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(57) Abstract

A distributed-shared cache operates at the level of a second-level memory cache, at the third level of the memory system, and at
the purely software-managed page cache level. On a cache miss that is local to a processor, an attempt is made to locate the data in a
cache memory block on a peer memory level, before explicitly requesting the data from more distant memory. Communication support is
integrated into the memory system to piggyback communication performance improvements on improvements to the memory system. In
particular, the cache lines can operate in a message mode to deliver message data to interested receivers to support networking and devices.
Embodiments of the invention works across all memory levels with only modest changes in detail.
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DISTRIBUTED SHARED-CACHE FOR MULTI-PROCESSORS

Background of the Invention
Multiple-memory hierarchy levels have been used in cache-based shared

memory multiprocessors to provide statistically fast memory access at a cost far
below requiring all memory to be fast memory. Using the current generation of
microprocessors, there is a private on-chip cache per processor that absorbs a large
percent of the processor memory references. A second level or broad-level cache is
provided to handle first-level cache misses quickly, compared to accessing the
referenced data in main memory. In some current generation multiprocessors, the
second-level cache interfaces to a memory bus, which provides access to memory as
well as carrying consistency actions between the second-level caches.

Shared caching has been proposed as a means of reducing the per-processor
cost of cache hardware, reducing the cost of interprocessor data sharing, and
reducing the miss rate when the shared-cache is large enough. For example, shared
second-level caches have been implemented in multiprocessors. In effect, current
multiprocessors may treat main memory as a shared-cache, but use private second-
level caches.

Communication facilities are a performance-critical aspect of operating
systems and supporting hardware platforms, influencing the modularity with which
sophisticated applications can be constructed. Passing messages between programs
using shared memory is a technique for efficient communication that takes advantage
of memory system performance.

Memory-based messaging uses a shared memory communication area
between processes by creating a shared segment to act as a communication channel.
Source and destination processes bind the shared segment into their respective
address spaces, messages are written to the shared segment and, after notification at

the destination(s), messages are read from the shaved segment.
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Summary of the Invention
Shared-caching has a number of significant advantages. The per-processor

cost of hardware is reduced, the cost of data sharing between processors is reduced,
and the cost of cache misses to the next lower (and slower) level of the memory
hierarchy (i.e., away from the processor) is amortized over multiple processors if
there is significant sharing taking place in the multiprocessors. However, shared-
caching also introduces several concerns. »

There are three major concerns involving shared-caching. First, shared-
caching can result in replacement interference between processors sharing the same
cache. That is, if one processor accesses a large amount of data, data required by a
second processor may have to be removed from the cache to make space for the data
of the first processor. Second, shared-caching with a shared-cache controller can
result in increased queuing time for a cache access because of competing requests to
the cache controller. Finally, the communication and arbitration cost of accessing a
cache through a shared bus or channel to a shared-cache controller can introduce
extra overhead. As a specific example at the hardware level, the Rambus™
memory interface from Rambus, Inc. provides very high data rates, but severely
limits the interconnection distance from a processor to memory to roughly four
inches. It is not feasible to make a sizeable second cache from this technology and
have the cache connect directly to multiple processors within the Rambus™ wire
length constraint.

A preferred embodiment of the invention is a shared-cache multiprocessor
system in which a shared-cache is partitioned or distributed among several cache
controllers. The partitioning of the cache memory limits the replacement
interference that can occur in the system. Multiple cooperating cache controllers
reduce the probability of one processor waiting for another processor at a cache

controller. The partitioning tightly couples processors to at least one portion of the

- cache. In particular, distributed shared-caching is implemented at the second-level

in a memory hierarchy, assuming a sufficiently large first-level private cache for

each processor.

Y3
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A preferred embodiment of the invention attempts to locate desired data at a
peer level from closely-coupled peer caches before, and preferably instead of, going
to the next level down (i.e., toward main memory) in the memory hierarchy. The
mechanisms for doing this peer access changes between the different levels of the
memory hierarchy. In a preferred embodiment of the invention, a hierarchical
memory structure is provided both for memory (or cache) and interconnect. A
preferred structure allows for heterogeneous (or different) forms of interconnect
(i.e., bus, backplane network, and fiber optics) at different levels.

A preferred embodiment of the invention is a distributed shared cache
memory. A common level of cache memory is distributed into cache memory areas.
Each cache memory area is locally coupled to a respective data accessor, such as a
data processor that accesses memory. A shared cache interconnect couples cache
memory areas together to form a cache memory cluster. In particular, there are
four cache memory areas per cache memory cluster and the interconnect is a shared
bus or an interconnection network.

In each cache memory cluster, each cache memory area is remotely coupled
to the locally-coupled data accessor of £zch other cache memory area. Local cache
controllers are coupled between each daia accessor and the locally-coupled cache
memory area. Each local cache controller requests, on behalf of the data accessor,
a cache line from the locally-coupled cache memory area. A cache miss may be
returned from the locally-coupled cache memory area. Upon a cache miss from the
locally-coupled cache memory area, the cache line is reqﬁested from the
remotely-coupled cache memory areas.

A cache miss may also be returned from each of the remotely-coupled cache
memory areas, in which case the cache line is requested from more distant memory.
The more distant memory éan be a lower-level memory or a peer level cache
memory area in another cache memory cluster. Once the request is satisfied, the
cache line is provided to the requesting data accessor. The ownership of the cache
line is not invalidated or changed in the memory area holding the data relative to

memory more distant from the data accessor than the holding memory.
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A private cache can be coupled between each data accessor and the respective
cache memory cluster. Each private cache memory area provides a private memory
level relative to the respective data accessor. Furthermore, an interface is coupled
to the shared cache interconnect for interconnecting each cache memory cluster to a
respective main memory area. The main memory area attempts to satisfy cache
misses that occur in each cache memory cluster. |

In a preferred embodiment of the invention, the interface between the first-
level and the second-level of the memory hierarchy provides a combination of
private caching and shared caching behavior for second-level cache organization that
meshes well with the directions of multiprocessor design and the possibilities of
using Dynamic Random Access Memory (DRAM) in place of Static Random Access
Memory (SRAM) as the second-level cache, thereby reducing the cost of computing
systems.

In a preferred embodiment of the invention, the third-level of the memory
hierarchy focuses on main memory and uses a cache directory that allows replication
of cache block units at the third level. In particular, a preferred embodiment of the
invention interconnects a small number of third-level memory areas with directories
and caches. Thus, it is feasible to contact each of the other third-level modules in
an interconnected cluster when there is a miss in the local third-level directory. A
preferred embodiment of the invention at the third-level exploits a directory cache to
allow the total physical address space to exceed the actual memory space.

There are preferably a plurality of main memory areas. Each main memory
area is coupled to at least one other main memory area to form a group of main
memory areas. The main memory areas can be coupled by a fiber optic coupling
system or by a shared bus.

In a preferred embodiment of the invention, a fourth-level mechanism uses
cache information to attempt to locate data at the peer level. A preferred

mechanism provides dissemination of information about which nodes hold which

pages.
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A preferred embodiment of the invention is an integrated circuit for a
multiple-level hierarchical memory computing system. The integrated circuit is
adapted to a distributed shared cache. A data accessor requires memory references,
typically due to execution of software instructions in a data processor from memory.
A first cache memory provides a private memory level relative to the data accessor
for storing a copy of frequently referenced memory. A first cache controller has an
input bus and an output bus and interfaces the data accessor to the first cache
memory, and a second cache controlier is coupled to the input and output bus. The
second cache controller is cooperatively shared with at least one remote data
accessor and controls access to a local second cache memory and reciuests memory
references from remote second cache memories and lower level memory. A remote
data accessor can satisfy a memory reference from the local second cache memory.

Typical computer system architecture focus more on optimizing the memory
system than the communication facilities. In a preferred embodiment of the
invention, communication support is integrated into the memory system, both at the
operating system and hardware level, effectively. piggybacking communication

performance improvements on the improvement of the memory system by

* pptimizing the basic memory-based messaging model. Ina particular preferred

embodiment, the cache line contains a message mode for delivering message data
between data accessors.

In a preferred embodiment of the invention, an external data accessor can be
coupled to the cache memory cluster such that the external data accessor can access
the cache memory.areas. Each cache memory area in the cache memory cluster is
remotely coupled to the external data accessor. The external data accessor can
include a device controller operating as a peer with the local cache controllers. The
device controller can be a disk controller, a network interface, or a controller for

other computer peripherals.
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Brief Description of the Drawings

The above and other features of the invention, including various novel details
of construction and combination of parts, will now be more particularly described
with reference to the accompanying drawings and pointed out in the claims. It will
be understood that the particular distributed shared-cache for multi-processors
embodying the invention is shown by way of illustration only and not as a limitation
of the invention. The principles and features of this invention may be employed in
varied and numerous embodiments, without departing from the scope of the
invention.

FIG. 1 is a block diagram of a distributed shared second-level cache memory
according to a preferred embodiment of the invention.

FIG. 2A is a flowchart illustrating the processing steps for a cache reference
in the first-level cache 14 of FIG. 1.

FIG. 2B is a flowchart illustrating the processing steps for an invalidation
from the second-level cache 18 in the first-level cache 14 of FIG. 1.

FIG. 2C is a flowchart illustrating the processing step for a downgrade
operation from the second-level cache 18 in the first-level cache 14 of FIG. 1.

FIG. 3A is a flowchart illustrating the processing steps for a cache reference
from a first-level cache 14 in a second level cache 18 of FIG. 1.

FIG. 3B is a flowchart illustrating the processing steps for an invalidation
from memory in the second-level cache 18 of FIG. 1.

FIG. 3C is a flowchart illustrating the processing steps for a downgrade
operation from memory in the second-level cache 18 of FIG. 1.

FIG. 4 is a high-level block diagram of a preferred embodiment of a
processor chip 10 of FIG. 1.

FIG. 5 is a block diagram of a distributed shared third-level cache memory
according to a preferred embodiment of the invention.

FIG. 6 is a block diagram of a bus-based distributed shared third-level cache

memory according to a preferred embodiment of the invention.
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FIG. 7 is a block diagram of a distributed shared page cache memory
according to a preferred embodiment of the invention.
FIG. 8 is a block diagram of a multiprocessor module interfaced to an
external device controller according to a preferred embodiment of the invention.
FIG. 9 is a block diagram illustrating address-valued signaling for message
notification.
FIGs. 10A-10B are block diagrams illustrating the benefits of a single

message delivery transaction.

Detailed Description of Preferred

Embodiments of the Invention

Distributed shared-caching, according to preferred embodiments of the
invention, is a general technique for building shared-caching systems. A preferred
distributed shared-cache system achieves the benefits of shared-caches while
minimizing some of the disadvantages associated with a shared central cache
controller or manager. In preferred embodiments of the invention, a distributed
shared-cache can be implemented at a second-level (2L) memory cache, at a third-
level (3L) of the memory system, and at a purely software-managed page cache
level. A preferred embodiment of a distributed shared-cache accommodates each of
these levels well, with different approaches to locating data and maintaining
consistency.

In general, distributed shared-caching limits replacement interference between
processors sharing the same cache, reduces contention for shared-cache access, and
reduces the cache access time for access to local portions of the cache. At the same
time, distributed shared-caching retains the established benefits of shared-caches
previously achieved with a shared central cache controller.

In general, distributed shared-caching maximizes the benefit of fast caches at

.various levels in the memory hierarchy, and minimizes the demands placed on the

comparatively slower next level on the memory system. A preferred embodiment of
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the invention functions across all memory levels with only modest changes in

details.

Second-Level Distributed Shared-Caching

Distributed shared-caching can be implemented at the second-level m a
memory hierarchy, assuming a sufficiently large first-level private cache for each
processor. The following description of a preferred embodiment of a second-level
distributed shared-cache mechanism illustrates a non-limiting example of a second-
level distributed shared-caching system using current technology.

FIG. 1 is a block diagram of a distributed shared second-level cache memory
according to a preferred embodiment of the invention. As illustrated, four
processors 12a,...,12d implement and share a second-level cache 18 as part of a
single multiprocessor module 1. The processors 12 are specific examples of data
accessors, which access memory but do not necessarily process the data. The
second-level cache 18 contains second-level cache controllers 180 and respective
second-level cache memory 188.

Each microprocessor chip 10 contains a processor 12, a private first-level
cache 14, and a local second-level cache controller 180. The processor 12 is
coupled to the respective private first-level cache 14 by a private first-level cache
bus 1214. The private first-level cache 14 is coupled to the local second-level cache
18 by a local second-level cache bus 1418. Each microprocessor 10 also includes
two ports 17, 19. A shared bus port 17 connects the local second-level cache
controller 180 to a shared second-level cache bus 5. A cache memory port 19
connects the local second-level cache controller 180 to a respective second-level
cache memory 188.

A preferred embodiment of the invention utilizes a fast but narrow memory
interconnection technology, so the two ports 17, 19 can be fast and independent, yet
fit within reasonable chip pin limitations. One such memory interconnection ,
technoldgy is that of Rambus™. It being understood that other suitable memory

interconnection technologies can be used in place of Rambus™.
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The first-level cache 14 includes two bits per cache entry that identify a
processor 12 associated with each cache line, in addition to the normal valid,
writable, modified cache tags. Each second-level cache controller 180 manages the
respective directly attached second-level cache memory 188 as a two-way set-
associative cache memory. The degree of associativity can be an implementation
decision, potentially ranging from direct-mapped to higher degrees of associativity.
The cache tag memory, stored as part of the second-level cache memory 188,
includes standard second-level cache tags.

When a processor 12a experiences a first-level cache miss, the respective
local second-level cache controller 180a checks local second-level cache tags for the
presence of the desired cache line. If the desired cache line is present, the cache
line is delivered to the first-level cache 14a immediately across the local second-
level cache bus 1418a from the respective second-level cache memory 188a. The
two processor bits for this first-level entry are then set to indicate this requesting
processor 12a. FIGs. 2A-2C illustrate the main processing functions of the first-
level cache 14.

FIG. 2A is a flowchart illustrating the processing steps for a cache reference
in a first-level cache 14a of FIG. 1. The first-level cache 14a receives an address
for a cache reference from the respective private processor 12a. At step 1102, the
first-level cache 14a uses index bits in the address from the processor 12a as an
address to access the first-level cache 14a. Control then flows to step 1104, where
the tag bits of the first-level cache line are checked to determine whether the tag bits
are equal to the tag part of the address, and whether the first-level cache line is
valid. If both conditions are satisfied, control flows to step 1106. If both conditions
are not satisfied, control flows to step 1108. |

Step 1106 determines whether the cache reference is a write operation to the
cache. If the cache reference is a write operation, control flows to step 1110. If the
cache refersrice is not a write operation, control flows to step 1116. At step 1116,
the first-level cache 14a has a read hit. The required cache line is returned to the

processor 12a.
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Step 1110 determines whether the first-level cache 14a has write permission.
If there is write permission, control flows to step 1118, indicating a write hit. At
step 1118, the wovrd is modified and the state of the cache line is updated by setting
a "dirty" bit. If there is no write permission, control flows to step 1120. At step
1120, the first-level cache 14a transmits a read and Block-Move-In-Private (BMIP)
signal and the address to the local second-level cache 18a over the local second-level
cache bus 1418a. Control then flows to step 1122, where the first-level cache 14a
waits for an assert-ownership signal from the second-level cache 18a over the local
second-level cache bus 1418a. Upon receiving the assert-ownership signal, control
flows to step 1128. At step 1128, the first-level cache 14a obtains the word from
the second-level cache 18a over the local second-level cache bus 1418a and modifies
the word. The state of the first-level cache line is updated to write permission and
"dirty." The cache line is then returned to the processor 12a.

If there is no tag match at step 1104, then a check is performed at step 1108
to determine whether there is an empty line (i.e., a cache line that is not valid). If
there is an empty line, control flows to step 1112. At step 1112, the empty line is
selected as a victim in which to load the required cache line from the second-level
cache 18a. Control then flows to step 1130. If there is not an empty line, control
flows from step 1108 to step 1114.

At step 1114, a victim cache line is chosen. Preferably a Least Recently
Used (LRU) algorithm is used to select the victim cache line. After the victim
cache line is chosen, control flows to step 1124. At step 1124, a check is made to
determine whether the victim line is "dirty." If the victim line is "dirty," control
flows to step 1126. At step 1126, the "dirty" victim line is written back to the
second-level cache 18a over the local second-level cache bus 1418a and control
flows to step 1130. If the victim cache line is not "dirty," control flows from step
1124 to step 1130.

At step 1130, a read signal and address is transmitted to the second-level

cache 18a over the local second-level cache bus 1418a. Control then flows to step

.1132, where the first-level cache 14a waits for a response from the second-level
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cache 18a. After a response is received, control flows to step 1134 where the first-
level cache 14a updates the cache line, and returns the cache line to the requesting
processor 12a, over the private first-level cache bus 1214a, if the operation is a read
operation, or modifies the word if the operation is a write operation.

FIG. 2B is a flowchart illustrating processing steps for an invalidation
operation from a second-level cache 18a in the first-level cache 14a of FIG. 1. The
first-level cache 14a receives an address over the local second-level cache bus 1418a
from the second-level cache 18a. At step 1202, index bits are used as an address to
access the first-level cache 14a. Control flows to step 1204, where tag bits of the
first-level cache line are checked to determine whether the tag bits are equal to the
tag part of the address and whether the first-level cache line is valid. If the check is
false, control flows to step 1212. If the check is true, control flows to step 1206.

At step 1206, a check is performed to determine whether this first-level
cache line is "dirty." If the cache line is "dirty," control flows to step 1208, where
the "dirty" line is written back to the second-level cache 18a (step 1208) and control
flows to step 1210. If the cache line is not "dirty," control flows to step 1210.

At step 1210, the state of the first-level cache 14a is changed to invalid by
clearing the valid bit. Control flows to step 1212.

At step 1212, an acknowledgement signal is transmitted to the second-level
cache 18a over the local second-level cache bus 1418a. The acknowledgement
signal indicates that the invalidation operation has completed.

FIG. 2C is a flowchart illustrating the processing steps for a downgrade
operation in a first-level cache 14a of FIG. 1. A downgrade operation changes the
first-level cache 14a to shared mode. An address is received from the second-level
cache 18a over the local second-level cache bus 1418a. At step 1302, index bits are
used as an address to access the first-level cache 14a. Control flows to step 1304,
where a check is performed to determine whether tag bits of the first-level cache
line are equal to the tag part of the address and whether the first-level cache line is
valid. If the check is false, control flows to step 1312. If the check is true, control
flows to step 1306. |
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At step 1306, a check is performed to determine whether this first-level
cache line is "dirty." If the cache line is "dirty," processing flows to step 1308,
where the "dirty" line is written back to the second-level cache 18a over the local
second-level cache bus 1418a and the "dirty" bit is cleared. After step 1308, or if
the cache line is not "dirty," control flows to step 1310. At step 1310, the state of
the first-level cache 14a is changed to shared mode by clearing a write permission
bit. Control then flows to step 1312.

At step 1312, an acknowledgement signal is transmitted back to the second-
level cache 18a over the local second-level cache bus 1418a. The acknowledgement
signal indicates that the downgrade operation has completed.

If the desired cache line is not present locally, the local second-level cache
controller 180a broadcasts a request for the cache line on the shared second-level
cache bus 5. Each other (i.e., remote) second-level cache controller 180b, 180c,
180d attached to the shared second-level cache bus 5, as well as a third-level
interface bus controller 30, receives the broadcast request.

If the cache line is present in one of the remote caches 186, the remote
second-level cache controller 180b controlling that cache line responds with the
requested cache line. The remote second-level cache controller 180b records in a
directory entry for this cache line the processor 12a holding this cache line. In
particular, a preferred embodiment of the invention follows the directory scheme
used in the ParaDiGM multicomputer architecture, as described by D.R. Cheriton et
al. in "Paradigm: A Highly Scalable Shared-Memory Mﬁlticomputer Architecture,"
IEEE Computer, 24(2) (Feb. 1991). In that scheme, there are N bits in each

directory entry, each bit corresponding to a respective processor. The requesting

first-level cache 14a also records the responding (i.e., remote) second-level cache
18b so the requesting first-level cache 14a can write-back the cache line to the
correct remote processor 12b and remote second-level cache controlier 180b
combination, if necessary. The response f;om the remote second-level cache

controller 180b also disables the request at the third-level interface bus controlier 30.
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If a remote second-level cach: controller 180b does not resnond to a request
that was broadcast over the shared sccond-level cache bus 5, the ::.:xd-level interface
bus controller 30 obtains the requested data from more distant memory by re-
requesting the request over a third-level shared-cache bus (not shown). In this case,
the cache line is loaded into the local second-level cache memory 188a managed by
the requesting processor 12a. That is, a new second-level cache data block is loaded
into the portion of local second-level cache memory 188a associated with the
requesting processor 12a. If necessary, each processor 12 has at least one cache line
of write buffer so the data in the cache line chosen for write-back can be stored in
the write buffer pending write-back, making space for new cache line data. The act
of replacing a cache line can also involve forcing a write-back of this cache line
from the first-level cache 14b of a remote processor 12b.

Each second-level cache controller 180 can respond to an external second-
level cache request concurrently with the respective processor 12 executing out of
the respective private first-level cache 14, as long as the processor 12 does not
access the local se:ond-level cache controller 180 at the same time. If a processor
12 does access the respective second-level cache controller 180 concurrently with an
external second-level cache request, the second requestor accessing the second-level
cache controller 180 is forced to wait until the first request is completed. In a
préferred embodiment of the invention, arbitration logic is used to rank the
requesters. In a preferred embodiment of the invention, a private first-level cache
controller 140a can broadcast a request to remote second-level cache controllers
180b, 180c, 180d at the same time as the local second-level cache controller 180a is
handling an external second-level cache request.

The shared second-level cache memory 188 is thus partitioned among the
four portions 188a,...,188d (as illustrated in FIG. 1) managed by each respective
processor 12a,...,12d. Because a first-level cache miss in any one of processors 12
is satisfied if the data is stored in any one of the memory porticns 188a,...,183d, the
overall effect is that of a single shared cache. The effective single shared-cache.

does have a slightly higher penalty for accessing another processor’s second-level
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memory portion 188b, 188c, 188d than the local portion of the second-level cache
188a. At this level, data is not stored multiple times between the portions of the
second-icvel cache memory 188a...,188d, which furthers the benefits as a shared-
cache. FIGs. 3A-3C illustrate the main processing functions of the second-level
cache 18.

FIG. 3A is a flowchart illustrating the prdcessing steps in a second-level
cache 18a for a cache reference from a first-level cache 14a of FIG. 1. The second-
level cache 18a receives an address for a cache reference over the local second-level
cache bus 1418a. At step 2102, the second-level cache 18a uses index bits in the
address as an address to access the cache 18a. |

Steps 2104, 2108, 2114 determine whether the tag bits of the second-level
cache line are equal to the tag part of the address and whether the second-level
cache line is valid. Step 2104 checks the local second-level cache 18a. If there was
no local tag match, control flows to step 2108. At step 2108, a request signal and
address are sent to other (i.e., remote) second-level caches 18b, 18c, 18d over the
shared second-level cache bus 5. Control then flows to step 2114. Step 2114
determines whether there is a remote tag match. If both tag match conditions are
satisfied, control flows to step 2106. If both tag match conditions are not satisfied,
control flows to step 2120.

Step 2106 determines whether the cache reference is a write operation to
cache from the processor 12a. If the cache reference is a write operation, control
flows to step 2110. If the cache reference is not a write operation, control flows to
step 2112.

Step 2112 determines whether the requesting first-level cache 14a is the
owner of this second-level cache 18. If the owner is the requesting first-level cache
14a, control flows to step 2130. If the requesting first-level cache 14a is not the
owner, control flows to step 2118.

Step 2118 determines whether the second-level cache 18 is in private mode.
If the second-level cache 18 is not in private mode, control flows to step 2130. If

the second-level cache 18 is in private mode, control flows to step 2128. At step
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2128, a downgrade signal is transmitted over the shared second-level cache bus 5 to
first-level caches 14 that are current owners of this second-level cache line, except
the requesting firét-level cache 14a. Control then flows to step 2130.

If the cache reference is a write operation, step 2110 determines whether the
second-level cache line has the exclusive copy of the memory line. If the copy is
not the exclusive cluster copy, control flows to step 2120. If this is the exclusive
cluster copy, control flows to step 2116.

Step 2116 determines whether the second-level cache line is in private mode.
If the second-level cache line is not in private mode, control flows to step 2126. If
the second-level cache line is in private mode, control flows to step 2122. Step
2122 determines whether the requesting first-level cache 14a is the owner of this
second-level cache line. If the requesting first-level cache 14a is the owner, control
flows to step 2130. If the requesting first-level cache 14a is not the owner, control
flows to step 2126. At step 2126, an invalidation signal is transmitted over the
shared second-level cache bus 5 to first-level caches 14 that are current owners of
the second-level cache line, except the requesting first-level cache 14a. After step
2126, control flows to step 2130.

At step 2120, a request signal and address are sent to memory. At step
2124, the second-level cache 18 waits for memory to respond to the request signal
of step 2120. Upon receiving a response, control flows to step 2130.

At step 2130, the state of the second-level cache line is updated. The cache
line is returned to the requesting first-level cache 14a.

In a preferred embodiment as shown in FIG. 3A, a memory reference is
satisfied by searching the local second-level cache at step 2102, the remote
second-level caches (if necessary) at step 2108, and then more distant memory (if
necessary) at step 2120. The method as shown separates searches to the remote
second-level caches from searches to more distant memory. That approach is
narticularly appropriate where the second-level memory is capable of providing

memory references with a quicker time than the third-level memory. That approach

is also well-suited to memory systems where it may be difficult to cancel a memory
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request to more distant memory. In another preferred embodiment, which is further
described below, the requests to remote second-level caches and more distant
memory are done concurrently and the requests to more distant memory are
cancelled when a request to remote second-level caches succeeds.

FIG. 3B is a flowchart illustrating processing steps for an invalidation
operation from memory in a second-level cache 18 of FIG. 1. The second-level
cache 18 receives an address from memory over the shared second-level cache bus
1418. At step 2202, index bits are used as an address to access the second-level
cache 18. Control flows to step 2204, where tag bits of the second-level cache line
are checked to determine whether the tag bits are equal to the tag part of the address
and whether the second-level cache line is valid. If the check is false, control flows
to step 2216. If the check is true, control flows to step 2206.

At step 2206, an invalidation signal is sent to the first-level caches 14 that
are owners of this second-level cache line. Control flows to step 2208, where the
second-level cache 18 waits for a first-level cache response signal acknowledgement
over the shared second-level cache bus 5. After the acknowledgement is received,
control flows to step 2210.

Step 2210 determines whether this second-level cache line is "dirty." If this
second-level cache line is "dirty," control flows to step 2212. At step 2212, the
"dirty" line is written back to memory and control flows to step 2214. If the
second-level cache line is not "dirty," control flows to step 2214.

At step 2214, the state of the second-level cache 18 is changed and the valid
bit is cleared. Control then flows to step 2216.

At step 2216, an acknowledgement signal is sent back to memory to indicate
that the second-level cache 18 has finished the invalidation operation.

FIG. 3C is a flowchart illustrating the processing steps for a downgrade

operation in a second-level cache 18 of FIG. 1. A downgrade operation changes a

. second-level cache line to shared mode. An address is received from memory over

the shared second-level cache bus 5. At step 2302, index bits are used as an address

to access the second-level cache 18. Control flows to step 2304, where a check is
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performed to determine whether tag bits of the second-level cache line are equal to
the tag part of the address and whether the second-level cache line is valid. If the
check is false, control flows to step 2316. If the check is true, control flows to step |
2306.

At step 2306, a downgrade signal is sent to the first-level caches 14 that are
owners of this second-level cache line. Control then flows to step 2308, where the
second-level cache 18 waits for the first-level cache 14 to respond with a signal
acknowledgement. After the signal acknowledgment response is received, control
flows to step 2310.

Step 2310 checks whether the second-level cache line is "dirty." If the
second-level cache line is not "dirty," control flows to step 2314. If the second-
level cache line is "dirty," control flows to step 2312. At step 2312, the "dirty" line
is written back to memory and the "dirty" bit is cleared. Control then flows to step
2314.

At step 2314, the state of the second-level cache line is changed to shared
mode. In addition, the exclusive and private mode bits are cleared. Control then
flows to step 2316.

At step 2316, an acknowiedgement signal is sent back to memory to indicate
the completion of the downgrade operation.

FIG. 4 is a high-level block diagram of a preferred embodiment of a
processor chip 10, focusing on the second-level cache controlier 180. The processor
core 12 is connected to a private first-level cache controller 140 by a processor bus
1214. The private first-level cache controller 140 is connected to the private first-
level cache memory 148 by a first-level cache memory bus 1414. The private first-
level cache controller 140 is also connected to the local second-level cache controlier
180 by a local input bus 1418;y; and a local output bus 1418,y;r. The local second-
level cache controller 180 is also connected to the shared second-level cache bus 5
by the shared bus port 17 and the respective second-level cache memory 188 by the
cache memory port 19. The local second-lével cache controller 180 has a set of

input request slots 184 that hold requests to write data, read data, and invalidate data
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in the second-level cache memory 188. FIG. 4 illustrates five entries 184-1, 184-2,
184-3, 184-4, and 184-5 in the input request slots 184, with one request slot 184
assigned to each processor 12 and private first-level cache 14 pair and the associated
local second-level cache controller 180, and one for the third-level. These slots are
procegsed in round-robin order.

When the private first-level cache memory 148 has a Ihiss, a request is
queued for the local second-level cache controller 180. If the local second-level
cache controller 180 fails to locate the requested cache line, the local second-level
cache controller 180 transmits the request on the shared second-level cache bus 5,
possibly signals the private first-level cache controller 140 to wait, and continues
with the next request. Each remote second-level cache controller 180 receives the
request from the shared second-level cache bus 5, as does the third-level interface
bus controller 30. The first controller to respond positively cancels the
corresponding request at the other controllers. In general, the second-level cache
controllers 180 can respond much faster than the third-level interface bus controller
30 (unless there are no other second-level cache controllers 180).

When the local second-level cache controller 180 receives the cache line in
response to a cache line request, the local second-level cache controller 180 provides
the data to the private first-level cache controller 140 with an indication of the
storage site for the data. The storage site of the data is local to the microprocessor
10 (i.e., the respective second-level controller 180) or at one of the remote second-
level cache controllers 180. In particular, if the request was satisfied by the third-
level interface bus controller 30, the local second-level cache controller indicates
that the cache line is local and writes the cache line into the respective second-level
cache memory 188 (at least the tags) concurrently with providing the cache line to
the private first-level cache controller 140. The private first-level cache controller
140 then adds the cache line to the private first-level cache memory 148 and allows
the processor 12 to continue. Otherwise, the storage site is the second-level cache
controller 180 that responded to the first-level cache controller 140. A request for

exclusive ownership of the cache line is handled similarly.
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On write-back, the private first-level cache controller 140 writes the cache
line to either the local second-level cache controller 180 or over the shared second-
level cache bus 5 to a peer second-level cache controller 180. The choice between
writing back to the local second-level cache controller 180 or a peer second-level
cache controller 180 depends on the processor tag bits associated with the cache
line, which specify the storage site. '

The second-level cache controller 180 processes the request slots 184 in
round-robin order. A write request causes the data in the request to be written to
the respective second-level cache memory 188. The write to the respective second-
level cache memory 188 possibly updates second-level cache flags. A read request
causes the data to be returned to the requesting unit. The data is returned via the
shared bus port 17 if the requesting unit is off-chip, and otherwise via the first-level
local input bus 1418y to the first-level cache controlier 140. A read or invalidate
request may require that the second-level cache controller 180 invalidate, or force to
a non-exclusive state, cache lines in the local or remote private first-level cache
memory 148. Local invalidatior is handled by signaling the private first-level cache
controller 140 over the first-level local input bus 1418;y. Remote invalidation is
handled by sending request over the shared second-level cache bus 5.

When a controller generates a controller request, the request is acknowledged
by each second-level cache controller 180 that has a corresponding request slot 184
free at the time of the request, indicating the request is stored in the corresponding
request slot 184. Otherwise, the issuing controller is signaled to retry the operation.
If a second-level cache controller 180 is asked to retry a request, the second-level
cache controller 180 signals to the unit whose request is being acted on to retry the
request as well, thereby avoiding deadlock. A write request does not have to be
retried, so a first-level cache controller 140 can safely continue after having a write
request acknowledged as being stored in a request slot 184.

In a preferred embodiment of the invention, access to each second-level
cache controller 180 is shared by the local processor 12, the other second-level

cache controllers 180, and the third-level interface bus controller 30. A miss at the
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first level does not block the local second-level cache controller 180 longer than
handling a request to the respective local cache even if this miss has to be handled
by a remote second-level cache controller 180 or the third-level interface bus
controller 30.

With further advances in Very Large Scale Integration (VLSI) technology, it
is expected to be feasible to put multiple processors 12 on a single chip or to use
multi-chip modules. With these advances, a preferred embodiment of the invention
has the multiple processors on the same chip share the on-chip second-level cache
controller 180, assuming the number of processors remains at four or less. It is
expected that the demands on integrated circuit real estate for fast floating point,
first-level cache, and multiple pipeline units in support of superscalar execution will
preclude a larger number of processors per chip in the near future. It is also
anticipated that processors may have multiple levels of cache on the chip, but these
multiple levels are expected to be sized and used effectively as levels of first-level or
private cache, in the terminology used herein. With these advances in VLSI
technology, a preferred embodiment of the invention provides multiple second-level
cache controllers 180 on the microprocessor chip 10, with the shared second-level
cache bus 5 interconnecting the processors 12, which are also contained on the
microprocessor chip 10. In that embodiment, the number of processors 12 is
expected to be limited by the pin-out of the chip to connect to second-level cache
memory 188.

An advantage of the distributed structure is that the distributed structure
provides a very fast and simple connection of the microprocessor to the second-level
cache memory. In particular, a preferred embodiment of the invention is directed to
Rambus ™-like interconnection of the microprocessor to the second-level cache,
providing a very fast data access within a small area, with a relatively small pin
count. A higher first-level miss rate on data than on software instructions is
expected. A higher.degree of software sharing than data sharing is also expected.
Thus, most first-level misses should go to the local portion of the second-level cache

because the cache line placement policy preferably places private software and data
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locally. Also, access to shared software and data is expected to be less frequent.
Moreover, retrieving shared data from another portion of the second-level cache is
substantially faster than accessing the data from the third-level, because of
intrinsically longer access latency as well as potentially substantial queuing delay at
that level. More generally, the established advantages of shared-caches are retained
in distributed shared-caching.

Another advantage of a distributed structure is that distributed structures are
compatible with the industry trend to put a second-level cache controller on a

microprocessor chip. This trend is motivated by the desire to:

1. minimize board logic for adding a second-level cache;
2. facilitate fast second-level cache access; and
3. utilize available on-chip real estate.

Moreover, the approach of using a cache memory port 19 to interface to second-
level cache memory 188 and a shared bus port 17 to interconnect to the rest of the
system is attractive even for uniprocessor systems. The shared bus port 17
provides a route to the third-level and I/O, which is required even for uniprocessors.
In fact, providing a consistency protocol on the shared second-level port supports
cache invalidations and updates arising from I/O in a uniprocessor, further justifying
the functionality of preferred embodiments of the invention, independent of
multiprocessor requirements.

In addition, preferred embodiments of the invention provide a higher degree
of concurrency in the cache controller than is feasible with one shared-cache
controller. In particular, a processor is only blocked significantly if another
processor is accessing the same one (out of four) second-level cache controller 180
that the first processor is needing to access. Thus, the probability of two processors
interfering on a second-level cache load is lowered by a factor of four, with four

processors. A plurality of cooperating cache controllers allows the cache

-associativity to increase with increasing processors sharing the cache.

In contrast to a snooping cache, a cache fill in the first level does not

generate a copy of the data in the local second-level portion if the data is retrieved
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from another processor’s second-level portion, thereby better utilizing the cache
space. On write-back from the first level, the cache line is written back to the
owner of the cache line, which may be a portion of the second level cache belonging
to another processor. In addition, broadcasting is only used to locate a missing

5 second-level cache line among the other second-level peers on the same shared
second-level cache bus. Broadcast is not used on write-back, which is the most

difficult case to handle in snooping cache schemes.

Third-Level Distributed Shared Caching
In a preferred embodiment of the invention, third-level caching is the DRAM

10 memory pool that serves as backing storage and as a staging area for the second
level caches. In a preferred embodiment of the invention, a system has a substantial
amount of second-level cache in the range of about 8 megabytes or more per
processor cluster. The DRAM memory pool is typically in the hundreds of
megabytes.

15 FIG. 5 is a block diagram illustrating a third-level distributed shared-cache
memory system. Each third-level memory module 40 contains a third-level
directory cache 42, a memory controller 44 and a third-level memory area 46. The
directory cache 42 contains entries describing the cache lines present in the second-
level caches 18A,...,18M. The third-level directory entry contains various

20 consistency flags per physical address; similar to the second-level cache directory
entries, except that M identification bits refer to second-level or multiprocessor
modules 1, not individual processors 12. The third-level directory cache 42 holds
cache information about the state of cache lines from page descriptors. Each third-
level cache directory entry contains an address for the cache line at the third-level.

25 The memory controller 44 manages access to the cache directory 42 and the third-
level memory area 46. The third-level memory area 46 contains page descriptors,
data pages, and software-maintained physical-address-to-page-descriptor translation

tables. A page is the unit of mapping to virtual addresses, as in conventional virtual
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memory systems. There is a page descriptor for each page represented by at least
one cache line in an second-level cache.

In a preferred embodiment of the invention, the interconnection between a
second-level and the third-level is a fiber optic connection between the
multi;;rocessor modules 1A,...,1M and the third-level fnodules 40a...,40m.
Preferably, each third-level module 40 has a four or eight port connector, allowing
up to four and eight multiprocessor modules 1 and third-level modules 40,
respectively.

In another preferred embodiment, the interconnection is a shared bus between
third-level modules 40. The shared bus can also be used to interconnect the
multiprocessor modules 1A,...,1M to the third-level modules 40a,...,40m. In that
case, each multiprocessor module 1 is coupled to one third-level module 40,
although multiple multiprocessor modules 1 can share a single third-level module 40.
FIG. 6 is a block diagram of a third-level bus-based distributed shared-cache
memory system.

On a second-level cache miss going to the third-level, as previously
described, the third-level interface first checks with the third-level directory 42 to
see if the cache line is present in another second-level cache 18 in a different
cluster. If so, the request is directed to a processor cluster containing the cache
line, which returns the data to satisfy the cache miss. The neczzzary consistency
actions, such as transferring ownership, are performed at the sz:ze time. If the
third-level directory cache 42 indicates the data is in the third-level memory area 46,
the data is transferred from the third-level memory area 46, with cache tags in the
cache directory entry being updated accordingly.

If the requested cache line is not present in the third-level directory cache 42,
a software trap is taken by the processor 12 and a software look-up is performed
using the translation table, mapping the physical address to the page descriptor. If
the page descriptor is found, then the page descriptor describes the location of the
data in DRAM memory. This software translation table is global across the third-

level modules 40a,...,40m, even though FIGs. 5 and 6 illustrate separate portions of
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third-level memory 46 per third-level module 40. If the data is retrieved from
memory, the page descriptor is updated according to the consistency protocol. Also,
a cache line entry 'is created in the third-level directory cache 42 for this cache line,
possibly writing back an entry from this directory cache 42 to the associated page
descriptor to make room for this new entry. The processor 12 then restarts the
memory operation that caused the miss.

The look-up may determine that required data is in another of the third-level
modules 40 from that associated with the faulting multiprocessor module 1. In that
case, the third-level directory cache 42 in that third-level module 40 is loaded
accordingly.

If the data is not present at the third-level at all, software allocates memory
in the third-level module 40 associated with the faulting multiprocessor module 1
and transfers the data into this area of memory from a high-speed network
connection, and then performs the actions described above. Thus, the software
mimics the shared operation of the second level, where cache loads go to the portion
of the cache of the requesting unit. Because the transfer from the network to the
third level is done in software and it is advantageous to move this data immediately
into the highest portion of the requesting units memory hierarchy, the network
connection resides on the shared second-level cache bus 5. By placing the network
connection on the shared second-level cache bus 5, the processor 12 is allowed to
copy the data directly from the network interface to cache lines residing at the
second-level.

There is a special form of a software page descriptor, referred to as a
pageless page descriptor, which does not have a corresponding data page portion in
DRAM memory. The page pool can convert a page descriptor into a pageless page
descriptor and reclaim the associated data page area when the data of the page is
contained in the second-level cache area 20. A scavenger process, similar to that
used in conventional virtual memory systems, checks whether there have been any
recent accesses to the data page and, if not, reclaims the data page and updates the

directory cache 42 as appropriate. A processor may have to handle a write-back
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fault, which arises when a write-back occurs for a cache line having no third-level
location recorded in the third-level directory cache 42.

The third-level memory area 46 is directly addressable as a portion of the
physical address space. A reference to the third-level memory area 46 is detected at
the point of trap to a software process after a directory cache miss. A direct
mapping to the memory for the cache line then takes place. Otherwise, access to
this third-level memory area 46 is transparent to the processor 12 and handled in the
directory and consistency mechanism, the same as other portions of memory. Each
multiprocessor module 1 contains a local memory containing the software
instructions for third-level miss handling, so that a processor 12 never faults at the
third-level on software instructions to handle third-level faults. Alternatively,
software instructions to handle this miss handling can be provided in a memory
module at the third level.

The directory cache 42 allows most third-level misses to be handled fast, by
retrieving the data either from another processor cluster or from the third-level
memory area 46. By making the directory a cache, the cache directory 42 can
support a very large physical address space without actually having that amount of
physical memory. For example, a machine with less than a few hundred megabytes
of data can support a physical address space addressed by 64 bits. Providing a very
large physical or shared address space allows the operating system to maximize the
time between reuse of addresses. By maximizing the time between reuse of
addresses, these addresses are meaningful over a longer period of time and
confusion that can arise from reusing addresses quickly is minimized. Providing a
directory large enough to hold entries covering the entire 64-bit physical address
space would be expensive.

In addition, preferred embodiments of the invention efficiently allow software
control of the memory system at the cache line unit level. In particular, if a cache
line of a page is not present locally, the software gains control and can retrieve the

required cache line, even if the rest of the page is present locally.
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Furthermore, the software-managed page descriptor structure allows a more
sophisticated management approach than is feasible with a pure hardware solution.
In particular, a data page for every page descriptor is not required in preferred
embodiments of the invention. Data pages can be used more for a prefetching and
write-behind I/0 storage, rather than primarily duplicating the second-level cache
data entirely. Also, page descriptors can be used to refer to remote copies of the
page. In addition, the global page descriptor data structure is used to ensure that
there is only one copy of a page across all local third-level modules 40.

In another preferred embodiment of the invention, each third-level module 40
handles only one subset of the total processors in the node. For example, a
directory cache entry may allow for only eight multiprocessor modules 1, by
allowing eight M bits for multiprocessor module identification. However, the saving
in M bits is not regarded as a significant benefit as a percentage of third-level
directory cache entry size, and transferring ownership of cache lines between the
third-level appears complicated.

In an alternative embodiment of the invention, the third-level modules 40 are
divided based on an address range. While requiring no interaction between third-
level modules 40, this embodiment leads to very uneven loads between modules
depending on the distribution of the load on memory. This embodiment also
requires every third-level module 40 to contain the maximum number of M bits per
directory entry that any machine configuration would ever require.

In another preferred embodiment of the invention, ﬁhe third-level modules 40
are divided based on the low-order bits of the page numbers. For example, with
two third-level modules 40, the first module might handle all page addresses that are
less than 4 modulo 8 whereas the other module handles all that are greater than or
equal to 4 modulo 8. This embodiment distributes the load more evenly, but is
more complicated and still limits the number of multiprocessor modules 1 in a

configuration to the number of M bits in a third-level module 40.
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Page-Level Shared Cache System

FIG. 7 is a block diagram of a preferred distributed shared page cache
memory system. A page cache is memory managed by the virtual memory system,
largely in software but with some hardware assistance for address translation. Ina
preferred embodiment of the invention, the machine environment is a cluster of
nodes 110a,...,110k connected by a high-speed network 100. Each node has a
respective local DRAM memory module of several hundreds of megabytes or more.
Pages are retrieved from a shared distributed file system, which stores pages on disk
200 connected to the high-speed network 100.

Each node 110 maintains a page frame pool 116 similar to that in
conventional virtual memory systems. Each page is identified as a portion of a
segment. Preferably, the pages are identified as in the V+ + distributed system
virtual memory system. This identification is global and uniquely identifying across
the set of nodes sharing the file system. Each page frame pool 116 also maintains a -
list of pages resident at the other nodes in the network. Each such page is recorded
as a special form of a standard page descriptor, referred to as a remote page
descriptor. The page descriptors contain consistency information as required to
support the third-level operation previously described, as well as for internode
operation. The page descriptors are a natural extension of this level, and they are
similar to that used in various distributed shared memory implementations.

Each page frame pool manager periodically multicasts the list of resident
pages in the corresponding pool to the other nodes 110. On receiving such an
update, a node 110 updates the list of pages at the sending node. The update can
include specific mention of pages that have been discarded. In an alternative
preferred embodiment, the page frame pool manager discards remote page
descriptors after some time-out period without reconfirmation, or after requesting
the page from a node 110 and discovering that the requested page is no longer
present in that node.

Oﬁ page look-up, the local process either finds a local page descriptor, a

remote page descriptor, or no page descriptor. In the former case, the page data
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may be local and is satisfied immediately. However, because the cache line is the
unit of consistency, that portion may have to be accessed from a remote node, which
is described in a remote page descriptor 126. If a remote page descriptor 126 is
found, the process requests the data from the node 110 identified by the remote page
descriptor 126. Otherwise, the page is requested from an appropriate disk
subsystem 200 or file server 150, incurring the multi-millisecond cost of accessing
the disk subsystems 200.

It is possible that the remote node from which the page is requested in the
second case above has discarded the page. In that case, the remote node responds
negatively and the requesting node can remove the remote page descriptor 126 and
then retry the operation.

The file server or disk server can have some page buffering and advertise the
contents of associated caches. However, in a loaded system better performance can
be obtained by limiting traffic to the file server 150 primarily to request requiring
disk I/0. By so limiting the traffic, page requests that can be satisfied from other
nodes do not unnecessarily interfere with page requests that have to be handled by
the server 150.

A page requestor may request a page from the file server 150 even though
the page is present in another node’s page frame pool 116, because the presence of
that page has not been propagated from the remote node to the requesting node.
With a consistent file page caching protocol in place, it is necessary for the file
server 150 to forward the request to a node with exclusive ownership of the cache
line or the page. This type of redirect is feasible to handle in software and should
not represent a performance problem provided that the redirection does not occur
frequently.

A preferred embodiment of a page-level shared-cache system provides the
effect of having the totality of the page frame pools 116 forming a large shared-
cache, which is much larger than the memory available on each node. In general, a

page-level shared-cache system provides the advantages of the shared-cache among a
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set of network nodes, assuming that the network transfer time is substantially less
than the disk transfer time, including latency. -

An advantage of a preferred embodiment of a page-level shared-cache system
is that the system allows pages to be duplicated at different nodes. The system
recognizes that even the network latency is significant for repeated second-level
cache misses to the same page.

In a preferred embodiment of the invention, the page fault load is distributed
from the file servers to other nodes. This distribution is important with point-to-
point networks that appear to be a key aspect of future high-speed networking.
Rather than have all page requests congest the path from client nodes to server
nodes, some of the requests are routed to clients, making better use of network
resources and reducing congestion-induced delay. In a particular preferred
embodiment of the invention, the requesting node takes the location and route to the
node described by the remote page descriptor into consideration in selecting the node
from which to request when there are multiple nodes holding a page.

In addition, the dissemination of page frame pool 116 contents by best-efforts
multicast avoids extra network loading, processing overhead, and extra latency in
case of total miss of trying to apply the broadcast approach of the second-level cache
to locating a page. With point-to-point networking, transmitting a multicast request
to every node as a result of a page fault can be a significant load during phases of
significant page faulting. Because the page frame pool 116 is handled in software,
each node incurs the cost of processing such a request. Moreover, because a page
can be duplicated at several nodes, a multicast request can result in duplicate
responses. In the case of a node requesting a page not present in any page frame
pool 116, the request must time-out before directing a request to the file server.
Because time-outs with network and software processes have to be large to avoid
unnecessary re-transmission, such a time-out adds significant delay to a page fault

that requires going to disk.
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A preferred embodiment of a page-level shared-cache system also fits with

the provision of extra page descriptors that have no corresponding data page, as

introduced above with the third-level caching support.

Memory-based Messaging to Support
Networking and Devices

Parallel applications that use shared memory can benefit from
high-performance communication. For example, if a program is structured such that
processes allocate work from a shared work queue, it is more efficient in memory
traffic for the processors to communicate by messages with a processor running this
allocator than trapping the code and data associated with the allocator into its cache
and then executing the allocator itself, assuming that this processor is unlikely to
have been the last to execute this allocator. That is, function shipping is
intrinsically more efficient than data shipping in this case. Fast communication
allows an application to effectively optimize for these situations rather than incur the
delay and memory overload of conventional shared memory techniques.

Large-scale memory systems can reduce communication performance because
the cost of copying data in these machines increases, due to generally poor cache
behavior of copying and the increasing ratio of processor speed to average memory
access. Furthermore, maintaining shared-memory consistency semantics in
large-scale memory systems is increasingly costly due to increased memory latency.
The cost of remapping data in multiprocessor systems also appears to be
significantly greater than in uniprocessors because of the need to update or invalidate
the TLBs, or page tables, in all processors. Moreover, the costs of queuing and
notification become more significant in large-scale parallel machines. Consequently,
memory-based messaging techniques in these machines cause large amounts of
memory contention on highly shared data structures, such as shared messages and
message queues.

FIG. 8 is a block diagram of a multiprocessor module interfaced to an

external device controller according to a preferred embodiment of the invention. A
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distributed shared cache can support high-performance device communication by
allowing a device controller 160 to participate in the inter-cache protocol as a peer
to the other local cache controllers 180 associated with data processors 12.
Particular examples of appropriate device controllers 160 include, but are not limited
to, high-performance disk controllers for interfacing the processor cluster to a disk
subsystem 200’ and high-speed network interfaces for interfacing the processor
cluster to other processor clusters 100’ or a switch (not shown). It should be
understood that other device controller can be used to interface with other computer
peripherals.

As illustrated, the microprocessor module 1 includes an external interface
port 165 that provides the device controller 160 with access to the second-level
cache memory 188 via the shared bus 5. In particular, on read access to data at a
given location, a device controlier 160 requests the data from the peer-level local
cache controllers 180 the same as if the device controller were a cache controller
whose associated processor 12 had missed an access to this data. On write to data,
the device can similarly request ownership of the data from the peer-level cache
controllers and update the data accordingly, directly updating the next level of
memory if the data is not present in the peer-level cache memories.

In a particular embodiment, the distributed shared caches support a
memory-based messaging mode for cache.line units. In particular, each cache line
can be set in message mode as an alternative to one of the standard consistent shared
memory modes of invalid, shared, or exclusively owned. A particular
memory-based messaging technique is described in the above-referenced ParaDiGM
architecture, which uses cache lines of shared memory as message buffers.

In a preferred embodiment, a memory segment is created to act as a
communication channel, processes bind this segment into their respective address
spaces, and messages are copied into and out of this segment to effect
communication. A preferred memory-based message model is optimized over prior
art models by providing address-valued signals, message-oriented memory

consistency, and automatic signal-on-write. These refinements represent a
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significant simplification of the kernel interface over that providéd by other systems
for memory-based messaging. They also allow for a significantly faster and simpler
implementation, especially for scalable shared memory multiprocessor architectures.

~ FIG. 9 is a block diagram illustrafing a preferred address-valued signal
mechanism, which is a notification that is optimized for memory-based messaging.
With address-valued signals, a process sends a signal S, with a single virtual address
parameter. The virtual address is mapped from a shared message region 113x (i.e.,
a range of virtual address space) in the address space 112x containing the virtual
address to a shared segment 115, and the signal S, is delivered to all processes that
bind in that shared segment 115. The signal S, is delivered as a call to a signal
handler with a single parameter, which is the virtual address of the signaled area
113y,113z in the recipient address space 112y,112z.

A process sending a message writes the message data into a free area of the
message region associated with the destination process(es) and then signals using the
virtual address of this free area. The system delivers the signal to each recipient
process, calling the process signal handler with the virtual address of the new
message in the process address space. The signal handler uses this address to access
the new message and deliver the message to the application.

Hardware provides a per-processor First-In-First-Out (FIFO) buffer in which
memory addresses representing signals delivered to this processor (but not yet
processed) are stored. The signaled processors 12x,12y are determined from the
physical address of the signal S, (translated from the virtual address from the
sender) combined with the cache directory entry associated with the cache line
specified by the physical address. In particular, each cache line has a cache
directory entry containing a 3-bit mode field and various other tag bits describing
the state of the cache line. The FIFO buffer eliminates the need for software
delivery of the address values and synchronized software queues to hold those
addresses.

The mode field encodes the conventional shared, private and invalid states of

an ownership-based consistency protocol as well as a special message mode. Tag
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bits include a set of prbcessor identification bits, one per processor sharing the
cache,.that normally indicate which processors have copies of the cache line. In
message mode, the processor identification bits indicate the processors to be signaled
for this cache line. The memory system architecture uses a hierarchical cache
structure, with a "global" bit to indicate notification to the next lower level of the
memory hierarchy. The lower level maintains its own cache directory and further
propagates the signal to other clusters of processors, as indicated by the cache tags.
The tag bits are stored in software-maintained page frame descriptors and fetched
when the memory is cached.

When a process writes a message cache line, hardware generétes a signal at
that virtual address (referred to as automatic signal-on-write) and maps the
referenced virtual address to a physical address, using a standard virtual-to-physical
address translation mechanism. The physical address is then mapped in hardware to
a cache directory entry. A cache controller generates signals to all processors
indicated by the cache tags as recipients, possibly including the next lower level
cache (such as the third level cache), which then propagates the signal further as

appropriate. The signal is transmitted over each bus as a special bus transaction

" specifying the address and control lines indicating the affected processors. With

direct cache-to-cache transfer, the cache line can be transmitted as part of the same
bus transaction.

When it receives a signal bus transaction, each processor’s bus interface
stores the address in the processor’s FIFO buffer and interrupts the processor.
When a processor receives the signal interrupt, the processor takes the next physical
address from the FIFO buffer, maps the physical address to each virtual address and
delivers the signal to each process associated with this signal area that is also
assigned to this processor. In delivery of the signal, the kernel saves the process
context and creates a stack frame to call the signal handler associated with the
signaled memory region, passing the translated signal address as the parameter. On

return from the signal handler, the process resumes without reentering the kernel.
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On systems without hardware support for automatic signal-on-write, a signal can be
generated by a kernel operation.

Address-valued signaling provides a notification mechanism for
memory-based messaging that is simple, yet efficient. The translated signal address
provides a direct, immediate and asynchronous specification to the recipient(s) of the
message, allowing each recipient to immediately locate the message within the
segment. In particular, the same signal handler procedure can be used for several
different segments and still immediately locate the signaled message using the
sxipplied virtual address. Furthermore, different signal handlers can be bound to
different memory regions. The particular signal handler is selected automatically
based on the region of memory in which the signal occurs.

The additional hardware to support address-valued signaling is a small
percentage of the overall hardware cost, and arguably close to zero cost in large
configurations. In particular, a FIFO buffer is required for interprocessor and
device interrupts on large-scale systems because the conventional approach of having
a dedicated bus line from interrupter to interruptee is not feasible. The FIFO buffer
stores the interrupt, allowing the sending processor or device to send the interrupt
across the interconnection network and not hold a connection. Storing a single
address, rather than the entire message, is essentially the same cost as storing a
potentially smaller value such as processor identifier or device identifier. In a
preferred embodiment, all device interrupts in the system are handled as
address-valued signals, simplifying the hardware and operating system software.

Message-oriented memory consistency is a consistency mode for a segment
of memory in which the reader of the segment is only guaranteed to see the last
write to this memory after the reader has received an address-valued signal on this
segment. In fact, a message and signal can be lost and the receiver is not
guaranteed to see the update at all. A process can only expect a new packet to be
available after an interrupt from the interface, not at the time the packet is written.
Also, if a packet is not received, or is received in a corrupted form, the data is not

available at all.
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Memory segments with message-oriented memory consistency are preferably
used in a unidirectional fashion as part of memory-based messaging. One process
binds the segment as writable and others bind it as read-only. Consequently, there
is generally a single writer for a set of addresses within the segment. However, a
shared channel may have multiple writers, similar to a citizen-band type radio
channel. For example, clients can use a well-known channel to multicast to locate a
Server. ,

The message-oriented consistency uses an additional mode for each cache
line, as described above. Because there are extra code values available in a
particular preferred embodiment beyond those used by the conventional shared
memory states, the additional message mode does not increase the cost per cache
directory entry. The worst-case would be the addition of an extra bit per cache
directory entry, still a small percentage space overhead.

In a preferred embodiment of the invention, there is logic in the cache
controller to handle message mode. This logic is relatively simple because message
mode modifies actions already performed by the cache controller to comply with the
shared memory consistency protocol, and does not require new types of actions. In
particular, message mode requires the cache controller to generate an invalidation to
each recipient processor after the cache line has been written, rather than before as
with consistent shared memory. In a particular preferred embodiment, it is even
faster (and simpler) to have the cache controller perform no invalidations, leaving
the signaled processors to invalidate their respective caches.

By supporting direct cache-to-cache transfers in hardware, the source
processor’s cache can transfer the cache line to the recipient processors’ caches,
providing data transfer and notification in a single bus transaction. This avoids the -
cache line transfer that normally follows the invalidation after signal reception.

Message-oriented memory consistency reduces the number of bus transactions
required to send a message compared with conventional memory consistency. FIGs.
10A-10B are block diagrams illustrating that message-oriented memory consistency

reduces the receiver’s message invalidation (61), the signaling interrupt (63), the
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message transfer (64) and corresponding acknowledgements (62,65) into a single
message delivery transaction (69). Rather than having to invalidate (61) the
receivers’ copies of each cache line being written by the sender, as in conventional
ownership protocols (FIG. 10A), message-oriented memory consistency allows the
memory system to simply transmit the update (69) when the message unit has been
written (FIG. 10B). Transmitti_ng the update (69) at this time also allows the signal
notification to be piggybacked on the data transfer, or vice versa, rather than
requiring a separate bus transaction for notification. Thus, the update traffic
matches in behavior and efficiency that of a specialized communication facility. In
contrast to write-update consistency protocols, message-oriented memory consistency
allows updates after a full cache line, page or segment (depending on the consistency
unit) rather than on each word write. In that vein, message-oriented memory
consistency on single cache-line messages allows the sender to ensure that the
receiver receives either all or none of the message, rather than receiving word-level
updates. This property is exploited in a preferred embodiment of higher-level
protocols.

The message-oriented memory consistency semantics also provides a simple
network embodiment of a shared channel segment between two or more network
nodes. In particular, an update generated at one node can be transmitted as a
datagram to the set of nodes that also bind the affected shared segment. The
best-efforts, but unreliable, update semantics of message-oriented consistency
obviates the complexity of handling retransmission, timeout and error reporting at
the memory level. A large-scale multiprocessor configuration can similarly afford to
discard such bus and interconnection network traffic under load or error conditions
without violating the consistency semantics.

Finally, message-oriented consistency minimizes the interference between the
source and destination processors. The sending processor is not delayed to gain
exclusive ownership of the cache line and the reading processors are not delayed by
cache line flushes to provide consistent data. In contrast to other relaxed memory

consistency models such as Stanford’s DASH release consistency, message-oriented
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consistency reduces the base number of bus transactions and invalidations required,
rather than just reordering them or allowing them to execute asynchronously.

The automatic signaling on write is on a per-cache line basis (or other
consistency unit) so that writing the last byte of such a cache line causes the
harciware to generate a signal without any further action by the writing processor. It
is understood that the hardware can signal on any other porfion of the cache line,
but in a particular preferred embodiment the last byte is the easiest convention to
use.

The cache controller monitors each write operation to the cache. If a write
operation is to a cache line in message mode and the address is the last address of
the cache line, the cache controller generates a signal bus transaction after allowing
the write to complete.

In a preferred embodiment, the on-chip, or private, cache 14 (FIG. 1) does
not support this logic. Consequently, the sender writes through the private cache 14
so that the second level cache controller 180 can detect last-byte writes, and generate
the signal. Ideally, the first-level cache controller 140 (FIG. 4) supports this
mechanism. This support adds very little complexity to an on-chip cache controller
140. ’

Automatic signal-on-write reduces the processing overhead on a sending
processor when no process on this processor will receive the signal. Reduced
sender overhead, in turn, shortens the latency of the message. In the absence of this
facility, the sending process must explicitly execute a kernel call, map the signal
virtual address to a physical address and then presumably access hardware facilities
to generate the signal, or at least an interprocessor interrupt of some form.
Providing kernel-level access to the cache controller to explicitly generate a signaf is
more expensive in hardware than providing the logic in the cache controller to detect
and act on writes to the end of a cache line in message mode.

In automatic signal-on-write, fhe channel segment specifies the unit of
signaling, transparent to the sending process. For example, a receiver can pass the

sender a channel which signals on every cache line or every page, depending on the
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receiver’s choice. Without automatic signal-on-write, the sender needs to explicitly
signal and thus needs to be coded explicitly for each form of behavior, perhaps
switching between different behaviors based on the type of channel.

In message mode, a holding memory for the cache line is notified of the
update after the cache line has been written, rather than before as occurs with
conventional consistent shared memory. When a cache line in message mode is
written, the cache line is transferred directly to the set of cache controllers that have
indicated an interest in this cache line using the cache directory tags normally used
to indicate those memories holding a shared copy when the cache line is in shared
mode. These tags are cached in the cache partition when the cache line is loaded
into the local cache partition. The cache line can be invalidated in all caches when
these tags are modified, thereby preserving consistency of the tags.

This transfer uses the same direct cache-to-cache transfer mechanism that is
used to writeback a cache line in exclusive mode from one cache partition to the
peer-level owning cache partition. In the message-oriented consistency mode, the
writing process overwrites the cache line and transmits the cache line to these other
caches without first acquiring exclusive ownership of the cache line. In contrast,
conventional shared memory consistency mechanisms require the writer of a cache
line to first acquire exclusive ownership of the cache line, invalidating all copies of
the cache line that might occur in other caches.

Returning to FIG. 8, a device controller 160 participates in this protocol as
follows. When data is to be written from the device to an address in memory that is
set in message-oriented consistency mode, the data is transferred directly to the
peer-level cache controllers 180 and other device controllers according to the cache
tag bits described above. In a particular preferred embodiment, a direct transfer
only occurs if the transfer is to a single other controller, and otherwise, the data is
transferred to a next-level memory area and the cache line is invalidated in the
peer-level caches, notifying them of the revised cache line. A device controller 160
loads the tags to the affected area of memory as part of establishing access to this

memory area, either at the time a mapping of device data to this memory is setup or
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at the point the data is to be written to the area of memory. A device controller also
participates by receiving direct transfers of cache lines in message mode from othef
cache controllers and device controllers, as occurs on processor and device writing

to these cache lines.

5 Equivalents

Those skilled in art will know, or be able to ascertain using no more than
routine experimentation, many equivalents to the specific embodiments of the
invention described herein.

These and all other equivalents are intended to be encompassed by the

10 following claims.
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CLAIMS
The invention claimed is:
1. In a computer system having a plurality of data accessors, a cache memory

for providing stored cache lines to be accessed by the data accessors, the
5 cache memory comprising:

a plurality of cache memory areas at a common level of cache
memory, each cache memory area locally coupled to a respective data
accessor, the cache memory areas coupled together to form a cache memory
cluster; and

10 a plurality of local cache controllers, each local cache controller
coupled between a respective data accessor and a respective locally-coupled
cache memory area to request a cache line on behalf of the data accessor
from the respective locally-coupled cache memory area and from remaining,
remotely-coupled cache memory areas of the cache memory cluster in

15 response to an unsatisfied cache line request at the locally-coupled cache

memory area.

2. The cache memory according to Claim 1 further comprising a private cache
coupled between each data accessor and the respective local cache controller,
each data accessor having exclusive access to the réspective private cache,

20 and wherein the private cache requests a cache line from the local cache
controller only upon the cache line request being unsatisfied by the private

cache.

3. The cache memory according to Claim 1 wherein the second plurality is less

than the first plurality.
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The cache memory according to Claim 1 wherein the cache memory areas

are coupled by a shared cache interconnect.

The cache memory according to Claim 1 wherein there are less than or equal

to four cache memory areas in the cache memory cluster.

The cache memory according to Claim 1 further comprising an external data
accessor coupled to the cache memory cluster for accessing a cache line,
each cache memory area in the cache memory cluster is remotely coupled to

the external data accessor.

The cache memory according to Claim 1 wherein data has an associated
ownership in a holder memory area, the satisfaction of a memory reference
from data in the holder memory area does not affect the ownership of the

data in the holder memory area relative to more distant memory.

The cache memory according to Claim 1 wherein the cache line is accessed

for message data between data accessors.

A distributed shared cache computing system having a plurality of data
accessors for referencing data in memory, each memory reference being
satisfied from a hierarchical memory structure having a plurality of memory
levels relative to the data accessors, comprising:

a first memory level of private cache memory in the hierarchical
memory structure for satisfying memory references at the first memory level,
each private cache memory providing exclusive access to a respective data

accessor; and
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a second memory level of at least one cluster of shared cache memory

in the hierarchical memory structure for satisfying memory references at the

“second memory level, each cluster of shared cache memory being coupled to

a respective group of data accessors and distributed such that each area of the
cluster of shared cache memory is a local cache memory to a respective data
accessor from the group of data accessors and a remote cache memory to the

remaining at least one data accessor from the group of data accessors.

The distributed shared cache computing system according to Claim 9 wherein
there are four areas per cluster of shared cache memory and four data

accessor per group of data accessors.

The distributed shared cache computing system according to Claim 9 wherein
each data accessor is coupled to the remote cache memory such that a cache
miss for a memory reference request to the local cache memory is re-

requested to the remote cache memory.

The distributed shared cache computing system according to Claim 11
wherein each data accessor is further coupled to at least one lower memory
level, such that a cache miss for a memory reference to the respective cluster

of shared cache memory is satisfied by a more distant memory unit.

The distributed shared cache computing system according to Claim 9 wherein
the data has an associated ownership in a holder memory area, the
satisfaction of a memory reference from data in the holder memory area does
not affect the ownership of the data in the holder memory area relative to

more distant memory.

The distributed shared cache computing system according to Claim 9 wherein

the data is message data between data accessors.



WO 95/25306

10

15

20

15.

16.

17.

PCT/US95/02594

-43 -

The distributed shared cache computing system according to Claim 9 further
comprising an external data accessor coupled to a cluster of shared cache
memory in the second memory level for accessing a cache line, each area of

the cluster is remotely coupled to the external data accessor.

A computing system having a plurality of data accessors and a multiple level
hierarchical memory structure, comprising:

a plurality of first cache memory areas, each first cache memory area
coupled to a respective data accessor for providing a private memory relative
to the respective data accessor;

a plurality of second cache memory areas, each second cache memory
area coupled to a res;:ective private memory level, each second cache
memory area providing a local cache memory relative to the respective data
accessor, a local cache memory being searched to satisfy a first cache miss in
the respective private memory; and

at least one shared cache interconnect to couple at least one cluster of
second cache memory areas together such that a second cache miss in a local
cache memory causes a search at the remaining second cache memory areas
from the cluster of second cache memory areas to satisfy the second cache

miss.

The computing system according to Claim 16 further comprising a plurality
of cache controller, each cache controller coupling a respective second cache
memory area to the respective private memory and the shared cache

interconnect.
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The computing system according to Claim 16 wherein each cluster of second
cache memory areas is a shared cache memory, each second cache memory
area in the cluster of second cache memory areas being an equal subset of the

shared cache memory.

The computing system according to Claim 16 wherein there are less than five

second cache memory areas in each cluster of second cache memory areas.

The computing system according to Claim 19 wherein there are four second

cache memory areas in each cluster of second cache memory areas.

The computing system according to Claim 16 further comprising an external
data accessor coupled to a cluster of second memory areas to search the
second cache memory areas to satisfy a memory reference by the external

data accessor.

The computing system according to Claim 21 wherein the external data

accessor includes a device controller.

The computing system according to Claim 16 further comprising an interface
coupled to each shared cache interconnect for coupling each respective
cluster of second cache memory areas to a respective main memory area, the
main memory area being searched to satisfy a third cache miss from the

cluster of second cache memory areas.

The computing system according to Claim 23 wherein each cluster of second

cache memory areas and the respective coupled data accessors, first cache

_ memory areas, and interface are integrated as a multiprocessor module.
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25.  The computing system according to Claim 23 wherein there are a plurality of
main memory areas, each main memory area coupled to at least one other
main memory area to form a cluster of main memory areas, each main
memory area serving as a local main memory to the respective cluster of

5 second cache memory areas and as a remote main memory area to the at
least one cluster of second cache memory areas coupled to respective

remaining main memory areas of the plurality of main memory areas.

26.  The computing system according to Claim 25 wherein the cluster of main

memory areas are coupled by a fiber optic coupling system.

10 27. The computing system according to Claim 25 wherein the cluster of main

memory areas are coupled by a shared bus.

28.  The computing system according to Claim 16 wherein the shared cache

interconnect is a shared bus.

29.  The computing system abcording to Claim 16 wherein the shared cache

15 interconnect is an interconnection network.

30. The computing system according to Claim 16 wherein the cache memory is

accessed for message data between data accessors.

31.  An integrated circuit for a multiple level hierarchical memory computing
system, comprising:
20 a data processor for requiring memory references;
a first cache memory for providing a private memory level relative to
the data processor for storing a copy of data to satisfy memory references at

the first cache memory; and
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a local cache controller coupled to the private memory level for
controlling access to a respective local second cache memory and to a cluster

of remote second cache memory for requesting memory references from the

remote second cache memory.

The integrated circuit according to Claim 31 wherein the local cache
controller is cooperatively shared with at least one remote data processor,
such that the remote data processor can satisfy a memory reference from the

respective local second cache memory.

The integrated circuit according to Claim 31 further comprising a private
cache controller coupled between the data processor, the first cache memory,
and the local cache controller for controlling access to the private memory
level and requesting memory references from the local cache controller upon

a cache miss in the respective first cache memory.

In a computer system having a plurality of data accessors, a method of
providing stored cache lines from a cache memory to be accessed by the data
accessors, comprising the steps of:

distributing the cache memory into a common level of cache memory
areas, each cache memory area coupled to a respective data accessor;

forming the cache memory areas into at least one cache memory
cluster, the forming steps comprising:

a) associating each cache memory area with a respective data

accessor to form a local cache memory area for each data

accessor;
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b) controlling access to each cache memory area such that a
memory reference from a data accessor is requested at the
respective local cache memory area and the remaining cache
memory areas in the cache memory cluster are searched to

5 satisfy a cache miss in a local cache memory area; and
~ returning data from memory to the data accessor in satisfaction

of the memory reference.

35.  The method according to Claim 34 further comprising, before the step of
returning, the step of satisfying a cache miss in a cache memory cluster from

10 memory external to the cache memory cluster.

36.  The method according to Claim 34 wherein there is an external data accessor
not locally coupled to a cache memory area and the step of controlling access
includes searching the cache memory areas in the cache memory cluster to

satisfy a memory access by the external data accessor.

15 "37. The method according to Claim 34 wherein the cache lines are accessed for

message data between data accessors.

38. A method for locating a memory reference on a multiple-level hierarchial
memory computing system having at least one data accessor for requesting
memory references to be obtained from memory, each memory level having

20 at least one memory area for storing data to satisfy memory references,
comprising the steps of:
at a memory level having at least one peer memory area, locating the
memory reference comprising the locating steps of:
a) searching a memory area that is locally coupled to the data

25 accessor requiring the memory reference;
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b) upon a memory miss at the locally-coupled memory area,
searching at least one peer memory area that is
remotely-coupled to the data accessor requiring the memory

reference; and

5 returning the located memory reference to the data accessor.

39.  The method according to Claim 38 further comprising, before the step of
returning, the step of searching more distant memory relative to the data

accessor to locate the memory reference at a more distant memory.

40.  The method according to Claim 38 wherein there is at least one data accessor

10 not having a locally-coupled memory area in the memory level.

41.  The method according to Claim 40 wherein the data accessor not having a

locally-coupled memory area includes a device controller.

42.  The method according to Claim 38 wherein the referenced memory contains

message data between data accessors.

15 43. A method of communicating between data accessors in a cache memory
computing system, comprising the steps of:
providing a cache line in a cache memory area shared between the '
data accessors;
binding at least one receiver data accessor to receive message data
20 from the cache line;
from a sender data accessor, writing message data to the cache line;
and |
delivering the message data from the cache line to the receiver data

accessor.
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44.  The method according to Claim 43 wherein the shared cache line is ic a

multi-level memory hierarchy.

45.  The method according to Claim 43 wherein the cache line has a message
mode and the step of binding comprises the step of setting tag bits associated
5 with the cache line to indicate the data accessors to receive message data

frqm the cache line.

46. The method according to Claim 43 wherein at least one data accessor

includes a device controller.
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