(54) 发明名称
一种数据解码方法

(57) 摘要
本发明提供一种数据解码方法，包括：A：通过音频接口接收正弦波，将所述正弦波处理为方波，将所有携带有待解码数据的方波拼接为第一方波；B：判断所述第一方波是否包含预设个数的连续且周期相同的波形；如果所述第一方波包含预设个数的连续且周期相同的波形，则确定所述第一方波携带有所同头数据。执行步骤E：根据所述同头数据计算得到自适应阈值；如果前次步骤为B，则执行步骤F1：F1：在所述第一方波中基于所述自适应阈值判断是否包含毛刺波形，执行步骤G1：G1：如果所述第一方波包含毛刺波形，则所述第一方波进行毛刺波形去除处理，得到第三方波；对所述第三方波进行解码，得到解码数据。
1. 一种数据解码方法，其特征在于，包括：

A：通过音频接口接收正弦波，所述正弦波包括至少一个周期的波形，不同的周期表示不同的比特值；

将所述正弦波处理为方波，所述方波携带有待解码数据，将所有携带有待解码数据的方波拼接为第一方波；

B：判断所述第一方波是否包含预设个数的连续且周期相同的波形；

如果所述第一方波包含预设个数的连续且周期相同的波形，则确定所述第一方波携带有同步头数据，执行步骤 E；和 / 或，

如果所述第一方波没有包含预设个数的连续且周期相同的波形，则确定所述第一方波没有携带同步数据，则在所述第一方波中基于预设阈值判断是否包含毛刺波形；

如果所述第一方波中没有包含毛刺波形，则返回步骤 A；和 / 或，如果所述第一方波中包含毛刺波形，执行步骤 C；

C：对所述第一方波进行毛刺波形去除处理，得到第二方波；

D：判断所述第二方波是否包含预设个数的连续且周期相同的波形；

如果所述第二方波包含预设个数的连续且周期相同的波形，则确定所述第二方波携带有同步头数据，执行步骤 E；和 / 或，

如果所述第二方波没有包含预设个数的连续且周期相同的波形，则确定所述第二方波没有携带同步头数据，返回步骤 A；

E：根据所述同步头数据计算得到自适应阈值，如果前次步骤为 B，则执行步骤 F1，如果前次步骤为 D，则执行步骤 F1 或 F2；

F1：在所述第一方波中基于所述自适应阈值判断是否包含毛刺波形，执行步骤 G1；

F2：在所述第二方波中基于所述自适应阈值判断是否包含毛刺波形，执行步骤 G2；

G1：如果所述第一方波包含毛刺波形，对所述第一方波进行毛刺波形去除处理，得到第三方波，对所述第三方波进行解码，得到解码数据；和 / 或，如果所述第一方波没有包含毛刺波形，对所述第一方波进行解码，得到解码数据；

G2：如果所述第二方波包含毛刺波形，对所述第二方波进行毛刺波形去除处理，得到第四方波，对所述第四方波进行解码，得到解码数据；和 / 或，如果所述第二方波没有包含毛刺波形，对所述第二方波进行解码，得到解码数据。

2. 根据权利要求 1 所述的方法，其特征在于，还包括：

H：判断所有的解码数据中是否包括同步尾数据；

如果所有的解码数据中包括同步尾数据，则处理所述所有的解码数据；

如果所有的解码数据中没有包括同步尾数据，则执行步骤 I；

I：继续获取下一组待处理的方波；

J：在所述下一组待处理的方波中基于所述自适应阈值判断是否包含毛刺波形；

如果所述下一组待处理的方波中包含毛刺波形，对所述下一组待处理的方波进行毛刺波形去除处理，并对进行毛刺波形去除处理后得到的方波进行解码，得到解码数据，执行步骤 H；

如果所述下一组待处理的方波中没有包含毛刺波形，对所述下一组待处理的方波进行解码，得到解码数据，执行步骤 H。
3. 一种数据解码方法，其特征在于，包括：
 S1：通过音频接口接收正弦波，所述正弦波包括至少一个周期的波形，不同的周期表示不同的比特值；
 将所述正弦波处理为方波，所述方波携带有待解码数据，将所有携带有待解码数据的方波拼接为第一方波；
 S2：判断所述第一方波是否包含预设个数的连续且周期相同的波形；
 如果所述第一方波包含预设个数的连续且周期相同的波形，则确定所述第一方波携带有所同步头数据，执行步骤 S5；和 / 或，
 如果所述第一方波没有包含预设个数的连续且周期相同的波形，则确定所述第一方波没有携带有所同步头数据，则在所述第一方波中基于预设阈值判断是否包含毛刺波形；如果所述第一方波中没有包含毛刺波形，则返回步骤 S1；和 / 或，如果所述第一方波中包含毛刺波形，执行步骤 S3；
 S3：对所述第一方波进行毛刺波形去除处理，得到第二方波；
 S4：判断所述第二方波是否包含预设个数的连续且周期相同的波形；
 如果所述第二方波包含预设个数的连续且周期相同的波形，则确定所述第二方波携带有所同步头数据，执行步骤 S5；和 / 或，
 如果所述第二方波没有包含预设个数的连续且周期相同的波形，则确定所述第二方波没有携带有所同步头数据，返回步骤 S1；
 S5：根据所述同步头数据计算得到自适应阈值，如果前次步骤为 S2，则执行步骤 S6-1，如果前次步骤为 S4，则执行步骤 S6-1 或 S6-2；
 S6-1：在所述第一方波中基于所述自适应阈值判断是否包含毛刺波形，执行步骤 S7-1；
 S6-2：在所述第二方波中基于所述自适应阈值判断是否包含毛刺波形，执行步骤 S7-2；
 S7-1：如果所述第一方波包含毛刺波形，对所述第一方波进行毛刺波形去除处理，得到第三方波，保存所述第三方波，执行 S8；和 / 或，
 如果所述第一方波没有包含毛刺波形，保存所述第一方波，执行 S8；
 S7-2：如果所述第二方波包含毛刺波形，对所述第二方波进行毛刺波形去除处理，得到第四方波，保存所述第四方波，执行 S8；和 / 或，如果所述第二方波没有包含毛刺波形，保存所述第二方波，执行 S8；
 S8：判断保存的所有方波中是否包含同步尾数据，
 S9-1：如果保存的所有方波中包含同步尾数据时，对保存的所有方波进行解码。
4. 根据权利要求 3 所述的方法，其特征在于，在所述步骤 S8 之后，还包括：
 S9-2：如果保存的所有方波中没有包含同步尾数据时，继续获取下一组待处理的方波，在所述下一组待处理的方波中基于所述自适应阈值判断是否包含毛刺波形，
 如果所述下一组待处理的方波中包含毛刺波形，对所述下一组待处理的方波进行毛刺波形去除处理，保存进行毛刺波形去除处理后得到的波形，执行 S8；
 如果所述下一组待处理的方波中不包含毛刺波形，保存所述下一组待处理的方波，执行 S8。
5. 根据权利要求1-4任一所述的方法，其特征在于，根据所述同步数据计算得到自适应阈值包括：

根据P=I×Q计算得到自适应阈值；其中，P为所述自适应阈值，Q为表示所述同步数据的波形的宽度，I为预设百分比值。

6. 根据权利要求1-4任一所述的方法，其特征在于，基于预设阈值判断是否包含毛刺波形的实现方式为：

判断是否包含波形宽度小于所述预设阈值的波形，
如果包含波形宽度小于所述预设阈值的波形，则判断结果为包含毛刺波形；
如果没有包含波形宽度小于所述预设阈值的波形，则判断结果为不包含毛刺波形。

7. 根据权利要求1-4任一所述的方法，其特征在于，基于自适应阈值判断是否包含毛刺波形的实现方式为：

判断是否包含波形宽度小于所述自适应阈值的波形，
如果包含波形宽度小于所述自适应阈值的波形，则判断结果为包含毛刺波形；
如果没有包含波形宽度小于所述自适应阈值的波形，则判断结果为不包含毛刺波形。

8. 根据权利要求1-4任一所述的方法，其特征在于，进行毛刺波形去除处理的实现方式为：

如果所述毛刺波形的电平为高电平，则将所述毛刺波形的电平反转为低电平；
如果所述毛刺波形的电平为低电平，则将所述毛刺波形的电平反转为高电平。
一种数据解码方法

技术领域
[0001] 本发明涉及一种电子技术领域，尤其涉及一种数据解码方法。

背景技术
[0002] 支持音频接口的智能密钥设备（例如音频 KEY、USBKEY 等）可以采用音频信号通过音频接口实现与外部终端（例如手机）之间的数据交互。音频信号是一种模拟信号，在传输过程中可能存在波形失真情况，智能密钥设备在接收到通过音频信号传输的数据时，如果音频信号出现波形失真情况，则将会导致智能密钥设备对数据进行解码时产生误差，降低了数据解码的准确性，甚至可能导致解码失败。
[0003] 现有技术中无法提供一种数据解码方法，使得智能密钥设备接收到来自外部终端的音频信号时，提高智能密钥设备对数据进行解码的准确性和成功率。

发明内容
[0004] 本发明旨在解决上述问题。
[0005] 本发明的主要目的在于提供一种数据解码方法；
[0006] 本发明的主要目的在于提供另一种数据解码方法。
[0007] 为达到上述目的，本发明的技术方案具体是这样实现的；
[0008] 本发明第一方面提供了一种数据解码方法，包括：
[0009] A：通过音频接口接收正弦波，所述正弦波包括至少一个周期的波形，不同的周期表示不同的比特值；
[0010] 记所述正弦波处理为方波，所述方波携带有待解码数据，将所有携带有待解码数据的方波拼接为第一方波；
[0011] B：判断所述第一方波是否包含预设个数的连续且周期相同的波形；
[0012] 如果所述第一方波包含预设个数的连续且周期相同的波形，则确定所述第一方波携带有同步头数据
执行步骤 E；和 / 或，
[0013] 如果所述第一方波未包含预设个数的连续且周期相同的波形，则确定所述第一方波中基于预设阈值判断是否包含毛刺波形；
[0014] 如果所述第一方波中没有包含毛刺波形，则返回步骤 A；和 / 或，如果所述第一方波中包含毛刺波形，执行步骤 C；
[0015] C：对所述第一方波进行毛刺波形去除处理，得到第二方波；
[0016] D：判断所述第二方波是否包含预设个数的连续且周期相同的波形；
[0017] 如果所述第二方波包含预设个数的连续且周期相同的波形，则确定所述第二方波携带有同步头数据，执行步骤 E；和 / 或，
[0018] 如果所述第二方波未包含预设个数的连续且周期相同的波形，则确定所述第二方波未包含同步头数据，返回步骤 A；
[0019] E：根据所述同步头数据计算得到自适应阈值，如果前次步骤为 B，则执行步骤 F1，
如果前次步骤为 D，则执行步骤 F1 或 F2；

[0020] F1: 在所述第一方波中基于所述自适应阈值判断是否包含毛刺波形，执行步骤 G1；

[0021] F2: 在所述第二方波中基于所述自适应阈值判断是否包含毛刺波形，执行步骤 G2；

[0022] G1: 如果所述第一方波包含毛刺波形，则所述第一方波进行毛刺波形去除处理，得到第三方波；对所述第三方波进行解码，得到解码数据；和 / 或，如果所述第一方波没有包含毛刺波形，则所述第一方波进行解码，得到解码数据；

[0023] G2: 如果所述第二方波包含毛刺波形，则所述第二方波进行毛刺波形去除处理，得到第四方波；对所述第四方波进行解码，得到解码数据；和 / 或，如果所述第二方波没有包含毛刺波形，则所述第二方波进行解码，得到解码数据。

[0024] 其中，所述的方法，还包括：

[0025] H: 判断所有的解码数据中是否包括同步头数据；

[0026] I: 如果所有的解码数据中包括同步头数据，则处理所述所有的解码数据；

[0027] J: 如果所有的解码数据中没有包括同步头数据，则执行步骤 I；

[0028] K: 继续获取下一组待处理的方波；

[0029] L: 在所述下一组待处理的方波中基于所述自适应阈值判断是否包含毛刺波形；

[0030] M: 如果所述下一组待处理的方波中包含毛刺波形，则所述下一组待处理的方波进行毛刺波形去除处理，并对所述毛刺波形去除处理后得到的方波进行解码，得到解码数据；执行步骤 N；

[0031] N: 如果所述下一组待处理的方波中没有包含毛刺波形，对所述下一组待处理的方波进行解码，得到解码数据，执行步骤 N。
S1：通过音频接口接收正弦波，所述正弦波包括至少一个周期的波形，不同的周期表示不同的比特值；
S2：判断所述第一方波是否包含预设个数的连续且周期相同的波形；
S3：判断所述第二方波是否包含预设个数的连续且周期相同的波形；
S4：判断所述第三方波是否包含预设个数的连续且周期相同的波形；
S5：根据所述正弦波数据量计算得到自适应阈值，如果前次步骤为 S2，执行步骤 S6；如果前次步骤为 S4，执行步骤 S6 或 S7；
S6：在所述第一方波中基于所述自适应阈值判断是否包含毛刺波形，执行步骤 S7；
S7：在所述第二方波中基于所述自适应阈值判断是否包含毛刺波形，执行步骤 S8；
S8：判断保存的所有方波中是否包含同步尾数据，如果前次步骤为 S2，执行步骤 S6；如果前次步骤为 S4，执行步骤 S6 或 S7；
S9：判断保存的所有方波中包含同步尾数据时，对保存的所有方波进行解码。
S10：其中，所述的方法，在所述步骤 S8 之后，还包括：
S11：如果保存的所有方波中没有包含同步尾数据时，继续获取下一组待处理的方波，在所述下一组待处理的方波中基于所述自适应阈值判断是否包含毛刺波形，如果所述下一组待处理的方波中包含毛刺波形，对所述下一组待处理的方波进行毛刺波形去除处理，并保存进行毛刺波形去除处理后得到的波形，执行 S8；
S12：如果所述下一组待处理的方波中不包含毛刺波形，保存所述下一组待处理的方波，执行 S8。
根据 $P=i \times Q$ 计算得到自适应阈值，其中，P 为所述自适应阈值，Q 为表示所述同步头数据的波形的宽度，i 为预设百分比值。

其中，基于预设阈值判断是否包含毛刺波形的实现方式为：

判断是否包含波形宽度小于所述预设阈值的波形，

如果包含波形宽度小于所述预设阈值的波形，则判断结果为包含毛刺波形；

如果没有包含波形宽度小于所述预设阈值的波形，则判断结果为不包含毛刺波形。

其中，基于自适应阈值判断是否包含毛刺波形的实现方式为：

判断是否包含波形宽度小于所述自适应阈值的波形，

如果包含波形宽度小于所述自适应阈值的波形，则判断结果为包含毛刺波形；

如果没有包含波形宽度小于所述自适应阈值的波形，则判断结果为不包含毛刺波形。

其中，进行毛刺波形去除处理的实现方式为：

如果所述毛刺波形的电平为高电平，则将所述毛刺波形的电平反转为低电平；

如果所述毛刺波形的电平为低电平，则将所述毛刺波形的电平反转为高电平。

由上述本发明提供的技术方案可以看出，采用本发明第一方面提供的数据解码方法和第二方面提供的数据解码方法中的任一种数据解码方法，通过将音频接口接收到的正弦波处理为方波，并基于预设阈值或者自适应阈值对方波中的毛刺波形进行检测，在检测到存在毛刺波形时，该毛刺波形即为异常波形，对方波进行毛刺波形去除处理，并对进行毛刺波形去除处理后得到的方波进行数据解码。也就是说，当方波中存在毛刺波形时，对毛刺波形进行去除，以消除波形失真带来的误差，并对进行毛刺波形去除处理后得到的方波进行数据解码，从而可以降低波形失真造成的智能密钥设备进行数据解码的错误率，提高智能密钥设备对数据解码的准确性和成功率。

附图说明

为了更清楚地说明本发明实施例的技术方案，下面将对实施例描述中所需要使用的附图作简单地介绍，显而易见地，下面描述中的附图仅仅是本发明的一些实施例，对于本领域的普通技术人员来讲，在不付出创造性劳动的前提下，还可以根据这些附图获得其他附图。

图 1 为本发明实施例 1 提供的一种数据解码方法的流程图；

图 2 为本发明实施例 1 提供的一种包含毛刺波形的方波示意图；

图 3 为本发明实施例 2 提供的一种数据解码方法的流程图。

具体实施方式

下面结合本发明实施例中的附图，对本发明实施例中的技术方案进行清楚、完整地描述，显然，所描述的实施例仅仅是本发明一部分实施例，而不是全部的实施例。基于本发明的实施例，本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例，都属于本发明的保护范围。

在本发明的描述中，需要理解的是，术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、
“后”、“左”、“右”、“坚直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系，仅是为了便于描述本发明和简化描述，而不是指明或暗示所指的装置或元件必须具有特定的方位，以特定的方位构造和操作，因此不能理解为对本发明的限制。此外，术语“第一”、“第二”仅用于描述目的，而不应理解为指示或暗示相对重要性或者数量或位置。

[0087] 在本发明的描述中，需要说明的是，除非另有明确的规定和限定，术语“安装”、“相连”、“连接”应做广义理解，例如，可以是固定连接，也可以是可拆卸连接，或一体地连接；可以是机械连接，也可以是电连接；可以是直接相连，也可以通过中间媒介间接连接，可以是两个元件内部的连通。对于本领域的普通技术人员而言，可以根据具体情况理解上述术语在本发明中的具体含义。

[0088] 下面将结合附图对本发明实施例作进一步地详细描述。

[0089] 实施例 1

[0090] 本发明实施例提供一种数据解码方法，如图 1 所示，该方法可以由支持音频接口的智能密钥设备执行，该方法包括：

[0091] A：通过音频接口接收正弦波，所述正弦波包括至少一个周期的波形，不同的周期表示不同的比特值；将所述正弦波处理为方波，所述方波携带有待解码数据，将所有携带有待解码数据的方波拼接为第一方波；

[0092] 其中，支持音频接口的智能密钥设备通过音频接口接收外部终端（例如手机、平板电脑等）发送的正弦波，该正弦波用来传输数据，该正弦波中不同的周期表示不同的比特值，例如周期为 T1 的正弦波用来传输比特 1，周期为 T0 的正弦波用来传输比特 0。智能密钥设备将正弦波处理为方波，方波在没有进行数据解码操作之前，所述方波携带有待解码数据，并将所有携带有待解码数据的方波拼接为第一方波，也就是将所有没有完成解码的方波拼接为第一方波。

[0093] B：判断所述第一方波是否包含预设个数的连续且周期相同的波形；

[0094] 其中，智能密钥设备与外部终端进行数据交互时，采用的数据结构可以至少包括：同步头、传输数据和同步尾。同步头可以预设个数的连续且周期相同的波形，例如，同步头为连续的 8 个比特 1，周期 T1 表示比特 1，则在方波中表示为 8 个连续且周期均为 T1 的波形；同步尾也是预设个数的连续且周期相同的波形，通过方波表示为预设个数的连续且周期相同的波形，但表示同步头的比特数据和表示同步尾的比特数据不相同，在方波中则表示为不同周期的波形，例如，同步尾为连续的 6 个比特 0，周期 T0 表示比特 0，则在方波中表示为 6 个连续且周期均为 T0 的波形。智能密钥设备与外部终端进行数据交互之前，通过会话握手协商，可以获得数据在传输时采用的具体格式，例如智能密钥设备可以获得数据传输时采用的具体格式为：同步头数据为连续的 8 个比特 1，传输数据和同步尾数据为连续的 6 个比特 0。当智能密钥设备判断出方波中包含 8 个连续且周期均为 T1 的波形时，即可确定该方波中携带有同步头数据。

[0095] 经过本步骤 B 的判断，如果所述第一方波包含预设个数的连续且周期相同的波形，则确定所述第一方波携带有同步头数据，执行步骤 E；和/或，

[0096] 如果所述第一方波没有包含预设个数的连续且周期相同的波形，则确定所述第一方波没有携带有同步头数据，即所述第一方波中基于预设阈值判断是否包含毛刺波形；
如果所述第一方波中没有包含毛刺波形，则返回步骤A；和/或，如果所述第一方波中包含毛刺波形，执行步骤C；

需要说明的是，上述第一个“和/或,”可以包括三种可选的实现方案，实际应用时，可以根据需求的不同进行选择。

第一种方案为：如果所述第一方波包含预设个数的连续且周期相同的波形，则确定所述第一方波携带与同轴数据，执行步骤E；和，如果所述第一方波没有包含预设个数的连续且周期相同的波形，则确定所述第一方波没有携带同轴数据，则在所述第一方波中基于预设阈值判断是否包含毛刺波形；此时，将具体根据本步骤B的判断结果来确定选择哪一个分支执行。

第二种方案为：如果所述第一方波包含预设个数的连续且周期相同的波形，则确定所述第一方波携带与同轴数据，执行步骤E；也就是说，该方案仅选择执行当本步骤B的判断结果为包含预设个数的连续且周期相同的波形时涉及到的后续操作。而对于当判断结果为没有包含预设个数的连续且周期相同的波形时涉及到的后续操作可以取消不执行，或者暂停执行等等，在此不作限制。

第三种方案为：如果所述第一方波没有包含预设个数的连续且周期相同的波形，则确定所述第一方波没有携带同轴数据，则在所述第一方波中基于预设阈值判断是否包含毛刺波形；也就是说，该方案仅选择执行当本步骤B的判断结果为包含预设个数的连续且周期相同的波形时涉及到的后续操作。而对于当判断结果为没有包含预设个数的连续且周期相同的波形时涉及到的后续操作可以取消不执行，或者暂停执行等等，在此不作限制。

同理，上述第二个“和/或,”可以包括三种可选的实现方案，实际应用时，可以根据需求的不同进行选择。

第一种方案为：如果所述第一方波中没有包含毛刺波形，则返回步骤A；和，如果所述第一方波中包含毛刺波形，执行步骤C；此时，将具体根据在所述第一方波中基于预设阈值判断是否包含毛刺波形的判断结果来确定选择哪一个分支执行涉及到的后续操作。

第二种方案为：如果所述第一方波中没有包含毛刺波形，则返回步骤A；也就是说，该方案仅选择执行基于预设阈值判断出没有包含毛刺波形时涉及到的后续操作。而对于当判断结果为包含毛刺波形时涉及到的后续操作可以取消不执行，或者暂停执行等等，在此不作限制。

第三种方案为：如果所述第一方波中包含毛刺波形，执行步骤C；也就是说，该方案仅选择执行基于预设阈值判断出包含毛刺波形时涉及到的后续操作。而对于当判断结果为没有包含毛刺波形时涉及到的后续操作可以取消不执行，或者暂停执行等等，在此不作限制。

本实施例中，如果确定第一方波没有携带同轴数据时，为了避免由于第一方波中存在毛刺波形造成的误判，因而需要对第一方波进行毛刺波形检测，如果检测出的毛刺波形，则进行毛刺波形去除处理，并对毛刺波形去除处理后得到的方波继续进行同轴数据的查找（亦即执行步骤C-D），如果没有检测出的毛刺波形，则说明还没有查找到同轴数据，则需要接收下一组方波，并将下一组方波和之前的方波拼接起后进行同轴数据的查找（亦即返回步骤A）。

本实施例中，基于预设阈值判断是否包含毛刺波形的实际方式为：判断是否包含
波形宽度小于所述预设阈值的波形，如果包含波形宽度小于所述预设阈值的波形，则判断结果为包含毛刺波形；如果没有包含波形宽度小于所述预设阈值的波形，则判断结果为不包含毛刺波形。

[0108] 该预设阈值可以根据实际应用的不同需求进行具体设定。

[0109] 本实施例中，由于智能密钥设备在对方波进行解码时，是根据波形的周期将波形解码为对应的比特值。例如，将周期为 T1 的波形解码为比特 1，将周期为 T0 的波形解码为比特 0。而，毛刺波形也会占用一定的宽度，如果不对其毛刺波形进行去除处理，则智能密钥设备在对方波进行解码时，会将毛刺波形所占的宽度计算在一个周期中，而毛刺波形的波形宽度通常会比正常波形的波形宽度小，因而，会导致数据解码错误或者失败。如附图 2 所示，例如，以一个周期的波形为例说明，在一个正常波形的周期 T1 中出现了一个毛刺波形，该毛刺波形的宽度为 Tm，如果不对毛刺波形进行去除处理，则智能密钥设备在解码时将会检测到两个波形，分别是周期 T3 的波形和周期 T4 的波形，此时对周期 T3 的波形和周期 T4 的波形进行解码将会导致数据解码错误或者失败。

[0110] C：对所述第一方波进行的毛刺波形去除处理，得到第二方波；

[0111] 其中，进行毛刺波形去除处理的实现方式为：如果所述毛刺波形的电平为高电平，则将所述毛刺波形的电平反转为低电平；如果所述毛刺波形的电平为低电平，则将所述毛刺波形的电平反转为高电平。

[0112] 本实施例中，经过毛刺波形处理后，原来毛刺波形的波形宽度将会合并到该毛刺波形相邻的波形周期中，也就是说对毛刺波形进行了去除，智能密钥设备对去除毛刺波形之后的方波进行解码时，可以检测到正常波形的周期，避免因检测到毛刺波形占用的宽度而导致无法正常检测出同步数据的情况。

[0113] D：判断所述第二方波是否包含预设个数的连续且周期相同的波形；

[0114] 如果所述第二方波包含预设个数的连续且周期相同的波形，则确定所述第二方波携带有同步数据，执行步骤 E；和/或，

[0115] 如果所述第二方波没有包含预设个数的连续且周期相同的波形，则确定所述第二方波没有携带有同步数据，返回步骤 A；

[0116] 需要说明的是，上述“和/或，”可以包括三种可选的实现方案，实际应用时，可以根据需求的不同进行选择：

[0117] 第一种方案为：如果所述第二方波包含预设个数的连续且周期相同的波形，则确定所述第二方波携带有同步数据，执行步骤 E；和，如果所述第二方波没有包含预设个数的连续且周期相同的波形，则确定所述第二方波没有携带有同步数据，返回步骤 A；此时，将具体根据本步骤的判断结果来确定选择哪一个分支执行。

[0118] 第二种方案为：如果所述第二方波包含预设个数的连续且周期相同的波形，则确定所述第二方波携带有同步数据，执行步骤 E；也就是说，该方案仅选择执行当本步骤的判断结果为包含预设个数的连续且周期相同的波形时涉及到的后续操作。而对于当判断结果为没有包含预设个数的连续且周期相同的波形时可以取消不执行，或者暂停执行等等，在此不作限制。

[0119] 第三种方案为：如果所述第二方波没有包含预设个数的连续且周期相同的波形，则确定所述第二方波没有携带有同步数据，返回步骤 A。也就是说，该方案仅选择执行当
本步骤的判断结果为没有包含预设个数的连续且周期相同的波形时涉及到的后续操作。而对于当判断结果为包含预设个数的连续且周期相同的波形时可以取消不执行，或者暂停执行等，在此不作限制。

【0120】本实施例中，如果所述第二方波包含预设个数的连续且周期相同的波形，则确定所述第二方波携带有同步数据，则执行步骤 B；此时，说明第一方波中携带有同步数据，但由于第一方波中存在毛刺波形，因而造成无法准确检测出同歩数据。通过步骤 C 对第一方波进行毛刺波形去除处理，得到第二波形之后，在第二波形中即可成功检测出同步数据。可见，通过毛刺波形检测和去除处理，可以提高智能密钥设备对波形检测的准确性和成功率。

【0121】如果所述第二方波没有包含预设个数的连续且周期相同的波形，则确定所述第二方波没有携带有同步数据，返回步骤 A，此时，说明第一方波中没有携带同步数据，并且也排除了因第一方波存在毛刺导致无法检测出同步数据的情况。

【0122】E：根据所述同步数据计算得到自适应阈值；

【0123】如果前次步骤为 B，则执行步骤 F1，此时，说明步骤 B 中在第一方波中检测出了同步数据，因而，可以直接根据同步数据计算自适应阈值，并执行步骤 F1 在所述第一方波中基于所述自适应阈值判断是否包含毛刺波形。

【0124】如果前次步骤为 D，则执行步骤 F1 或 F2，此时，说明步骤 B 中在第一方波中没有检测出同步数据，通过步骤 C-D 对第一方波进行去毛刺处理后，得到第二方波，第二方波检测出同步数据，则根据同步数据计算自适应阈值后，可以选择执行步骤 F1 对第一方波基于所述自适应阈值判断是否包含毛刺波形（图 1 中示出，可以根据实际应用需求选择执行 F1），或者还可以选择执行步骤 F2，进一步地在所述第二方波中基于所述自适应阈值判断是否包含毛刺波形（图 1 中示出）。

【0125】本实施例中，根据 P=i×Q 计算得到自适应阈值；其中，P 为所述自适应阈值，Q 为表示所述同步数据的波形的宽度，i 为预设百分比值。例如，i 的取值可以根据实际应用的不同需求进行具体设定，例如可以是 5%。以表示同步数据的波形的宽度为 30 为例，则自适应阈值为 30×5%=1.5。

【0126】本实施例中，采用自适应阈值来判断是否存在毛刺波形，会进一步提高毛刺波形检测的准确率。

【0127】F1：在所述第一方波中基于所述自适应阈值判断是否包含毛刺波形，执行步骤 G1；

【0128】F2：在所述第二方波中基于所述自适应阈值判断是否包含毛刺波形，执行步骤 G2；

【0129】其中，基于自适应阈值判断是否包含毛刺波形的实现方式为：

【0130】判断是否包含波形宽度小于所述自适应阈值的波形，

【0131】如果包含波形宽度小于所述自适应阈值的波形，则判断结果为包含毛刺波形；

【0132】如果没有包含波形宽度小于所述自适应阈值的波形，则判断结果为不包含毛刺波形。

【0133】G1：如果所述第一方波包含毛刺波形，对所述第一方波进行毛刺波形去除处理，得到第三方波，对所述第三方波进行解码，得到解码数据；和 / 或，如果所述第一方波没有包
含毛刺波形，对所述第一方波进行解码，得到解码数据；
[0134] 需要说明的是，上述 G1 中的“和 / 或”可以包括三种可选的实现方案，实际应用时，可以根据需求的不同进行选择；
[0135] 第一种方案为：如果所述第一方波包含毛刺波形，对所述第一方波进行毛刺波形去除处理，得到第二方波；对所述第二方波进行解码，得到解码数据；和，如果所述第一方波没有包含毛刺波形，对所述第一方波进行解码，得到解码数据；此时，将具体根据步骤 F1 中在所述第一方波中基于所述自适应阈值判断是否包含毛刺波形的判断结果来确定选择哪一个分支执行。
[0136] 第二种实现方案为：如果所述第一方波包含毛刺波形，对所述第一方波进行毛刺波形去除处理，得到第二方波；对所述第二方波进行解码，得到解码数据；也就是说，该方案仅选择执行当本步骤 F1 的判断结果为包含毛刺波形时涉及到的后续操作。而对于当判断结果为没有包含毛刺波形时涉及到的后续操作可以取消不执行，或者暂停执行等等，在此不作限制。
[0137] 第三种实现方案为：如果所述第一方波没有包含毛刺波形，对所述第一方波进行解码，得到解码数据；也就是说，该方案仅选择执行当本步骤 F1 的判断结果为没有包含毛刺波形时涉及到的后续操作。而对于当判断结果为包含毛刺波形时涉及到的后续操作可以取消不执行，或者暂停执行等等，在此不作限制。
[0138] G2：如果所述第二方波包含毛刺波形，对所述第二方波进行毛刺波形去除处理，得到第二方波，对所述第二方波进行解码，得到解码数据；和，或，如果所述第二方波没有包含毛刺波形，对所述第二方波进行解码，得到解码数据。
[0139] 本实施例中，智能密钥设备在对方波进行解码得到解码数据的实现方式为：例如，以周期为 T1 的方波表示比特 1，周期为 T0 的方波表示比特 0 为例，智能密钥设备在进行数据解码时，如果检测到方波中周期为 T1 的方波时，解码为比特 1，检测到方波中周期为 T0 的方波时，解码为比特 0。
[0140] 需要说明的是，上述步骤 G2 中的“和 / 或，”可以包括三种可选的实现方案，实际应用时，可以根据需求的不同进行选择；
[0141] 第一种方案为：如果所述第二方波包含毛刺波形，对所述第二方波进行毛刺波形去除处理，得到第二方波，对所述第二方波进行解码，得到解码数据；和，如果所述第二方波没有包含毛刺波形，对所述第二方波进行解码，得到解码数据。此时，将具体根据步骤 F2 中在所述第二方波中基于所述自适应阈值判断是否包含毛刺波形的判断结果来确定选择哪一个分支执行。
[0142] 第二种方案为：如果所述第二方波包含毛刺波形，对所述第二方波进行毛刺波形去除处理，得到第二方波，对所述第二方波进行解码，得到解码数据；也就是说，该方案仅选择执行当本步骤 F2 的判断结果为包含毛刺波形时涉及到的后续操作。而对于当判断结果为没有包含毛刺波形时涉及到的后续操作可以取消不执行，或者暂停执行等等，在此不作限制。
[0143] 第三种方案为：如果所述第二方波没有包含毛刺波形，对所述第二方波进行解码，得到解码数据。也就是说，该方案仅选择执行当本步骤 F2 的判断结果为没有包含毛刺波形时涉及到的后续操作。而对于当判断结果为包含毛刺波形时涉及到的后续操作可以取消不执行。
执行，或者暂停执行等等，在此不作限制。

【0144】 本发明实施例中，智能密钥设备进行数据解码前，在方波（例如上述第一方波或者
上述第二方波）中基于自适应阈值对方波进行毛刺波形检测，并在检测出方波含有毛刺波形时，对所述方波进行毛刺波形去除处理，并对进行毛刺波形去除处理后的方法进行解码，
可以降低毛刺波形对数据解码造成的影响误差，进一步提高数据解码的准确性和成功率。

【0145】 进一步地，所述的方法，如图 1 所示，在对完成数据解码之后，还包括：

【0146】 II：判断所有的解码数据中是否包含同步尾数据；

【0147】 如果所有的解码数据中包含同步尾数据，则处理所述所有的解码数据；其中处理
所述所有的解码数据可以根据实际应用需求进行，例如根据解码数据进行交易数据的验
证、显示、签名等等。

【0148】 如果所有的解码数据中没有包含同步尾数据，则执行步骤 I；

【0149】 I：继续获取下一组待处理的方波；

【0150】 在所述下一组待处理的方波中基于所述自适应阈值判断是否包含毛刺波形；

【0151】 如果所述下一组待处理的方波中包含毛刺波形，对所述下一组待处理的方波进行
毛刺波形去除处理，并对进行毛刺波形去除处理后得到的方波进行解码，得到解码数据，执
行步骤 II；

【0152】 如果所述下一组待处理的方波中没有包含毛刺波形，对所述下一组待处理的方波
进行解码，得到解码数据，执行步骤 II。

【0153】 本实施例中，通过将音频接口接收到的正弦波处理为方波，并基于预设阈值或者
自适应阈值对方波中的毛刺波形进行检测，在检测到存在毛刺波形时，该毛刺波形即为失
真波形，对方波进行毛刺波形去除处理，并对进行毛刺波形去除处理后得到的方波进行数
据解码。也就是，当方波中存在毛刺波形时，对毛刺波形进行去除，以消除波形失真带来的
误差，并对进行毛刺波形去除处理后得到的方波进行数据解码，从而可以降低波形失真造
成的智能密钥设备进行数据解码的错误率，提高智能密钥设备对数据解码的准确性和成功
率。

【0154】 需要说明的是，实施例 1 提供的数据解码方法的实现流程是先对方波进行数据解
码，之后再判断是否查找到同步尾数据。当然，本实施例提供的数据解码方法的实现流程还
可以是先对方波查找同步尾数据，待查找到同步尾数据后再进行数据解码，具体参见下文
实施例 2。

【0155】 实施例 2

【0156】 本实施提供一种数据解码方法，如图 3 所示，该方法可以由支持音频接口的智能
密钥设备执行，该方法包括：

【0157】 S1：通过音频接口接收正弦波，所述正弦波包括至少一个周期的波形，不同的周期
表示不同的比特值；

【0158】 将所述正弦波处理为方波，所述方波携带有所待解码数据，将所有携带有所待解码数
据的方波拼接为第一方波；

【0159】 S2：判断所述第一方波是否包含预设个数的连续且周期相同的波形；

【0160】 如果所述第一方波包含预设个数的连续且周期相同的波形，则确定所述第一方波
携带有所同步头数据，执行步骤 S5；和 / 或，
如果所述第一方波没有包含预设个数的连续且周期相同的波形，则确定所述第一方波没有携带有同步头数据，则在所述第一方波中基于预设阈值判断是否包含毛刺波形；

其中，基于预设阈值判断是否包含毛刺波形的实现方式为：判断是否包含波形宽度小于所述预设阈值的波形，如果包含波形宽度小于所述预设阈值的波形，则判断结果为包含毛刺波形；如果没有包含波形宽度小于所述预设阈值的波形，则判断结果为不包含毛刺波形。

如果所述第一方波中没有包含毛刺波形，则返回步骤 S1；和/或，如果所述第一方波中包含毛刺波形，执行步骤 S3；

需要说明的是，上述第一个“和/或”可以包括三种可选的实现方案，实际应用时，可以根据需要的不同进行选择。

第一种方案为：如果所述第一方波包含预设个数的连续且周期相同的波形，则确定所述第一方波携带有同步头数据，执行步骤 S5；和，如果所述第一方波没有包含预设个数的连续且周期相同的波形，则确定所述第一方波没有携带有同步头数据，则在所述第一方波中基于预设阈值判断是否包含毛刺波形；此时，将具体根据本步骤 S2 的判断结果来确定选择哪一个分支执行。

第二种方案为：如果所述第一方波包含预设个数的连续且周期相同的波形，则确定所述第一方波携带有同步头数据，执行步骤 S5；也就是说，该方案仅选择执行当本步骤 S2 的判断结果为包含预设个数的连续且周期相同的波形时涉及到的后续操作。而对于当判断结果为没有包含预设个数的连续且周期相同的波形时涉及到的后续操作可以取消不执行，或者暂停执行等等，在此不作限制。

第三种方案为：如果所述第一方波没有包含预设个数的连续且周期相同的波形，则确定所述第一方波没有携带有同步头数据，则在所述第一方波中基于预设阈值判断是否包含毛刺波形；也就是说，该方案仅选择执行当本步骤 S2 的判断结果为没有包含预设个数的连续且周期相同的波形时涉及到的后续操作。而对于当判断结果为包含预设个数的连续且周期相同的波形时涉及到的后续操作可以取消不执行，或者暂停执行等等，在此不作限制。

同理，上述第二个“和/或”可以包括三种可选的实现方案，实际应用时，可以根据需求的不同进行选择。

第一种方案为：如果所述第一方波中没有包含毛刺波形，则返回步骤 S1；和，如果所述第一方波中包含毛刺波形，执行步骤 S3；此时，将具体根据在所述第一方波中基于预设阈值判断是否包含毛刺波形的判断结果来确定选择哪一个分支执行涉及到的后续操作。

第二种方案为：如果所述第一方波中没有包含毛刺波形，则返回步骤 S1；也就是说，该方案仅选择执行基于预设阈值判断出没有包含毛刺波形时涉及到的后续操作。而对于当判断结果为包含毛刺波形时涉及到的后续操作可以取消不执行，或者暂停执行等等，在此不作限制。

第三种方案为：如果所述第一方波中包含毛刺波形，执行步骤 S3；也就是说，该方案仅选择执行基于预设阈值判断出包含毛刺波形时涉及到的后续操作。而对于当判断结果为没有包含毛刺波形时涉及到的后续操作可以取消不执行，或者暂停执行等等，在此不作限制。
S3：对所述第一方波进行毛刺波形去除处理，得到第二方波；
S4：判断所述第二方波是否包含预设个数的连续且周期相同的波形；
S5：如果所述第二方波包含预设个数的连续且周期相同的波形，则确定所述第二方波
携带有限步头数据，执行步骤 S5；且 / 或，
S6：如果所述第二方波没有包含预设个数的连续且周期相同的波形，则确定所述第二
方波没有携带有限步头数据，返回步骤 S1；
S7：需要说明的是，上述 “和 / 或，” 可以包括三种可选的实现方案，实际应用时，可以根据需求的不同进行选择；
S8：第一种方案为：如果所述第二方波包含预设个数的连续且周期相同的波形，则确定所述第二方波携带有限步头数据，执行步骤 S5；且，如果所述第二方波没有包含预设个数
的连续且周期相同的波形，则确定所述第二方波没有携带有限步头数据，返回步骤 S1；
S9：此时，将具体根据本步骤的判断结果来确定选择哪一个分支执行。
S10：第二种方案为：如果所述第二方波包含预设个数的连续且周期相同的波形，则确定所述第二方波携带有限步头数据，执行步骤 S5；也就是说，该方案仅选择执行当本步骤
的判断结果为包含预设个数的连续且周期相同的波形时涉及到的后续操作。而对于当判
断结果为没有包含预设个数的连续且周期相同的波形时可以取消不执行，或者暂停执行等
等，在此不作限制。
S11：第三种方案为：如果所述第二方波没有包含预设个数的连续且周期相同的波形，
则确定所述第二方波没有携带有限步头数据，返回步骤 S1。也就是说，该方案仅选择执行当
本步骤的判断结果为没有包含预设个数的连续且周期相同的波形时涉及到的后续操作。而
对于当判断结果为包含预设个数的连续且周期相同的波形时可以取消不执行，或者暂停执
行等等，在此不作限制。
S12：根据所述有限步头数据计算得到自适应阈值；
S13：其中，根据所述有限步头数据计算得到自适应阈值包括：
S14：根据 P=I×Q 计算得到自适应阈值；其中，P 为所述自适应阈值，Q 为表示所述有限步
头数据的波形的宽度，I 为预设百分比值。
S15：如果前次步骤为 S2，则执行步骤 S6-1，如果前次步骤为 S4，则执行步骤 S6-1 或
S6-2；
S16：S6-1：在所述第一方波中基于所述自适应阈值判断是否包含毛刺波形，执行步骤
S7-1；
S17：S6-2：在所述第二方波中基于所述自适应阈值判断是否包含毛刺波形，执行步骤
S7-2；
S18：其中，基于自适应阈值判断是否包含毛刺波形的实现方式为：判断是否包含波形
宽度小于所述自适应阈值的波形，如果包含波形宽度小于所述自适应阈值的波形，则判断
结果为包含毛刺波形；如果没有包含波形宽度小于所述自适应阈值的波形，则判断结果为
不包含毛刺波形。
[0188] S7-1：如果所述第一方波包含毛刺波形，对所述第一方波进行毛刺波形去除处理，得到第二方波，保存所述第二方波，执行 S8；和 / 或，如果所述第一方波没有包含毛刺波形，保存所述第一方波，执行 S8；

[0189] 需要说明的是，上述 S7-1 中的“和 / 或”可以包括三种可选的实现方案，实际应用时，可以根据需求的不同进行选择；

[0190] 第一种方案为：如果所述第一方波包含毛刺波形，对所述第一方波进行毛刺波形去除处理，得到第二方波，保存所述第二方波，执行 S8；和，如果所述第一方波没有包含毛刺波形，保存所述第一方波，执行 S8；此时，将具体根据在所述第一方波中基于所述自适应阈值判断是否包含毛刺波形的判断结果来确定选择哪一个分支执行。

[0191] 第二种方案为：如果所述第一方波包含毛刺波形，对所述第一方波进行毛刺波形去除处理，得到第二方波，保存所述第二方波，执行 S8；而对于当判断结果为没有包含毛刺波形时涉及到的后续操作可以取消不执行，或者暂停执行等等，在此不作限制。

[0192] 第三种方案为：如果所述第一方波没有包含毛刺波形，保存所述第一方波，执行 S8；而对于当判断结果为包含毛刺波形时涉及到的后续操作可以取消不执行，或者暂停执行等等，在此不作限制。

[0193] S7-2：如果所述第二方波包含毛刺波形，对所述第二方波进行毛刺波形去除处理，得到第三方波，保存所述第三方波，执行 S8；和 / 或，如果所述第二方波没有包含毛刺波形，保存所述第二方波，执行 S8；

[0194] 需要说明的是，上述步骤 S7-2 中的“和 / 或”可以包括三种可选的实现方案，实际应用时，可以根据需求的不同进行选择；

[0195] 第一种方案为：如果所述第二方波包含毛刺波形，对所述第二方波进行毛刺波形去除处理，得到第三方波，保存所述第三方波，执行 S8；和，如果所述第二方波没有包含毛刺波形，保存所述第二方波，执行 S8；此时，将具体根据在所述第二方波中基于所述自适应阈值判断是否包含毛刺波形的判断结果来确定选择哪一个分支执行。

[0196] 第二种方案为：如果所述第二方波包含毛刺波形，对所述第二方波进行毛刺波形去除处理，得到第三方波，保存所述第三方波，执行 S8；而对于当判断结果为没有包含毛刺波形时涉及到的后续操作可以取消不执行，或者暂停执行等等，在此不作限制。

[0197] 第三种方案为：如果所述第二方波没有包含毛刺波形，保存所述第二方波，执行 S8；而对于当判断结果为包含毛刺波形时涉及到的后续操作可以取消不执行，或者暂停执行等等，在此不作限制。

[0198] S8：判断保存的所有方波中是否包含同尾数据，

[0199] S9-1：如果保存的所有方波中包含同尾数据时，对保存的所有方波进行解码。

[0200] 其中，所述的方法，在所述步骤 S8 之后，还包括：

[0201] S9-2：如果保存的所有方波中没有包含同尾数据时，继续获取下一组待处理的方波，在所述下一组待处理的方波中基于所述自适应阈值判断是否包含毛刺波形，

[0202] 如果所述下一组待处理的方波中包含毛刺波形，对所述下一组待处理的方波进行毛刺波形去除处理，并保存进行毛刺波形去除处理后得到的波形，执行 S8；

[0203] 如果所述下一组待处理的方波中不包含毛刺波形，保存所述下一组待处理的方波，执行 S8。
本实施例中，通过将音频接口接收到的正弦波处理为方波，并基于预设阈值或者自适应阈值对方波中的毛刺波形进行检测，在检测到存在毛刺波形时，该毛刺波形即为失真波形，对方波进行毛刺波形去除处理，并对进行毛刺波形去除处理后得到的方波进行数据解码。也就是说，当方波中存在毛刺波形时，对毛刺波形进行去除，以消除波形失真带来的误差，并对进行毛刺波形去除处理后得到的方波进行数据解码，从而可以降低波形失真造成的智能密钥设备进行数据解码的错误率，提高智能密钥设备对数据解码的准确性和成功率。

实施例 1 和实施例 2 的区别在于：实施例 1 在实现流程上是先进行数据解码后判断同步尾数据，实施例 2 在实现流程上是先判断同步尾数据后进行数据解码。

需要说明的是，实施例 1 和实施例 2 中在实现检测同步头数据、根据同步头数据计算自适应阈值、基于预设阈值或者自适应阈值判断是否包含毛刺波形、对方波进行毛刺波形去除处理、检测同步尾数据等等各步骤的具体实现相同，实施例 2 中没有对上述各步骤进行进一步限定解释，可以参见实施例 1 相应步骤的限定解释，在此不再赘述。

本实施例 1 和实施例 2 中可以应用于支持音频接口的智能密钥设备，该智能密钥设备可以包括：音码 KEY、USBKEY、电子签名工具、集成 USBKEY 和电子令牌的智能密钥设备等等。

另外，本实施例中支持音频接口的智能密钥设备，除了可以支持音频接口外，还可以支持 USB、蓝牙、红外、wifi 等其他通信接口。

流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为，表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分，并且本发明的优选实施方式的范围包括另外的实现，其中可以不按所示出或讨论的顺序，包括根据所涉及的功能按基本同时的方式或按相反的顺序，来执行功能，这应被本发明的实施例所属技术领域的技术人员所理解。

应该理解，本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中，多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如，如果用硬件来实现，而被在另一实施方式中一样，可用本领域公知的下列技术中的任意一项或它们的组合来实现，具有用于对数据信号实现逻辑功能的逻辑电路的离散逻辑电路，具有合适的组合逻辑电路的专用集成电路，可编程门阵列 (FPGA) 等。

本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过供应指令或相关的硬件完成，所述的程序可以存储于一种计算机可读存储介质中，该程序在执行时，包括方法实施例的步骤之一或其组合。

此外，在本发明各个实施例中的各功能单元可以集成在一个处理模块中，也可以是各个单一单独物理实体，也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以用硬件的形式实现，也可以用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时，也可以存储在一个计算机可读存储介质中。

上述提到的存储介质可以是只读存储器，磁盘或光盘等。

在本说明书的描述中，参考术语“一个实施例”、“一些实施例”、“示例”、“具体示
例”，或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中，对上述术语的示意性表述不一定指的是相同的实施例或示例。而且，描述的具体特征、结构、材料或者特点可以在任何一个或多个实施例或示例中以合适的方式结合。

[0215] 尽管上面已经示出和描述了本发明的实施例，可以理解的是，上述实施例是示例性的，不能理解为对本发明的限制，本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。本发明的范围由所附权利要求及其等同限定。
图 2
通过音频接口接收正弦波，将所述正弦波处理为方波，所述方波携带带有待解码数据，将所有携带带有待解码数据的方波拼接为第一方波

判断所述第一方波是否包含预设个数的连续且周期相同的波形

是

确定所述第一方波携带带有同步头数据

否

判断所述第一方波中基于预设阈值判断是否包含毛刺波形

是

对所述第一方波进行毛刺波形去除处理，得到第二方波

否

确定所述第一方波没有携带带有同步头数据

判断所述第二方波是否包含预设个数的连续且周期相同的波形

是

确定所述第二方波携带带有同步头数据

否

根据所述同步头数据计算得到自适应阈值

根据所述同步头数据计算得到自适应阈值

在所述第一方波中基于所述自适应阈值判断是否包含毛刺波形

是

在所述第二方波中基于所述自适应阈值判断是否包含毛刺波形

否

如果所述第一方波包含毛刺波形，对所述第一方波进行毛刺波形去除处理，得到第三方波，保存所述第一方波

否

如果所述第二方波包含毛刺波形，对所述第二方波进行毛刺波形去除处理，得到第四方波，保存所述第二方波

S9-1

对保存的所有方波进行解码

S9-2

判断保存的所有方波中是否包含同步尾数据

继续获取下一组待处理的方波

在所述下一组待处理的方波中基于所述自适应阈值判断是否包含毛刺波形

否

保存所述下一组待处理的方波

是

对所述下一组待处理的方波进行毛刺波形去除处理，并保存进行毛刺波形去除处理后得到的波形

图 3