wo 2015/085267 A1 |1 I NN OO0 OO0 A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2015/085267 Al

11 June 2015 (11.06.2015) WIPO I PCT

(51) International Patent Classification: (72) Inventors: GUPTA, Rajarshi; 5775 Morehouse Drive,
GO6F 21/44 (2013.01) GO6F 21/52 (2013.01) San Diego, California 92121-1714 (US). BERGAN,
GO6F 19/00 (2011.01) GO6F 21/56 (2013.01) Charles; 5775 Morehouse Drive, San Diego, California

(21) International Application Number: 92121-1714 (US).
PCT/US2014/068946 (74) Agents: HANSEN, Robert et al.; The Marbury Law
(22) International Filing Date: EZSFOIL’ E/I;}ilalzlg?g 1 %Uunsr)lse Valley Drive, 15th Floor,

5 December 2014 (05.12.2014) - VI8 ’
- . . (81) Designated States (uniess otherwise indicated, for every
(25) Filing Language: English kind of national protection available). AE, AG, AL, AM,
(26) Publication Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
L. Bz, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(30) Priority Data: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
61/912,624 6 December 2013 (06122013) us HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
(71) Applicant: QUALCOMM INCORPORATED [US/US]; MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
Attn: International IP Administration, 5775 Morehouse PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
Drive, San Diego, California 92121-1714 (US). SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every

kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,

[Continued on next page]

(54) Title: METHODS AND SYSTEMS OF GENERATING APPLICATION-SPECIFIC MODELS FOR THE TARGETED PRO-
TECTION OF VITAL APPLICATIONS

200

1Q2
4 2
202
—» Behavior Observer Module
Behavior Vectors 206
LN
204 ”
External
Behavior Analysis Module < Conte)ft
Information
Module
Behavior Vectors
208 v
— Classifier Module
210 v
Actuator Module
. ,

FIG. 2

(57) Abstract: Methods, and computing devices implement-
ing the methods, improve the efficiency and performance of
a comprehensive behavioral monitoring and analysis system
that is configured to predict whether a software application
is causing undesirable or performance depredating behavior.
The behavioral monitoring and analysis system may be con-
figured to quickly and efficiently classify certain software
applications as being benign by generating a behavior vector
that characterizes the activities of the software application,
determining whether the generated behavior vector includes
a distinguishing behavior or behavioral clue identitying the
software application as a trusted software application, and
classifying the software application as benign in response to
determining that the generated behavior vector includes a
distinguishing behavior identifying the software application
as a trusted software application.

WO 2015/085267 A1 |IIWAT00 TN 0 A

TZ, UG, ZM, ZW), Burasian (AM, AZ, BY, KG, KZ,RU, = __ as to the applicant's entitlement to claim the priority of
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, the earlier application (Rule 4.17(iii)

DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT,

LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, Published:

SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, P .

GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG). with international search report (Art. 21(3))

Declarations under Rule 4.17:

— as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii))

WO 2015/085267 PCT/US2014/068946

TITLE

Methods and Systems of Generating Application-Specitic Models for the Targeted
Protection of Vital Applications

RELATED APPLICATIONS

[0001] This application claims the benefit of priority to U.S. Provisional
Application No. 61/912,624 entitled “Methods and Systems of Using Application-
Specific and Application-Type-Specitic Models for the Efficient Classification of
Mobile Device Behaviors” filed December 6, 2013, the entire contents of which

are incorporated herein by reference for all purposes.
BACKGROUND

[0002] Cellular and wireless communication technologies have seen explosive
growth over the past several years. This growth has been fueled by better
communications, hardware, larger networks, and more reliable protocols. As a
result, wireless service providers are now able to offer their customers with

unprecedented levels of access to information, resources, and communications.

[0003] To keep pace with these service enhancements, mobile electronic devices
(e.g., cellular phones, tablets, laptops, etc.) have become more powerful and
complex than ever. This complexity has created new opportunities for malicious
software, software conflicis, hardware faults, and other similar errors or
phevomena to negatively umpact an electronic device’s long-term and continued
performance and power utilization levels. Accordingly, identifying and correcting
the conditions and/or device behaviors that may negatively impact the electronic
device’s long term and continued performance and power utilization levels is

beneficial to consumers.

WO 2015/085267 PCT/US2014/068946

SUMMARY

[0004] The various aspects include methods of identify non-benign software
applications (e.g., applications that are malicious, poorly written, incompatible
with the device, etc.), and preventing such applications from degrading a
computing device’s performance, power utilization levels, network usage levels,
security, and/or privacy over time. In an aspect, the method may include analyzing
a software application operating in a processor of a computing device by
monitoring in the processor activities of the software application by collecting
behavior information from a log of actions stored in a memory of the computing
device, generating a behavior vector that characterizes the monitored activities of
the software application based on the collected behavior information, and
determining whether the generated behavior vector includes a distinguishing

behavior that identifies the software application as being from a known vendor.

[0005] In an aspect, determining whether the generated behavior vector includes a
distinguishing behavior may include (or may be accomplished by) determining
whether the generated behavior vector includes information identifying use of an
unexpected device feature by the software application. In a further aspect,
determining whether the generated behavior vector includes the distinguishing
behavior may include (or may be accomplished by) determining whether the
generated behavior vector includes information identifying unusual use of a device

teature by the software application.

[0006] In a further aspect, the method may include authenticating the software
application by classifying the software application as benign in response to
determining that the generated behavior vector includes the distinguishing
behavior. In a further aspect, the method may include performing deep behavioral
analysis operations by applying the generated behavior vector to a focused
classifier model to determine whether the software application is non-benign in

response to determining that the generated behavior vector does not include a

WO 2015/085267 PCT/US2014/068946

distinguishing behavior, and applying the generated behavior vector to a classifier
model to determine whether the software application is non-benign in response to
determining that the generated behavior vector does not include a distinguishing

behavior.

[0007] In a further aspect, the method may include receiving a full classifier model
that includes a plurality of test conditions, identifying device features used by the
software application, identifying test conditions in the plurality of test conditions
that evaluate the identified device features, and generating an application-based
classifier model that prioritizes the identified test conditions. In a further aspect,
applying the generated behavior vector to the classifier model to determine
whether the software application 1s non-benign may include applying the generated

behavior vector to the generated application-based classifier model.

[0008] In a further aspect, generating the behavior vector based on the collected
behavior information may include using the collected behavior information to
generate a feature vector, and applying the generated behavior vector to the
generated application-based classifier model may include applying the generated
feature vector to the application-based classifier model so as to evaluate each test
condition included in the application-based classifier model, computing a weighted
average of each result of evaluating test conditions in the application-based
classifier model, and determining whether the behavior is non-benign based on the

weighted average.

[0009] In a further aspect, receiving the full classifier model that includes the
plurality of test conditions may include receiving a finite state machine that
includes information that is suitable for conversion into a plurality of decision
nodes that each evaluate one of the plurality of test conditions, and generating the
application-based classifier model that prioritizes the identified test conditions may
include generating the application-based classifier model to include decision nodes

that evaluate a device feature that is relevant to the software application and/or a

WO 2015/085267 PCT/US2014/068946

device feature that is relevant to an application type of the software application

(i.e., relevant to the type of software).

[0010] Further aspects include a computing device having a memory and a
processor that is coupled to the memory, and in which processor is configured with
processor-executable instructions to perform operations of the aspect methods
described above. Further aspects include a non-transitory computer readable
storage medium having stored thereon processor-executable software instructions
configured to cause a processor of a computing device to perform operations of the
aspect methods described above. Further aspects may include a computing device
having various means for performing functions of the aspect methods described

above.
[0011]
BRIEF DESCRIPTION OF THE DRAWINGS

[0012] The accompanying drawings, which are incorporated herein and constitute
part of this specification, illustrate exemplary aspects of the invention, and
together with the general description given above and the detailed description

given below, serve to explain the features of the invention.

[0013] FIG. I is a communication system block diagram illustrating network
components of an example telecommunication system that is suitable for use with

the various aspects.

[0014] FIG. 2 is a block diagram illustrating example logical components and
information flows in an aspect computing device configured to determine whether

a particular device behavior is performance-degrading or benign.

[0015] FIG. 3 is a block diagram illustrating example components and information

flows in an aspect system that includes a network server configured to work in

WO 2015/085267 PCT/US2014/068946

conjunction with a computing device to determine whether a particular device

behavior is performance-degrading or benign.

[0016] FIG. 4 is a block diagram illustrating example components and information
flows in an aspect system that includes a computing device configured to generate
an application-based classifier models without re-training the data, behavior

vectors, or classifier models.

[0017] FIG. 5A is an illustration of an example classifier model mapped to a

plurality of software applications.

[0018] FIG. 5B is a process flow diagram illustrating an aspect method of

generating application-based classifier models locally in the computing device.

[0019] FIG. 6A is a process flow diagram illustrating a method of analyzing the

behavior of a software application in accordance with an aspect.

[0020] FIG. 6B is a process flow diagram illustrating a method of authenticating a

software application in accordance with an aspect.

[0021] FIG. 6C is a process flow diagram illustrating a method of generating and
using application-based classifier models to determine whether a software

application is non-benign in accordance with an aspect.

[0022] FIG. 7 is a process tlow diagram illustrating a method of generating lean

classifier models locally in the computing device in accordance with an aspect.

[0023] FIG. 8 is an illustration of example boosted decision stumps that may be
generated by an aspect server processor and used by a computing device processor

to generate lean classifier models.

[0024] FIG. 9 is a block diagram illustrating example logical components and
information flows in an observer module configured to perform dynamic and

adaptive observations in accordance with an aspect.

WO 2015/085267 PCT/US2014/068946

[0025] FIG. 10 is a block diagram illustrating logical components and information
flows in a computing system implementing observer daemons in accordance with

another aspect.

[0026] FIG. 11 is a process flow diagram illustrating an aspect method for

performing adaptive observations on mobile devices.

[0027] FIG. 12 is a component block diagram of a mobile device suitable for use

in an aspect.

[0028] FIG. 13 is a component block diagram of a server device suitable for use in

an aspect.
DETAILED DESCRIPTION

[0029] The various aspects will be described in detail with reference to the
accompanying drawings. Wherever possible, the same reference numbers will be
used throughout the drawings to refer to the same or like parts. References made
to particular examples and implementations are for illustrative purposes, and are

not intended to limit the scope of the invention or the claims.

[0030] In overview, the various aspects allow the developers of certain critical
software applications to build their applications to perform special operations that
distinguish them from other similar applications. A behavioral monitoring and
analysis system of the computing device may be configured to monitor the
behaviors of its software applications to detect these special operations, and to
quickly classify applications that perform the special operations as trusted or
benign without performing cumbersome or detailed monitoring or analysis

operations.

[0031] By recognizing distinguishing behavior, which are similar to behavioral
clues, to quickly classify certain software applications (e.g., as trusted, benign,

critical, etc.), the various aspects allow the behavioral monitoring and analysis

WO 2015/085267 PCT/US2014/068946

system to focus its operations on the most important software applications and/or
forgo analyzing applications from trusted vendors. This reduces the operational
complexity of the behavioral monitoring and analysis system, and improves the

performance and power consumption characteristics of the computing device.

[0032] The word “exemplary” is used herein to mean “serving as an example,
instance, or illustration.” Any implementation described herein as “exemplary” is
not necessarily to be construed as preferred or advantageous over other

implementations.

[0033] The term “performance degradation” is used herein to refer to a wide
variety of undesirable operations and characteristics of a computing device, such
as longer processing times, slower real time responsiveness, lower battery life, loss
of private data, malicious economic activity (e.g., sending unauthorized premium
SMS message), denial of service (DoS), poorly written or designed software
applications, malicious software, malware, viruses, fragmented memory,
operations relating to commandeering the mobile device or utilizing the phone for
spying or botnet activities, etc. Also, behaviors, activities, and conditions that
degrade performance for any of these reasons are referred to herein as “not

benign” or “non-benign.”

[0034] The terms “mobile computing device” and “mobile device” are used
interchangeably herein to refer to any one or all of cellular telephones,
smartphones, personal or mobile multi-media players, personal data assistants
(PDA’s), laptop computers, tablet computers, smartbooks, ultrabooks, palm-top
computers, wireless electronic mail receivers, multimedia Internet enabled cellular
telephones, wireless gaming controllers, and similar personal electronic devices
which include a memory, a programmable processor for which performance is
important, and operate under battery power such that power conservation methods
are of benefit. While the various aspects are particularly useful for mobile

computing devices, such as smartphones, which have limited resources and run on

WO 2015/085267 PCT/US2014/068946

battery, the aspects are generally useful in any electronic computing device that

includes a processor and executes application programs.

[0035] Modern computing devices are highly configurable and complex systems.
As such, the features that are most important for determining whether a particular
device behavior is benign or not benign (e.g., malicious or performance-degrading)
may be different in each computing device. Further, a different combination of
features may require monitoring and/or analysis in each computing device in order
for that device to quickly and efficiently determine whether a particular behavior 1s
benign or non-benign. Yet, the precise combination of features that require
monitoring and analysis, and the relative priority or importance of each feature or
feature combination, can often only be determined using application-specitic
and/or device-specific information obtained from the specific device in which the
behavior is to be monitored or analyzed. For these and other reasons, behavior
models generated in any computing device other than the specific device in which
they are used cannot include information that identifies the precise combination of
tfeatures that are most important to classifying a software application or behavior in

that computing device.

[0036] In addition, many modern computing are resource constrained systems that
have relatively limited processing, memory, and energy resources. For example,
mobile devices are complex and resource constrained computing devices that
include many features or factors that could contribute to its degradation in
performance and power utilization levels over time. Examples of factors that may
contribute to performance degradation include poorly designed software
applications, malware, viruses, fragmented memory, and background processes.
Due to the number, variety, and complexity of these factors, it is often not feasible
to evaluate all of the various components, behaviors, processes, operations,
conditions, states, or features (or combinations thereof) that may degrade
performance and/or power utilization levels of these complex yet resource-

constrained systems. As such, it is difficult for users, operating systems, or

WO 2015/085267 PCT/US2014/068946

application programs (e.g., anti-virus software, etc.) to accurately and efficiently
identify the sources of such problems. As a result, mobile device users currently
have few remedies for preventing the degradation in performance and power
utilization levels of a mobile device over time, or for restoring an aging mobile

device to its original performance and power utilization levels.

[0037] To overcome the limitations of existing solutions, the various aspects
include computing devices equipped with a behavioral monitoring and analysis
system configured to quickly and efficiently identify non-benign software
applications (e.g., applications that are malicious, poorly written, incompatible
with the device, etc.), and prevent such applications from degrading the a
computing device’s performance, power utilization levels, network usage levels,
security, and/or privacy over time. The behavioral monitoring and analysis system
may be configured to identify, prevent, and correct identified problems without
having a significant, negative, or user perceivable impact on the responsiveness,

performance, or power consumption characteristics of the computing device.

[0038] In the various aspects, the behavioral monitoring and analysis system may
include an observer process, daemon, module, or sub-system (herein collectively
referred to as a “module”) and an analyzer module. The observer module may be
configured to instrument or coordinate various application programming interfaces
(APIs), registers, counters, or other components (herein collectively “instrumented
components”) at various levels of the computing device system, collect behavior
information from the instrumented components, and communicate (e.g., via a
memory write operation, function call, etc.) the collected behavior information to
the analyzer module. The analyzer module may receive and use the collected
behavior information to generate behavior vectors and perform real-time behavior
analysis operations to determine whether a software application or device behavior

1s benign or not benign (e.g., malicious, performance-degrading, etc.).

WO 2015/085267 PCT/US2014/068946

[0039] The analyzer module may be configured to generate the behavior vectors
so that each behavior vector represents or characterizes many or all of the observed
behaviors that are associated with a specific software application, module,
component, task, or process of the computing device. Each behavior vector may
encapsulate one or more “behavior features.” Each behavior feature may be an
abstract number that represents all or a portion of an observed behavior. In
addition, each behavior feature may be associated with a data type that identifies a
range of possible values, operations that may be performed on those values,
meanings of the values, etc. The data type may be used by the computing device
to determine how the feature (or feature value) should be measured, analyzed,

weighted, or used.

[0040] The analyzer module may be configured to determine whether a software
application or device behavior is non-benign by applying the generated behavior
vectors to classifier models. A classifier model may be a behavior model that
includes data and/or information structures (e.g., feature vectors, behavior vectors,
component lists, etc.) that may be used by the computing device to evaluate a
specific feature or aspect of the device’s behavior. A classifier model may also
include decision criteria for monitoring a number of features, factors, data points,
entries, APIs, states, conditions, behaviors, software applications, processes,
operations, components, etc. (herein collectively “features”) in the computing

device.

[0041] A full classifier model may be a robust data model that is generated as a
function of a large training dataset, which may include thousands of features and
billions of entries. A lean classifier model may be a more focused data model that
is generated from a reduced dataset that includes or prioritizes tests on the
features/entries that are most relevant for determining whether a particular mobile
device behavior is not benign. A locally generated lean classifier model is a lean
classifier model that is generated in the computing device. By generating classifier

models in the computing device in which the models are used, the various aspects

10

WO 2015/085267 PCT/US2014/068946

allow the computing device to accurately identify the specific features that are
most important in determining whether a behavior on that specific device is benign
or contributing to that device degradation in performance. These aspects also
allow the computing device to accurately prioritize the features in the classifier
models in accordance with their relative importance to classifying behaviors in that

specific device.

[0042] An application specific classifier model may be a classifier model that
includes a focused data model that includes or prioritizes tests on the
features/entries that are most relevant for determining whether a particular
software application (or a specific type of software application) is non-benign.

The computing device may be configured to generate an application-specific
classifier model by receiving a full classifier model that includes a plurality of test
conditions from a network server, identifying the device features that are used by a
software application operating in the device (or by a type of software application
that may execute on the device), identifying the test conditions in the full classifier
model that evaluate one of identified device features, determining the priority,
importance, or success rates of the identified test conditions, prioritizing or
ordering the identified test conditions in accordance with their importance or
success rates, and generating the classifier model to include the identified test
conditions so that they are ordered in accordance with their determined priorities,
importance, or success rates. By dynamically generating application-specific
classifier models locally in the computing device, the various aspects allow the
computing device to focus its monitoring and analysis operations on a small
number of features that are most important for determining whether the operations
of a specific software application are contributing to an undesirable or

performance depredating behavior of the computing device.

[0043] In an aspect, the computing device may be configured to generate an
application specific classifier model for each software application (or each type of

software application) operating in the computing device. However, analyzing each

11

WO 2015/085267 PCT/US2014/068946

software application operating in the computing device may consume a significant
amount of the processing and power resources of the device. As such, the
computing device may be configured to dynamically identify the software
applications and/or application types that are a high risk or susceptible to abuse
(e.g., financial applications, point-of-sale applications, biometric sensor
applications, etc.), and generate classifier models for only the software
applications and/or application types that are identified as being high risk or

susceptible to abuse.

[0044] To further reduce the number of operations performed by the behavioral
monitoring and analysis system, the computing device may be configured to
monitor software applications for identifiers, distinguishing behaviors, or
behavioral clues that allow the computing device to quickly determine whether a
software application is from a known vendor. The computing device may then
categorize these software applications as being critical, sensitive, or important
applications that require deeper analysis. This allows the vendors to develop the
software applications to perform special operations that cause the behavioral
analysis system to monitor and analyze their application closely. For example, a
vendor of banking software may program a banking application to perform a
benign and unexpected operation to cause the behavioral analysis system to
monitor its operations closely, which helps ensure that the banking application is

not attacked by malware.

[0045] In an embodiment, the computing device may be configured to monitor
software applications for identifiers, distinguishing behaviors, or behavioral clues
that allow the computing device to quickly determine whether a software
application is from a trusted vendor. The computing device may quickly
authenticate the software applications that are from trusted vendors by classifying
those software applications as benign. This allows the behavioral monitoring and

analysis system to forgo performing detailed analysis operations on trusted

12

WO 2015/085267 PCT/US2014/068946

applications, thereby improving the performance and power consumption

characteristics of the computing device.

[0046] The computing device may be configured to determine that a software
application is from a trusted vendor by monitoring the activities of the software
application as it operates in the device, generating a behavior vector that
characterizes the monitored activities, and determining whether the generated
behavior vector includes a distinguishing behavior that indicates that the software
application is from a trusted vendor. The computing device may identify such
distinguishing behaviors by determining whether the generated behavior vector
includes information identifying use of an unexpected device feature and/or
unusual use of a common device feature by the software application. That is, the
use of an unexpected device feature or the unusual use of a common device feature
by a software application may serve as a distinguishing behavior that identifies the
application as being from a trusted vendor. As such, the computing device may
use these distinguishing behaviors as a behavioral key for authenticating the
application. This behavioral key may be much harder to copy, spoof or decode

than standard authentication keys.

[0047] The various aspects may be implemented within a variety of
communication systems, such as the example communication system 100
illustrated in FIG. 1. A typical cell telephone network 104 includes a plurality of
cell base stations 106 coupled to a network operations center 108, which operates
to connect voice calls and data between mobile devices 102 (e.g., cell phones,
laptops, tablets, etc.) and other network destinations, such as via telephone land
lines (e.g., a POTS network, not shown) and the Internet 110. Communications
between the mobile devices 102 and the telephone network 104 may be
accomplished via two-way wireless communication links 112, such as 4G, 3G,
CDMA, TDMA, LTE and/or other cell telephone communication technologies.

The telephone network 104 may also include one or more servers 114 coupled to

13

WO 2015/085267 PCT/US2014/068946

or within the network operations center 108 that provide a connection to the

Internet 110.

[0048] The communication system 100 may further include network servers 116
connected to the telephone network 104 and to the Internet 110. The connection
between the network servers 116 and the telephone network 104 may be through
the Internet 110 or through a private network (as illustrated by the dashed arrows).
A network server 116 may also be implemented as a server within the network
infrastructure of a cloud service provider network 118. Communication between
the network server 116 and the mobile devices 102 may be achieved through the
telephone network 104, the internet 110, private network (not illustrated), or any

combination thereof.

[0049] The network server 116 may be configured to receive information on
various conditions, features, behaviors, and corrective actions from a central
database or cloud service provider network 118, and use this information to
generate data, algorithms, classifiers, or behavior models (herein collectively
“classifier models™) that include data and/or information structures (e.g., feature
vectors, behavior vectors, component lists, etc.) that may be used by a processor of
a computing device to evaluate a specific aspect of the computing device’s

behavior.

[0050] In an aspect, the network server 116 may be configured to generate a full
classifier model. The full classifier model may be a robust data model that is
generated as a function of a large training dataset, which may include thousands of
features and billions of entries. In an aspect, the network server 116 may be
configured to generate the full classifier model to include all or most of the
teatures, data points, and/or factors that could contribute to the degradation of any
of a number of different makes, models, and configurations of mobile devices 102.
In various aspects, the network server may be configured to generate the full

classifier model to describe or express a large corpus of behavior information as a

14

WO 2015/085267 PCT/US2014/068946

finite state machine, decision nodes, decision trees, or in any information structure
that can be modified, culled, augmented, or otherwise used to quickly and

efficiently generate leaner classifier models.

[0051] In addition, the mobile device 102 may be configured to receive the full
classifier model from the network server 116. The mobile device may be further
configured to use the full classifier model to generate more focused classifier
models that account for the specific features and functionalities of the software
applications of the mobile device 102. For example, the mobile device 102 may
generate application-specific and/or application-type-specific classifier models
(i.e., data or behavior models) that preferentially or exclusively identify or evaluate
the conditions or features of the mobile device that are relevant to a specific
software application or to a specific type of software application (e.g., games,
navigation, financial, etc.) that is installed on the mobile device 102 or stored in a
memory of the device. The mobile device 102 may use these locally generated
classifier models to perform real-time behavior monitoring and analysis

operations.

[0052] FIG. 2 illustrates example logical components and information flows in an
aspect mobile device 102 configured to perform real-time behavior monitoring and
analysis operations 200 to determine whether a particular mobile device behavior,
software application, or process is malicious/performance-degrading, suspicious,
or benign. These operations 200 may be performed by one or more processing
cores in the mobile device 102 continuously (or near continuously) without
consuming an excessive amount of the mobile device’s processing, memory, or

energy resources.

[0053] In the example illustrated in FIG. 2, the mobile device 102 includes a
behavior observer module 202, a behavior analyzer module 204, an external
context information module 206, a classifier module 208, and an actuator module

210. In an aspect, the classifier module 208 may be implemented as part of the

15

WO 2015/085267 PCT/US2014/068946

behavior analyzer module 204. In an aspect, the behavior analyzer module 204
may be configured to generate one or more classifier modules 208, each of which
may include one or more classifier models (e.g., data/behavior models) that
include data and/or information structures (e.g., decision nodes, etc.) that may be
used by a mobile device processor to evaluate specific features of a software

application or mobile device behavior.

[0054] Each of the modules 202-210 may be a thread, process, daemon, module,
sub-system, or component that is implemented in software, hardware, or a
combination thereof. In various aspects, the modules 202-210 may be
implemented within parts of the operating system (e.g., within the kernel, in the
kernel space, in the user space, etc.), within separate programs or applications, in
specialized hardware bufters or processors, or any combination thereof. In an
aspect, one or more of the modules 202-210 may be implemented as software

instructions executing on one or more processors of the mobile device 102.

[0055] The behavior observer module 202 may be configured to instrument or
coordinate various APlIs, registers, counters or other components (herein
collectively “instrumented components™) at various levels of the mobile device
system, and continuously (or near continuously) monitor mobile device behaviors
over a period of time and in real-time by collecting behavior information from the
instrumented components. For example, the behavior observer module 202 may
monitor library API calls, system call APIs, driver API calls, and other
instrumented components by reading information from log files (e.g., API logs,

etc.) stored in a memory of the mobile device 102.

[0056] The behavior observer module 202 may also be configured to
monitor/observe mobile device operations and events (e.g., system events, state
changes, etc.) via the instrumented components, collect information pertaining to
the observed operations/events, intelligently filter the collected information,

generate one or more observations (e.g., behavior vectors, etc.) based on the

16

WO 2015/085267 PCT/US2014/068946

filtered information, and store the generated observations in a memory (e.g., in a
log file, etc.) and/or send (e.g., via memory writes, function calls, etc.) the
generated observations or collected behavior information to the behavior analyzer
module 204. In various aspects, the generated observations may be stored as a

behavior vector and/or in an API log file or structure.

[0057] The behavior observer module 202 may monitor/observe mobile device
operations and events by collecting information pertaining to library API calls in
an application framework or run-time libraries, system call APIs, file-system, and
networking sub-system operations, device (including sensor devices) state
changes, and other similar events. The behavior observer module 202 may also
monitor file system activity, which may include searching for filenames, categories
of file accesses (personal info or normal data files), creating or deleting files (e.g.,

type exe, zip, etc.), file read/write/seek operations, changing file permissions, etc.

[0058] The behavior observer module 202 may also monitor data network activity,
which may include types of connections, protocols, port numbers, server/client that
the device is connected to, the number of connections, volume or frequency of
communications, etc. The behavior observer module 202 may monitor phone
network activity, which may include monitoring the type and number of calls or
messages (e.g., SMS, etc.) sent out, received, or intercepted (e.g., the number of

premium calls placed).

[0059] The behavior observer module 202 may also monitor the system resource
usage, which may include monitoring the number of forks, memory access
operations, number of files open, etc. The behavior observer module 202 may
monitor the state of the mobile device, which may include monitoring various
factors, such as whether the display is on or off, whether the device is locked or
unlocked, the amount of battery remaining, the state of the camera, etc. The

behavior observer module 202 may also monitor inter-process communications

17

WO 2015/085267 PCT/US2014/068946

(IPC) by, for example, monitoring intents to crucial services (browser, contracts

provider, etc.), the degree of inter-process communications, pop-up windows, etc.

[0060] The behavior observer module 202 may also monitor/observe driver
statistics and/or the status of one or more hardware components, which may
include cameras, sensors, electronic displays, WiFi communication components,
data controllers, memory controllers, system controllers, access ports, timers,
peripheral devices, wireless communication components, external memory chips,
voltage regulators, oscillators, phase-locked loops, peripheral bridges, and other
similar components used to support the processors and clients running on the

mobile computing device.

[0061] The behavior observer module 202 may also monitor/observe one or more
hardware counters that denote the state or status of the mobile computing device
and/or mobile device sub-systems. A hardware counter may include a special-
purpose register of the processors/cores that is configured to store a count or state

of hardware-related activities or events occurring in the mobile computing device.

[0062] The behavior observer module 202 may also monitor/observe actions or
operations of software applications, software downloads from an application
download server (e.g., Apple® App Store server), mobile device information used
by software applications, call information, text messaging information (e.g.,
SendSMS, BlockSMS, ReadSMS, etc.), media messaging information (e.g.,
ReceiveMMS), user account information, location information, camera
information, accelerometer information, browser information, content of browser-
based communications, content of voice-based communications, short range radio
communications (e.g., Bluetooth®, WiFi, etc.), content of text-based
communications, content of recorded audio files, phonebook or contact

information, contacts lists, etc.

[0063] The behavior observer module 202 may monitor/observe transmissions or

communications of the mobile device, including communications that include

18

WO 2015/085267 PCT/US2014/068946

voicemail (VoiceMailComm), device identifiers (DevicelDComm), user account
information (UserAccountComm), calendar information (CalendarComm),
location information (LocationComm), recorded audio information

(RecordAudioComm), accelerometer information (AccelerometerComm), etc.

[0064] The behavior observer module 202 may monitor/observe usage of and
updates/changes to compass information, mobile device settings, battery life,
gyroscope information, pressure sensors, magnet sensors, projective capacitive
touch sensors, screen activity, etc. The behavior observer module 202 may
monitor/observe notifications communicated to and from a software application
(AppNotifications), application updates, etc. The behavior observer module 202
may monitor/observe conditions or events pertaining to a first software application
requesting the downloading and/or install of a second software application. The
behavior observer module 202 may monitor/observe conditions or events

pertaining to user verification, such as the entry of a password, etc.

[0065] The behavior observer module 202 may also monitor/observe conditions or
events at multiple levels of the mobile device, including the application level, radio
level, and sensor level. Application level observations may include observing the
user via facial recognition software, observing social streams, observing notes
entered by the user, observing events pertaining to the use of financial applications
such as PassBook, Google® wallet, and PayPal, observing a software application’s
access and use of protected information, etc. Application level observations may
also include observing events relating to the use of virtual private networks
(VPNs) and events pertaining to synchronization, voice searches, voice control
(e.g., lock/unlock a phone by saying one word), language translators, the
offloading of data for computations, video streaming, camera usage without user
activity, microphone usage without user activity, etc. The application level
observation may also include monitoring a software application’s use of biometric

sensors (e.g., fingerprint reader, voice recognition subsystem, retina scanner, etc.)

19

WO 2015/085267 PCT/US2014/068946

to authorize financial transactions, and conditions relating to the access and use of

the biometric sensors.

[0066] Radio level observations may include determining the presence, existence
or amount of any or more of: user interaction with the mobile device before
establishing radio communication links or transmitting information, dual/multiple
subscriber identity module (SIM) cards, Internet radio, mobile phone tethering,
offloading data for computations, device state communications, the use as a game
controller or home controller, vehicle communications, mobile device
synchronization, etc. Radio level observations may also include monitoring the
use of radios (WiFi, WiMax, Bluetooth, etc.) for positioning, peer-to-peer (p2p)
communications, synchronization, vehicle to vehicle communications, and/or
machine-to-machine (m2m). Radio level observations may further include

monitoring network traffic usage, statistics, or profiles.

[0067] Sensor level observations may include monitoring a magnet sensor or other
sensor to determine the usage and/or external environment of the mobile device.
For example, the mobile device processor may be configured to determine whether
the phone is in a holster (e.g., via a magnet sensor configured to sense a magnet
within the holster) or in the user’s pocket (e.g., via the amount of light detected by
a camera or light sensor). Detecting that the mobile device is in a holster may be
relevant to recognizing suspicious behaviors, for example, because activities and
functions related to active usage by a user (e.g., taking photographs or videos,
sending messages, conducting a voice call, recording sounds, etc.) occurring while
the mobile device is holstered could be signs of nefarious processes executing on

the device (e.g., to track or spy on the user).

[0068] Other examples of sensor level observations related to usage or external
environments may include, detecting near-field communications (NFC), collecting
information from a credit card scanner, barcode scanner, or mobile tag reader,

detecting the presence of a universal serial bus (USB) power charging source,

20

WO 2015/085267 PCT/US2014/068946

detecting that a keyboard or auxiliary device has been coupled to the mobile
device, detecting that the mobile device has been coupled to a computing device
(e.g., via USB, etc.), determining whether an LED, flash, flashlight, or light source
has been moditied or disabled (e.g., maliciously disabling an emergency signaling
app, etc.), detecting that a speaker or microphone has been turned on or powered,
detecting a charging or power event, detecting that the mobile device is being used
as a game controller, etc. Sensor level observations may also include collecting
information from medical or healthcare sensors or from scanning the user’s body,
collecting information from an external sensor plugged into the USB/audio jack,
collecting information from a tactile or haptic sensor (e.g., via a vibrator interface,
etc.), collecting information pertaining to the thermal state of the mobile device,
collecting information from a fingerprint reader, voice recognition subsystem,

retina scanner, projective capacitive touch sensor, etc.

[0069] The behavior observer module 202 may also monitor/observe the operating
system execution states associated with select activities, tasks, processes, or
software applications, such as the operating system state in which certain software
applications were executing when a mobile device behavior was
monitored/observer. The behavior observer module 202 may also monitor/observe
the user interface (UI) interactions between the user and the mobile device. For
example, if a helper application operating in a background execution state launches
a dialog box without a corresponding Ul interaction or event, the system may flag
this operation as suspicious, and collect additional information regarding the

activities and operations of the helper application.

[0070] That is, each software application generally performs a number of tasks or
activities on the mobile device, and certain tasks/activities inherently require that
the operating system or software application (or process, thread, etc.) be in an
execution state that supports or is compatible with those tasks/activities. For
example, the use of a camera, activating a microphone to record audio, sending

Short Message Service (SMS) messages, and the collection accelerometer data are

21

WO 2015/085267 PCT/US2014/068946

all tasks/activities that typically require some form of user interaction with the
mobile device (e.g., the user actuating the shutter-release button for the camera,
typing text, hitting a send button, etc.). As such, these activities generally must be
performed in the foreground or in an execution state that supports user interaction
with the mobile device. When these or other similar tasks/activities are preformed
in an execution state that does not support a high degree of user interaction with
the mobile device, such as in the background execution state, such an operating
condition may be a strong indicator that a mobile device behavior associated with
that activity is non-benign or otherwise merits additional or closer scrutiny,
monitoring or analysis. That is, the specific operating system execution state in
which certain tasks/activities are performed in the mobile device may be a strong
indicator of whether a mobile device behavior merits additional or closer scrutiny,
monitoring and/or analysis. As such, in the various aspects, the mobile device
processor may be configured to monitor the specific operating system execution

states in which certain tasks/activities are performed.

[0071] The behavior observer module 202 may be configured to generate behavior
vectors that include a concise definition of the observed behaviors. Each behavior
vector may succinctly describe observed behavior of the mobile device, software
application, or process in a value or vector data-structure (e.g., in the form of a
string of numbers, etc.). A behavior vector may also function as an identifier that
enables the mobile device system to quickly recognize, identify, and/or analyze
mobile device behaviors. In an aspect, the behavior observer module 202 may
generate a behavior vector that includes a series of symbols or numbers, each of
which signifies a feature or a behavior of the mobile device. For example,
numbers included in the behavior vector may signify whether a camera of the
mobile device is in use (e.g., as zero when the camera is off and one when the
camera is activated), an amount of network traffic that has been transmitted from
or generated by the mobile device (e.g., 20 KB/sec, etc.), a number of Internet
messages that have been communicated (e.g., number of SMS messages, etc.), and

so forth.

22

WO 2015/085267 PCT/US2014/068946

[0072] There may be a large variety of factors that may contribute to the
degradation in performance and power utilization levels of the mobile device over
time, including poorly designed software applications, malware, viruses,
fragmented memory, and background processes. Due to the number, variety, and
complexity of these factors, it is often not feasible to simultaneously evaluate all of
the various components, behaviors, processes, operations, conditions, states, or
features (or combinations thereof) that may degrade performance and/or power
utilization levels of the complex yet resource-constrained systems of modern
mobile devices. To reduce the number of factors monitored to a manageable level,
in an aspect, the behavior observer module 202 may be configured to
monitor/observe an initial or reduced set of behaviors or factors that are a small

subset of all factors that could contribute to the mobile device’s degradation.

[0073] In an aspect, the behavior observer module 202 may receive the initial set
of behaviors and/or factors from a network server 116 and/or a component in a
cloud service or cloud service provider network 118. In an aspect, the initial set of
behaviors/factors may be specified in a full classifier model received from the
network server 116. In another aspect, the initial set of behaviors/factors may be
specified in a lean classifier model that is generated in the mobile device based on
the full classitier model. In an aspect, the initial set of behaviors/factors may be
specified in an application-based classifier model that is generated in the mobile
device based on the full or lean classifier models. In various aspects, the
application-based classifier model may be an application-specific classifier model

or an application-type-specific classifier model.

[0074] The behavior observer module 202 may communicate (e.g., via a memory
write operation, function call, etc.) collected behavior information to the behavior
analyzer module 204. The behavior analyzer module 204 may receive and use the
behavior information to generate behavior vectors, generate spatial and/or
temporal correlations based on the behavior vectors, and use this information to

determine whether a particular mobile device behavior, condition, sub-system,

23

WO 2015/085267 PCT/US2014/068946

software application, or process is benign, suspicious, or not benign (i.e., malicious

or performance-degrading).

[0075] The behavior analyzer module 204 and/or the classifier module 208 may
be configured to perform real-time behavior analysis operations, which may
include performing, executing, and/or applying data, algorithms, classifiers, or
models (collectively referred to as “classifier models”) to the collected behavior
information to determine whether a mobile device behavior is benign or not benign
(e.g., malicious or performance-degrading). Each classifier model may be a
behavior model that includes data and/or information structures (e.g., feature
vectors, behavior vectors, component lists, etc.) that may be used by a mobile
device processor to evaluate a specific feature or aspect of a mobile device
behavior. Each classifier model may also include decision criteria for monitoring
(i.e., via the behavior observer module 202) a number of features, factors, data
points, entries, APIs, states, conditions, behaviors, applications, processes,
operations, components, etc. (collectively referred to as “features”) in the mobile
device 102. Classifier models may be preinstalled on the mobile device 102,
downloaded or received from the network server 116, generated in the mobile
device 102, or any combination thereof. The classifier models may also be
generated by using crowd sourcing solutions, behavior modeling techniques,

machine learning algorithms, etc.

[0076] Each classifier model may be categorized as a full classifier model or a
lean classifier model. A full classifier model may be a robust data model that is
generated as a function of a large training dataset, which may include thousands of
features and billions of entries. A lean classifier model may be a more focused
data model that is generated from a reduced dataset that includes or prioritizes tests
on the features/entries that are most relevant for determining whether a particular
mobile device behavior is benign or not benign (e.g., malicious or performance-

degrading).

24

WO 2015/085267 PCT/US2014/068946

[0077] The behavior analyzer module 204 and/or classifier module 208 may
receive the observations or behavior information from the behavior observer
module 202, compare the received information (i.e., observations) with contextual
information received from the external context information module 206, and
identify subsystems, processes, and/or applications associated with the received
observations that are contributing to (or are likely to contribute to) the device’s

degradation over time, or which may otherwise cause problems on the device.

[0078] In an aspect, the behavior analyzer module 204 and/or classifier module
208 may include intelligence for utilizing a limited set of information (i.e., coarse
observations) to identify behaviors, processes, or programs that are contributing
to—or are likely to contribute to—the device’s degradation over time, or which
may otherwise cause problems on the device. For example, the behavior analyzer
module 204 may be configured to analyze information (e.g., in the form of
observations) collected from various modules (e.g., the behavior observer module
202, external context information module 206, etc.), learn the normal operational
behaviors of the mobile device, and generate one or more behavior vectors based
the results of the comparisons. The behavior analyzer module 204 may send the

generated behavior vectors to the classifier module 208 for further analysis.

[0079] In an aspect, the classifier module 208 may be configured to apply or
compare behavior vectors to a classifier model to determine whether a particular
mobile device behavior, software application, or process is performance-
degrading/malicious, benign, or suspicious. When the classifier module 208
determines that a behavior, software application, or process is malicious or
performance-degrading, the classifier module 208 may notify the actuator module
210, which may perform various actions or operations to correct mobile device
behaviors determined to be malicious or performance-degrading and/or perform

operations to heal, cure, isolate, or otherwise fix the identified problem.

25

WO 2015/085267 PCT/US2014/068946

[0080] When the classifier module 208 determines that a behavior, software
application, or process is suspicious, the classifier module 208 may notify the
behavior observer module 202, which may adjust the adjust the granularity of its
observations (i.e., the level of detail at which mobile device behaviors are
observed) and/or change the behaviors that are observed based on information
received from the classifier module 208 (e.g., results of the real-time analysis
operations), generate or collect new or additional behavior information, and send
the new/additional information to the behavior analyzer module 204 and/or
classifier module 208 for further analysis/classification. Such feedback
communications between the behavior observer module 202 and the classifier
module 208 enable the mobile device 102 to recursively increase the granularity of
the observations (i.e., make finer or more detailed observations) or change the
teatures/behaviors that are observed until a source of a suspicious or performance-
degrading mobile device behavior is identified, until a processing or battery
consumption threshold is reached, or until the mobile device processor determines
that the source of the suspicious or performance-degrading mobile device behavior
cannot be 1dentified from further increases in observation granularity. Such
teedback communication also enable the mobile device 102 to adjust or modify the
data/behavior models locally in the mobile device without consuming an excessive

amount of the mobile device’s processing, memory, or energy resources.

[0081] In an aspect, the behavior observer module 202 and the behavior analyzer
module 204 may provide, either individually or collectively, real-time behavior
analysis of the computing system’s behaviors to identify suspicious behavior from
limited and coarse observations, to dynamically determine behaviors to observe in
greater detail, and to dynamically determine the level of detail required for the
observations. In this manner, the behavior observer module 202 enables the
mobile device 102 to efficiently identify and prevent problems from occurring on
mobile devices without requiring a large amount of processor, memory, or battery

resources on the device.

26

WO 2015/085267 PCT/US2014/068946

[0082] In various aspects, the behavior observer module 202 and/or the behavior
analyzer module 204 may be configured to analyze mobile device behaviors by
identifying a critical data resource that requires close monitoring, identifying an
intermediate resource associated with the critical data resource, monitoring API
calls made by a software application when accessing the critical data resource and
the intermediate resource, identifying mobile device resources that are consumed
or produced by the API calls, identifying a pattern of API calls as being indicative
of malicious activity by the software application, generating a lightweight behavior
signature based on the identified pattern of API calls and the identified mobile
device resources, using the lightweight behavior signature to perform behavior
analysis operations, and determining whether the software application is non-

benign based on the behavior analysis operations.

[0083] In various aspects, the behavior observer module 202 and/or the behavior
analyzer module 204 may be configured to analyze mobile device behaviors by
identifying APIs that are used most frequently by software applications executing
on the mobile device, storing information regarding usage of identified hot APIs in
an API log in a memory of the mobile device, and performing behavior analysis
operations based on the information stored in the API log to identify mobile device
behaviors that are inconsistent with normal operation patterns. In an aspect, the
API log may be generated so that it is organized such that that the values of
generic fields that remain the same across invocations of an API are stored in a
separate table as the values of specific fields that are specific to each invocation of
the API. The API log may also be generated so that the values of the specific
fields are stored in a table along with hash keys to the separate table that stores the

values of the generic fields.

[0084] In various aspects, the behavior observer module 202 and/or the behavior
analyzer module 204 may be configured to analyze mobile device behaviors by
receiving a full classifier model that includes a finite state machine that is suitable

for conversion or expression as a plurality of boosted decision stumps, generating

27

WO 2015/085267 PCT/US2014/068946

a lean classifier model in the mobile device based on the full classifier, and using
the lean classifier model in the mobile device to classify a behavior of the mobile
device as being either benign or not benign (i.e., malicious, performance
degrading, etc.). In an aspect, generating the lean classifier model based on the
full classifier model may include determining a number of unique test conditions
that should be evaluated to classify a mobile device behavior without consuming
an excessive amount of processing, memory, or energy resources of the mobile
device, generating a list of test conditions by sequentially traversing the list of
boosted decision stumps and inserting the test condition associated with each
sequentially traversed boosted decision stump into the list of test conditions until
the list of test conditions may include the determined number of unique test
conditions, and generating the lean classifier model to include or prioritize those
boosted decision stumps that test one of a plurality of test conditions included in

the generated list of test conditions.

[0085] In various aspects, the behavior observer module 202 and/or the behavior
analyzer module 204 may be configured to use device-specific information of the
mobile device to identify mobile device-specific, application-specific, or
application-type specific test conditions in a plurality of test conditions that are
relevant to classifying a behavior of the mobile device, generate a lean classifier
model that includes or prioritizes the identitied mobile device-specific,
application-specific, or application-type specific test conditions, and use the
generated lean classifier model in the mobile device to classify the behavior of the
mobile device. In an aspect, the lean classifier model may be generated to include
or prioritize decision nodes that evaluate a mobile device feature that is relevant to
a current operating state or configuration of the mobile device. In a further aspect,
generating the lean classifier model may include determining a number of unique
test conditions that should be evaluated to classify the behavior without consuming
an excessive amount of mobile device’s resources (e.g., processing, memory, or
energy resources), generating a list of test conditions by sequentially traversing the

plurality of test conditions 1n the full classifier model, inserting those test

28

WO 2015/085267 PCT/US2014/068946

conditions that are relevant to classifying the behavior of the mobile device into
the list of test conditions until the list of test conditions includes the determined
number of unique test conditions, and generating the lean classifier model to
include decision nodes included in the full classifier model that test one of the

conditions included in the generated list of test conditions.

[0086] In various aspects, the behavior observer module 202 and/or the behavior
analyzer module 204 may be configured to recognize mobile device behaviors that
are inconsistent with normal operation patterns of the mobile device by monitoring
an activity of a software application or process, determining an operating system
execution state of the software application/process, and determining whether the
activity is benign based on the activity and/or the operating system execution state
of the software application or process during which the activity was monitored. In
an further aspect, the behavior observer module 202 and/or the behavior analyzer
module 204 may determine whether the operating system execution state of the
software application or process is relevant to the activity, generate a shadow
teature value that identifies the operating system execution state of the software
application or process during which the activity was monitored, generate a
behavior vector that associates the activity with the shadow feature value
identifying the operating system execution state, and use the behavior vector to
determine whether the activity is benign, suspicious, or not benign (i.e., malicious

or performance-degrading).

[0087] As discussed above, a mobile device processor may receive or generate a
classifier model that includes a plurality of test conditions suitable for evaluating
various features, identify the mobile device features used by a specific software
application or software application-type, identify the test conditions in the
received/generated classifier model that evaluate the identified mobile device
tfeatures, and generate an application-specific and/or application-type specific
classifier models that include or prioritize the identified test conditions. The

teatures used by the specific software application or a specific software

29

WO 2015/085267 PCT/US2014/068946

application-type may be determined by monitoring or evaluating mobile device
operations, mobile device events, data network activity, system resource usage,
mobile device state, inter-process communications, driver statistics, hardware
component status, hardware counters, actions or operations of software
applications, software downloads, changes to device or component settings,
conditions and events at an application level, conditions and events at the radio
level, conditions and events at the sensor level, location hardware, personal area
network hardware, microphone hardware, speaker hardware, camera hardware,
screen hardware, universal serial bus hardware, synchronization hardware, location
hardware drivers, personal area network hardware drivers, near field
communication hardware drivers, microphone hardware drivers, speaker hardware
drivers, camera hardware drivers, gyroscope hardware drivers, browser supporting
hardware drivers, battery hardware drivers, universal serial bus hardware drivers,
storage hardware drivers, user interaction hardware drivers, synchronization
hardware drivers, radio interface hardware drivers, and location hardware, near
tfield communication (NFC) hardware, screen hardware, browser supporting
hardware, storage hardware, accelerometer hardware, synchronization hardware,
dual SIM hardware, radio interface hardware, and features unrelated related to any

specific hardware.

[0088] For example, in various aspects, the mobile device processor may identify
mobile device features used by a specific software application (or specific software
application type) by collecting information from one or more instrumented
components, such as an inertia sensor component, a battery hardware component, a
browser supporting hardware component, a camera hardware component, a
subscriber identity module (SIM) hardware component, a location hardware
component, a microphone hardware component, a radio interface hardware
component, a speaker hardware component, a screen hardware component, a
synchronization hardware component, a storage component, a universal serial bus
hardware component, a user interaction hardware component, an inertia sensor

driver component, a battery hardware driver component, a browser supporting

30

WO 2015/085267 PCT/US2014/068946

hardware driver component, a camera hardware driver component, a SIM
hardware driver component, a location hardware driver component, a microphone
hardware driver component, a radio interface hardware driver component, a
speaker hardware driver component, a screen hardware driver component, a
synchronization hardware driver component, a storage driver component, a
universal serial bus hardware driver component, a hardware component connected

through a universal serial bus, and a user interaction hardware driver component.

[0089] In various aspects, the mobile device processor may identify mobile device
features used by a specific software application (or specific software application
type) by monitoring or analyzing one or more of library application programming
interface (API) calls in an application framework or run-time library, system call
APIs, file-system and networking sub-system operations, file system activity,
searches for filenames, categories of file accesses, changing of file permissions,
operations relating to the creation or deletion of files, and file read/write/seek

operations.

[0090] In various aspects, the mobile device processor may identify mobile device
features used by a specific software application (or specific software application
type) by monitoring or analyzing one or more of connection types, protocols, port
numbers, server/client that the device is connected to, the number of connections,
volume or frequency of communications, phone network activity, type and number
of calls/messages sent, type and number of calls/messages received, type and
number of calls/messages intercepted, call information, text messaging
information, media messaging, user account information, transmissions, voicemail,

and device identifiers.

[0091] In various aspects, the mobile device processor may identify mobile device
features used by a specific software application (or specific software application
type) by monitoring or analyzing one or more of the number of forks, memory

access operations, and the number of files opened by the software application. In

31

WO 2015/085267 PCT/US2014/068946

various aspects, the mobile device processor may identify mobile device features
used by a specific software application (or specific software application type) by
monitoring or analyzing state changes caused by the software application,
including a display on/off state, locked/unlocked state, battery charge state, camera

state, and microphone state.

[0092] In various aspects, the mobile device processor may identify mobile device
features used by a specific software application (or specific software application
type) by monitoring or analyzing crucial services, a degree of inter-process
communications, and pop-up windows generated by the software application. In
various aspects, the mobile device processor may identify mobile device features
used by a specific software application (or specific software application type) by
monitoring or analyzing statistics from drivers for one or more of cameras,
sensors, electronic displays, WiFi communication components, data controllers,
memory controllers, system controllers, access ports, peripheral devices, wireless

communication components, and external memory chips.

[0093] In various aspects, the mobile device processor may identify mobile device
features used by a specific software application (or specific software application
type) by monitoring or analyzing the access or use of cameras, sensors, electronic
displays, WiFi communication components, data controllers, memory controllers,
system controllers, access ports, timers, peripheral devices, wireless
communication components, external memory chips, voltage regulators,
oscillators, phase-locked loops, peripheral bridges, and other similar components
used to support the processors and clients running on the mobile computing

device.

[0094] In various aspects, the mobile device processor may identify mobile device
features used by a specific software application (or specific software application
type) by monitoring or analyzing the access or use of hardware counters that

denote the state or status of the mobile computing device and/or mobile device

32

WO 2015/085267 PCT/US2014/068946

sub-systems and/or special-purpose registers of processors/cores that are

configured to store a count or state of hardware-related activities or events.

[0095] In various aspects, the mobile device processor may identify mobile device
features used by a specific software application (or specific software application
type) by monitoring or analyzing the types of information used by the software
application, including location information, camera information, accelerometer
information, browser information, content of browser-based communications,
content of voice-based communications, short range radio communications,
content of text-based communications, content of recorded audio files, phonebook
or contact information, contacts lists, calendar information, location information,
recorded audio information, accelerometer information, notifications
communicated to and from a software application, user verifications, and a user

password.

[0096] In various aspects, the mobile device processor may identify mobile device
features used by a specific software application (or specific software application
type) by monitoring or analyzing one or more of software downloads from an
application download server, and a first software application requesting the

downloading and/or install of a second software application.

[0097] FIG. 3 illustrates example components and information flows in a system
300 that includes a network server 116 configured to work in conjunction with the
mobile device 102 to intelligently and efficiently identify performance-degrading
mobile device behaviors on the mobile device 102 without consuming an
excessive amount of processing, memory, or energy resources of the mobile device
102. In the example illustrated in FIG. 3, the mobile device 102 includes a feature
selection and culling module 304, a lean classifier model generator module 306,
and an application-based classifier model generator module 308, which may

include an application-specific classifier model generator module 310 and an

33

WO 2015/085267 PCT/US2014/068946

application-type-specific classifier model generator module 312. The network

server 116 includes a full classifier model generator module 302.

[0098] Any or all of the modules 304-312 may be a real-time online classifier
module and/or included in the behavior analyzer module 204 or classifier module
208 illustrated in FIG. 2. In an aspect, the application-based classifier model
generator module 308 may be included in the lean classifier model generator
module 306. In various aspects, the feature selection and culling module 304 may
be included in the application-based classitier model generator module 308 or in

the lean classifier model generator module 306.

[0099] The network server 116 may be configured to receive information on
various conditions, features, behaviors, and corrective actions from the cloud
service/network 118, and use this information to generate a full classifier model
that describes a large corpus of behavior information in a format or structure that
can be quickly converted into one or more lean classifier models by the mobile
device 102. For example, the full classitier model generator module 302 in the
network server 116 may use a cloud corpus of behavior vectors received from the
cloud service/network 118 to generate a full classifier model, which may include a
finite state machine description or representation of the large corpus of behavior
information. The finite state machine may be an information structure that may be
expressed as one or more decision nodes, such as a family of boosted decision
stumps that collectively identify, describe, test, or evaluate all or many of the

features and data points that are relevant to classifying mobile device behavior.

[0100] The network server 116 may send the full classifier model to the mobile
device 102, which may receive and use the full classifier model to generate a
reduced feature classifier model or a family of classifier models of varying levels
of complexity or leanness. In various aspects, the reduced feature classifier
models may be generated in the feature selection and culling module 304, lean

classifier model generator module 306, the application-based classifier model

34

WO 2015/085267 PCT/US2014/068946

generator module 308, or any combination thereof. That is, the feature selection
and culling module 304, lean classifier model generator module 306, and/or
application-based classifier model generator module 308 modules of the mobile
device 102 may, collectively or individually, use the information included in the
tull classifier model received from the network server to generate one or more
reduced feature classifier models that include a subset of the features and data

points included in full classifier model.

[0101] For example, the lean classifier model generator module 306 and feature
selection and culling module 304 may collectively cull the robust family of
boosted decision stumps included in the finite state machine of the full classifier
model received from the network server 116 to generate a reduced feature
classifier model that includes a reduced number of boosted decision stumps and/or
evaluates a limited number of test conditions. The culling of the robust family of
boosted decision stumps may be accomplished by selecting a boosted decision
stump, identifying all other boosted decision stumps that test or depend upon the
same mobile device feature as the selected decision stump, and adding the selected
stump and all the identified other boosted decision stumps that test or depend upon
the same mobile device feature to an information structure. This process may then
be repeated for a limited number of stumps or device features, so that the
information structure includes all boosted decision stumps in the full classifier
model that test or depend upon a small or limited number of different features or
conditions. The mobile device may then use this information structure as a lean
classifier model to test a limited number of different features or conditions of the
mobile device, and to quickly classify a mobile device behavior without

consuming an excessive amount of its processing, memory, or energy resources.

[0102] The lean classifier model generator module 306 may be further configured
to generate classifier models that are specific to the mobile device and to a
particular software application or process that may execute on the mobile device.

In this manner, one or more lean classifier models may be generated that

35

WO 2015/085267 PCT/US2014/068946

preferentially or exclusively test features or elements that pertain to the mobile
device and that are of particular relevance to the software application. These
device- and application-specific/application type-specific lean classifier models
may be generated by the lean classifier model generator module 306 in one pass by
selecting test conditions that are relevant to the application and pertain to the
mobile device. Alternatively, the lean classifier model generator module 306may
generate a device-specific lean classifier model including test conditions pertinent
to the mobile device, and from this lean classifier model, generate a further refined
model that includes or prioritize those test conditions that are relevant to the
application. As a further alternative, the lean classifier model generator module
306 may generate a lean classifier model that is relevant to the application, and
then remove test conditions that are not relevant to mobile device. For ease of
description, the processes of generating a device-specific lean classifier model are
described first, followed by processes of generating an application-specific or

application-type specific lean classifier model.

[0103] The lean classifier model generator module 306 may be configured to
generate device-specific classifier models by using device-specific information of
the mobile device 102 to identify mobile device-specific features (or test
conditions) that are relevant or pertain to classifying a behavior of that specific
mobile device 102. The lean classifier model generator module 306 may use this
information to generate the lean classifier models that preferentially or exclusively
include, test, or depend upon the identified mobile device-specific features or test
conditions. The mobile device 102 may then use these locally generated lean
classifier models to classify the behavior of the mobile device without consuming
an excessive amount of its processing, memory, or energy resources. That is, by
generating the lean classifier models locally in the mobile device 102 to account
tfor device-specific or device-state-specific features, the various aspects allow the
mobile device 102 to focus its monitoring operations on the features or factors that
are most important for identifying the source or cause of an undesirable behavior

in that specific mobile device 102.

36

WO 2015/085267 PCT/US2014/068946

[0104] The lean classifier model generator module 306 may also be configured to
determine whether an operating system execution state of the software
application/process is relevant to determining whether any of the monitored mobile
device behaviors are malicious or suspicious, and generate a lean classifier model
that includes, identifies, or evaluates features or behaviors that take the operating
system execution states into account. The mobile device 102 may then use these
locally generated lean classifier models to preferentially or exclusively monitor the
operating system execution states of the software applications for which such
determinations are relevant. This allows the mobile device 102 to focus its
operations on the most important features and functions of an application in order
to better predict whether a behavior is benign. That 1s, by monitoring the operating
system execution states of select software applications (or processes, threads, etc.),
the various aspects allow the mobile device 102 to better predict whether a
behavior is benign or non-benign. Further, by intelligently determining whether
the operating system execution state of a software application is relevant to the
determination of whether a behavior is benign or malicious—and selecting for
monitoring the software applications (or processes, threads, etc.) for which such
determinations are relevant—the various aspects allow the mobile device 102 to
better focus its operations and identify performance-degrading behaviors/factors
without consuming an excessive amount of processing, memory, or energy

resources of the mobile device.

[0105] In an aspect, the feature selection and culling module 304 may be
configured to allow for feature selection and generation of classifier models “on
the fly” and without requiring that the mobile device 102 to access the cloud data
for retraining. This allows the application-based classifier model generator
module 308 to generate/create classifier models in the mobile device 102 that
allow the mobile device 102 to focus its operations on evaluating the features that
relate to specific software applications or to specific types, classes, or categories of

software applications.

37

WO 2015/085267 PCT/US2014/068946

[0106] That is, the application-based classifier model generator module 308
allows the mobile device 102 to generate and use highly focused and lean classifier
models that preferentially or exclusively test or evaluate the features of the mobile
device that are associated with an operation of a specific software application or
with the operations that are typically performed by a certain type, class, or
category of software applications. To accomplish this, the application-based
classifier model generator module 308 may intelligently identify software
applications that are at high-risk for abuse and/or are have a special need for
security, and for each of these identified applications, determine the activities that
the application can or will perform during its execution. The application-based
classifier model generator module 308 may then associate these activities with data
centric features of the mobile device to generate classifier models that are well
suited for use by the mobile device in determining whether an individual software
application is contributing to, or is likely to contribute to, a performance degrading

behavior of the mobile device 102.

[0107] The application-based classifier model generator module 308 may be
configured to generate application-specific and/or application-type-specific
classifier models every time a new application is installed or updated in the mobile
device. This may be accomplished via the application-specific classifier model
generator module 310 and/or application-type-specific classifier model generator

module 312.

[0108] The application-type-specific classifier model generator module 312 may
be configured to generate a classifier model for a specific software application
based on a category, type, or classification of that software application (e.g. game,
navigation, financial, etc.). The application-type-specific classifier model
generator module 312 may determine the category, type, or classification of the
software application by reading an application store label associated with the
software application, by performing static analysis operations, and/or by

comparing the software application to other similar software applications.

38

WO 2015/085267 PCT/US2014/068946

[0109] For example, the application-type-specific classifier model generator
module 312 may evaluate the permissions (e.g., operating system, file, access, etc.)
and/or API usage patterns of a first software application, compare this information
to the permissions or API usage pattern of a second software application to
determine whether the first software application includes the same set of
permissions or utilizes the same set of APIs as the second software application,
and use labeling information of the second software application to determine a
software application type (e.g., financial software, banking application, etc.) for
the first software application when the first software application includes the same
set of permissions or utilizes the same set of APIs as the second software
application. The application-type-specific classifier model generator module 312
may then generate, update, or select a classifier model that is suitable for
evaluating the first software application based on the determined software
application type. In an aspect, this may be achieved by culling the decision nodes
included in the full classifier model received from the network server 116 based on

the determined software application type.

[0110] The application-specific classifier model generator module 310 may be
configured to generate a classifier model for a specific software application based
on labeling information, static analysis, install time analysis, or by determining the
operating system, file, and/or access permissions of the software application. For
example, the mobile device may perform static analysis of the software application
each time the software application is updated, store the results of this analysis in a
memory of the mobile device, use this information to determine the mobile device
conditions or factors that are most important for determining whether that
application is contributing to a suspicious mobile device behavior, and cull the
decision nodes included in the full classifier model to include nodes that test the

most important conditions or factors.

39

WO 2015/085267 PCT/US2014/068946

[0111] FIG. 4 illustrates an aspect method 400 of generating application-specific
and/or application-type-specific classifier models in a mobile device 102. Method

400 may be performed by a processing core of a mobile device 102.

[0112] In block 402, the processing core may use information included in a full
classifier model 452 to generate a large number of decision nodes 448 that
collectively identify, describe, test, or evaluate all or many of the features and data
points that are relevant to determining whether a mobile device behavior is benign
or contributing to the degradation in performance or power consumption
characteristics of the mobile device 102 over time. For example, in block 402, the
processing core may generate one-hundred (100) decision nodes 448 that test forty

(40) unique conditions.

[0113] In an aspect, the decision nodes 448 may be decision stumps (e.g., boosted
decision stumps, etc.). Each decision stump may be a one level decision tree that
has exactly one node that tests one condition or mobile device feature. Because
there is only one node in a decision stump, applying a feature vector to a decision
stump results in a binary answer (e.g., yes or no, non-benign, etc.). For example, if
the condition tested by a decision stump 448b is “is the frequency of SMS
transmissions less than x per min,” applying a value of “3” to the decision stump
448b will result in either a “yes” answer (for “less than 3” SMS transmissions) or a
“no” answer (for “3 or more” SMS transmissions). This binary “yes” or “no”
answer may then be used to classify the result as indicating that the behavior is
either malicious (M) or benign (B). Since these stumps are very simple
evaluations (basically binary), the processing to perform each stump is very simple

and can be accomplished quickly and/or in parallel with less processing overhead.

[0114] In an aspect, each decision node 448 may be associated a weight value that
1s indicative of how much knowledge is gained from answering the test question
and/or the likelihood that answering the test condition will enable the processing

core to determine whether a mobile device behavior is benign. The weight

40

WO 2015/085267 PCT/US2014/068946

associated with a decision node 448 may be computed based on information
collected from previous observations or analysis of mobile device behaviors,
software applications, or processes in the mobile device. In an aspect, the weight
associated with each decision node 448 may also be computed based on how many
units of the corpus of data (e.g., cloud corpus of data or behavior vectors) are used
to build the node. In an aspect, the weight values may be generated based on the
accuracy or performance information collected from the execution/application of

previous data/behavior models or classifiers.

[0115] Returning to FIG. 4, in block 404, the processing core may generate a lean
classifier model 454 that includes a focused subset of the decision nodes 448
included in the full classifier model 452. To accomplish this, the processing core
may perform feature selection operations, which may include generating an
ordered or prioritized list of the decision nodes 448 included in the full classifier
model 452, determining a number of unique test conditions that should be
evaluated to classify a mobile device behavior without consuming an excessive
amount of processing, memory, or energy resources of the mobile device 102,
generating a list of test conditions by sequentially traversing the ordered/prioritized
list of decision nodes 448 and inserting a test condition associated with each
sequentially traversed decision node 448 into the list of test conditions until the list
of test conditions includes the determined number of unique test conditions, and
generating an information structure that preferentially or exclusively includes the
decision nodes 448 that test one of the test conditions included in the generated list
of test conditions. In an aspect, the processing core may generate a family
classifier models so that each classifier model 454 in the family of classifier
models evaluates a different number of unique test conditions and/or includes a

different number of decision nodes.

[0116] In block 406, the processing core may trim, cull, or prune the decision
nodes (i.e., boosted decision stumps) included in one of the lean classifier models

454 to generate an application-specific classifier model 456 that preferentially or

41

WO 2015/085267 PCT/US2014/068946

exclusively includes the decision nodes in the lean classifier model 454 that test or
evaluate conditions or features that are relevant to a specific software application
(i.e., Google® wallet), such as by dropping decision nodes that address API’s or
functions that are not called or invoked by the application, as well as dropping
decision nodes regarding device resources that are not accessed or modified by the
application. In an aspect, the processing core may generate the application-
specific classifier model 456 by performing feature selection and culling
operations. In various aspects, the processing core may identify decision nodes
448 tfor inclusion in a application-specific classifier model 456 based on labeling
information associated with a software application, the results of performing static
analysis operations on the application, the results of performing install time
analysis of the application, by evaluating the operating system, file, and/or access
permissions of the software application, by evaluating the API usage of the

application, etc.

[0117] In an aspect, in block 406, the processing core may generate a plurality of
application-specific classifier models 456, each of which evaluate a different
software application. In an aspect, the processing core may generate an
application-specific classifier model 456 for every software application in the
system and/or so that every application running on the mobile device has its own
active classifier. In an aspect, in block 406, the processing core may generate a
tamily of application-specific classifier models 456. Each application-specitic
classifier model 456 in the family of application-specific classifier models 456
may evaluate a different combination or number of the features that are relevant to

a single software application.

[0118] In block 408, the processing core may trim, cull, or prune the decision
nodes (i.e., boosted decision stumps) included in one of the lean classifier models
454 to generate application-type-specific classifier models 458. The generated
application-type-specific classifier models 458 may preferentially or exclusively

include the decision nodes that are included in the full or lean classifier models

42

WO 2015/085267 PCT/US2014/068946

452, 454 that test or evaluate conditions or features that are relevant to a specific
type, category, or class of software applications (e.g. game, navigation, financial,
etc.). In an aspect, the processing core may identify the decision nodes for
inclusion in the application-type-specific classifier model 458 by performing
feature selection and culling operations. In an aspect, the processing core may
determine the category, type, or classification of each software application and/or
identify the decision nodes 448 that are to be included in a application-type-
specific classifier model 458 by reading an application store label associated with
the software application, by performing static analysis operations, and/or by

comparing the software application to other similar software applications.

[0119] In block 410, the processing core may use one or any combination of the
locally generated classifier models 454, 456, 458 to perform real-time behavior
monitoring and analysis operations, and predict whether a complex mobile device
behavior is benign or contributing to the degradation of the performance or power
consumption characteristics of the mobile device. In an aspect, the mobile device
may be configured use or apply multiple classifier models 454, 456, 458 in
parallel. In an aspect, the processing core may give preference or priority to the
results generated from applying or using application-based classifier models 456,
458 over the results generated from applying/using the lean classifier model 454
when evaluating a specific software application. The processing core may use the
results of applying the classitier models to predict whether a complex mobile
device behavior is benign or contributing to the degradation of the performance or

power consumption characteristics of the mobile device over time.

[0120] By dynamically generating the application-based classifier models 456,
458 locally in the mobile device to account for application-specitic or application-
type-specific features and/or functionality, the various aspects allow the mobile
device 102 to focus its monitoring operations on a small number of features that
are most important for determining whether the operations of a specific software

application are contributing to an undesirable or performance depredating behavior

43

WO 2015/085267 PCT/US2014/068946

of the mobile device. This improves the performance and power consumption
characteristics of the mobile device 102, and allows the mobile device to perform
the real-time behavior monitoring and analysis operations continuously or near
continuously without consuming an excessive amount of its processing, memory,

or encrgy resources.

[0121] FIG. 5A illustrates an example classifier model 500 that may be used by an
aspect mobile device 102 to apply a behavior vector to multiple application-based
classifier models in parallel. The classifier model 500 may be a full classifier
model or a locally generated lean classifier model. The classifier model 500 may
include a plurality of decision nodes 502-514 that are associated with one or more
software applications Appl-App5S. For example, in FIG. 5A decision node 502 is
associated with software applications Appl, App2, App4, and App3, decision node
504 1s associated with App1, decision node 506 is associated with Appl and App2,
decision node 508 is associated with software applications Appl, App2, App4, and
AppS5, decision node 510 is associated with software applications Appl, App2, and
AppS5, decision node 512 is associated with software applications Appl, and
decision node 514 is associated with software applications Appl, App2, App4, and
AppS.

[0122] In an aspect, a processing core in the mobile device may be configured to
use the mappings between the decision nodes 502-514 and the software
applications App1-AppS to partition the classifier model 500 into a plurality of
application-based classifier models. For example, the processor may use the
mappings to determine that an application-based classifier for App1 should include
decision nodes 502-514, whereas an application-based classifier for App1 should
include decision nodes 502, 506, 508, 510, and 514. That is, rather than generating
and executing a different classifier model for each software application, the
processing core may apply a behavior vector to all the decision nodes 502-514
included in the classifier model 500 to execute the same set of decision nodes 502-

514 for all the classifiers. For each application Appl-AppS5, the mobile device

44

WO 2015/085267 PCT/US2014/068946

may apply a mask (e.g., a zero-one mask) to the classifier model 500 so that the
decision nodes 502-514 that are relent to the application App1-App5 are used or

prioritized to evaluate device behaviors when that application is executing.

[0123] In an aspect, the mobile device may calculate different weight values or
different weighted averages for the decision nodes 502-514 based on their
relevance to their corresponding application Appl-AppS. Computing such a
confidence for the malware/benign value may include evaluating a number of
decision nodes 502-514 and taking a weighted average of their weight values. In
an aspect, the mobile device may compute the confidence value over the same or
different lean classifiers. In an aspect, the mobile device may compute different
weighted averages for each combination of decision nodes 502-514 that make up a

classifier.

[0124] FIG. 5B illustrates an aspect method 510 of generating classifier models
that account for application-specific and application-type-specific features of a
mobile device. Method 510 may be performed by a processing core in a mobile

device.

[0125] Inblock 512, the processing core may perform joint feature selection and
culling (JFSP) operations to generate a lean classifier model that includes a
reduced number of decision nodes and features/test conditions. In block 518, the
processing core may prioritize or rank the features/test conditions in accordance

with their relevance to classifying a behavior of the mobile device.

[0126] In block 514, the processing core may derive or determine features/test
conditions for a software application by evaluating that application’s permission
set {Fper}. In block 516, the processing core may determine the set of features or
test conditions {Finstall} for a software application by evaluating the results of
performing static or install time analysis on that application. In block 520, the

processing core may prioritize or rank the features/test conditions for each

45

WO 2015/085267 PCT/US2014/068946

application in accordance with their relevance to classifying a behavior of the

mobile device. In an aspect, this may be accomplished by via the formula:
{Fapp} = {Fper} U {Finstall}

[0127] Inblock 522, the processing core may prioritize or rank the per application
teatures {Fapp} by using JFSP as an ordering function. For example, the
processing core may perform JFSP operations on the lean classifier generated in
block 518. In block 524, the processing core may generate the ranked list of per
application features {Fapp}. In block 526, the processing core may apply JFSP to
select the features of interest. In block 528, the processing core may generate the

per application lean classifier model to include the features of interest.

[0128] FIG. 6A illustrates a method 600 of analyzing a software application
operating in a processing core of a computing device in accordance with an aspect.
In block 602, the processing core may monitor the activities of the software
application, such as by collecting behavior information from a log of actions stored
in a memory of the computing device or performing any of the

monitoring/observation operations discussed above with reference to FIG. 2.

[0129] In block 604, the processing core may use the collected behavior
information to generate a behavior vector that characterizes the monitored
activities of the software application. In determination block 606, the processing
core may determine whether the generated behavior vector includes a behavioral
clue or distinguishing behavior that identifies the software application. For
example, in determination block 606, the processing core may determine whether
the generated behavior vector includes information identifying use of an
unexpected device feature by the software application and/or information

identifying unusual use of a device feature by the software application.

[0130] In response to determining that the generated behavior vector does not

include a distinguishing behavior (i.e., determination block 606 = “No”), in block

46

WO 2015/085267 PCT/US2014/068946

610, the processing core may perform any of the analysis or actuation operations
discussed in this application. For example, the processing core may apply the
generated behavior vector to a classifier model to determine whether the software
application is non-benign, and terminate the software application when a result of
applying the behavior vector to the classifier model indicates that the software

application is non-benign.

[0131] In response to determining that the generated behavior vector includes a
distinguishing behavior (i.e., determination block 606 = “Yes”), the processing
core may categorize the software application as being critical, important, or
susceptible to abuse in block 610. In block 612, the processing core may perform
deep behavioral analysis, which may include applying the behavior vector to a
tocused classifier model, collecting more detailed observations, performing deeper

logging, etc.

[0132] FIG. 6B illustrates an aspect method 620 of authenticating a software
application operating in a processing core of a computing device. In block 622,
the processing core may monitor the activities of the software application, such as
by collecting behavior information from a log of actions stored in a memory of the
computing device or performing any of the monitoring/observation operations

discussed above with reference to FIG. 2.

[0133] In block 624, the processing core may use the collected behavior
information to generate a behavior vector that characterizes the monitored
activities of the software application. In determination block 626, the processing
core may determine whether the generated behavior vector includes a
distinguishing behavior that identifies the software application as being from a
known or trusted vendor. For example, in determination block 626, the processing
core may determine whether the generated behavior vector includes information
identifying use of an unexpected device feature by the software application. As

another example, the processing core may determine whether the generated

47

WO 2015/085267 PCT/US2014/068946

behavior vector includes information identifying unusual use of a device feature by

the software application.

[0134] In response to determining that the generated behavior vector includes a
distinguishing behavior (i.e., determination block 626 = “Yes”), the processing
core may authenticate the software application by classifying the software
application as benign in block 628. In response to determining that the generated
behavior vector does not include a distinguishing behavior (i.e., determination
block 626 = “No”), the processing core may perform any of the analysis or
actuation operations discussed in this application in block 630. For example, the
processing core may apply the generated behavior vector to a classifier model to
determine whether the software application is non-benign, and terminate the
software application when a result of applying the behavior vector to the classifier

model indicates that the software application is non-benign.

[0135] FIG. 6C illustrates an aspect method 650 of generating a lean or focused
classifier/behavior models that account for application-specific and application-
type-specific features of a computing device. Method 650 may be performed by a
processing core in a computing device after method 600 or method 620, such as in
response to determining that the generated behavior vector does not include a
distinguishing behavior which may be a sort of behavioral clue that the behavior

monitoring system using a classifier model will recognize.

[0136] In block 652, the processing core may retrieve or receive a full classifier
model that is or includes a finite state machine, a list of boosted decision trees,
stumps or other similar information structure that identifies a plurality of test
conditions. In an aspect, the full classifier model includes a finite state machine
that includes information suitable for expressing plurality of boosted decision
stumps and/or which include information that is suitable for conversion by the
mobile device into a plurality of boosted decision stumps. In an aspect, the finite

state machine may be (or may include) an ordered or prioritized list of boosted

48

WO 2015/085267 PCT/US2014/068946

decision stumps. Each of the boosted decision stumps may include a test condition

and a weight value.

[0137] Inblock 654, the processing core may determine the number unique test
conditions that should be evaluated to accurately classify a mobile device behavior
as being either non-benign without consuming an excessive amount of processing,
memory, or energy resources of the mobile device. This may include determining
an amount of processing, memory, and/or energy resources available in the mobile
device, the amount processing, memory, or energy resources of the mobile device
that are required to test a condition, determining a priority and/or a complexity
associated with a behavior or condition that is to be analyzed or evaluated in the
mobile device by testing the condition, and selecting/determining the number of
unique test conditions so as to strike a balance or tradeoff between the
consumption of available processing, memory, or energy resources of the mobile
device, the accuracy of the behavior classification that is to be achieved from
testing the condition, and the importance or priority of the behavior that is tested

by the condition.

[0138] In block 656, the processing core may use device-specific or device-state-
specific information to quickly identify the features and/or test conditions that
should be included or excluded from the lean classifier models. For example, the
processing core may identify the test conditions that test conditions, features, or
factors that cannot be present in the mobile device due to the mobile device's
current hardware or software configuration, operating state, etc. As another
example, the processing core may identify and exclude from the lean classifier
models the features/nodes/stumps that are included in the full model and test
conditions that cannot exist in the mobile device and/or which are not relevant to

the mobile device.

[0139] In an aspect, in block 658, the processing core may traverse the list of

boosted decision stumps from the beginning to populate a list of selected test

49

WO 2015/085267 PCT/US2014/068946

conditions with the determined number of unique test conditions and to exclude
the test conditions identified in block 626. For example, the processing core may
skip, ignore, or delete features included in the full classifier model that test
conditions that cannot be used by the software application. In an aspect, the
processing core may also determine an absolute or relative priority value for each
of the selected test conditions, and store the absolute or relative priorities value in
association with their corresponding test conditions in the list of selected test

conditions.

[0140] In an aspect, in block 658, the processing core may generating a list of test
conditions by sequentially traversing the plurality of test conditions in the full
classifier model and inserting those test conditions that are relevant to classitying
the behavior of the mobile device into the list of test conditions until the list of test
conditions includes the determined number of unique test conditions. In a further
aspect, generating the list of test conditions may include sequentially traversing the
decision nodes of the full classifier model, ignoring decision nodes associated with
test conditions not relevant to the software application, and inserting test
conditions associated with each sequentially traversed decision node that is not
ignored into the list of test conditions until the list of test conditions includes the

determined number of unique test conditions.

[0141] In block 660, the processing core may generate a lean classifier model that
includes all the boosted decision stumps included in the full classifier model that
test one of the selected test conditions (and thus exclude the test conditions
identified in block 656) identified in the generated list of test conditions. In an
aspect, the processing core may generate the lean classifier model to include or
express the boosted decision stumps in order of their importance or priority value.
In an aspect, in block 660, the processing core may increase the number of unique
test conditions in order to generate another more robust (i.e., less lean) lean
classifier model by repeating the operations of traversing the list of boosted

decision stumps for a larger number test conditions in block 658 and generating

50

WO 2015/085267 PCT/US2014/068946

another lean classifier mode. These operations may be repeated to generate a

tamily of lean classifier models.

[0142] In block 662, the processing core may use application-specific information
and/or application-type specific information to indentify features or test conditions
that are included in the lean classifier model and which are relevant to determining
whether a software application is contributing to a performance degrading
behavior of a mobile device. In block 664, the processing core may traverse the
boosted decision stumps in the lean classifier model and select or map the decision
stumps that test a feature or condition that is used by a software application to that
software application, and use the selected or mapped decision stumps as an
application-specific classifier model or an application-type-specific classifier

model.

[0143] FIG. 7 illustrates an aspect method 700 of using a lean classifier model to
classify a behavior of the mobile device. Method 700 may be performed by a

processing core in a mobile device.

[0144] In block 702, the processing core my perform observations to collect
behavior information from various components that are instrumented at various
levels of the mobile device system. In an aspect, this may be accomplished via the
behavior observer module 202 discussed above with reference to FIG. 2. In block
704, the processing core may generate a behavior vector characterizing the
observations, the collected behavior information, and/or a mobile device behavior.
Also in block 704, the processing core may use a full classifier model received
from a network server to generate a lean classifier model or a family of lean
classifier models of varying levels of complexity (or “leanness”). To accomplish
this, the processing core may cull a family of boosted decision stumps included in
the full classitier model to generate lean classifier models that include a reduced
number of boosted decision stumps and/or evaluate a limited number of test

conditions.

51

WO 2015/085267 PCT/US2014/068946

[0145] In block 706, the processing core may select the leanest classifier in the
tamily of lean classifier models (i.e., the model based on the fewest number of
different mobile device states, features, behaviors, or conditions) that has not yet
been evaluated or applied by the mobile device. In an aspect, this may be
accomplished by the processing core selecting the first classifier model in an

ordered list of classifier models.

[0146] In block 708, the processing core may apply collected behavior
information or behavior vectors to each boosted decision stump in the selected lean
classifier model. Because boosted decision stumps are binary decisions and the
lean classifier model is generated by selecting many binary decisions that are
based on the same test condition, the process of applying a behavior vector to the
boosted decision stumps in the lean classifier model may be performed in a
parallel operation. Alternatively, the behavior vector applied in block 530 may be
truncated or filtered to just include the limited number of test condition parameters
included in the lean classifier model, thereby further reducing the computational

effort in applying the model.

[0147] Inblock 710, the processing core may compute or determine a weighted
average of the results of applying the collected behavior information to each
boosted decision stump in the lean classifier model. In block 712, the processing
core may compare the computed weighted average to a threshold value. In
determination block 714, the processing core may determine whether the results of
this comparison and/or the results generated by applying the selected lean
classifier model are suspicious. For example, the processing core may determine
whether these results may be used to classify a behavior as either non-benign with

a high degree of confidence, and if not treat the behavior as suspicious.

[0148] If the processing core determines that the results are suspicious (e.g.,
determination block 714 = “Yes”), the processing core may repeat the operations

in blocks 706-712 to select and apply a stronger (i.e., less lean) classifier model

52

WO 2015/085267 PCT/US2014/068946

that evaluates more device states, features, behaviors, or conditions until the
behavior is classified as non-benign with a high degree of confidence. If the
processing core determines that the results are not suspicious (e.g., determination
block 714 =“No”), such as by determining that the behavior can be classified as
either non-benign with a high degree of confidence, in block 716, the processing
core may use the result of the comparison generated in block 712 to classify a

behavior of the mobile device as benign or potentially malicious.

[0149] In an alternative aspect method, the operations described above may be
accomplished by sequentially selecting a boosted decision stump that is not
already in the lean classifier model; identifying all other boosted decision stumps
that depend upon the same mobile device state, feature, behavior, or condition as
the selected decision stump (and thus can be applied based upon one determination
result); including in the lean classifier model the selected and all identified other
boosted decision stumps that that depend upon the same mobile device state,
tfeature, behavior, or condition; and repeating the process for a number of times
equal to the determined number of test conditions. Because all boosted decision
stumps that depend on the same test condition as the selected boosted decision
stump are added to the lean classifier model each time, limiting the number of
times this process is performed will limit the number of test conditions included in

the lean classifier model.

[0150] FIG. 8 illustrates an example boosting method 800 suitable for generating a
boosted decision tree/classifier that is suitable for use in accordance with various
aspects. In operation 802, a processor may generate and/or execute a decision
tree/classifier, collect a training sample from the execution of the decision
tree/classifier, and generate a new classifier model (h1(x)) based on the training
sample. The training sample may include information collected from previous
observations or analysis of mobile device behaviors, software applications, or
processes in the mobile device. The training sample and/or new classifier model

(h1(x)) may be generated based the types of question or test conditions included in

53

WO 2015/085267 PCT/US2014/068946

previous classifiers and/or based on accuracy or performance characteristics
collected from the execution/application of previous data/behavior models or
classifiers in a classifier module 208 of a behavior analyzer module 204. In
operation 804, the processor may boost (or increase) the weight of the entries that
were misclassified by the generated decision tree/classifier (h1(x)) to generate a
second new tree/classifier (h2(x)). In an aspect, the training sample and/or new
classifier model (h2(x)) may be generated based on the mistake rate of a previous
execution or use (h1(x)) of a classifier. In an aspect, the training sample and/or
new classifier model (h2(x)) may be generated based on attributes determined to
have that contributed to the mistake rate or the misclassification of data points in

the previous execution or use of a classifier.

[0151] In an aspect, the misclassified entries may be weighted based on their
relatively accuracy or effectiveness. In operation 806, the processor may boost (or
increase) the weight of the entries that were misclassified by the generated second
tree/classifier (h2(x)) to generate a third new tree/classifier (h3(x)). In operation
808, the operations of 804-806 may be repeated to generate “t” number of new

tree/classifiers (hy(x)).

[0152] By boosting or increasing the weight of the entries that were misclassified
by the first decision tree/classifier (h1(x)), the second tree/classifier (h2(x)) may
more accurately classify the entities that were misclassified by the first decision
tree/classifier (h1(x)), but may also misclassitfy some of the entities that where
correctly classified by the first decision tree/classifier (h1(x)). Similarly, the third
tree/classifier (h3(x)) may more accurately classify the entities that were
misclassified by the second decision tree/classitier (h2(x)) and misclassify some of
the entities that where correctly classified by the second decision tree/classifier
(h2(x)). That is, generating the family of tree/classifiers h1(x) - hy(x) may not
result in a system that converges as a whole, but results in a number of decision

trees/classifiers that may be executed in parallel.

54

WO 2015/085267 PCT/US2014/068946

[0153] FIG. 9 illustrates example logical components and information flows in a
behavior observer module 202 of a computing system configured to perform
dynamic and adaptive observations in accordance with an aspect. The behavior
observer module 202 may include an adaptive filter module 902, a throttle module
904, an observer mode module 906, a high-level behavior detection module 908, a
behavior vector generator 910, and a secure buffer 912. The high-level behavior
detection module 908 may include a spatial correlation module 914 and a temporal

correlation module 916.

[0154] The observer mode module 906 may receive control information from
various sources, which may include an analyzer unit (e.g., the behavior analyzer
module 204 described above with reference to FIG. 2) and/or an application API.
The observer mode module 906 may send control information pertaining to
various observer modes to the adaptive filter module 902 and the high-level

behavior detection module 908.

[0155] The adaptive filter module 902 may receive data/information from multiple
sources, and intelligently filter the received information to generate a smaller
subset of information selected from the received information. This filter may be
adapted based on information or control received from the analyzer module, or a
higher-level process communicating through an API. The filtered information
may be sent to the throttle module 904, which may be responsible for controlling
the amount of information flowing from the filter to ensure that the high-level
behavior detection module 908 does not become flooded or overloaded with

requests or information.

[0156] The high-level behavior detection module 908 may receive
data/information from the throttle module 904, control information from the
observer mode module 906, and context information from other components of the
mobile device. The high-level behavior detection module 908 may use the

received information to perform spatial and temporal correlations to detect or

55

WO 2015/085267 PCT/US2014/068946

identify high level behaviors that may cause the device to perform at sub-optimal
levels. The results of the spatial and temporal correlations may be sent to the
behavior vector generator 910, which may receive the correlation information and
generate a behavior vector that describes the behaviors of a particular process,
application, or sub-system. In an aspect, the behavior vector generator 910 may
generate the behavior vector such that each high-level behavior of a particular
process, application, or sub-system is an element of the behavior vector. In an
aspect, the generated behavior vector may be stored in a secure buffer 912.
Examples of high-level behavior detection may include detection of the existence
of a particular event, the amount or frequency of another event, the relationship
between multiple events, the order in which events occur, time differences

between the occurrence of certain events, etc.

[0157] In the various aspects, the behavior observer module 202 may perform
adaptive observations and control the observation granularity. That is, the
behavior observer module 202 may dynamically identify the relevant behaviors
that are to be observed, and dynamically determine the level of detail at which the
1dentified behaviors are to be observed. In this manner, the behavior observer
module 202 enables the system to monitor the behaviors of the mobile device at
various levels (e.g., multiple coarse and fine levels). The behavior observer
module 202 may enable the system to adapt to what is being observed. The
behavior observer module 202 may enable the system to dynamically change the
factors/behaviors being observed based on a focused subset of information, which

may be obtained from a wide verity of sources.

[0158] As discussed above, the behavior observer module 202 may perform
adaptive observation techniques and control the observation granularity based on
information received from a variety of sources. For example, the high-level
behavior detection module 908 may receive information from the throttle module
904, the observer mode module 906, and context information received from other

components (e.g., sensors) of the mobile device. As an example, a high-level

56

WO 2015/085267 PCT/US2014/068946

behavior detection module 908 performing temporal correlations might detect that
a camera has been used and that the mobile device is attempting to upload the
picture to a server. The high-level behavior detection module 908 may also
perform spatial correlations to determine whether an application on the mobile
device took the picture while the device was holstered and attached to the user’s
belt. The high-level behavior detection module 908 may determine whether this
detected high-level behavior (e.g., usage of the camera while holstered) is a
behavior that is acceptable or common, which may be achieved by comparing the
current behavior with past behaviors of the mobile device and/or accessing
information collected from a plurality of devices (e.g., information received from a
crowd-sourcing server). Since taking pictures and uploading them to a server
while holstered is an unusual behavior (as may be determined from observed
normal behaviors in the context of being holstered), in this situation the high-level
behavior detection module 908 may recognize this as a potentially threatening
behavior and initiate an appropriate response (e.g., shutting off the camera,

sounding an alarm, etc.).

[0159] In an aspect, the behavior observer module 202 may be implemented in

multiple parts.

[0160] FIG. 10 illustrates in more detail logical components and information
flows in a computing system 1000 implementing an aspect observer daemon. In
the example illustrated in FIG. 10, the computing system 1000 includes a behavior
detector 1002 module, a database engine 1004 module, and a behavior analyzer
module 204 in the user space, and a ring buffer 1014, a filter rules 1016 module, a
throttling rules 1018 module, and a secure buffer 1020 in the kernel space. The
computing system 1000 may further include an observer daemon that includes the
behavior detector 1002 and the database engine 1004 in the user space, and the
secure buffer manager 1000, the rules manager 1008, and the system health

monitor 1010 in the kernel space.

57

WO 2015/085267 PCT/US2014/068946

[0161] The various aspects may provide cross-layer observations on mobile
devices encompassing webkit, SDK, NDK, kernel, drivers, and hardware in order
to characterize system behavior. The behavior observations may be made in real

time.

[0162] The observer module may perform adaptive observation techniques and
control the observation granularity. As discussed above, there are a large number
(i.e., thousands) of factors that could contribute to the mobile device’s degradation,
and it may not be feasible to monitor/observe all of the different factors that may
contribute to the degradation of the device’s performance. To overcome this, the
various aspects dynamically identify the relevant behaviors that are to be observed,
and dynamically determine the level of detail at which the identified behaviors are

to be observed.

[0163] FIG. 11 illustrates an example method 1100 for performing dynamic and
adaptive observations in accordance with an aspect. In block 1102, the mobile
device processor may perform coarse observations by monitoring/observing a
subset of a large number of factors/behaviors that could contribute to the mobile
device’s degradation. In block 1103, the mobile device processor may generate a
behavior vector characterizing the coarse observations and/or the mobile device
behavior based on the coarse observations. In block 1104, the mobile device
processor may identify subsystems, processes, and/or applications associated with
the coarse observations that may potentially contribute to the mobile device’s
degradation. This may be achieved, for example, by comparing information
received from multiple sources with contextual information received from sensors
of the mobile device. In block 1106, the mobile device processor may perform
behavioral analysis operations based on the coarse observations. In an aspect, as
part of blocks 1103 and 1104, the mobile device processor may perform one or

more of the operations discussed above with reference to FIGs. 2-10.

58

WO 2015/085267 PCT/US2014/068946

[0164] In determination block 1108, the mobile device processor may determine
whether suspicious behaviors or potential problems can be identified and corrected
based on the results of the behavioral analysis. When the mobile device processor
determines that the suspicious behaviors or potential problems can be identified
and corrected based on the results of the behavioral analysis (i.e., determination
block 1108 =“Yes™), in block 1118, the processor may initiate a process to correct

the behavior and return to block 1102 to perform additional coarse observations.

[0165] When the mobile device processor determines that the suspicious
behaviors or potential problems cannot be identified and/or corrected based on the
results of the behavioral analysis (i.e., determination block 1108 = “No”), in
determination block 1109 the mobile device processor may determine whether
there is a likelihood of a problem. In an aspect, the mobile device processor may
determine that there is a likelihood of a problem by computing a probability of the
mobile device encountering potential problems and/or engaging in suspicious
behaviors, and determining whether the computed probability is greater than a
predetermined threshold. When the mobile device processor determines that the
computed probability is not greater than the predetermined threshold and/or there
1s not a likelihood that suspicious behaviors or potential problems exist and/or are
detectable (i.e., determination block 1109 = “No”), the processor may return to

block 1102 to perform additional coarse observations.

[0166] When the mobile device processor determines that there is a likelihood that
suspicious behaviors or potential problems exist and/or are detectable (i.e.,
determination block 1109 = “Yes”), in block 1110, the mobile device processor
may perform deeper logging/observations or final logging on the identified
subsystems, processes or applications. In block 1112, the mobile device processor
may perform deeper and more detailed observations on the identified subsystems,
processes or applications. In block 1114, the mobile device processor may
perform further and/or deeper behavioral analysis based on the deeper and more

detailed observations. In determination block 1108, the mobile device processor

59

WO 2015/085267 PCT/US2014/068946

may again determine whether the suspicious behaviors or potential problems can
be identified and corrected based on the results of the deeper behavioral analysis.
When the mobile device processor determines that the suspicious behaviors or
potential problems cannot be identified and corrected based on the results of the
deeper behavioral analysis (i.e., determination block 1108 = “No”), the processor
may repeat the operations in blocks 1110-1114 until the level of detail is fine
enough to identify the problem or until it is determined that the problem cannot be

identified with additional detail or that no problem exists.

[0167] When the mobile device processor determines that the suspicious
behaviors or potential problems can be identified and corrected based on the
results of the deeper behavioral analysis (i.e., determination block 1108 =“Yes”),
in block 1118, the mobile device processor may perform operations to correct the
problem/behavior, and the processor may return to block 1102 to perform

additional operations.

[0168] In an aspect, as part of blocks 1102-1118 of method 1100, the mobile
device processor may perform real-time behavior analysis of the system’s
behaviors to 1dentify suspicious behaviors from limited and coarse observations, to
dynamically determine the behaviors to observe in greater detail, and to
dynamically determine the precise level of detail required for the observations.
This enables the mobile device processor to efficiently identify and prevent
problems from occurring, without requiring the use of a large amount of processor,

memory, or battery resources on the device.

[0169] The various aspects may be implemented on a variety of computing
devices, an example of which is illustrated in FIG. 12 in the form of a smartphone.
A smartphone 1200 may include a processor 1202 coupled to internal memory
1204, a display 1212, and to a speaker 1214. Additionally, the smartphone 1200
may include an antenna for sending and receiving electromagnetic radiation that

may be connected to a wireless data link and/or cellular telephone transceiver 1208

60

WO 2015/085267 PCT/US2014/068946

coupled to the processor 1202. Smartphones 1200 typically also include menu

selection buttons or rocker switches 1220 for receiving user inputs.

[0170] A typical smartphone 1200 also includes a sound encoding/decoding
(CODEC) circuit 1206, which digitizes sound received from a microphone into
data packets suitable for wireless transmission and decodes received sound data
packets to generate analog signals that are provided to the speaker to generate
sound. Also, one or more of the processor 1202, wireless transceiver 1208 and
CODEC 1206 may include a digital signal processor (DSP) circuit (not shown
separately).

[0171] Portions of the aspect methods may be accomplished in a client-server
architecture with some of the processing occurring in a server, such as maintaining
databases of normal operational behaviors, which may be accessed by a mobile
device processor while executing the aspect methods. Such aspects may be
implemented on any of a variety of commercially available server devices, such as
the server 1300 illustrated in FIG. 13. Such a server 1300 typically includes a
processor 1301 coupled to volatile memory 1302 and a large capacity nonvolatile
memory, such as a disk drive 1303. The server 1300 may also include a floppy
disc drive, compact disc (CD) or DVD disc drive 1304 coupled to the processor
1301. The server 1300 may also include network access ports 1306 coupled to the
processor 1301 for establishing data connections with a network 1305, such as a

local area network coupled to other broadcast system computers and servers.

[0172] The processors 1202, 1301 may be any programmable microprocessor,
microcomputer or multiple processor chip or chips that can be configured by
software instructions (applications) to perform a variety of functions, including the
functions of the various aspects described below. In some mobile devices,
multiple processors 1202 may be provided, such as one processor dedicated to
wireless communication functions and one processor dedicated to running other

applications. Typically, software applications may be stored in the internal

61

WO 2015/085267 PCT/US2014/068946

memory 1204, 1302, 1303 before they are accessed and loaded into the processor
1202, 1301. The processor 1202, 1301 may include internal memory sufficient to

store the application software instructions.

[0173] A number of different cellular and mobile communication services and
standards are available or contemplated in the future, all of which may implement
and benefit from the various aspects. Such services and standards include, e.g.,
third generation partnership project (3GPP), long term evolution (LTE) systems,
third generation wireless mobile communication technology (3G), fourth
generation wireless mobile communication technology (4G), global system for
mobile communications (GSM), universal mobile telecommunications system
(UMTS), 3GSM, general packet radio service (GPRS), code division multiple
access (CDMA) systems (e.g., cdmaOne, CDMA1020TM), enhanced data rates for
GSM evolution (EDGE), advanced mobile phone system (AMPS), digital AMPS
(IS-136/TDMA), evolution-data optimized (EV-DO), digital enhanced cordless
telecommunications (DECT), Worldwide Interoperability for Microwave Access
(WiIMAX), wireless local area network (WLAN), Wi-Fi Protected Access [& 11
(WPA, WPA?2), and integrated digital enhanced network (iden). Each of these
technologies involves, for example, the transmission and reception of voice, data,
signaling, and/or content messages. It should be understood that any references to
terminology and/or technical details related to an individual telecommunication
standard or technology are for illustrative purposes only, and are not intended to
limit the scope of the claims to a particular communication system or technology

unless specifically recited in the claim language.

[0174] The term “performance degradation” is used in this application to refer to a
wide variety of undesirable mobile device operations and characteristics, such as
longer processing times, slower real time responsiveness, lower battery life, loss of
private data, malicious economic activity (e.g., sending unauthorized premium
SMS message), denial of service (DoS), operations relating to commandeering the

mobile device or utilizing the phone for spying or botnet activities, etc.

62

WO 2015/085267 PCT/US2014/068946

[0175] Computer program code or “program code” for execution on a
programmable processor for carrying out operations of the various aspects may be
written in a high level programming language such as C, C++, C#, Smalltalk, Java,
JavaScript, Visual Basic, a Structured Query Language (e.g., Transact-SQL), Perl,
or in various other programming languages. Program code or programs stored on
a computer readable storage medium as used in this application may refer to
machine language code (such as object code) whose format is understandable by a

ProCessor.

[0176] Many mobile computing devices operating system kernels are organized
into a user space (where non-privileged code runs) and a kernel space (where
privileged code runs). This separation is of particular importance in Android® and
other general public license (GPL) environments where code that is part of the
kernel space must be GPL licensed, while code running in the user-space may not
be GPL licensed. It should be understood that the various software
components/modules discussed here may be implemented in either the kernel

space or the user space, unless expressly stated otherwise.

[0177] The foregoing method descriptions and the process flow diagrams are
provided merely as illustrative examples, and are not intended to require or imply
that the steps of the various aspects must be performed in the order presented. As
will be appreciated by one of skill in the art the order of steps in the foregoing
aspects may be performed in any order. Words such as “thereafter,” “then,”
“next,” etc. are not intended to limit the order of the steps; these words are simply
used to guide the reader through the description of the methods. Further, any
reference to claim elements in the singular, for example, using the articles “a,”

“an” or “the” 1s not to be construed as limiting the element to the singular.

b 13 99 ¢¢

[0178] As used in this application, the terms “component,” “module,” “system,”

99 ¢¢ b 13

“engine,” “generator,” “manager,” and the like are intended to include a computer-

related entity, such as, but not limited to, hardware, firmware, a combination of

63

WO 2015/085267 PCT/US2014/068946

hardware and software, software, or software in execution, which are configured to
perform particular operations or functions. For example, a component may be, but
1s not limited to, a process running on a processor, a processor, an object, an
executable, a thread of execution, a program, and/or a computer. By way of
illustration, both an application running on a computing device and the computing
device may be referred to as a component. One or more components may reside
within a process and/or thread of execution, and a component may be localized on
one processor or core and/or distributed between two or more processors or cores.
In addition, these components may execute from various non-transitory computer
readable media having various instructions and/or data structures stored thereon.
Components may communicate by way of local and/or remote processes, function
or procedure calls, electronic signals, data packets, memory read/writes, and other
known network, computer, processor, and/or process related communication

methodologies.

[0179] The various illustrative logical blocks, modules, circuits, and algorithm
steps described in connection with the aspects disclosed herein may be
implemented as electronic hardware, computer software, or combinations of both.
To clearly illustrate this interchangeability of hardware and software, various
illustrative components, blocks, modules, circuits, and steps have been described
above generally in terms of their functionality. Whether such functionality is
implemented as hardware or software depends upon the particular application and
design constraints imposed on the overall system. Skilled artisans may implement
the described functionality in varying ways for each particular application, but
such implementation decisions should not be interpreted as causing a departure

from the scope of the present invention.

[0180] The hardware used to implement the various illustrative logics, logical
blocks, modules, and circuits described in connection with the aspects disclosed
herein may be implemented or performed with a general purpose processor, a

digital signal processor (DSP), an application specific integrated circuit (ASIC), a

64

WO 2015/085267 PCT/US2014/068946

field programmable gate array (FPGA) or other programmable logic device,
discrete gate or transistor logic, discrete hardware components, or any combination
thereof designed to perform the functions described herein. A general-purpose
processor may be a multiprocessor, but, in the alternative, the processor may be
any conventional processor, controller, microcontroller, or state machine. A
processor may also be implemented as a combination of computing devices, e.g., a
combination of a DSP and a multiprocessor, a plurality of multiprocessors, one or
more multiprocessors in conjunction with a DSP core, or any other such
configuration. Alternatively, some steps or methods may be performed by

circuitry that is specific to a given function.

[0181] In one or more exemplary aspects, the functions described may be
implemented in hardware, software, firmware, or any combination thereof. If
implemented in software, the functions may be stored as one or more processor-
executable instructions or code on a non-transitory computer-readable storage
medium or non-transitory processor-readable storage medium. The steps of a
method or algorithm disclosed herein may be embodied in a processor-executable
software module which may reside on a non-transitory computer-readable or
processor-readable storage medium. Non-transitory computer-readable or
processor-readable storage media may be any storage media that may be accessed
by a computer or a processor. By way of example but not limitation, such non-
transitory computer-readable or processor-readable media may include RAM,
ROM, EEPROM, FLASH memory, CD-ROM or other optical disk storage,
magnetic disk storage or other magnetic storage devices, or any other medium that
may be used to store desired program code in the form of instructions or data
structures and that may be accessed by a computer. Disk and disc, as used herein,
includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD),
floppy disk, and blu-ray disc where disks usually reproduce data magnetically,
while discs reproduce data optically with lasers. Combinations of the above are
also included within the scope of non-transitory computer-readable and processor-

readable media. Additionally, the operations of a method or algorithm may reside

65

WO 2015/085267 PCT/US2014/068946

as one or any combination or set of codes and/or instructions on a non-transitory
processor-readable medium and/or computer-readable medium, which may be

incorporated into a computer program product.

[0182] The preceding description of the disclosed aspects is provided to enable
any person skilled in the art to make or use the present invention. Various
modifications to these aspects will be readily apparent to those skilled in the art,
and the generic principles defined herein may be applied to other aspects without
departing from the spirit or scope of the invention. Thus, the present invention is
not intended to be limited to the aspects shown herein but is to be accorded the
widest scope consistent with the following claims and the principles and novel

features disclosed herein.

66

WO 2015/085267 PCT/US2014/068946

CLAIMS
What is claimed is:

1. A method of analyzing a software application operating in a processor of a
computing device, the method comprising:

monitoring in the processor activities of the software application by
collecting behavior information from a log of actions stored in a memory of the
computing device;

generating a behavior vector that characterizes the monitored activities of
the software application based on the collected behavior information; and

determining whether the generated behavior vector includes a
distinguishing behavior identifying the software application as being from a known

vendor.

2. The method of claim 1, wherein determining whether the generated behavior
vector includes the distinguishing behavior comprises determining whether the
generated behavior vector includes information identifying use of an unexpected

device feature by the software application.

3. The method of claim 1, wherein determining whether the generated behavior
vector includes the distinguishing behavior comprises determining whether the
generated behavior vector includes information identifying unusual use of a device

teature by the software application.
4. The method of claim 1, further comprising:

authenticating the software application by classitying the software
application as benign in response to determining that the generated behavior vector

includes the distinguishing behavior.

5. The method of claim 1, further comprising:

67

WO 2015/085267 PCT/US2014/068946

performing deep behavioral analysis operations by applying the generated
behavior vector to a focused classifier model to determine whether the software
application is non-benign in response to determining that the generated behavior
vector does not include the distinguishing behavior; and

applying the generated behavior vector to a classifier model to determine
whether the software application 1s non-benign in response to determining that the

generated behavior vector does not include the distinguishing behavior.

6. The method of claim 5, further comprising:

receiving a full classifier model that includes a plurality of test conditions;

identifying device features used by the software application;

identifying test conditions in the plurality of test conditions that evaluate the
1dentified device features; and

generating an application-based classifier model that prioritizes the
identified test conditions,

wherein applying the generated behavior vector to the classifier model to
determine whether the software application is non-benign comprises applying the

generated behavior vector to the generated application-based classifier model.

7. The method of claim 6, wherein:
generating the behavior vector based on the collected behavior information
comprises using the collected behavior information to generate a feature vector;
and
applying the generated behavior vector to the generated application-based
classifier model comprises:
applying the generated feature vector to the application-based
classifier model so as to evaluate each test condition included in the
application-based classifier model;
computing a weighted average of each result of evaluating test

conditions in the application-based classifier model; and

68

WO 2015/085267 PCT/US2014/068946

determining whether the behavior is non-benign based on the

weighted average.

8. The method of claim 6, wherein:
receiving the full classifier model that includes the plurality of test
conditions comprises receiving a finite state machine that includes information that
1s suitable for conversion into a plurality of decision nodes that each evaluate one
of the plurality of test conditions; and
generating the application-based classifier model that prioritizes the
identified test conditions comprises generating the application-based classifier
model to include decision nodes that evaluate one of:
a device feature that is relevant to the software application; and
a device feature that is relevant to an application type of the software

application.

9. A computing device, comprising:
a memory; and
a processor coupled to the memory, wherein the processor is configured
with processor-executable instructions to perform operations comprising:
monitoring activities of a software application by collecting behavior
information from a log of actions stored in the memory;
generating a behavior vector that characterizes the monitored
activities of the software application based on the collected behavior
information; and
determining whether the generated behavior vector includes a
distinguishing behavior identifying the software application as being from a

known vendor.

10. The computing device of claim 9, wherein the processor is configured with

processor-executable instructions such that determining whether the generated

69

WO 2015/085267 PCT/US2014/068946

behavior vector includes the distinguishing behavior comprises determining
whether the generated behavior vector includes information identifying use of an

unexpected device feature by the software application.

11. The computing device of claim 9, wherein the processor is configured with
processor-executable instructions such that determining whether the generated
behavior vector includes the distinguishing behavior comprises determining
whether the generated behavior vector includes information identifying unusual

use of a device feature by the software application.

12. The computing device of claim 9, wherein the processor is configured with

processor-executable instructions to perform operations further comprising:
authenticating the software application by classitying the software

application as benign in response to determining that the generated behavior vector

includes the distinguishing behavior.

13. The computing device of claim 9, wherein the processor is configured with
processor-executable instructions to perform operations further comprising;:

performing deep behavioral analysis operations by applying the generated
behavior vector to a focused classifier model to determine whether the software
application is non-benign in response to determining that the generated behavior
vector does not include the distinguishing behavior; and

applying the generated behavior vector to a classifier model to determine
whether the software application 1s non-benign in response to determining that the

generated behavior vector does not include the distinguishing behavior.

14. The computing device of claim 13, wherein the processor is configured with
processor-executable instructions to perform operations further comprising:
receiving a full classifier model that includes a plurality of test conditions;

identifying device features used by the software application;

70

WO 2015/085267 PCT/US2014/068946

identifying test conditions in the plurality of test conditions that evaluate the
1dentified device features; and

generating an application-based classifier model that prioritizes the
identified test conditions,

wherein applying the generated behavior vector to the classifier model to
determine whether the software application is non-benign comprises applying the

generated behavior vector to the generated application-based classifier model.

15. The computing device of claim 14, wherein the processor is configured with
processor-executable instructions such that:
generating the behavior vector based on the collected behavior information
comprises using the collected behavior information to generate a feature vector;
and
applying the generated behavior vector to the generated application-based
classifier model comprises:
applying the generated feature vector to the application-based
classifier model so as to evaluate each test condition included in the
application-based classifier model;
computing a weighted average of each result of evaluating test
conditions in the application-based classifier model; and
determining whether the behavior is non-benign based on the

weighted average.

16. The computing device of claim 14, wherein the processor is configured with
processor-executable instructions such that:

receiving the full classifier model that includes the plurality of test
conditions comprises receiving a finite state machine that includes information that
1s suitable for conversion into a plurality of decision nodes that each evaluate one

of the plurality of test conditions; and

71

WO 2015/085267 PCT/US2014/068946

generating the application-based classifier model that prioritizes the
identified test conditions comprises generating the application-based classifier
model to include decision nodes that evaluate one of:
a device feature that is relevant to the software application; and
a device feature that is relevant to an application type of the software

application.

17. A non-transitory computer readable storage medium having stored thereon
processor-executable software instructions configured to cause a processor of a
computing device to perform operations for analyzing a software application
operating in the processor, the operations comprising:

monitoring activities of the software application by collecting behavior
information from a log of actions stored in a memory of the computing device;

generating a behavior vector that characterizes the monitored activities of
the software application based on the collected behavior information; and

determining whether the generated behavior vector includes a
distinguishing behavior identifying the software application as being from a known

vendor.

18. The non-transitory computer readable storage medium of claim 17, wherein
the stored processor-executable software instructions are configured to cause a
processor to perform operations such that determining whether the generated
behavior vector includes the distinguishing behavior comprises determining
whether the generated behavior vector includes information identifying use of an

unexpected device feature by the software application.

19. The non-transitory computer readable storage medium of claim 17, wherein
the stored processor-executable software instructions are configured to cause a
processor to perform operations such that determining whether the generated

behavior vector includes the distinguishing behavior comprises determining

72

WO 2015/085267 PCT/US2014/068946

whether the generated behavior vector includes information identifying unusual

use of a device feature by the software application.

20. The non-transitory computer readable storage medium of claim 17, wherein
the stored processor-executable software instructions are configured to cause a
processor to perform operations comprising:

authenticating the software application by classitying the software
application as benign in response to determining that the generated behavior vector

includes the distinguishing behavior.

21. The non-transitory computer readable storage medium of claim 17, wherein
the stored processor-executable software instructions are configured to cause a
processor to perform operations comprising:

performing deep behavioral analysis operations by applying the generated
behavior vector to a focused classifier model to determine whether the software
application is non-benign in response to determining that the generated behavior
vector does not include the distinguishing behavior; and

applying the generated behavior vector to a classifier model to determine
whether the software application is non-benign in response to determining that the

generated behavior vector does not include the distinguishing behavior.

22. The non-transitory computer readable storage medium of claim 21, wherein
the stored processor-executable software instructions are configured to cause a
processor to perform operations comprising:

receiving a full classifier model that includes a plurality of test conditions;

identifying device features used by the software application;

identifying test conditions in the plurality of test conditions that evaluate the
1dentified device features; and

generating an application-based classifier model that prioritizes the

identified test conditions,

73

WO 2015/085267 PCT/US2014/068946

wherein applying the generated behavior vector to the classifier model to
determine whether the software application is non-benign comprises applying the

generated behavior vector to the generated application-based classifier model.

23. The non-transitory computer readable storage medium of claim 22, wherein
the stored processor-executable software instructions are configured to cause a
processor to perform operations such that:
generating the behavior vector based on the collected behavior information
comprises using the collected behavior information to generate a feature vector;
and
applying the generated behavior vector to the generated application-based
classifier model comprises:
applying the generated feature vector to the application-based
classifier model so as to evaluate each test condition included in the
application-based classifier model;
computing a weighted average of each result of evaluating test
conditions in the application-based classifier model; and
determining whether the behavior is non-benign based on the

weighted average.

24. The non-transitory computer readable storage medium of claim 22, wherein
the stored processor-executable software instructions are configured to cause a
processor to perform operations such that:

receiving the full classifier model that includes the plurality of test
conditions comprises receiving a finite state machine that includes information that
1s suitable for conversion into a plurality of decision nodes that each evaluate one
of the plurality of test conditions; and

generating the application-based classifier model that prioritizes the
identified test conditions comprises generating the application-based classifier

model to include decision nodes that evaluate one of:

74

WO 2015/085267 PCT/US2014/068946

a device feature that is relevant to the software application; and
a device feature that is relevant to an application type of the software

application.

25. A computing device, comprising:

means for monitoring activities of a software application by collecting
behavior information from a log of actions stored in a memory of the computing
device;

means for generating a behavior vector that characterizes the monitored
activities of the software application based on the collected behavior information;
and

means for determining whether the generated behavior vector includes a
distinguishing behavior identifying the software application as being from a known

vendor.

26. The computing device of claim 25, wherein means for determining whether
the generated behavior vector includes the distinguishing behavior comprises
means for determining whether the generated behavior vector includes information

identifying use of an unexpected device feature by the software application.

27. The computing device of claim 25, wherein means for determining whether
the generated behavior vector includes the distinguishing behavior comprises
means for determining whether the generated behavior vector includes information

identifying unusual use of a device feature by the software application.

28. The computing device of claim 25, further comprising:
means for authenticating the software application by classifying the
software application as benign in response to determining that the generated

behavior vector includes the distinguishing behavior.

75

WO 2015/085267 PCT/US2014/068946

29. The computing device of claim 25, further comprising:

means for performing deep behavioral analysis operations by applying the
generated behavior vector to a focused classifier model to determine whether the
software application is non-benign in response to determining that the generated
behavior vector does not include the distinguishing behavior; and

means for applying the generated behavior vector to a classifier model to
determine whether the software application is non-benign in response to
determining that the generated behavior vector does not include the distinguishing

behavior.

30. The computing device of claim 29, further comprising:

means for receiving a full classifier model that includes a plurality of test
conditions;

means for identifying device features used by the software application;

means for identifying test conditions in the plurality of test conditions that
evaluate the identified device features; and

means for generating an application-based classifier model that prioritizes
the identified test conditions,

wherein means for applying the generated behavior vector to the classifier
model to determine whether the software application is non-benign comprises
means for applying the generated behavior vector to the generated application-

based classifier model.

76

PCT/US2014/068946

WO 2015/085267

1/16

FIG. 1

WO 2015/085267 PCT/US2014/068946

2/16
200
@
4 A
2Q2
—> Behavior Observer Module
Behavior Vectors 206
\
204
External
Behavior Analysis Module — In%;rr:;ﬁ;n
Module
Behavior Vectors
208
Classifier Module
210 l
Actuator Module
_ y,

FIG. 2

WO 2015/085267 PCT/US2014/068946

3/16

118 yo

Cloud Corpus of
Behavior Vectors

116
> N\
(302
)
Full Classifier
Model
Generator
\ Y,
Full
Classifier
Model 1 (62
4 N
304
/
Feature Selection and Culling Module
Application-Based
Classifier Model
Generator
Lean Classifier 310
Model Generator 5
Application- Application-Type-
Specific Model Specific Model
Generator Generator
(
306 308
. J

FIG. 3

WO 2015/085267

PCT/US2014/068946

yo

4/16

)

452 —
402 —

Full Classifier Model /
Finite State Machine

454

448b

404 ~

Lean Classifier Model

448a

406

@

]

A

™ [
=
\“

]

456 Application-Specific
Classifier Model

448b

(&)
\.

) (CBJ

f Application-Type-Specific]
Classifier Model

448a 4158

&

N

410 ~

Behavior Observation and Analysis

FIG. 4

WO 2015/085267 PCT/US2014/068946

5/16

yo

502 504 506 508 510 514

v) () () G)l Gl G i) G)i(w) ()
App 1 App 1 App 1 App 1 App 1 App 1 App 1
App 2 App 2 App 2 App 2 App 2
App 4 App 4 App 4
App 5 App 5 App 5 App 5

FIG. 5A

6/16

PCT/US2014/068946

5

—

518
)

Ranked List of

WO 2015/085267
512
)
JFSP

Derive Features From
Application Permission

Set: {Foer}

Derive Features From
Application Install Time

Analysis Set: {Finstan}

{
516

526
!

~514

520
!

Rank Per Application
Features:
{Fapp} = {Fpert U {Finstan}
e.g., {F3, F2, F4}

4 Features:

1. F1
2.F3
3.F4
4. F6
5.F7
6.F2
°
.
.

522
)

Rank Per Application Features using JFSP as an
Ordering Function

524
2

interest

Apply JFSP given the
number of features of

528
)

Ranked List of
Per Application Features:

Classifier

Per Application Lean

FIG. 5B

WO 2015/085267 PCT/US2014/068946

7/16

yo

Monitor the activities of a software application
(e.g., by collecting behavior information from a log of actions)

l

Generate a behavior vector based on the collected behavior
604 ~ information that characterizes the monitored activities of the
software application

602 ~

Does behavior
vector include a
distinguishing behavior
associated with a special
operation?

606

Perform behavioral analysis
608 ~4 by applying behavior vector
to a classifier model

A 4

Categorize software application
610~ (e.g., as critical, important,
susceptible to abuse, etc.)

h 4

Perform deep behavioral analysis
612 ~4 by applying the behavior vector
to a focused classifier model

FIG. 6A

WO 2015/085267

628 ~

622~

624 ~

8/16

PCT/US2014/068946

Monitor the activities of a software application
(e.g., by collecting behavior information from a log of actions)

l

Generate a behavior vector based on the collected behavior
information that characterizes the monitored activities of the
software application

626

operation?

(

Apply the generated behavior
vector to a classifier model to
determine whether the software
application is non-benign

FIG. 6B

Does behavior
vector include a
distinguishing behavior
associated with a special

\ 4

630 ~

Classify the software application
as benign

WO 2015/085267

PCT/US2014/068946

9/16

652 ~

Receive a full classifier model that includes a list of
boosted decision stumps

v

654 ~

Determine a number of unique test conditions that
should be evaluated to accurately classify a mobile
device behavior as being either benign or non-benign
without consuming an excessive amount of processing,
memory, or energy resources of the mobile device

v

656 ~

Use device-specific and device-state-specific information
to identify features/test conditions that relate to
conditions not present in the mobile device

v

658 ~

Traverse the list of boosted decision stumps from the
beginning and populate a list of selected test conditions
with the determined number of unique test conditions,
excluding the identified test conditions

v

660 ~

Generate a lean classifier model that includes all the
boosted decision stumps included the full classifier
model that test one of the selected test conditions

v

662 ~

Use application-specific and application-type-specific
information to identify features/test conditions that relate
to conditions not present in the mobile device

v

664 ~

Generate an application-based classifier model that
includes all the boosted decision stumps included the
lean classifier model that test one of the selected test

conditions

FIG. 6C

‘6j0

WO 2015/085267

10/16

PCT/US2014/068946

702 ~

Perform observations to collect behavior information from various
components (e.g., APIs, registers, etc.) instrumented at various
levels of the mobile device system

I

704 ~

Generate a behavior vector characterizing the observations or
collected behavior information, and generate a family of lean
classifier models locally in the mobile device

k

706 ~

Select the next lean classifier model in a family of lean classifier
models generated locally in the mobile device

I

708 ~

Apply the generated behavior vector to each boosted decision stump
in the selected lean classifier model

'

710 ~

Compute a weighted average of the results of applying the behavior
vector to each boosted decision stump in the locally generated lean
classifier model

'

712 ~4

Compare the computed weighted average to a threshold value

Yes

Are results

suspicious?

716 ~

Use the result of the comparison to classify a behavior of the mobile
device

FIG.7

700

WO 2015/085267 PCT/US2014/068946

11/16

Training Weighted Weighted cee Weighted

Sample Sample Sample Sample

FIG. 8

WO 2015/085267 PCT/US2014/068946

12/16

Legend

— — — P Control
—» Data

From High-Level,

Kernel, Driver APls, From API/Analyzer
etc.

Hlﬂ%ﬁ i@ﬁ

Adaptive Filter (¢ ——— — Observer Mode

l 904

|
[
[
[
Throttler :
[
[

l L

High-Level Behavior Detection

Context
—
81 4 91 6
Spatial Temporal
Correlation Correlation
v ’91 0 31 2

Behavior Vector Secure Buffer
Generator I

FIG. 9

WO 2015/085267 PCT/US2014/068946

13/16
1000 234
Analyzer |[€———
|
1002 Query | 1004
? Behavior
Vectors
Behavior | Database
Detector Engine
Log
Statistics
Observer
User Space Mode
Kermel Space Ring Buffer API

1016 Filter Yy JOOS
A Rules
Rules
) Manager
1018 Throttling
Rules y Y

Query
1006 |Response Battery Status,
) \ 4 Available Memory,
Secure etc.
Buffer
[N N J
Manager System
Health
1020 Data for Analyzer Monitor
B 1]
1010

Secure Buffer

FIG. 10

WO 2015/085267

110

0

1102
\

14/16

PCT/US2014/068946

‘

Perform Coarse Observations

1103

v

Generate a Behavior Vector Characterizing the Course
Observations

1104

y

Identify Processes/Applications/Sub-Systems

1106

y

Perform Behavior Analysis Based on the Coarse
Observations and Using a Locally Generated Lean
Classifier Module

1108

Problem Identified?

1118
{

Fix Problem
(e.g., Restrict Process,
Prevent Access, etc.)

1109 No

Is there

\

a Likelihood of
a Problem?

Processes/Applications/Sub-Systems

v

Perform Finer Observations Via the Deeper
Logging

v

[

Observations Using the Locally Generated
Lean Classifier Module

)

FIG. 11

Enable Deeper Logging For Identified 1110

1112

Perform Deeper Analysis Based on the Finer L _1114

/////////////////

000000000000

FIG. 12

WO 2015/085267 PCT/US2014/068946

16/16

1300 1305

1301 1%02

e awd, I0g

1306 —
L
1303 111
e
1304 <
|
L 1~
(l | | |
5-5_5. ~~§§ —t]
§§§ e
— [_—
\.ﬁ_\. —_—
_\

FIG. 13

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2014/068946

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F21/44 GO6F19/00
ADD.

GO6F21/52

GO6F21/56

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F HOA4L

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

[0017] - [0025],
1,2,3

[0030] - [0033],

X US 2013/247187 Al (HSIAO HSU-CHUN [US] ET
AL) 19 September 2013 (2013-09-19)
paragraph [0008] - paragraphs [0009],
[0032] - [0056]; figures

X US 8 266 698 B1 (SESHARDI VIJAY [US] ET
AL) 11 September 2012 (2012-09-11)
columns 2, 10 - column 11; figures 2,3,5

X US 2006/085854 Al (AGRAWAL SUBHASH C [US]
ET AL) 20 April 2006 (2006-04-20)
paragraph [0008] - paragraphs [0018],
[0059]; figure 2

1-30

1-30

1-30

_/__

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

5 March 2015

Date of mailing of the international search report

16/03/2015

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Ghani, Hamza

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2014/068946

C(Continuation).

DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X

IKER BURGUERA ET AL: "Crowdroid",
SECURITY AND PRIVACY IN SMARTPHONES AND
MOBILE DEVICES, ACM, 2 PENN PLAZA, SUITE
701 NEW YORK NY 10121-0701 USA,

17 October 2011 (2011-10-17), pages 15-26,
XP058005976,

DOI: 10.1145/2046614.2046619

ISBN: 978-1-4503-1000-0

the whole document

AUBREY-DERRICK SCHMIDT ET AL: "Monitoring
Smartphones for Anomaly Detection",
MOBILE NETWORKS AND APPLICATIONS,

vol. 14, no. 1,

1 February 2009 (2009-02-01), pages
92-106, XP055115882,

ISSN: 1383-469X, DOI:
10.1007/s11036-008-0113-x

page 92 - page 104

ASHKAN SHARIFI SHAMILI ET AL: "Malware
Detection on Mobile Devices Using
Distributed Machine Learning",

PATTERN RECOGNITION (ICPR), 2010 20TH
INTERNATIONAL CONFERENCE ON, IEEE,
PISCATAWAY, NJ, USA,

23 August 2010 (2010-08-23), pages
4348-4351, XP031772702,

ISBN: 978-1-4244-7542-1

page 4348 - page 4351

1

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2014/068946
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2013247187 Al 19-09-2013 CN 104205111 A 10-12-2014
EP 2828789 Al 28-01-2015
KR 20140137003 A 01-12-2014
US 2013247187 Al 19-09-2013
US 2014123289 Al 01-05-2014
WO 2013142228 Al 26-09-2013
US 8266698 Bl 11-09-2012 NONE
US 2006085854 Al 20-04-2006 US 2006085854 Al 20-04-2006
US 2013111588 Al 02-05-2013

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - claims
	Page 70 - claims
	Page 71 - claims
	Page 72 - claims
	Page 73 - claims
	Page 74 - claims
	Page 75 - claims
	Page 76 - claims
	Page 77 - claims
	Page 78 - claims
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - drawings
	Page 88 - drawings
	Page 89 - drawings
	Page 90 - drawings
	Page 91 - drawings
	Page 92 - drawings
	Page 93 - drawings
	Page 94 - drawings
	Page 95 - wo-search-report
	Page 96 - wo-search-report
	Page 97 - wo-search-report

