(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
18 May 2006 (18.05.2006)

(51) International Patent Classification:
H04B 1/69

(21) International Application Number:
PCT/IB2004/003940

(22) International Filing Date:
1 December 2004 (01.12.2004)

(25) Filing Language:
English

(26) Publication Language:
English

(30) Priority Data:

(71) Applicant (for all designated States except US): NOKIA CORPORATION [FI/FR]; Keilalahdentie 4, FIN-02150 Espoo (FI).

(71) Applicant (for LC only): NOKIA INC. [US/US]; 6000 Connection Drive, Irving, Texas 75039 (US).

(72) Inventors: and

(75) Inventors/Applicants (for US only): SHAKESHAFT, Niall [GB/FR]; Myllymaankatu 2 D 123, FIN-00920 Helsinki (FI); VEPSÄLÄINEN, Jussi Heikki [FI/FR]; Fastbölintie 12 A, FIN-00750 Helsinki (FI); ELO-RANTA, Petri Tapani [FI/FR]; Kukkumäenkuja 12 as. 3, FIN-02280 Espoo (FI); SEPPINEN, Pauli Mikael [FI/FR]; Huviilinnankiiltä 8 A 11, FIN-02600 Espoo (FI).

(54) Title: RF TRANSMITTER USING DIGITAL-TO-RF CONVERSION

(57) Abstract: An RF transmitter having two digital to RF-conversion devices that combine the D/A conversion function and the upconversion function by a RF-carrier or IF-signal. The device comprises a plurality of parallel unit cells, each of which is a mixer cell type converter having a differential data switch section connected in series to a differential LO-switch pair. The differential LO-switch is further connected in series to a current source. Each unit cell is adapted to receive a control voltage indicative of a data signal value.
RF TRANSMITTER USING DIGITAL-TO-RF CONVERSION

Field of the Invention

The present invention relates generally to a digital-to-analog converter and, more particularly, to a digital-to-analog converter for use in RF signal generation.

Background of the Invention

In radio communication applications the designs are continuously aiming for simpler and cheaper radio architectures to increase integration level of the mobile terminals. Conventionally, a direct upconversion transmitter has at least an I/Q modulator, an RF mixer, a filter and a power amplifier. The I/Q modulator is an efficient way to generate phase-modulated signals. It relies on two orthogonal signals, I (in-phase) and Q (quadrature), to produce a signal complex waveform. In a direct upconversion the I/Q modulator transforms the frequency spectrum of each orthogonal input signal to the RF carrier frequency. As such, two digital-to-analog (D/A) converters are needed to transform a digital baseband into an analog baseband, as shown in Figure 1a. In such a conventional direct upconversion transmitter, baseband digital data is resolved into in-phase and quadrature components. These data streams are then converted into analog, lowpass, baseband signals using separate digital-to-analog converters. These quantized, analog signals are then filtered by low-pass reconstruction filters in order to remove copies of the signals centered at harmonics of the baseband clock frequency. The filtered analog signals are used as inputs to I/Q modulator. As shown in Figure 1a, the I/Q modulator comprises two baseband-to-RF upconversion mixers with their output signals summed. The I/O modulator has two baseband inputs and two local oscillator inputs with 90° phase shift between the oscillator inputs (cos \omega t and sin \omega t, with \omega t being the frequency of the local oscillator). The output of the I/Q modulator is an RF signal.

In order to make a complete transmitter, meeting the requirements of a real wireless standard, it may be necessary to include the following components:
- a power amplifier (PA) to increase the output power to the required level;
- a bandpass filter to suppress noise and/or spurious; and
- a power control module to achieve dynamic range capability, through one or more of the following means: 1) power amplifier gain adjustment; 2) variable-gain amplifier gain adjustment; and 3) I/Q modulator output power adjustment.
An example of such a direct upconversion transmitter is shown in Figure 1b. Fundamental problems associated with the direct upconversion transmitter using an I/Q modulator are:

1. High-power consumption in the I/Q Modulator block;
2. Non-ideal performance in the analog components within the I/Q modulator, such as the non-linearity of the baseband amplifiers, carrier feed-through due to mismatch effects;
3. Bandwidth limited by analog baseband circuits; and
4. Large die area required for integrating all functions.

Current-steering D/A-converters may solve some of the aforementioned problems associated with conventional upconversion transmitters. A conventional current-steering D/A-converter comprises a plurality of parallel unit cells divided into two or more sub-blocks, as shown in Figure 2. In the figure, the converter is presented in a typical segmented configuration, wherein the current in the LSB (least-significant bit) cells is generated with parallel binary weighted units whereas the MSB (most-significant bit) sub-block has a set of unary coded cells. The number of the unary coded cells is \(2^m - 1\), where \(m\) is the number of bits in the MSB sub-block. Thus, the current for the first bit in the MSB sub-block is generated in one unary coded cell, the current for the second bit in the MSB sub-block is generated in two unary coded cells, and the current for the \(m\) bit is generated in \(2^{m-1}\) cells. The D/A converter has two current paths for conveying differential currents \(I_{out}\) and \(I_{xout}\) so that the analog signal output \(V_{out}\) can be formed with two external load resistors (not shown).

Typically, each of the parallel unit cells comprises a differential switch pair connected in series to a cascode current source, as shown in Figure 3. The differential switch pair has two current control paths \(Q1\) and \(Q2\), connected to the output terminals \(V_o\) and \(V_xo\) of the D/A converter. The currents in these paths are controlled by complementary signals \(V_{LN+}\) and \(V_{LN-}\), which are provided by a digital control logic and are indicative of the value of signal N. The cascode current source has two transistors \(Q3\) and \(Q4\) so as to allow the currents in the cell to be adjusted by DC bias4.

The D/A converters and I/Q modulators are complex and high performance analog elements. The requirement of these analog elements generally limits the flexibility of the RF transmitter.
Ideally a digital radio transmitter is independent of the radio standard and can be used in all of the modulation schemes and signal frequencies. In practice, this requires a D/A converter that is capable of operating at least twice the maximum radio frequency of the used standard. One of the major problems associated with D/A converters for use in RF generation is the high sampling frequency. If an RF signal of 1.8GHz is generated, the sampling rate in the digital baseband must be at least 3.6GHz. Furthermore, in order to effectively filter the mirror image component around the frequency difference between the sampling frequency and the digital signal frequency, a much higher sampling rate is needed. A D/A converter with such a high sampling frequency is impractical to implement because of the high price and high power consumption. For that reason, D/A converters are typically used in the baseband or in the low IF range. These converters are used along with high performance analog mixers for RF generation. These I/Q mixers consume easily tens of milliamperes of DC currents. Moreover, even when the D/A converters are used in the baseband and in the IF range, the noise current spikes occur because of the high data rate of hundreds of megahertz. These noise spikes can limit the performance of the RF transmitter.

It is thus advantageous and desirable to provide a cost-effective method and device for carrying out digital-to-analog conversion associated with RF generation. At the same time, the power consumption is reduced.

Yuan (EP1338085) discloses a direct digital amplitude modulator wherein an upconverting type of converter cell is used. In Yuan, a number of sub-switched current source units are switched on or off according to the combinations of the digital input signal and the delayed or non-delayed clock signals to produce or to cancel quantized RF, IF or DC currents and/or voltages at the time precisely controlled by the delayed clock signals. As such, the performance of the circuit is low due to a slow settling of the current in the current source after switching the current source on.

It is advantageous and desirable to provide a method and device for direct digital amplitude modulation wherein the cutting off of the current flow is avoided.

Summary of the Invention

The present invention uses two digital to RF-conversion devices to convert digital baseband signals into RF signals. The digital-to-RF conversion device combines the D/A conversion function and the upconversion function by a RF-carrier or IF-signal. The device comprises a plurality of parallel unit cells, each of which is a mixer cell type
converter having a differential data switch section connected in series to a differential LO-switch pair. The differential LO-switch is further connected in series to a current source. Each unit cell is adapted to receive a control voltage indicative of a data signal value.

Thus, the first aspect of the present invention provides an RF transmitter. The transmitter comprises:

- a digital-to-RF converter for converting digital baseband signals into RF signals;
- a bandpass filter for filtering the RF signals; and
- a power amplifier, responsive to the filtered RF signals, for providing amplified signals for transmission, wherein the digital baseband signals comprise a first digital baseband signal and a second digital baseband signal having a phase shift from the first digital baseband signal, each of the first and second digital baseband signals having a plurality of data bits, and wherein the digital-to-RF converter comprises a first conversion component for receiving the first digital baseband signal, and a second conversion component for receiving the second digital baseband signal, each of the first and second conversion components converting the corresponding data bits for providing a differential output signal modulated by a carrier signal, the carrier signal provided between two carrier signal ends, wherein the differential output signal is formed with current loads and provided between two output ends, each of the conversion components comprising:

 - a plurality of conversion units connected in parallel, each unit adapted to receive a control voltage indicative of a data signal value, the control voltage provided between two control voltage ends, each unit comprising:
 - a first differential switch section having:
 - two input current paths, each operatively connected to a different one of the output ends; and
 - two differential switch pairs connected to the control voltage ends for conveying in the two input current paths differential currents indicative of the data signal value;
 - a second differential switch section having two control current paths, each operatively connected in series to a different one of the two differential switch pairs, the control current paths operatively and separately connected to different ones of the carrier signal ends, for modulating the differential currents with the carrier signal; and
 - a current source, operatively connected in series to the second differential switch section for further controlling currents in the control current paths.
According to the present invention, the current source comprises at least one current adjusting component having a control terminal, operatively connected to a bias voltage level, for adjusting the current passing through the current adjusting component.

According to the present invention, the second differential switch section comprises two current switching components disposed in different ones of the control current paths, each of the current switching components having a control terminal operatively connected to a different one of the carrier signal ends.

According to the present invention, the first differential switch section comprises a first pair of differential switches and a second pair of differential switches, each pair having two current switches operatively connected to different ones of the control voltage ends.

According to the present invention, the transmitter further comprises:

- a variable gain amplifier, responsive to the RF signals, for providing amplified RF signals to the bandpass filter, the bandpass filter providing the filtered RF signals in response to the amplified RF signals.

According to the present invention, the transmitter further comprises a power control module, operatively connected to the digital-to-RF converter for adjusting the output level of the RF signals. The power control module is further operatively connected to the power amplifier for adjusting the power level of the amplified signals for transmission, and operatively connected to the variable gain amplifier for adjusting the signal level of the amplified RF signals.

According to the second aspect of the present invention, there is provided a digital to RF-conversion device for converting a digital signal having a plurality of data bits for providing a differential output signal modulated by a carrier signal, the carrier signal provided between two carrier signal ends, wherein the differential output signal is formed with current loads and provided between two output ends. The device comprises:

- a plurality of conversion units connected in parallel, each unit adapted to receive a control voltage indicative of a data signal value, the control voltage provided between two control voltage ends, each unit comprising:

 - a first differential switch section having:

 - two input current paths, each operatively connected to a different one of the output ends; and
two differential switch pairs connected to the control voltage ends for conveying in the two input current paths differential currents indicative of the data signal value;

a second differential switch section having two control current paths, each operatively connected in series to a different one of the two differential switch pairs, the control current paths operatively and separately connected to different ones of the carrier signal ends, for modulating the differential currents with the carrier signal; and

a current source, operatively connected in series to the second differential switch section for further controlling currents in the control current paths.

According to the present invention, the current source comprises at least one current adjusting component having a control terminal, operatively connected to a bias voltage level, for adjusting the current passing through the current adjusting component.

According to the present invention, the second differential switch section comprises two current switching components disposed in different ones of the control current paths, each of the current switching components having a control terminal operatively connected to a different one of the carrier signal ends; and the first differential switch section comprises a first pair of differential switches and a second pair of differential switches, each pair having two current switches operatively connected to different ones of the control voltage ends.

According to the third aspect of the present invention, there is provided a method for direct digital to RF-conversion for converting a digital signal having a plurality of data bits for providing a differential output signal modulated by a carrier signal, the carrier signal provided between two carrier signal ends, wherein the differential output signal is formed with current loads and provided between two output ends. The method comprises the steps of:

1) providing a plurality of conversion units connected in a parallel, each unit adapted to receive a control voltage indicative of a data signal value, the control voltage provided between two control voltage ends, each unit comprising:

a first differential switch section having:

two input current paths, each operatively connected to a different one of the output ends; and

two differential switch pairs connected to the control voltage ends for conveying in the two input current paths differential currents indicative of the data signal value; and
a second differential switch section having two control current paths, each of which operatively connected in series to a different one of the two differential switch pairs;

2) operatively and separately connecting the control current paths to different ones of the carrier signal ends, for modulating the differential currents with the carrier signal; and

3) operatively connecting a current source in series to the second differential switch section for further controlling currents in the control current paths.

The invention will become apparent upon reading the description taken in conjunction with Figures 4 to 8.

Brief Description of the Drawings

Figure 1a is a block diagram showing a traditional direct upconversion transmitter.

Figure 1b is a block diagram showing a traditional direct upconversion transmitter with a variable gain amplifier and a power control module.

Figure 2 is a schematic representation illustrating a prior art D/A converter.

Figure 3 is a circuitry showing a parallel unit cell in a prior art D/A converter.

Figure 4 is a schematic representation illustrating a Digital-to-RF-converter, according to the present invention.

Figure 5 is a circuitry showing a parallel unit cell in the Digital-to-RF-converter, according to the present invention.

Figure 6 is a function block diagram showing the input and output signals in relation with the Digital-to-RF-converter.

Figure 7 is a block diagram showing a circuitry for suppressing mirror components in an upconverted signal.

Figure 8 is a block diagram showing a direct upconversion transmitter, according to the present invention.

Best Mode for Carrying Out the Invention

The Digital-to-RF-converter, according to the present invention, combines the D/A conversion function and the upconversion function by a carrier (LO), which can be RF or IF. As shown in Figure 4, the Digital-to-RF-converter 10 comprises a plurality of parallel unit cells 201, 202, ..., 20N, The upconverter 10 has a segmented
configuration, including an LSB sub-block and an MSB sub-block. The current in the LSB sub-block is generated with parallel binary weighted units, whereas the current in the MSB sub-block is generated in a set of unary coded cells. The unary coding can be also used in the LSB sub-block. As with the convention D/A converter shown in Figure 1, the number of the unary coded cells in the MSB sub-block in the Digital-to-RF-converter is also $2^m - 1$, where m is the number of bits in MSB sub-block. The Digital-to-RF-converter has two differential current paths for conveying differential currents I_{out} and I_{sout}, so that the modulated output signal, RF_{out}, can be formed with two external load resistors, R. The modulated output signal is provided at two terminals V_o and V_{xo}. The upconversion is carried out by applying a carrier signal (LO) from a local oscillator to each of the parallel unit cells.

Each of the parallel unit cells is a Gilbert-cell type converter. It comprises a differential data switch section, connected in series with a differential LO-switch pair and a current source, as shown in Figure 5. The differential data switch section has two differential switch pairs (Q_1, Q_2) and (Q_3, Q_4). Each differential data switch pair has two current control paths, I_N and I_{NN}, connected to the output terminals V_o and V_{xo}. The currents in these paths are controlled by complementary signals V_{LN+} and V_{LN-}, which are provided by a digital control logic (not shown) and are indicative of the value of signal N. As shown in Figure 5, the control voltage V_{LN+} is used to control the currents in Q_1 and Q_4, and the control voltage V_{LN-} is used to control the currents in Q_2 and Q_3. Accordingly, the current path Q_1 is connected in parallel to the current path Q_3. Likewise, the current path Q_2 is connected in parallel to the current path Q_4.

Each of the differential data switch pairs is connected in series to a differential LO switches Q_5 or Q_6 so that the differential signals LO+ and LO- from the local oscillator (LO in Figure 4) can be used to modulate the current in the differential data switch pairs. The differential LO switch formed with Q_5 and Q_6 is connected in series to the current source Q_7, so as to allow the currents generated in the cell 20 to be adjusted by DC bias7.

It should be noted that Q_1 to Q_7 depicted in Figure 5 are MOS transistors, but any one of them can be replaced with other type of transistors.

Figure 6 is a functional block diagram of the D/A upconverter. In the figure, DATA is the data from the digital baseband, CLK_BB is the sampling clock, and CLK_RF is the signal from an LO.
It should be noted that, in direct digital-to-RF conversion, image components are generated by the D/A-conversion function to $f_{CLK,RF} \pm n \cdot f_{CLK,BB} \pm f_{signal}$, where $f_{CLK,RF}$ is the frequency of the LO signal, n is a positive integer, $f_{CLK,BB}$ is the sampling frequency and f_{signal} is the frequency of the digital data. Furthermore, the SINC-function of the D/A-conversion generates a notch to $f_{CLK,RF} \pm n \cdot f_{CLK,BB}$. If the narrow band digital data is generated to baseband (0Hz), the image frequency of the D/A-conversion function falls to the notch of the SINC-function and the image components are significantly reduced. The image components of the upconversion function in the RF output signal can be suppressed by using an I/Q modulator architecture 50, as shown in Figure 7. In this image rejection architecture, two D/A upconverters 10 are used to upconvert the digital data.

The direct upconversion transmitter with digital-to-RF converter, according to the present invention, is shown in Figure 8. As shown, the transmitter 100 comprises a digital-to-RF converter 50 which has two baseband inputs 51, 52 to accept I and Q digital baseband signals, a clock input 54 to receive clock signals from a baseband frequency generator 40. The I and Q digital baseband signals are passed directly to two D/A converters 10 (see Figures 4 and 7). The digital-to-RF converter 50 also has two local oscillator inputs 55, 56 for receiving I and Q LO signals. The I and Q LO signals are conveyed to the corresponding D/A converters 10 for RF upconversion. The transmitter 100 further comprises a variable gain amplifier 60, a bandpass filter 80, and a power amplifier 90. In order to meet the requirement of a wireless standard, a power control module 70 is operatively connected to the digital-to-RF converter 50, the variable gain amplifier 60 and the power amplifier 90 so as to adjust the gain of the power amplifier 90, the gain of the variable gain amplifier 60 and the output level of the RF signals at output 58.

The advantages of the present invention include:

1. Substantially eliminating analog signal processing in the D/A upconverters, in the lowpass reconstruction filter and the I/Q modulator baseband amplifiers;
2. Reducing non-ideal effects when compared to conventional I/Q modulators, resulting in improved linearity in baseband signal amplification, improved bandwidth, improved image dependency, and improved carrier feed-through;
3. Reduction in current consumption; and
4. Reduction in product cost due to die area reduction.
Although the invention has been described with respect to a preferred embodiment thereof, it will be understood by those skilled in the art that the foregoing and various other changes, omissions and deviations in the form and detail thereof may be made without departing from the scope of this invention.
What is claimed is:

1. An RF transmitter characterized by:
 a digital-to-RF converter for converting digital baseband signals into RF signals;
 a bandpass filter for filtering the RF signals; and
 a power amplifier, responsive to the filtered RF signals, for providing amplified
 signals for transmission, wherein the digital baseband signals comprise a first digital
 baseband signal and a second digital baseband signal having a phase shift from the first
 digital baseband signal, each of the first and second digital baseband signals having a
 plurality of data bits, and wherein the digital-to-RF converter comprises a first conversion
 component for receiving the first digital baseband signal, and a second conversion
 component for receiving the second digital baseband signal, each of the first and second
 conversion components converting the corresponding data bits for providing a differential
 output signal modulated by a carrier signal, the carrier signal provided between two
 carrier signal ends, wherein the differential output signal is formed with current loads and
 provided between two output ends, said RF transmitter characterized in that
 each of the conversion components comprises:
 a plurality of conversion units connected in parallel, each unit adapted to receive a
 control voltage indicative of a data signal value, the control voltage provided between two
 control voltage ends, each unit comprising:
 a first differential switch section having:
 two input current paths, each operatively connected to a different one of
 the output ends; and
 two differential switch pairs connected to the control voltage ends for
 conveying in the two input current paths differential currents indicative of the data
 signal value;
 a second differential switch section having two control current paths, each
 operatively connected in series to a different one of the two differential switch pairs, the
 control current paths operatively and separately connected to different ones of the carrier
 signal ends, for modulating the differential currents with the carrier signal; and
 a current source, operatively connected in series to the second differential switch
 section for further controlling currents in the control current paths.
2. The RF transmitter of claim 1, characterized in that the current source comprises at least one current adjusting component having a control terminal, operatively connected to a bias voltage level, for adjusting the current passing through the current adjusting component.

3. The RF transmitter according to claim 1 or claim 2, characterized in that the second differential switch section comprises two current switching components disposed in different ones of the control current paths, each of the current switching components having a control terminal operatively connected to a different one of the carrier signal ends.

4. The RF transmitter according to any of claims 1 to 3, characterized in that the first differential switch section comprises a first pair of differential switches and a second pair of differential switches, each pair having two current switches operatively connected to different ones of the control voltage ends.

5. The RF transmitter according to any of claims 1 to 4, further characterized by a variable gain amplifier, responsive to the RF signals, for providing amplified RF signals to the bandpass filter, the bandpass filter providing the filtered RF signals in response to the amplified RF signals.

6. The RF transmitter according to any of claims 1 to 4, further characterized by a power control module, operatively connected to the digital-to-RF converter for adjusting the output level of the RF signals.

7. The RF transmitter according to any of claims 1 to 4, further characterized by a power control module, operatively connected to the power amplifier for adjusting the power level of the amplified signals for transmission.

8. The RF transmitter of claim 5, further characterized by a power control module, operatively connected to the variable gain amplifier for adjusting the signal level of the amplified RF signals.
Fig. 2 (PRIOR ART)
Fig. 3 (PRIOR ART)

differential switch pair

cascade current source

\[V_{LH}^+ \]

\[V_{LH}^- \]

\[I_{ON} \]

\[I_N \]

DC bias 3

DC bias 4
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
 IPC(7) : H04B 1/69
 US CL : 375/150
 According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
 Minimum documentation searched (classification system followed by classification symbols)
 U.S. : 375/150; 327/72, 113; 455/333

 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

 Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
 IEEEEXplore

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 4,088,905 A (COMER) 05 May 1978 (09.05.1978)</td>
<td>1 - 8</td>
</tr>
<tr>
<td>A</td>
<td>US 6,545,516 B2 (YLAMURTO et al) 08 April 2003 (08.04.2003)</td>
<td>1 - 8</td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C. ☐ See patent family annex.

* Special categories of cited documents:

 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

 "X" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "Y" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Z" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "&" document member of the same patent family

Date of the actual completion of the international search
02 August 2005 (02.08.2005)

Date of mailing of the international search report
23 Nov 2005

Name and mailing address of the ISA/US
Mail Stop PCT, Attn: ISA/US
Commissioner for Patents
P.O. Box 1450
Alexandria, Virginia 22313-1450

Facsimile No.

Authorized officer
Stephen Chin
Telephone No. (703)-305-4714

Form PCT/ISA/210 (second sheet) (January 2004)