(19) AUSTRALIAN PATENT OFFICE

(11) Avplication No. Al 2003233574 B9

(54) Title
Mechanism for evaluating security risks
(51)2 International Patent Classification(s)
GO6F 21,00 (2006.01) 2BMEP HO4L
HO04L 9,00 (2006.01) 9-00
GO6F 21,00 20060101ALTI2005111
20060101AFI2006072 0BMEP
PCTAU32003-015709
(21) AppliCatiOn No: 2003233574 (22) AppliCatiOn Date: 2003 05 17
(87) WIPO No: wog4,107647
(43) Publication Date : 2005 01 21
(43) Publication Journal Date : 5gp5 g2 10
(1) Applicant(s)
Microsoft Corporation
(72) Inventor(s)
Epling, Jeremy, Cool, Jamie, Goldfeder, Aaron, Bybee, Andrew, Xu, Jingyanyg. Farro,
Joe Ramdatmisier, Viresh, Khorun, Serge; Schreiner, Tony. Fee, Gregory
Darrell, Hawkins, John20100325
(74) Agent/Attorney
Davies Collison Cave, 1 Nicholson Street, Melbourne, VIC, 3000
(56) Related Art
us 2002-0116627
WO 2003-017068

woO 2004/107647 A1 |IITI0IEI 00000

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
Iniernalional Bureau

(43) International Publication Date
9 December 2004 (09.12.2004)

PCT

W O O

(10) International Publication Number

WO 2004/107647 Al

(51)

@n

22)
(25)
(26)

()

(72)

International Patent Classification’: HO41. 9/00
International Application Number:
PCT/US2003/015709

International Kiling Date: 17 May 2003 (17.05.2003)
Filing Language: English
Publicalion Language: Tinglish

(74
Applicant: MICROSOFT CORPORATION |US/US|;
One Microsolt Way, Redmond, WA 98052 (US).

(31)
Inventors: GOLDFEDER, Aaron; 6571A 5th Ave

NE, Seautle, WA 98115 (US). HAWKINS, John; 14140
Batten Road, Duvall, WA 98019 (US). KHORUN, Serge:
16529 NE 36th Ave MM 103, Redmond, WA 98052 (US).
RAMDATMISIER, Viresh; 105 25th Avenue, Seallle,

WA 98122 (US). FARRQ, Joe; 15235 108th Placc NE,
Bothell, WA 98011 (US). FEE, Gregory, Darrell; 500
Wall St, Apt. 1521, Seattle, WA 98121 (US). EPLING,
Jeremy; 6529 Latona Avenue NE, Scattle, WA 98115
(US). BYBEE, Andrew; 15715 NE 111th St, Redmond,
WA 98052 (US). XU, Jingyang; 9539 172nd Ave NE,
Redmond, WA 98052 (US). SCHREINER, Tony; 18666
Redmond Way Apt. TT 2156, Redmond, WA 98052 (TIS).
COOL, Jamie: 10023 177th Ave NE, Redmond, WA
98052 (US).

Agent: DAIGNAULT, Ronald, A.; Merchant & Gould
P.C., PO. Box 2903, Minneapolis, MN 55402-0903 (US).

Designated States (national): AE, AG, AL, AM, AL, AU,
A7, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CTJ,
CZ, DE, DK, DM, DZ, EC, EE. ES, FL, GB, GD, GE, GII,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, K. KR, KZ, LC,
LK, LR, LS, LI, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE,

[Continued on next page]

(54) Title: MECHANISM FOR EVALUATING SECURITY RISKS

501
———
I
503 v
HosT CONSTRUCTS ADO | -
FROM INFORMATION ASOUT | TRUST MANAGER ANALYZES
APFLIGATION | THE SCORE RESULTS,
I PRIORITIZES, AND HANDS TQ
T
[%% |
HosT INVOES TRUST | 4/ L 2
MANAGER A PASS23 ADO | CoNgENT I PRESENTS
| COLLECTIVE SSCLRITY
ASSESVENT T0 USER
Trus W jw \
ST MANAGER BEGiNS
EVALUATION =
| BUILDS ATO AND RETURNS
| TO HosT
FoREscHTE
s |
2
GONPARE INFORMATION N 509 RETRIEVE ATO AND APFLY
ADO wiITA RULES AND PERMISSIONS TO ASSEMBLIES
SeoRz

508

ExD

(57) Abstract: Described is a mechanism
for collectively evaluating securily risks
associated with loading an application. A
hosting environment associated with Tloading
the application invokes a trust manager (505)
to evaluate the security risks. The trust
manager invokes a plurality of trust cvaluatars,
where each (rust evaluator is responsible [or
analyzing and assessing a different security
risk (507). Upon completion of each security
risk evaluation, results of those individual
security risk evaluations are returned to the trust
manager.(511) The trust manager aggregates
the variely of sceurity risk cvaluation results
and makes a security determination based on
the aggregated evaluation results.(513) That
determination may be o move (orward with
loading the application, to block the load of the
application, or perhaps to prompt the user for a
decision about whether to move forward with the
load.

WO 2004/107647 A1 | MDA

SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, Published:
VN, YU, ZA, ZM, ZW. — with international search report
— with a declaration as 1o non-prejudicial disclosures or ex-

(84 ceptions to lack of novelty

Designated States (regional): ARIPO patent (GH, GM,
KT, 1.5, MW, M7, SD, SL, S7, TZ, UG, ZM, 7ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM).
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, For two-letter codes and other abbreviations, refer to the "Guid-
ES, FI, FR, GB, GR, HU, T, IT, L.U, MC, NI, PT, RO, ance Notes on Codes and Abbreviations” appearing at the begin-
SE,’ 3[; SK, TR), OAPI pulent (BT, BI, CT, CG, CI, CM, ning of each regular issue of the PCT Gazette.

GA, GN, GQ, GW, ML. MR, NE, SN, TD, TG).

Declaration under Rule 4.17:
— asto prejudicial discl es or eptions to lack of
novelty (Rule 4.17(v)) for all designations

17 Sep 2009

2003233574

20

25

30

PYOPER\SEW2009iScptsmber| 2467320 amended pages 151 spa. doc-17:0%/2009

MECHANISM FOR EVALUATING SECURITY RISKS

Field of the Invention
The present invention relates to computer security systems. More particularly, the present
invention relates to a mechanism for evaluating and aggregating security assessment
information for computing systems.
Background of the Invention

Computer users today have access to a multitude of different applications and
utilities. The typical computer user may install dozens of computer programs on a
computer over the course of a year. Most times, computer users knowingly install
programs on their computers. For instance, a user may purchase a software program and
install it manually. Sometimes a user may install a program unknowingly, such as by
visiting a particular Web site that is configured to install an applet or small program on the
users computer. Installing programs on computers has become so commonplace today that
some users are unaware of the security issues involved with installing new software. Other
users are keenly aware of the security issues in general, but are typically uncertain about
the particular issues that may surround installing a particular program.

Most users understand that new programs can introduce viruses or other malicious
code on their computers. Users also understand that some software developers make
programs freely available that have an overt function or purpose, such as enhancing e-mail
messages, and a covert function or purpose, such as recording information about the user
that is later returned a marketing entity. This particular type of software is often referred to
as "spyware”. So users often try to protect themselves from these security threats in various
way. For instance, many users install anti-virus utilities to protect themselves against
viruses. Fewer users also install anti-spyware utilities to address the spyware security
issues.

Unfortunately, each security utility operates separately from each other and without
knowledge of each other's results, thus burdening the user with assimilating the
information from each security utility. Security systems today operate in a vacuum with
respect to each other, and each reports to the user only on its specific security risk. Most

users do not want separate notifications of different security risks from several disparate

1

2003233574 05 Jan 2010

20

25

30

CANRPorbNDCCIAXLI 121016, | DOC-S117201

systems. Rather, they want their security systems just to work. The patchwork
nature of security utilities today typically leaves users in fear that they have left a hole in
their defenses, and that malicious or undesirable programs will slip through. Because of
that fear, many users are reluctant to try new programs, especially in online environments.

Unfortunately, there are currently no mechanisms that can protect a user from
multiple disparate security risks presented by a particular software program when it is
being downloaded, installed, or executed. An adequate mechanism for evaluating security

risks has eluded those skilled in the art.

Summary of the Invention
According to the present invention, there is provided a computer-readable storage

medium having computer- executable components, comprising:

receiving a notification that an application is being loaded for execution and, in
response to receiving the notification and before the application is allowed to completely
load for execution: evaluating the application for security risks using a trust manager,
wherein evaluating the application for the security risks includes:

executing a first software evaluation engine to assess a first security risk that is
associated w.th the application; wherein the first evaluation engine returns a first score that
relates to the first security risk;

executing a second software evaluation engine to assess a second security risk that
is associated with the application; wherein the second evaluation engine retums a second
score that relates to the second security risk;

aggregating the scores associated with each security risk evaluation to determine a
collective sezurity assessment based on the aggregated scores;

refin:ng the collective security assessment by factoring in a security of a hosting
environment; and
a user interface configured to present the collective security assessment determined by the
trust manager and present an option to receive a determination of whether to allow the load
of the application to proceed when the application is not automatically loaded based on the
collective security assessment and when the application is not automatically blocked from

loading based on the collective security assessment.

2

17 Sep 2009

2003233574

20

25

30

PAOPERISEWAI009\Septemben] 2467520 amended pages sl spa doc- 7191200

The present invention also provides a computer-readable storage medium having
computer-executable components, comprising:

a trust manager configured to perform actions, including;

receive a notification that an application is attempting to load;

in response to receiving the notification, evaluating the application for a plurality of
security risks;

aggregating scores associated with each security risk evaluation to determine a
collective security assessment based on the aggregated scores; wherein a grant set is
associated with an the application, the grant set including a first table and a second table,
the first table including a list of components constituting the application, each component
being associated with a permission set, the second table including a list of permission sets
and a description for each permission set;

a user interface configured to present the collective security assessment determined
by the trust manager and present an option to receive a determination of whether to allow
the load of the application to proceed when the application is not automatically loaded
based on the collective security assessment and when the application is not automatically
blocked from loading based on the collective security assessment; and

loading the application when determined using the permission sets specified in the
grant set.

The present invention further provides a computer-implemented method,
comprising:

receiving a notification that an application is being loaded by a hosting
environment;

receiving an application description object that includes information about the
application; wherein the information includes a name of the application; a version of the
application and rights requested by the application;

receiving at a trust manager an instruction from the hosting environment to
evaluate the application for security risks;

evaluating the application to determine a-plurality-of the security risks associated
with the application;

aggregating results from the evaluation of the plurality-a security risks;

3

17 Sep 2009

2003233574

15

20

25

30

PAOPERISEW200Seplembe1 2467320 amended pages 1st spa.doc- 17/09/2009

presenting the aggregated results as a collective security assessment of the
application; and

presenting an option to determine whether to allow the loading of the application
when the application is not automatically loaded based on the collective security
assessment and when the application is not automatically blocked from loading based on
the collective security assessment.

One embodiment of the present invention is directed at a system and method for
accumulating security assessment information about a program and operating on that
information in a convenient and usable fashion. Briefly stated, a hosting environment is
responsible for loading an application. In response to the initiation of the application load,
the hosting environment invokes a trust manager to evaluate any security risks associated
with that application, The trust manager invokes a plurality of trust evaluators, where each
trust evaluator is responsible for analyzing and assessing a different security risk. Upon
completion of each security risk evaluation, results of those individual security risk
evaluations are returned to the trust manager. The trust manager aggregates the variety of
security risk evaluation results and makes a security determination based on the aggregated
evaluation results. That determination may be to move forward with loading the
application, to block the load of the application, or perhaps to prompt the user for a
decision about whether to move forward with the load. Advantageously, if prompted, the
user can make a decision based on the collective security assessment of the application,
which provides the user with a greater sense of protection about his computer system in

general.

Brief Description of the Drawings

Embediments of the present invention are hereinafter described, by way of example
only, with reference to the accompanying drawings, wherein:

FIGURE 1 is a functional block diagram that illustrates a computing device that
may be used in implementations of the present invention.

FIGURE 2 is a functional block diagram generally illustrating components of a
system for performing a security evaluation of an application and for presenting a user

with a collective security assessment of that evaluation.

3a

17 Sep 2009

2003233574

20

25

PAON 152 spa.doc-1 700942009

FIGURE 3 is a graphical representation of one illustrative grant set for an
application that associates particular permissions with components of the application in the
context of the application.

FIGURE 4 is a graphical representation of one illustrative user interface that may
be used to present collective security assessment information to a user.

FIGURE 5 is a logical flow diagram generally illustrating a process for evaluating
the security risks associated with an application and for presenting to a user the collective

security assessment.

Detailed Description of the Preferred Embodiment
The invention will be described here first with reference to one example of an illustrative

computing environment in which embodiments of the invention can be implemented. Next,
a detailed example of one specific implementation of the invention will be described.
Alternatives implementations may also be included with respect to certain details of the
specific implementation. It will be appreciated that embodiments of the invention are not
limited to those described here.
Ilustrative Computing Environment of the Invention

FIGURE 1 illustrates a computing device that may be used in illustrative
implementations of the present invention. With reference to FIGURE 1, one exemplary
system for implementing the invention includes a computing device, such as computing
device 100. In a very basic configuration, computing device 100 typically includes at least
one processing unit 102 and system memory 104. Depending on the exact configuration
and type of computing device, system memory 104 may be volatile (such as RAM), non-
volatile (such as ROM, flash memory, etc.) or some combination of the two. System

memory 104 typically

3b

10

15

20

25

30

WO 2004/107647 PCT/US2003/015709
includes an operating system 105, one or more program modules 106, and may
include prbgréin data 107. This basic ébnﬁgﬁration of computing device 100 is
illustrated in FIGURE 1 by those components within dashed line 108.

Computing device 100 may have additional features or functionality.
For example, computing device 100 may also include additional data storage devices
(removable and/or non-removable) such as, for example, magnetic disks, optical
disks, or tape. Such additional storage is illustrated in FIGURE 1 by removable
storage 109 and non-removable storage 110. Computer storage media may include
volatile and nonvolatile, removable and non-removable media implemented in any
method or technology for storage of information, such as computer readable
instructions, data structures, program modules, or other data. System memory 104,
removable storage 109 and non-removable storage 110 are all examples of computer
storage media. Computer storage media includes, but is not limited to, RAM, ROM,
EEPROM, flash memory or other memory technology, CD-ROM, digital versatile
disks ("DVD") or other optical storage, magnetic cassettes, magnetic tape, magnetic
disk storage or other magnetic storage devices, or any other medium which can be
used to store the desired information and which can be accessed by computing
device 100. Any such computer storage media may be part of device 100.
Computing device 100 may also have input device(s) 112 such as keyboard 122,
mouse 123, pen, voice input device, touch input device, scanner, etc. Qutput
device(s) 114 such as a display, speakers, printer, efc. may also be included. These
devices are well known in the art and need not be discussed at length here.

Computing device 100 may also contain commumication connections
116 that allow the device to communicate with other computing devices 118, such as
over a network. Communication connections 116 is one example of communication
media. Communication media may typically be embodied by computer readable
instructions, data structures, program modules, or other data in a modulated data
signal, such as a carrier wave or other transport mechanism, and includes any
information delivery media. The term “modulated data signal” means a signal that
has one or more of its characteristics set or changed in such a manner as to encode
information in the signal, By way of example, and not limitation, communication
media includes wired media such as a wired network or direct-wired connection, and

wireless media such as acoustic, RF, infrared and other wireless media. The term

4

10

15

20

25

30

WO 2004/107647

PCT/US2003/015709

computer readable media as used herein includes both storage media and
communication media.
Discussion of Specific Implementation

FIGURE 2 is a finctional block diagram generally illustrating
components of an environment implementing the present invention. As shown in
FIGURE 2, a trust evaluation system 200 is configured to evaluate an application
201 and identify any security risks associated with the application 201. The
application 201 may be any executable code that is available to the computing
device 100. There are inherently some security risks associated with executing the
application 201 on the computing device 100. For instance, the application 201 may
contain a virus or it may constitute spyware. Accordingly, the system 200 is
configured to analyze the application 201 to assess and quantify those risks in a
meaningful way. The trust evaluation system 200 then makes a decision about
loading the application 201.

The application 201 may be composed of several components
operating in conjunction. For instance, the application 201 may include multiple
modules or assemblies, such as assembly A 202 and assembly B 203. The
application 201 may include metadata that describes the application and each of its

constituent components. That metadata may be contained in a manifest 205 or

otherwise stored in association with the application 201. The metadata may include

information such as the name of the application, the version of the application, what
rights and permissions the constituent components of the application desire, privacy
policy information, digital signature information, and the like.

The application 201 may be first loaded onto the computing dev1ce
100 in one of many ways. For instance, the application 201 may be downloaded
during an Internet session, it may be obtained on an optical disk or other permanent
storage, it may be received in an e-mail message, or through some other mechanism.
In this implementation, the application 201 is 1§aded by and executed in a hosting
environment 220, For the purpose of this discussion, the hosting environment 220
includes any environment in which the application 201 will be executed. For
instance, the hosting environment 220 may be a managed code runtime environment,
a shell, another application, or the like. In this particular embodiment, the hosting

environment 220 may include a priority rating based on the type of host it is. For

5

-10-

10

15

20

25

30

WO 2004/107647 PCT/US2003/015709

instance, it may be determined that a hosting environment associated with an optical
disk drive may pose a lower security risk than a hosting environment associated with
a network session, such as the Internet. The priority rating may be used later when
assigning a security score to the application 201.

The hosting environment 220 is configured to create an Application
Description Object (ADO) 221 based on the metadata about the application 201.
The hosting environment 220 includes in the ADO 221 sufficient information about
the application 201 to effectively evaluate the security risks associated with the
application 201. Accordingly, the ADO 221 may include, in object form, the name
of the application, the version of the application, what rights and permissions the
constituent components of the application desire, privacy policy information, digital
signature information, and the like. The hosting environment 220 is further
configured to invoke a Trust Manager 210 to perform the evaluation.

The Trust Manager 210 may be a trusted component of an operating
system resident on the computing device 100. In this particular embodiment, the
Trust Manager 210 exposes an interface that is called by the hosting environment
220 to initiate the security evaluation of the application 201. The Trust Manager
210 receives the ADO 221 from the hosting environment 220 via the interface. The
Trust Manager 201 is further configured to invoke a series of trust evaluation
engines to assess the security risk associated with the application 201. Each
evaluation engine is configured to evaluate a particular class of threat based on
information in the ADO 221 or on the components of the application 201 itself. For
instance, evaluation engine 240 may be a scoring engine that evaluates evidence
about the application, as may be contained in the ADO 221 or elsewhere, to
determine the ability of the application to perform malicious acts on the computing
device 100. Evaluation engine 241 may be a virus checker and evaluation engine
242 may be configured to evaluate privacy concems about the application 201.
Each of the evaluation engines may detive from a base class, or may be
implemented as an interface.

Fach evaluation engine is configured to assess the application 201
against its particular rules or criteria to determine a score 245, Examples of the
score include a numerical value between a minimum and maximum, or a discrete

value from a set of altemnative security levels. These are only examples and not an

6

-11-

10

15

20

25

30

WO 2004/107647 PCT/US2003/015709
exhaustive list. The score 245 may then be returned to the Trust Manager 210 by
each evaluation engine at the conclusion of its assessment. T he Trust Manager 210
is configured to aggregate the individual scores into a score collection 250, which
represents the collective sceurity assessment of the application in each of the areas
for which an evaluation engine exists. Any priorities that may exist, such as
priorities associated with the particular type of hosting environment 220, may be
applied to the score collection 250 to further refine the collective security
assessment. Based on the collective security assessment, the Trust Manager 210
may have sufficient information to make a loading decision without involving the
user. For instance, pre-determined thresholds (cither set by default or perhaps
provided by the user) may govern what programs are loaded without seeking user
acceptance, or what programs are blocked without prompting the user. If the
collective security assessment for the particular application being loaded falls
between those two thresholds, the user may be prompted for a loading decision.

The Trust Manager 210 constructs a Trust Object 261 that describes
the level of permissions with which the application will be loaded, if at all. The
Trust Object 261 may include data that defines a permission grant set 262 for the
application on a component—by—cdmponent basis. One example of an illustrative
permission grant set 262 is illustrated in Figure 3 and described below. If the
collective security assessment for the application 201 falls between the two
thresholds mentioned above, the Trust Manager 210 may pass the Trust Object 261
to a User Interface 260 so that the user may be prompted.

The User Interface 260 is a mechanism for presenting the collective
security assessment to the user in a meaningful way so that the user can make an
informed decision about proceeding. The User Interface 260 may take many forms,
such as a dialog box, an audible signal, an iconic indicator, or the like. One example
of a potential User Interface 260 is illustrated in Figure 4 and described below. In
essence, the User Interface 260 represents a single point of presentation for various
and disparate security information that, in conventional systems, does not exist.

The User Interface 260 may prompt the user with the potential
security ramifications of allowing the application load to proceed, and possibly
presenting the user with various levels of permissions that may be assigned to the

application. The user is asked to make a determination whether to proceed with

7

-12-

10

15

20

25

30

WO 2004/107647 PCT/US2003/015709

loading the application or not. The User Tnterface 260 adds the uset's response
information to the Trust Object 261 and returns it to the Trust Manager 210.

Each time the application 201 is Jaunched or executed, it's hosting
environment 220 could invoke the Trust Manager 210 to retrieve the security
assessment of the application 201. In the case where the grant set 262 has already
been created, the Trust Manager 210 may return that grant set 262 to the hosting
environment 220. Alternatively, the hosting environment 220 could cache the
security assessment information for subsequent use without involving the Trust
Manager 210. The hosting environment 220 will then apply any access permissions
identified in the grant set 262 to the application 201. More specifically, the hosting
environment 220 may apply the access permissions to each individual component,
such as assembly A 202, of the application 201. Itis equally feasible that the
hosting environment 220 or some other application may present a component to the
Trust Manager 210 for a security assessment without the specific intent of then
executing the component.

FIGURE 3 is a graphical representation of one illustrative grant set
301 that may be generated by implementations of the present invention. It should be
noted that the term "grant set," as used in this document, means any collection of
information that is used to define the security environment in which an application
may execute. The term "grant set" used in this document is not limited to a

. particular security environment, such as a Common Language Runtime
environment, but rather is intended to cover information used to define the security
environment within which an application executes regardless of the particular
operating environment.

In this particular example, the grant set 301 may be data within an
object, such as a Trust Object or the like. In this example, the grant set 301 includes
information that identifies each component of the application. In addition, the grant
set 301 includes information that defines the permissions for each component of the
application. In this case, a components table 310 identifies the components
Assembly A, Assembly B, and Assembly C and associates each of those
components with a permission set. For instance, in the grant set 301, Assembly A is

identified as having permission set PS1.

-13-

10

15

20

25

30

WO 2004/107647 PCT/US2003/015709
A permissions table 320 is also included in the grant set 301 to define
specifically those permissions are security rights that are associated with each
permission set. In this example, permission set PS1 includes those permissions and
rights identified in the example as Permissions 1. It will be appreciated that, as
described above, when the hosting environment 220 begins to load the components
of the application, by referring to the grant set 301 the appropriate permissions may
be applied to each component of the application in the context of the application. In
other words, some other application may also include Assembly B, but in the
context of that other application, Assembly B may have a different permission set.
Tn that case, when the other application was executed, and Assembly B was loaded,
it would have the permission set defined by a grant set associated with the other
application.

FIGURE 4 is an illustrative User Interface dialogue that may be
presented to a user based on a security assessment of an application. In this
particular example, the dialog 401 is presented based on an evaluation of an
application that has requested access to the file system and the network. In addition,
a virus evaluator has determined that the application does not contain a virus. In
iconic indication of the risk level 405 may also be included. The user is presented
with the option of allowing the load to proceed, such as by clicking an OK
button 410, or to abort the load. The User Interface shown in FIGURE 4 is for the
purpose of illustration only, and is not to be viewed as limiting or the exclusive
mechanism for presenting security information to the user. Indeed, it is envisioned
that very many different forms of collective security assessment presentation will
become apparent from the teachings of this document.

FIGURE 5 is a logical flow diagram generally illustrating a process
for identifying and collectively presenting, in meaningful way, information about
security risks posed by an application. The process begins at starting block 501,
where an application is being loaded for execution on 2 computing system. As
discussed above, an application may be loaded in many ways through various types
of hosts. Accordingly, at starting block 501, a particular application is being loaded
through use of a particular host. The process continues at block 503.

At block 503, the host constructs an Application Description Object

(ADO) based on information about the application. As described above, the

9

-14-

10

15

20

25

30

WO 2004/107647

PCT/US2003/015709

information may be obtained from a manifest included with the application, or
through any other metadata associated with the application. The ADO contains
descriptive information about the application, such as the name and version of the
application, any rights being requested by the application, any code access
permissions being requested by the application, digital signature information related
to the application, privacy policy information, and the like. The process continues at
block 505.

At block 505, the host invokes a Trust Manager with an instruction to
evaluate the security risks associated with the application. The host passes the ADO
to the Trust Manager for use in the evaluation.

At block 507, the Trust Manager begins evaluating the security risks
of the application by invoking a series of Trust Evaluators that each evaluate a
speciﬁé area of security risk. For instance a virus evaluator may be configured to
cxamine each component of an application for the possibility that the application
contains a virus. A privacy evaluator may evaluate the permissions requested by the
application to determine what level of threat to privacy the application presents.
Many other Trust Evaluators may also be used, as will be apparent to those skilled in
the art.

Loop 508 is performed for each Trust Evaluator in the system. The
Loop 508 begins at block 509, where the current Trust Evaluator examines the
information in the ADO and/or the components of the application to assess the
security risk. The information in the ADO may be compared against a st of rules or
other criteria to build a score that quantifies the security risk of the application. In
one example, a score may be a value from zero (maximum risk) to one (minimum
risk). The score may also include a priority and a string descriptor.

Tt will be appreciated that the evaluations being performed by each
Trust Evaluator are analogous to similar security risk evaluations that may be
performed by conventional mechanisms, However, in accordance with the
invention, each Trust Evaluator assesses its respective security risk and returns the
score collection to the Trust Manager (block 511). When each Trust Evaluator has
returned its score collection to the Trust Manager, the loop 508 terminates and the

process continues to block 513.

10

-15-

10

15

20

25

30

WO 2004/107647 PCT/US2003/015709
At block 513, the Trust Manager analyzes the score collections from
the Trust Evaluators. The Trust Manager may prioritize the score collections based
on some pre-determined criteria, such as a priority associated with a particular Trust
Evaluator, or some other prioritization scheme. For instance, a high risk that a virus
is present may outweigh a low risk that a privacy violation may occur. The Trust
Manager determines, from the prioritized score collections, an aggregate security
impact on the computing system. If the aggregate security impact on the system
exceeds some pre-determined threshold, the Trust Manager may simply block the
load of the application. If the aggregate security impact is below some other
threshold, the Trust Manager may simply build a Trust Object that includes
sufficient permissions for the application to execute. If however, neither of these
cases exists, the Trust Manager may invoke a User Interface to prompt the user to
make the determination. .

At block 515, the Trust Manager passes the prioritized score
collection and aggregate impact information to the User Tnterface for final
evaluation if required from the user. If so, the aggregate security impact is presented
to the user. The presentation may be in the form of a dialog box that summarizes or
details specifically the security risks associated with loading the application. For
instance, a scoring engine may have determined that the application has requested
sufficient permissions to read and modify files on the computer, and to transmit data
over a network connection. Based on that information, together with perhaps other
evidence, a privacy evaluator may have determined that the application is likely to
share the user's information over the network. Accordingly, that information may be
combined to inform the user that loading the application is likely to result in the user
being targeting by telemarketing campaigns or other inappropriate uses of the user's
personal information. Advantageously, the user is presented with disparate security
information collected into a common notification, such as a dialog box or the like.

At block 517, with any input from the User Interface, the Trust
Manager modifies the Trust Object to describe the security environment in which
the application may be executed. In one embodiment, the Trust Object includes data
that associates the application, or components of the application, with a permission
grant set. The permission grant set describes the level of security that will be

applied to the application when executed. In one specific environment, a permission

11

-16-

17 Sep 2009

2003233574

10

15

20

25

PAOPER\SEWAZUUS\Ssplomier] 2467320 amended pages Ist spa doc-1709/2009

grant set is associated with each component of the application. In that way, a component
that is shared among different applications may be executed with different permissions
depending on the application context in which it is executing. The process may idle at
block 517 until the application is actually executed, thereby causing the host to begin
loading components of the evocation. At that point, the process continues to block 519.

At block 519, the application is being loaded by the host. As part of a security
policy that applies to applications being loaded, the host queries the Trust Manager for the
Trust Object associated with the application. As each component of the application is
loaded, the permission grant set associated with that component is applied. In this way,
applications that have been loaded in accordance with the invention are only allowed those
permissions which the user has, in an informed way, directly and comprehensively
established. If sufficient privileges to execute have not been granted to the application, the
Trust Manager may block the execution of the application.

The above specification, examples and data provide a complete description of the
concepts and illustrative implementations of the invention. Since many embodiments of
the invention can be made without departing from the spirit and scope of the invention, the
invention resides in the claims hereinafter appended.

The reference in this specification to any prior publication (or information derived
from it), or to any matter which is known, is not, and should not be taken as an
acknowledgment or admission or any form of suggestion that that prior publication (or
information derived from it) or known matter forms part of the common general
knowledge in the field of endeavour to which this specification relates.

Throughout this specification and the claims which follow, unless the context
requires otherwise, the word “comprise”, and variations such as “comprises” and
“comprising”, will be understood to imply the inclusion of a stated integer or step or group
of integers or steps but not the exclusion of any other integer or step or group of integers or

steps.

17-

2003233574 05 Jan 2010

20

25

30

CANRPOMAUCOANLLIZI6_(DOC-S 12110

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A computer-readable storage medium having computer-executable components,
comprising:

receiving a notification that an application is being loaded for execution and, in
response to receiving the notification and before the application is allowed to completely
load for execution: evaluating the application for security risks using a trust manager;
wherein evaluating the application for the security risks includes:

executing a first software evaluation engine to assess a first security risk that is
associated with the application; wherein the first evaluation engine returns a first score that
relates to the first security risk;

execuring a second software evaluation engine to assess a second security risk that
is associated with the application; wherein the second evaluation engine returns a second
score that relates to the second security risk;

aggrepating the scores associated with each security risk evaluation to determine a
collective sccurity assessment based on the aggregated scores;

refining the collective security assessment by factoring in a security of a hosting
environment; and

a user interface configured to present the collective security assessment determined
by the trust manager and present an option to receive a determination of whether to allow
the load of the application to proceed when the application is not automatically loaded
based on the collective security assessment and when the application is not automatically

blocked from loading based on the collective security assessment.

2. The computer-readable storage medium of claim 1, wherein the application is being
loaded by the hosting environment, and wherein the hosting environment issues the

notification (o the trust manager.

3. The computer-readable storage medium of claim 2, wherein the hosting
environmenl is configured to create an Application Description Object that includes

descriptive information about the application.

13

18-

17 Sep 2009

2003233574

10

15

20

25

30

2467320 151 spadec-17209/2009

4. The computer-readable storage medium of claim 3, wherein the descriptive

information includes the name of the application and the version of the application.

5. The computer-readable storage medium of claim 3, wherein the descriptive

information identifies rights and permissions requested by components of the application.

6. The computer-readable storage medium of claim 3, wherein the descriptive

information includes privacy policy information.

7. The computer-readable storage medium of claim 3, wherein the descriptive

information includes digital signature information about the application.

8. The computer-readable storage medium of claim 1, wherein the security risk
evaluations are performed by separate trust evaluators, each trust evaluator being

configured to analyze a particular security risk associated with the application.

9. The computer-readable storage medium of claim 8, wherein the particular security

risk comprises the presence of a virus.

10. The computer-readable storage medium of claim 8, wherein the particular security

risk comprises a violation of privacy.

11. The computer-readable storage medium of claim 1, wherein the collective security

assessment identifies one or more security risks associated with loading the application,
12, A computer-readable storage medium having computer-executable components,
comprising;

a trust manager configured to perform actions, including:

receive a notification that an application is attempting to load,;

14

-19-

17 Sep 2009

2003233574

10

20

25

30

PO)1 spadoc-1709/2009

in response to receiving the notification, evaluating the application for a plurality of
security risks;

aggregating scores associated with each security risk evaluation to determine a
collective security assessment based on the aggregated scores; wherein a grant set is
associated with the application, the grant set including a first table and a second table, the
first table including a list of components constituting the application, each component
being associated with a permission set, the second table including a list of permission sets
and a description for each permission set;

a user interface configured to present the collective security assessment determined
by the trust manager and present an option to receive a determination of whether to allow
the load of the application to proceed when the application is not automatically loaded
based on the collective security assessment and when the application is not automatically
blocked from loading based on the collective security assessment; and

loading the application when determined using the permission sets specified in the

grant set.

13. A computer-implemented method, comprising:

receiving a notification that an application is being loaded by a hosting
environment;

receiving an application description object that includes information about the
application; wherein the information includes a name of the application; a version of the
application and rights requested by the application;

receiving at a trust manager an instruction from the hosting environment to
evaluate the application for security risks;

evaluating the application to determine the security risks associated with the
application;

aggregating results from the evaluation of the security risks;

presenting the aggregated results as a collective security assessment of the
application; and
presenting an option to determine whether to allow the loading of the application when the

application is not automatically loaded based on the collective security assessment and

15

-20-

17 Sep 2009

2003233574

10

15

20

25

30

BAOPERISEWAZIYSeprmben) 2467120 amended pages 15 spa.doc- 170012009

when the application is not automatically blocked from loading based on the collective

security assessment.

14, The computer-implemented method of claim 13, wherein causing the application to
be evaluated further comprises invoking a plurality of trust evaluators, each trust evaluator
being associated with a different possible security risk, each trust evaluator being operative
to assess a likelihood that the application suffers from the particular possible security risk
corresponding to that trust evaluator; wherein each trust evaluator is invoked through a

software call.

15. The computer-implemented method of claim 13, further comprising assigning a
permission set to components of the application, the permission set defining permissions

with which each of the components of the application will be allowed to execute.

16. The computer-implemented method of claim 15, further comprising, in response to
a notification to execute the application, retrieving the permission set and causing the

application to be executed with the appropriate permissions.

17. The computer-implemented method of claim 15, wherein the permission set is

modified based on the hosting environment in which the application is executed.

18. The computer-readable storage medium of claim 1, wherein the trust manager is

further configured to aggregate scores from security risks.

19. The computer-implemented method of claim 15, further comprising terminating the

loading of the application in response to the aggregated results.

20. The computer-implemented method of claim 15, wherein evaluating the application
to determine the plurality of security risks associated with the application; comprises
examining the application to determine the security risks after the notification that the

application is being loaded by the hosting environment is received.

16

21-

17 Sep 2009

2003233574

15t 5pa doc-1 740972009

21. A computer-readable storage medium or a computer-implemented method,

substantially as hereinbefore described with reference to the accompanying drawings.

17

22-

PCT/US2003/015709

WO 2004/107647

811

s301A3Q
ONILNAWOD
HIHLO
fw 1
197
M <
(S)NOILOANNOD
- Ll NOLLYOINNWINOD 101 ViV
QHVOaATY L Wvy90Nd
(s)30iA3Q LndLNO —
N_\/_. o0k $3INAO
~ WVHO0Hd
(s)a01A3g 10dN
> 1IN ONISSIO0Hd
SoL WILSAS
A, oLl JOVHOLS ONILYS3dO
I19VAONTH-NON NVH/NOY
ol
601 I9VHOLS ,/ AHOWIN WALSAS
I1avAOWTY -
)

FO0IA3Q ONILNdWOD

001’ 80

-23-

WO 2004/107647 PCT/US2003/015709
2/5

APPLICATION .
Fig. 2
202 ,
~ 203
L
ul 260
A
261
261 @ 262
HOSTING G
ENVIRONMENT SANT L/
220 21 (10D il
250
X v
TRUST MANAGER
210
245
Score
EVALUATION EVALUATION EVALUATION
ENGINE ENGINE ENGINE
240 241 24

-24-

WO 2004/107647

3/5

PCT/US2003/015709

GRANT SET: APPLICATION

310

320

Assembly A | PS1 |

Assembly B PS1

Assembly C PS3

PS1

Permissions 1

PS2

Permissions 2

PS3

Permissions 3

301

-25-

Fi1G. 3

WO 2004/107647 s PCT/US2003/015709

401

. This application is requesting
access to your files.

. This application is requesting

network access. 405

. This application does not
appear to have a virus.

410

FIG. 4

-26-

508 <

WO 2004/107647

501

Com D

Host ConsTRUCTS ADO
FROM [NFORMATION ABOUT
APPLICATION

X

HoST INVOKES TRUST
MANAGER AND PASSES ADO

TRUST MANAGER BEGINS
EVALUATION

Y

FOR EACH TE
/‘

A

COMPARE INFORMATION IN
ADO WITH RULES AND
SCORE

Y

RETURN SCORE RESULT

Nexr

o
2
5

503

505

507

509

[é)}
-
-

PCT/US2003/015709

A 4

TRUST MANAGER ANALYZES
THE SCORE RESULTS,
PRIORITIZES, AND HANDS TO
CONSENT Ul

4

CONSENT Ul PRESENTS
COLLECTIVE SECURITY
ASSESMENT TO USER

BUILDS ATO AND RETURNS
TO HosT

RETRIEVE ATO AND APPLY
PERMISSIONS TO ASSEMBLIES

27-

FIG. 5

[&;]
ey
w

;]
ey
[6;]

(41
—
~

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

