performed without preventing mutators 
in the system from changing object references and the 
step of determining further comprising the steps of 

determining, after a time period, if the candidate objects 
are still potentially garbage; and 

for those candidate objects that are still potentially gar 
bage, determining if the reference count associated 
with the candidate object has changed. 

2. The method of claim 1, wherein: 
wherein each candidate object is potentially garbage; 
the step of determining if the candidate objects are 

garbage further comprises the steps of: 
determining, after a time period, if the candidate objects 

are still potentially garbage; and 
for those candidate objects that are still potentially gar 

bage, determining if the reference count associated 
with the candidate object has changed. 

3. The method of claim 1, wherein the step of determining 
if the reference count associated with the candidate object 
has changed further comprises the step of determining, after 
a time period, if the reference count associated with the 
candidate object has changed. 

4. The method of claim 3, wherein: 
the step of determining, after a time period, if the candi 

date objects are still potentially garbage further com 
prises the step of for each candidate object, copying a 
reference count associated with the object into a cyclic 
reference count; and 

the step of determining, after a second time period, if the 
reference count associated with the candidate object 
has changed further comprises the step of determining, 
for each candidate object if the cyclic reference count 
1S ZO. 

Aug. 9, 2007 

5. The method of claim 4, wherein: 
the step of finding candidate objects for garbage collec 

tion comprises the steps of 
determining root objects by determining objects whose 

reference count has been decremented to a non-zero 
value; 

for each root object, determining objects in a cycle 
defined by the root object; 

storing references to each object in a cycle, thereby 
storing each cycle; and 

the step of determining, after a second time period, if the 
reference count associated with the candidate object 
has changed further comprises the step of processing 
the cycles in reverse order of an order in which they 
were stored. 

6. The method of claim 3, wherein the time period is an 
epoch. 

7. The method of claim 1, wherein each candidate object 
is part of a cycle and wherein the step of determining, after 
a time period, if the candidate objects are still potentially 
garbage comprises the steps of 

for each candidate object, copying a reference count 
associated with the object into a cyclic reference count; 

for each candidate object, decrementing the cyclic refer 
ence count each time a reference from a referencing 
object refers to the candidate object, wherein the ref 
erencing object resides in the cycle in which the 
candidate object resides; 

waiting the time period; and 
for each candidate object, determining if the cyclic ref 

erence count associated with the candidate object is 
ZO. 

8. The method of claim 1, wherein: 
the step of identifying candidate objects for garbage 

collection further comprises the steps of: 
identifying a plurality of roots for garbage collection, 

wherein each root comprises a reference count and 
wherein each root describes a set comprising objects 
that are interconnected through references; 

selecting one of the sets; 
performing the following steps for the set: 
for each object in the set, creating a copy of the reference 

count; and 
for each object in the set, decrementing the copy of the 

reference count associated with the object for as many 
times as the object is referenced by itself or another 
object contained in the set; 

the step of determining further comprises: 
determining, after a time period, if the copies of the 

reference counts for each object in the set are Zero; 
determining if one or more increments have made at least 

one reference count for objects in the set outdated; and 
collecting the set as garbage when the copies for each 

object in the set are Zero and when there are no outdated 
reference counts. 
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9. The method of claim 8, wherein the time period is an 
epoch. 

10. A method for processing changes to reference counts 
in a reference counting system, each reference count asso 
ciated with a particular object and containing a number of 
references that reference the particular object, the method 
comprising the steps of 

determining increments and decrements of reference 
counts for a current time period; 

processing the increments of reference counts for the 
current time period; 

storing the decrements of reference counts for the current 
time period; and 

processing decrements of reference counts for a previous 
time period. 

11. The method of claim 10, wherein each of the current 
and previous time periods are an epoch. 

12. The method of claim 11, wherein each epoch is 
separated by a period where increments and decrements to 
reference counts are applied for all processors in a plurality 
of processors. 

13. A computer system comprising: 
a memory that stores computer-readable code; and 
a processor operatively coupled to the memory, the pro 

cessor configured to implement the computer-readable 
code, the computer-readable code configured to: 

identify candidate objects having associated reference 
counts for garbage collection, wherein each candidate 
object is potentially garbage; and 
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determine if the candidate objects are garbage, the step of 
determining performed without preventing mutators in 
the system from changing object references and the 
step of determining further comprising the steps of 

determining, after a time period, if the candidate objects 
are still potentially garbage; and 

for those candidate objects that are still potentially gar 
bage, determining if the reference count associated 
with the candidate object has changed. 

14. An article of manufacture comprising: 
a computer-readable medium having computer-readable 

program code means embodied thereon, the computer 
readable program code means comprising: 

a step to identify candidate objects having associated 
reference counts for garbage collection, wherein each 
candidate object is potentially garbage; and 

a step to determine if the candidate objects are garbage, 
the step of determining performed without preventing 
mutators in the system from changing object references 
and the step of determining further comprising the steps 
of: 

determining, after a time period, if the candidate objects 
are still potentially garbage; and 

for those candidate objects that are still potentially gar 
bage, determining if the reference count associated 
with the candidate object has changed. 


