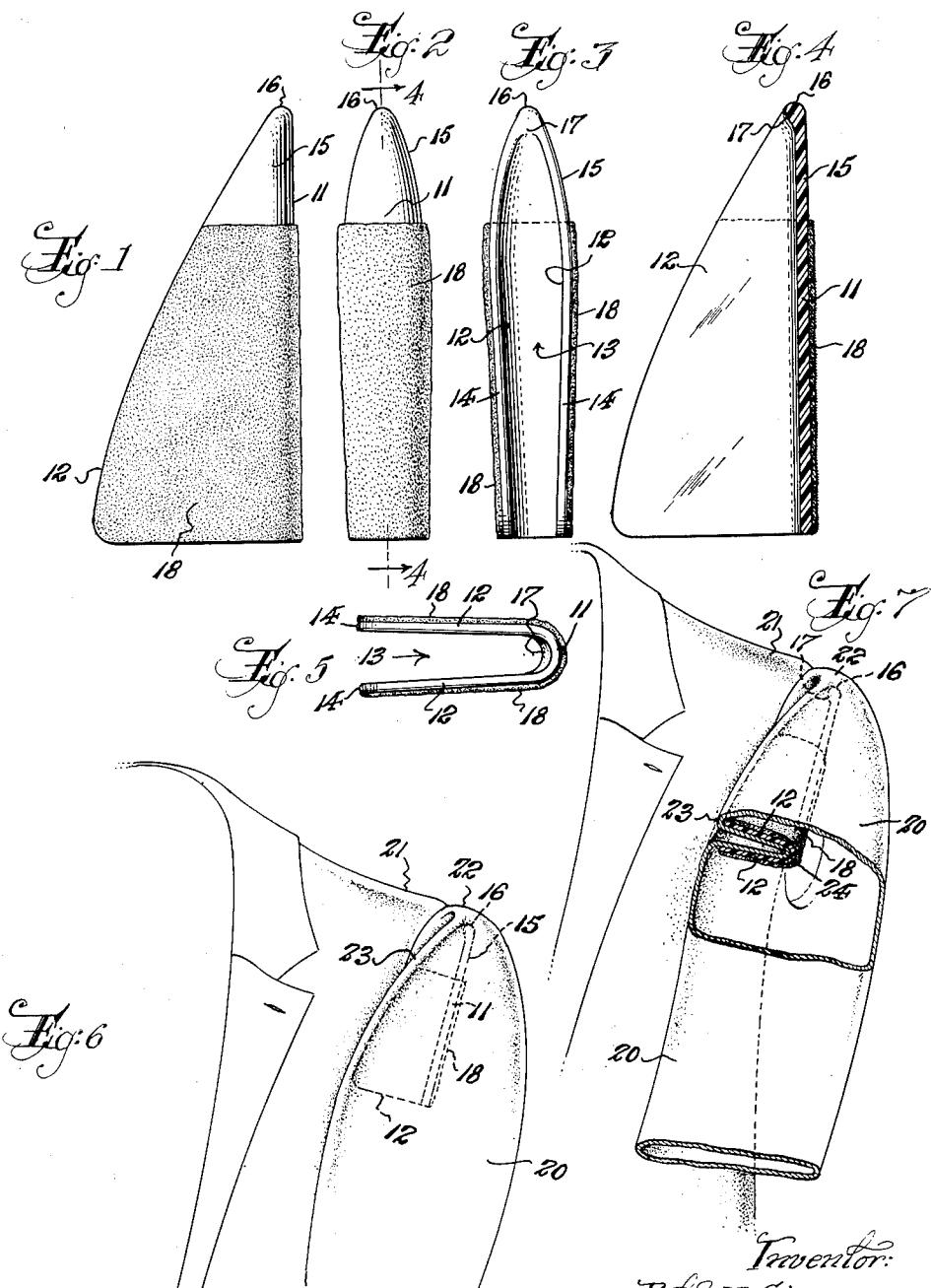


Jan. 27, 1953


P. H. SIMONSEN

2,626,734

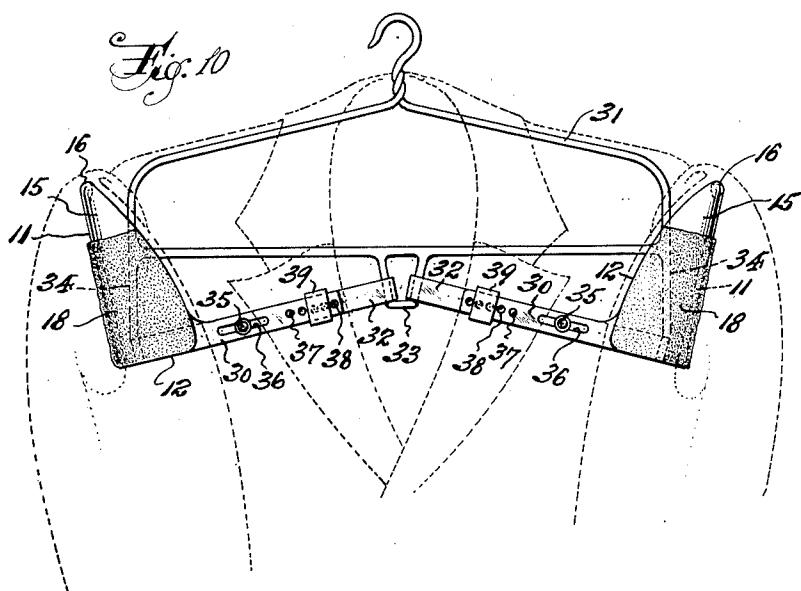
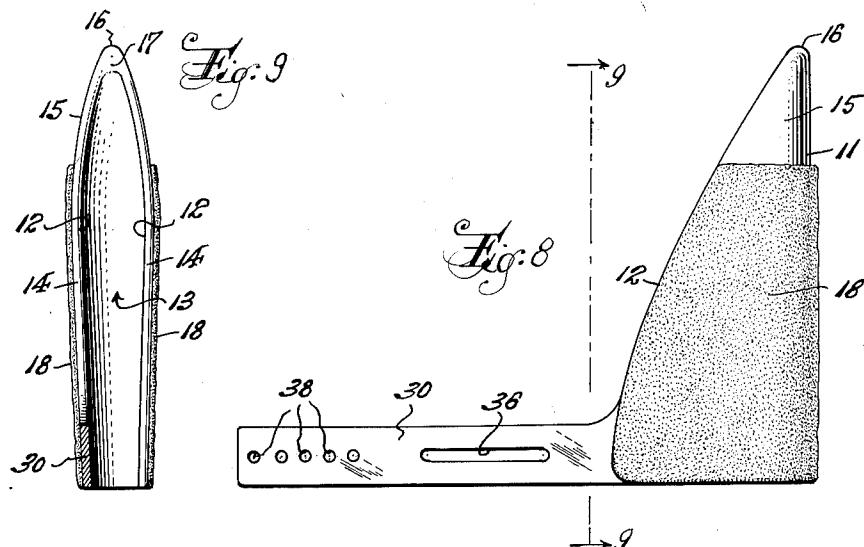
SLEEVE FOLD GUIDING AND SUPPORTING DEVICE

Filed Oct. 10, 1950

2 SHEETS—SHEET 1

Inventor:
Peter H. Simonsen
BY
George D. Richards,
Attorney.

Jan. 27, 1953



P. H. SIMONSEN

2,626,734

SLEEVE FOLD GUIDING AND SUPPORTING DEVICE

Filed Oct. 10, 1950

2 SHEETS—SHEET 2

Testimony:
Peter H. Simonsen

BY George Richards,
Attorney.

UNITED STATES PATENT OFFICE

2,626,734

SLEEVE FOLD GUIDING AND SUPPORTING DEVICE

Peter H. Simonsen, Avon, N. J.

Application October 10, 1950, Serial No. 189,385

4 Claims. (Cl. 223—72)

1

This invention relates to sleeve fold guiding and supporting devices for use in garments as folded and packed into transportation luggage or other containers.

When packing folded men's suits or women's tailored suits into suitcases, wardrobe trunks or similar luggage, and other carrying containers, there is need for means to so support folds of the garments, especially with respect to folds of coat sleeves in the vicinity of the junctures of said sleeves with the shoulders of the coat, that said folds cannot be crushed flat and sharply creased by the pressure to which the garments are submitted when packed in luggage or other carrying container.

When a coat is folded for packing in luggage or other carrying container, the sleeves are flattened and inwardly swung or inclined to lay over the front of the coat. When the sleeves are thus inswung and overlaid across the coat front, considerable undesirable puckering and wrinkling of the unsupported material of the sleeves occurs with respect to the sleeve portions which extend adjacently below the shoulder seams and at the arm pit. Under these conditions, when the coat is packed and tightly compressed within the luggage or container interior, the aforesaid wrinkles become sharply creased so as to remain in the coat after it is unpacked, to the detriment of the coat appearance when again worn.

Having the above in view, it is an object of the present invention to provide novel sleeve fold guiding and supporting devices for retaining the garment, when packed into luggage or other container, in smoothly folded condition particularly with respect to the garment sleeves, so that folds formed in the latter are guided and smoothly supported against wrinkling and sharp creasing especially in the areas thereof adjacent to the shoulders of the garment from which the sleeves extend.

The invention has also for an object to provide sleeve fold guiding and supporting devices adapted for use either independently of garment hanger means, or, if desired, in combination with garment hanger means as incorporated parts thereof.

The invention has for a further object to provide means for so connecting the novel sleeve fold guiding and supporting devices with a garment hanger means, that the former can be adjustably disposed in connection with the latter, whereby to accommodate the same to different sizes of garments.

2

Other objects of the present invention, not at this time more particularly enumerated, will be understood from the following detailed description of the invention.

5 Illustrative embodiments of the invention are shown in the accompanying drawings, in which: Fig. 1 is a side elevational view of a sleeve fold guiding and supporting device according to the invention; Fig. 2 is a rear face view of the same; Fig. 3 is a front face view thereof; Fig. 4 is a longitudinal vertical sectional view thereof, taken on line 4—4 in Fig. 2; and Fig. 5 is an end elevational view of the device.

Fig. 6 is a fragmentary face view of a garment 10 with a sleeve fold guiding and supporting device according to this invention operatively applied thereto; and Fig. 7 is a similar view, with parts of the garment sleeve broken away and showing the sleeve fold guiding and supporting device 15 and adjacent sleeve material in cross section.

Fig. 8 is a side elevational view of a sleeve fold guiding and supporting device according to this invention, but as modified for incorporation with a garment hanger; and Fig. 9 is a transverse vertical section, taken on line 9—9 in Fig. 8.

Fig. 10 is a front face view of a garment hanger 20 having the sleeve fold guiding and supporting devices incorporated therewith.

Similar characters of reference are employed 25 in the hereinabove described views, to indicate corresponding parts.

Referring first to Figs. 1 to 5 of the drawings, these views show a sleeve fold guiding and supporting device according to this invention. The 30 device comprises a rigid body of U-shaped transverse cross-section, which can be produced from a variety of materials, such as plastics, paper or papier-mâché, metal, wood or the like. The body comprises a longitudinally extending back section 11, preferably of semi-circular cross-section, from opposite sides of which extend forwardly projecting side sections 12, which are laterally spaced apart by the back section 11 so as to provide an intermediate fold receiving space 35 13. The forward free margins 14 of the side sections 12 are of transversely rounded contour, and are upwardly and inwardly inclined from their bottom ends toward and so as to converge 40 upon the upper extremity of the back section 11, whereby the body of the device is of generally upwardly tapering conformation and thus of substantially triangular shape in side elevation. By reason of such conformation, the upper end of the body terminates in an acute nose section 45 15 having a rounded extremity 16, which is fur-

ther provided with a thickened portion 17 across the interior of the back section 11. Preferably the exterior surfaces of the body, especially if the body is made of a material the surface of which is smooth and relatively slippery, is treated to provide a major area thereof, which extends from the bottom of said body to a point short of the nose section 15, with frictional or anti-slip characteristics. This may be done by covering such surface area with a coating 18 of frictional or anti-slip material, preferably by adhering to said surface area a layer of floccose material or the like. The nose section 15 is left with a smooth external surface, which facilitates entrance of the device into and desired disposition of the same within a sleeve to be operatively engaged thereby.

To operatively assemble the sleeve fold guiding and supporting device relative to a garment sleeve to be served thereby, the device is inserted into the interior of a garment sleeve 20 adjacent to the armhole juncture thereof with the shoulder portion 21 of the garment. The device is thereupon disposed within the sleeve 20 so that the extremity 16 of the nose section 15 of the device abuts the peak 22 of the sleeve, with the internal thickened portion 17 opposed to and stopped against the shoulder padding of the garment, and with the open mouth of the fold receiving space 13 opposed to the armhole of the garment. As thus positioned within the sleeve 20, one side section 12 of the device overlies the internal surface of the back or under part of the folded sleeve and the opposite side section is opposed to the internal surface of the front or outer part of the folded sleeve. When the device is applied to the sleeve 20, the latter is inswung or inclined inwardly to overlie the front of the garment, and then flattened. When the sleeve 20 is thus inswung, an external fold 23 is formed in the material of the front or outer part thereof, which fold extends downwardly from the peak 22 of the sleeve. It is this fold which, if not guided and supported, will not only cause puckering or wrinkling of the sleeve material in the vicinity of its juncture with the garment body, but will also be subject to strong compression under packing pressure which will result in formation of sharp creases in the sleeve material to the detriment of the appearance of the garment when the latter is unpacked and again worn. When the fold guiding and supporting device of this invention is employed, these undesirable results are avoided, since the device provides a means whereby the fold 23 can be symmetrically and smoothly formed or shaped and then supported against creasing pressure. To this end, the external fold 23 is turned about the free rounded edge 14 of the outer side section 12, with the inturned material of the sleeve tucked into the receiving space 13 between the side sections 12 whereby to form an internal fold 24 (see Fig. 7). It will be observed that, under these circumstances, the fold 23 is supported in off-set spaced relation to the internal fold 24, and that these folds cannot be flatly pressed together and creased. The device being itself symmetrical can be used and applied to either the right hand or the left hand sleeve of a garment; and, it will be understood, two said devices would be used in preparing the garment for packing, one in each sleeve of said garment.

In most suitcases, the folded garments are usually packed therein so as to hang over a transverse supporting bar with the neck and

shoulder portions of the garment pendant therefrom when the suitcase is carried. In such arrangement, the fold guiding and supporting devices, as operatively applied to the garment sleeves, will be supported by the peaks of the sleeves against longitudinal displacement from their operative relation to the garment, and due to the coating 18 of frictional characteristics by which external surfaces of the devices are faced, such coating will tend to cling to the internal surfaces of the sleeves contiguous thereto, so that the devices will not slip and therefore will be held against lateral displacement from their operative relation to the garment sleeves.

15 In wardrobe trunks and similar containers, the packed suits are ordinarily supported by the shoulders thereof upon a hanger pendant within the trunk or container. For such method of packing, the sleeve fold guiding and supporting devices may be suitably modified for attachment to a garment hanger, and preferably in such manner that the devices may be adjusted on the hanger whereby the same may be suitably disposed to accommodate the same to different sizes of garments.

20 One illustrative construction of the sleeve fold guiding and supporting devices, as modified for adjustable connection with a garment hanger is shown in Figs. 8 to 10 inclusive. In such construction, a bottom side section of each sleeve fold guiding and supporting device is provided with a carrier arm 30 unitary therewith, and which projects angularly outward from its lower free margin. The devices as so modified must 25 be produced in pairs, to provide right and left hand devices, adapted to be connected with a hanger frame 31 so as to be respectively located at opposite sides or ends thereof. The connection of the device with the hanger frame 31 may be such that said devices can be adjusted on the frame toward and from each other whereby to accommodate the same to different sizes of garments. To permit such adjustment, the hanger frame 31 is provided with oppositely extending fixed track bars 32 which incline downwardly and outwardly from a mid-portion 33 of the frame to the respective sides or ends 34 thereof. Each track bar 32 is provided with a stud 35 which cooperates with a slot 36 with 30 which the carrier arm 30 of a sleeve fold guiding and supporting device is provided, whereby the carrier arms may be longitudinally moved in and out along the track bars. Lapping portions of associated carrier arms and track bars are 35 provided with cooperative means by which the former may be held in selected adjusted relation to the latter. Illustratively, means for this purpose may comprise a lug or tit 37 projecting from the face of a track bar 32 and a longitudinal row of perforations 38 with which an associated carrier arm 30 is provided, whereby a selected perforation 38 may be engaged with a cooperative lug or tit 37 so as to hold the carrier arm and the device from which it springs in desired longitudinally adjusted relation to the track bar 32. A slide keeper sleeve 39 is provided to slide over lapped portions of an adjusted carrier arm and track bar, whereby to retain the interengaged lug and tit 37 and perforation 38 against separation, and thus the carrier bar against accidental displacement from its adjusted relation to the track bar.

30 In garments of small size, the shoulder breadth is narrower and the skirt length shorter than in garments of larger sizes. Consequently, for

smaller sizes of garments the sleeve fold guiding and supporting devices are moved inwardly and upwardly along the track bars, and for larger sizes are moved outwardly and downwardly along the latter, thus in the first case spacing and raising the sleeve fold guiding and supporting devices to accommodate the narrower shoulders and shorter skirt of the small size garment; in the second case, said devices are moved outwardly and downwardly to more widely space and lower the same to accommodate the broader shoulders and longer skirt of a large size garment. When the sleeve fold guiding and supporting devices are properly positioned according to size of garment to be accommodated, said devices are disposed within and relative to the garment sleeves in manner as already above described, whereby to smoothly form and support the sleeve folds against wrinkling and creasing under packing pressure.

Having now described my invention, I claim:

1. A sleeve fold guiding and supporting device for insertion within the sleeve of a garment adjacent the armhole juncture thereof with the shoulder of the garment when said garment is to be folded for packing, said device comprising a rigid body of substantially U-shaped transverse cross-section to provide spaced apart corresponding side sections forming an intermediate sleeve fold receiving space, the free margins of said side sections inclining inwardly and upwardly from

5

10

15

20

25

30

the bottom margins thereof, whereby to provide an acute nose section at the upper end of the body adapted, in use, to abut the peak of the sleeve at the juncture thereof with the shoulder of the garment.

2. A sleeve fold guiding and supporting device according to claim 1 wherein a coating of frictional material covers areas of the external surface of the body of the device.

3. A sleeve fold guiding and supporting device according to claim 1 wherein the tip of the body nose section is provided with an internal enlargement.

4. A sleeve fold guiding and supporting device according to claim 1 wherein the tip of the body nose section is provided with an internal enlargement, and wherein a coating of frictional material covers areas of the external surface of the body of the device.

PETER H. SIMONSEN.

REFERENCES CITED

The following references are of record in the file of this patent:

UNITED STATES PATENTS

Number	Name	Date
1,513,609	Ladner et al.	Oct. 28, 1924
1,910,901	Koplow	May 23, 1933
2,035,909	Moore	Mar. 31, 1936
2,528,036	Cook	Oct. 31, 1950