wo 2012/130289 A 1[I NP0 0 R AR O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(43) International Publication Date
4 October 2012 (04.10.2012)

(10) International Publication Number

WO 2012/130289 A1

WIPOIPCT

(51) International Patent Classification:
HO4L 29/08 (2006.01) HO4L 29/06 (2006.01)
GO6F 21/20 (2006.01) GO6F 9/455 (2006.01)

(21) International Application Number:

PCT/EP2011/054839

(22) International Filing Date:

29 March 2011 (29.03.2011)
English
English

Applicant (for all designated States except US): BRAIN-
LAB AG [DE/DE]; Kapellenstr. 12, 85622 Feldkirchen
(DE).

(25)
(26)
1

Filing Language:

Publication Language:

(72)
(73)

Inventors; and

Inventors/Applicants (for US only): DROSTE, Claudia
[DE/DE]; Telschowstr. 14, 85748 Garching (DE). BREIT-
SCHAFT, Klaus [DE/DE]; Brunnen Str. 15, 85622
Feldkirchen (DE). BIRKENBACH, Rainer [DE/DE];
Biirgermeister-Eisenreich-Strasse 5, 85435 Erding (DE).
BRAUN, Michael [DE/DE]; Marianne-Plehn-Str. 4,
81825 Munich (DE). NEUNER, Klaus [DE/DE]; Am
Schmiedberg 16a, 85625 Glonn (DE). WIST, Henrik
[DE/DE]; Johann-Sebastian-Bach Str. 42a, 85521 Otto-
brunn (DE).

Agent: SCHWABE, SANDMAIR & MARX; Stuntzstr.
16, 81677 Munich (DE).

74

(81) Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG,
SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ,
UA, UG, US,UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:
of inventorship (Rule 4.17(iv))
Published:

with international search report (Art. 21(3))

(54) Title: PROCESSING OF DIGITAL DATA, IN PARTICULAR MEDICAL DATA BY A VIRTUAL MACHINE

Fig. 1: Hardware and Software Structure of Medical Data Processing System (MEDProS)

’Eoud Server Farm

Login
Server
Data Base

VM1

SC-Checkline

LS (Login Server)
-

T MC-
Togin-Line Checkline

<

Client 1

- User
Data
-Case ID

HLL, (processed MID1)

storage controller (SC)

| TS TEMP 1
3 MeDPAP Controlier (MC) J—‘

MeMcD

VM Storage
(ViMStor)

Login-
Line

e midicoLl || HicopApL
L 5

| (processed
MIDZ)

Client 2

| TEMP 2

I‘(
—

Login
Line

T McDPAP2

BiDiCoL. 2

Client 12

MiDa$

HL12
MCAI2]

BiDiCoL 12

‘.’ VM2

_

(57) Abstract: The present invention relates to a virtual machine (VM) for processing digital data (MD), in particular medical data
by executing a digital data processing application program, in particular a medical data application program called MeDPAP, the

virtual machine (VM) being a simulation of a computer, the virtual

machine comprising at least the following components: * a MeD-

PAP controller (MC) which is constituted - so that it can be addressed by a Uniform Resource Identifier called VM-URI via a wide
area network (WAN), - to support direct interoperable interaction with a client application (MCA) over the wide area network
(WAN), - to assign a Uniform Resource Identifier called MeDPAP-URI to the MeDPAP, and - to send the assigned MeDPAP-URI
to the client application via the wide area network (WAN); and * the MeDPAP which is constituted - to process the digital data
(MD), - so that it can be addressed by the client application via the wide area network (WAN) by using the MeDPAP-URI, and - to
support direct interaction with the client application over the wide area network for receiving instructions from the client application

(MCA) to process the digital data.

WO 2012/130289 PCT/EP2011/054839

Processing of Digital Data, in particular Medical Data by a Virtual Machine -

The present invention relates to the processing of digital data, in particular medical data by a
virtual machine. The virtual machine is a simulation of a server. This simulation runs in par-
ticular on a computer system. The computer system comprises a number of computers (one,
two or a plurality). Preferably, the processing capacity of the computer system is scalable.

The computer system is in particular on a cloud computer system.

The present invention is in particular directed to the field of medical data. The medical data
comprise in particular medical image data (like CT images or CBCT images or MRT images)
which include a huge amount of data to be processed. In the following the term “medical
data” is used instead of “digital data” although any other kind of digital data can be processed
like image data or audio data in accordance with the present invention. The digital data are in

particular data representing physical properties.
The object of the invention is to enable a fast processing of digital data by a virtual machine.

This problem is solved by the subject-matter of any appended independent claim. Advantages,
advantageous features, advantageous embodiments and advantageous aspects of the present
invention are disclosed in the following and contained in the subject-matter of the dependent
claims. Different advantageous features can be combined in accordance with the invention as
long as technically sensible and feasible. In particular, a feature of one embodiment which has
the same or similar function of another feature of another embodiment can be exchanged. In
particular, a feature of one embodiment which supplements a further function to another em-

bodiment can be added to the other embodiment.

WO 2012/130289 PCT/EP2011/054839

According to an embodiment a virtual machine for processing digital data, in particular medi-
cal data is provided. The processing of the digital data is performed by executing a digital
data processing application program on the virtual machine. The digital data processing appli-
cation program is in particular an executable program (having in particular the file extension
“.exe”). The file of the digital data processing application program is in particular stored in
the virtual machine. The digital data processing application program is in the following called
“MeDPAP” and is in particular a medical data application program. As mentioned above, the
virtual machine is in particular a simulation of a computer, in particular of a computer which
works as a server and in particular which allows communication with another computer which
works as a client. The virtual machine is in particular running on a cloud computer system, for
instance on a server farm which provides services of cloud computing. The virtual machine is
in particular a virtual computer, in particular a virtual server which is running on the cloud
computer. Preferably at least one instance of a MeDPAP is running or ready to run on the
virtual machine. As far as it is stated herein that the virtual machine “comprises” a (software)
component (in particular a software component), e.g. an application and/or a program and/or a
service, in particular the MeDPAP controller (see below) or a number of MeDPAPs, this
means that the application (e.g. MeDPAP or MeDPAP controller) is running on the VM or is
ready to run on the VM (in particular is loaded in the VM and ready to be started). As far as
the term MeDPARP is used herein, it can be a MeDPAP which is ready to run or which is run-
ning. As far as the term MeDPAP controller is used it can be a MeDPAP controller which is
ready to run or which is running. “Ready to run” means in particular that the MeDPAP con-
troller can be started (e.g. via a call instruction) by the operating system of the VM.

The virtual machine which is abbreviated VM comprises in particular a VM data storage
(which is abbreviated as ViMStor) for storing the digital data. As mentioned above, the digital
data are in particular medical data. Therefore, the digital data are called MD. The ViMStor is
preferably implemented as a part of a storage provided by a RAM-disc, alternatively or addi-

tionally it can be implemented on a hard disc.

The MeDPAP controller and the MeDPAP and optionally the ViMStor are examples for
components of the virtual machine. There are in particular examples for components which

have been loaded (in particular installed) into the virtual machine. For instance a RAM disk

software has been installed.

WO 2012/130289 PCT/EP2011/054839

The virtual machine further preferably comprises the MeDPAP controller as a running soft-
ware component or as a software component which is ready to run. This software component
is called MeDPAP controller and is abbreviated as MC. The MC is preferably stored on the
VM. The MeDPAP controller is preferably an application program which has properties of a
web service and is in particular implemented as a running web service. The MeDPAP control-
ler has in particular at least one of the properties described in the following. The MeDPAP
controller is running on the VM. The MeDPAP controller is constituted so that it can be ad-
dressed by a Uniform Resource Identifier. This Uniform Resource Identifier is called herein
controller-URI (or also VM-URI). The MeDPAP controller is in particular an interface which
allows communication of the virtual machine via a WAN (wide area network, e.g. internet)
with a client application. To this end, the MeDPAP controller is preferably constituted to un-
derstand a language which allows communication between computer systems o'f the WAN
independently of the platform and/or implementation used on the computer systems. In par-
ticular the MeDPAP controller is constituted to understand XML language. In particular the
MeDPAP controller supports interoperable machine-to-machine interaction over the WAN (in
particular the internet). In particular the MeDPAP controller supports interoperable interac-
tion between a client application and the virtual machine over the WAN. Preferably, the
MeDPAP controller has an interface which is described in a machine-processable format (in
particular Web Services Description Language). In particular, the MeDPAP controller is con-
stituted to interact with a client application using so called SOAP messages. The SOAP mes-
sages are preferably conveyed using HTTP with an XML serialisation in conjunction with
other web-related standards. The so called SOAP is a protocol specification for exchanging
structured information in the implementation of web services. Preferably, the message format
is XML (Extensible Markup Language). In particular the protocol used by the MeDPAP con-
troller (in particular the SOAP) relies on the XML and preferably on other applilcation layer

protocols, in particular Remote Procedure Call (RPC) and Hypertext Transfer Protocol
(HTTP).

The WAN is not part of the VM (and in particular the MeDPAP controller) and the VM (and

in particular the MeDPAP controller) is connected to or is constituted to be connected to the
WAN.

WO 2012/130289 PCT/EP2011/054839

Preferably, the MeDPAP controller is also constituted to start the execution of the digital data
processing application program which is abbreviated as MeDPAP. To this end, preferably the
MeDPAP is stored on the virtual machine. Preferably, the MeDPAP controller is' constituted
to start the MeDPAP a plurality of times so that a plurality of MeDPAPs (to be more clear a
plurality of MeDPAP instances) are running simultaneously on the virtual machine. That is,
the MeDPAP controller is preferably constituted to start execution of the MeDPAP a plurality
of times. As a consequence, the plurality of MeDPAPs are running simultaneously on the vir-
tual machine. The number of MeDPAP instances is preferably chosen in dependence on the
processing power of the VM. Each of the plurality of MeDPAP instances is preferably con-
trollable, in particular (identifiable and) independently addressable by the MeDPAP control-
ler. To this end, the individual process IDs and/or process handles of the MeDPAP instances
are preferably used by the MeDPAP controller. The MeDPAP controller is in particular the
parent to which the child (i.e. the MeDPAP instance) in particular sends the process ID. As
far as in the following it is mentioned that a MeDPAP is running, this means that a MeDPAP
instance is running. Furthermore, MeDPAPi will be an example for a MeDPAP instance in
the following. As far as the constitution and/or ability of a MeDPAP is describecli, this refers
to the constitution and/or ability of the MeDPAP when it is running, i.e. when the MeDPAP is
a MeDPAP instance. If the description refers to an action performed by a MeDPAP, this
means that the action is performed by a running MeDPAP, i.e. a MeDPAP instance. Of course
it is possible to generate a plurality of MeDPAPs (in particular MeDPAP instances) by either
starting (calling) one and the same MeDPAP (MeDPAP.exe) a plurality of times or by start-
ing a plurality of MeDPAPs (MeDPAP.exes). If it is described herein that MeDPAPs are con-
stituted for something this means that the running MeDPAPs are constituted for this some-
thing if started a plurality of times or that the plurality of MeDPAP.exes (which are ready to
run on the VM) are constituted for this something is started. “MeDPAP.exe” is an example
for the program file MeDPAP, i.e. the MeDPAP file. The MeDPAP file is preferably a com-

piled program (however could also be implemented by using an interpreter).

The MeDPAP controller is in particular a software system designed to support the above-
mentioned interoperable machine-to-machine interaction over a network. In particular the

MeDPAP controller is a web service as defined by the World Wide Web Consortium (W3C).

WO 2012/130289 PCT/EP2011/054839

The virtual machine is in particular defined by the operating system. In particular one virtual
machine has one operating system, in particular a server operating system like Windows

Server 2008, Windows Server 2003, Windows Server 2008R2, Linux, and Unix.

The MeDPAP controller is in particular constituted to send a Uniform Resource Identifier
called MeDPAP-URI to the client application. Preferably, the MeDPAP controller assigns the
MeDPAP-URI to the MeDPAP, for instance by storing a reference between the process han-
dle and/or the process ID of the MeDPAPi and the MeDPAP-URI. Preferably, the assignment
is stored. In particular the MeDPAP controller is constituted to select one of a plurality of
available MeDPAP-URIs (which are in particular predefined) and to assign the selected
MeDPAP-URI to the MeDPAPi. In particular in case there are plurality of MeDPAPs, the
selected MedPAR-URI is assigned to one of the plurality of MeDPAP instances so that differ-
ent MeDPAP-URIs are assigned to the MeDPAP instances. In other words, each MeDPAP-
URI is exclusive for one of the MeDPAP instances. In particular the assignment between the
MeDPAP instances and the MeDPAP-URIs can be stored in a table. Preferably the MeDPAP
controller also stores an assignment between client applications and MeDPAP instances. That
is, preferably each client application is exclusively assigned one MeDPAP-URI and one
MeDPAP instance by the MeDPAP controller. The MeDPAP controller preferably stores this

assignment, for instance in a table.

The MeDPAP controller is preferably an application which runs on a web server. As far as it
is mentioned herein that the MeDPAP controller is constituted for something, this means that
the running MeDPAP controller is constituted for this something. The web server can be for
instance a IIS web server (Internet Information Services from Microsoft) or an APACHE web
server. The web server is in particular a software component of the server operating system.
Access to the virtual machine (where the web server is running) by a user can be performed
for instance via a protocol (e.g. remote desktop protocol which provides a user with a graphi-
cal interface to another computer). The web server preferably provides static and dynamic
content. As mentioned above, the MeDPAP controller (and preferably also the later men-
tioned storage service) is an application which runs on the web server (for instance IIS). The
application has preferably a web service part (having for instance an extension “.asmx”) and
comprises preferably also assemblies (having for instance extension “.dll”). Preferably, the

application (for instance MeDPAP controller and/or storage service) also has a handler for

WO 2012/130289 PCT/EP2011/054839

handling the URI, in particular a HTTP-handler. The URI-handler determines the location of
a file in the ViMStor (reads files out of the ViMStor and preferably also checks a VM session
ID as will be described later).

The MeDPAP is preferably an executable application program (in particular the file of which
having the ending “.exe”). The MeDPAP (i.e. the MeDPAP instance) is preferably running on
the server operating system. Preferably, the executable file representing the MeDPAP is
stored in a storage of the virtual machine, in particular in a hard disc. The MeDPAP can for
instance be programmed in C++ language in particular by using a so called .net-framework
(of Microsoft®) and preferably also comprises a web service interface. The web service in-
cluded in the MeDPAP is in particular a so called WCF (Windows Communication Founda-
tion) web service. As mentioned above, the MeDPAP is preferably constituted so it can be
started by the MeDPAP controller. The features of the MeDPAP described herein in particular
relate to a MeDPAP (i.e. a MeDPAP instance) which is running on the virtual machine. In
particular as far as stated that the MeDPAP is constituted for something, this means that the
MeDPAP is constituted for (is able to do) this something in case the MeDPAP is running on
the virtual machine. That is, the MeDPAP instance is able to do this something. As far as it is
not explicitly mentioned otherwise herein, the term “MeDPAP” refers to the program which is
running on the virtual machine (i.e. to the MeDPAP instance) and not to the file (for instance
MeDPAP .exe) which represents the MeDPAP and which can be started by the MeDPAP con-
troller to generate a (running) MeDPAP (i.e. a MeDPAP instance). A MeDPAP instance is in

particular no longer existent after it had been stopped.

The MeDPAP is preferably constituted to process the digital data, in particular the medical
data. In particular the MeDPAP is constituted to perform image processing by processing im-
age data. In particular, the MeDPAP is constituted to generate image files which represent
processed image data. For instance the image file represents a defined part of an image or a
defined sub image or a processed image, in particular a sequence of processed images (e.g. an
image of which the contrast is enhanced or which has been zoomed) or a reconstructed image
like a DRR (digitally reconstructed radiograph), or fusioned or morphed images, streamed

content like video stream or streamed images, 3D video streams, animated images etc.).

WO 2012/130289 PCT/EP2011/054839

Preferably, the MeDPAP is constituted so that the MeDPAP can be addressed by the client
application by using the MeDPAP-URI. That is, the client application (called MCA) can di-
rectly address the MeDPAP which is running within the virtual machine without needing the
MeDPAP controller or any kind of web service as an interface. This allows to speed up the
response time of the virtual machine in case the client application instructs the virtual ma-
chine (to be more specific the assigned MeDPAP instance) to process the digital data. To this
end, the executable MeDPARP file preferably includes a part which operates as a web service
when the MeDPAP is running. In particular since the web service is part of a single (com-
piled) program (the MeDPAP), the instructions received directly from the client application
can initiate the processing of the digital data more quickly. Moreover, since each MeDPAP
instance has its own unique MeDPAP-URI and since this MeDPAP-URI is given only to one
client application, the MeDPAP instance can only receive instructions to process, digital data
by one client application. In this way, data cross talk (i.e. unauthorized and/or inadvertent
access to data assigned to another client application) is avoided compared to the case that sev-
eral client applications instruct the same MeDPAP instance. This is in particular of impor-
tance in the medical field where a reliable result of data processing (in particular processing of

medical image data) is of advantage as noted by the inventors.

A MeDPAP-URI can be constructed as follows: hitps://VMi-URI/MEDPAPI. VMi is the i-th

virtual machine. That is, the present invention is also directed to a set of the virtual machines

(VMi, i=1...M) which set comprises in particular a plurality of the VMs.

Preferably, the MeDPAP supports direct interoperable interaction with the client application
over the network (e.g. internet). To this end, the MeDPAP preferably comprises a WAN inter-
face, in particular an HTML interface. In this way, the MeDPAP can receive instructions. from
the client application which client application is called ,MCA“ (for medical client applica-
tion) in order to process the digital data (MD) which are in particular stored in the VM data

storage (which is part of the virtual machine).

It is also possible that the digital data are stored outside the virtual machine. However, ac-
cording to a preferred embodiment, the digital data are stored inside the virtual machine and
in particular a temporary storage (like a RAM disk) in order to increase processing speed and

in particular reduce the risk of data leakage and data cross talk.

WO 2012/130289 PCT/EP2011/054839

In order to promote the processing speed and in order to reduce the risk of datall cross talk,
preferably an exclusive storage space is assigned to each of the MeDPAP instances. The stor-
age space is located in particular within the VM data storage and in particular within a RAM
disk. The processed digital data are preferably placed within a file called Prodaf (“processed
data file”) by the MeDPAPiI. Preferably the file is stored in the aforementioned storage space
assigned to the MeDPAPI. The location of the Prodaf is preferably translated into a Prodaf-
URI. Assume that an individual Prodaf has the name “Prodafx” then the Prodaf-URI assigned
to Prodafx is called herein Prodaf-URIx. The location of the Prodaf is preferably within the
aforementioned storage space. According to a less preferred embodiment, the location is
somewhere else, for instance in a separate remote server farm providing hard disk space.
Preferably the MeDPAP is constituted to send the Prodaf-URI (which represents the location
of the Prodaf) to the client application (i.e. that client application which is assigned to the
MeDPAP which determined the Prodaf-URI). In the following, the storage space is called
TEMPi and is assigned to a particular one (called MeDPAPi) of the MeDPAPs.

The MeDPAP controller is preferably constituted to receive the Prodaf-URI (called Prodaf-
URIx) from the client application. In other words, the client application (in particular caches
and) sends the Prodaf-URI which it had received from the MeDPAP to the MeDPAP control-
ler. The MeDPAP controller re-translates the received Prodaf-URI (Prodaf-URIx) into the
location of the Prodaf. Then the MeDPAP controller can read the Prodaf based on the deter-
mined location of the Prodaf. In particular, in case of a fixedly assigned (and in particular
exclusively assigned) storage space for the MeDPAP (which has generated the Prodaf-URI
and the Prodaf), the MeDPAP controller is constituted to look for the Prodaf only within the
assigned storage space (TEMPi). In this way, it is assured that the MeDPAP controller does
not access a file of one of the other MeDPAPs and does not send such a file to the client ap-
plication. Again this reduces the risk of data cross talk. Furthermore, using a Prodaf-URI al-
lows the client application to cache the image by just caching the Prodaf-URI In particular
the browser plugin takes advantages of the browser caching functionality. The browser plugin
in the client application is called BROPLUG. In particular there is a bijective relationship
between the individual client applications having a communication session with the virtual
machine and the individual storage spaces (TEMPs) so that one of the client applications (e.g.

MCAI) can only receive digital data (Prodafs) from one of the storage spaces (e.g. TEMP1).

WO 2012/130289 PCT/EP2011/054839

Furthermore, there is a bijective direct communication between the individual client applica-
tions and the individual MeDPAPs (i.e. MeDPAP instances) so that one MeDPAP (i.e. one
MeDPAP instance) is processing the digital data only for one client application. Preferably, if
the communication session of a client application ends, then the exclusively assigned MeD-
PAP (i.e. MeDPAP instance) is stopped by the MeDPAP controller. Preferably, the MeDPAP
controller is constituted to start a MeDPAP on the virtual machine. The MeDPAI;s can be on
reserve, that is the MeDPAP is running but idle, i.e. there is no communication established
between the idle MeDPAP (i.e. idle MeDPAP instance) and a client application. On the other
hand, if a client application starts communication with a virtual machine, it is not necessary to
start the MeDPAP (i.e. MeDPAP instance) but there is already available an idle MeDPAP.
The status of the MeDPAP (i.e. MeDPAP instance) changes from idle to occupied if the
MeDPAP (i.e. MeDPARP instance) is assigned to a client application by the MeDPAP control-
ler. This is in particular done by assigning the MeDPAP-URI to the MeDPAP (i.e. MeDPAP
instance) when sending the MeDPAP-URI to the client application. The MeDPAP-URI can
be assigned by sending a string representing the MeDPAP-URI. The sending can be within
the virtual machine from the MeDPAP controller to the MeDPAP (i.e. MeDPAP instance), in
particular to that part (CSI) of the MeDPAP (i.e. MeDPAP instance) which serves as a net-

work interface (in particular a web service).

According to the above described embodiment, the MeDPAP controller sends the Prodaf to
the client application. According to another embodiment, the MeDPAP sends the Prodaf di-
rectly to the client application. The above described embodiment is preferred since this re-

duces the workload of the MeDPAP and increases the processing speed of the MeDPAP.

In order to identify the client applications which are contacting the MeDPAP controller, the
MeDPAP controller preferably generates an individual identifier called VM session ID for
each communication session with one of the client applications. That is one VM session ID is
exclusively assigned to each of the client applications. The VM session ID is valid as long as
the communication session is active. Preferably, the MeDPAP controller stores an assignment
between at least two (and preferably all) of the following: VM session ID, MeDPAP, MeD-
PAP-URI, storage space (TEMPi) and portal session ID (an individual session ID 'given to the
client application by a login server application called LiSA which will be explained later and

which is also individual for the client application). Thus, there are preferably a plurality of

WO 2012/130289 PCT/EP2011/054839
10

assignments (links) in order to assure that there is no data cross talk between different MeD-
PAP instances while assuring fast data processing due to the bijective direct communication
link between the client applications and the MeDPAPs. That is for a client application MCAI
one MeDPAPI instance (which is a started MeDPAP.exe) is working. A “MeDPAPI instance”
is called in the following just “MeDPAPi”,

Preferably, the MeDPAP controller holds an assignment (for instance a table) where a process
ID of a MeDPAP is mapped to the process handle. Preferably, the process handle is also
mapped to the assigned TEMPi. Preferably, the MeDPAP controller holds such an assigﬁment
(in particular a table) for a plurality of MeDPAP instances. In particular, the MeDPAPI is a
child process to the MeDPAP controller (which is a parent). In particular, the process handle
(mapped to the MeDPAPi) is used to stop the MeDPAPi and/or to monitor if the MeDPAPI is
stopped (for instance intentionally or by a crash). In particular, the process handle is used to
restart the MeDPAPi for instance if it has been detected (by the monitoring) that the MeD-
PAPi has stopped. This allows in particular for an automatic restart of a MeDPAPi if there

was a crash.

Preferably, the MeDPAP instances (which have been started by the MeDPAP controller) run
in the same user context as the MeDPAP controller. In particular the MeDPAP controller in-

herits the user context to the MeDPAP instances which have been started by the MeDPAP

controller.

As mentioned above, preferably each communication session between a client application and
the virtual machine that is a communication between the client application and the MeDPAP
controller has its own VM session ID. The VM session ID is in particular checked by the
MeDPAP controller when it is received. Only if the checking result is positive, that is if the
received VM session ID corresponds to the VM session 1D stored by the MeDPAP controller,

then the request of the client is processed.

In particular, the client application is in the possession of a session ID which is preferably the
above-mentioned portal session ID. This portal session ID is preferably given to the client
application by the LiSA. The portal session ID is in particular individual and exclusive for the

client application. That is each client application (MCAI) has an exclusive portal session ID.

WO 2012/130289 PCT/EP2011/054839

11

The portal session ID is preferably sent from the client application to the MeDPAP controller.
Preferably, the MeDPAP controller checks the validity of the portal session ID by contacting
the LiSA. The MeDPAP controller preferably assigns (maps) the portal session ID to the cli-
ent application MCAI (for instance by storing an assignment between the portal session ID
and an identifier for MCAI in a table). Preferably, the client application (MCAI) sends the
portal session ID to the assigned MeDPAP instance (MeDPAPi). The MeDPAPi preferably
stores the received portal session ID. This allows for instance the MeDPAPi to check whether
later requests of the MCAI are valid. Preferably, the MCAI always sends the portal session ID
to the MeDPAPi together with a request.

The MeDPAP; is in particular configured to store the portal session ID at the beginning of the

communication session with the client application.

Once the MeDPAPi has stored the portal session ID, preferably the MeDPAP does not accept
any other requests which do not include the portal session ID from the client, Thus the MeD-
PAP; is exclusively occupied by the client application which is in the possession of the portal

session ID and blocks any other attempts from other client applications to request processing.

As mentioned before, preferably there is an assignment (link) between the portal session ID
and an individual MeDPAP and this assignment is stored preferably by the MeDPAP control-
ler. In case a communication session between the virtual machine and a client application
ends (for instance due to timeout or if the client application performs a logoft procedure), then
the MeDPAP controller stops preferably the MeDPAP which had processed the medical data
for the client application MCAL (for which the communication session has ended).. Preferably,
the MeDPAP controller additionally erases any data stored in the storage space (TEMPi) as-
signed to the MeDPAP which has been stopped. The term “erase” means herein to encompass

any types of detecting or erasing. The same applies for the term “delete”.

As mentioned above, the MeDPAP controller is in particular constituted to start a new MeD-
PAP. Preferably, the MeDPAP controller checks whether the storage space assigned to the
new MeDPAP is fiee, i.e. the MeDPAP controller checks whether all previous data have been
erased in the storage space. Also this reduces the risk of data cross talk and data leakage.

Preferably, the MeDPAP controller assigns the free storage space to the MeDPAP after the

WO 2012/130289 PCT/EP2011/054839
12

checking result is positive (i.e. the storage space is confirmed to be empty). Alternatively or
additionally the MeDPAP erases the storage space or checks its erased status, before the

MeDPAP is assigned to a client application (in particular when the MeDPARP is started).

Preferably, the MeDPAP controller monitors the number of MeDPAPs in the virtual machine,
i.e. the number of running MeDPAPs (for instance by using process ID and/or process han-
dle). As mentioned above, a MeDPAP controller can in particular start and stop a MeDPAP.
In order to maintain the number of MeDPAPs (running on the VM) constant, the MeDPAP
controller preferably starts a new MeDPAP in case the number of MeDPAPs is below a pre-
determined threshold. In this way, it is enabled that idle MeDPAP instances are ready to be

used by new client applications.

As mentioned above, there is preferably a bijective relationship between the MeDPAP in-
stances and the client applications and thus between active communication sessions and the
MeDPAP instances. The communication sessions can be identified by the portall session ID.
Preferably, the MeDPAP controller monitors the number of MeDPAPs assigned to a commu-
nication session. Generally, there is an upper limit of MeDPAPs which are running on one of
the virtual machines. In case the number of occupied MeDPAPs increases, in particular in-
creases above a predefined threshold value, then the MeDPAP controller reports the number
of occupied MeDPAPs to a server application which is in particular the above mentioned
login server application (abbreviated as LiSA). The task of the LiSA is to allow a client appli-
cation to login into the LiSA which in particular checks username and password of the client
application and assigns a session identifier which is preferably the above-mentioned portal
session ID to the client application and preferably also informs the client application about the
URI of the VM assigned to the client application by the LiSA. This URI is in particular the
above-mentioned VM-URI (or controller URI). Preferably, the MeDPAP controller receives
the portal session ID from the client application (which addresses the VM-URI) and checks its
validity by contacting the LiSA. Thus the MeDPAP controller preferably only establishes a

communication with the client application if the client application sends a valid portal session
ID to the MeDPAP controller.

Preferably, the LiSA monitors the number of client applications logged in to LiSA and there-

fore having or intends to have an established communication session with a MeDPAP control-

WO 2012/130289 PCT/EP2011/054839
13

ler of a virtual machine. In particular the login server monitors the number of virtual machines
and the number of MeDPAPs running to serve the requests of client applications. In particular
LiSA performs load balancing and in particular instructs a MeDPAP controller to start a new
virtual machine. Thus, the MeDPAP controller is preferably constituted to receive an instruc-
tion from the login server (LiSA) to start a new virtual machine (VM) (in response to the in-
struction from the client application). Preferably the new virtual machine also includes a new
MeDPAP controller which is constituted to start a plurality of MeDPAPs which are in particu-

lar idle MeDPAPs waiting for a communication with a client application.

As mentioned above, the MeDPAP controller is preferably constituted to respectively gener-
ate the VM session IDs for the communication sessions with the client applications so that an
exclusive VM session ID is assigned to each communication session. Furthermore, the MeD-
PAP controller is preferably constituted to receive the above-mentioned portal session ID
from the client applications. This portal session ID is preferably individual for each client
application. That is, there is an exclusive unique portal session ID for each client application.
The portal session ID is preferably generated by a server application. The server application is
in particular a setver application to which the client application logs in and is in particular the
aforementioned LiSA. The portal session ID from the client application is preferably sent
from the MeDPAP controller to the server application (in particular to the LiSA). Then LiSA
checks whether the portal session ID is a valid portal session ID, i.e. is a portal session ID
generated for one of the client applications which are currently logged in the server applica-
tion (in particular the LiSA). If this is the case, the server application sends an acknowledge-
ment, that is a confirmation that the portal session ID is okay to the MeDPAP controller.
Thus, the MeDPAP controller is preferably constituted to receive the acknowledgement from
the server application. The acknowledgement confirms that the portal session ID is valid or
informs the MeDPAP controller that the portal session ID is not valid. In case the portal ses-
sion ID is not valid, the MeDPAP controller preferably stops the communication with the
client application and denies in particular any access to the MeDPAP and/or to the digital data
(in particular the medical data). If the portal session ID is valid, the MeDPAP controller is
preferably constituted to send the VM session ID to the client application which VM session

ID is then unique for the communication with the client application.

WO 2012/130289 PCT/EP2011/054839
14

The present invention is also directed to a data storage medium (like a DVD or hard disc or a
ROM ete.) which is constituted to store digital data representing a system image of the virtual
machine or an installation program for installing the components (run time) of the virtual ma-
chine, in particular for installing at least the MeDPAP controller and the executable MeDPAP
on the virtual machine. According to another embodiment, a signal wave carries the informa-
tion which represents the system image or the installation program. The signal wave is for
instance sent by using a remote desktop protocol (RDP). The installation program includes in

particular a MeDPAP controller file and a MeDPARP file to be installed.

According to a further embodiment, a method of transforming a virtual machine (which in
particular does not include the software components of the previous embodiments, in particu-
lar does not include the MeDPAP controller and the MeDPAP and on which in particular an
operating system is running) into the virtual machine according to one of the embodiments
described above is provided. The method of transforming comprises in particular the steps of
logging into the virtual machine. That is, in particular a user logs into the operation system
running on the virtual machine. The user has preferably rights which allow him to load a sys-
tem image of the virtual machine into the virtual machine or to install the components of the
VM (in particular the MeDPAP controller and the MeDPAP) on the virtual machine. Fur-
thermore, the method of transforming preferably comprises the step of configuring the MeD-
PAP controller and the MeDPAP (and optionally to configure the VM, in particular the oper-
ating system of the VM as described in the parallel application with attorney reference 58 019
VI described below) to be constituted to have the features as described above (or below) with
respect to at least one of the embodiments of the virtual machine. That is, the MeDPAP con-
troller and the MeDPAP are in particular constituted to perform the steps as described with
respect to at least one of the above embodiments. As mentioned above, the method of trans-
forming can in particular encompass the method of configuring the VM as described in one of

the embodiments described in the parallel application.

Within the framework of the invention, computer program elements can be embodied by
hardware and/or software (this includes firmware, resident software, micro-code, etc.). Within
the framework of the invention, computer program elements can take the form of a computer
program product which can be embodied by a computer-usable, in particular computer-

readable data storage medium comprising computer-usable, in particular computer-readable

WO 2012/130289 PCT/EP2011/054839
15

program instructions, “code” or a “computer program” embodied in said data storage medium
for use on or in connection with the instruction-executing system. Such a system can be a
computer; a computer can be a data processing device comprising means for executing the
computer program elements and/or the program in accordance with the invention. Within the
framework of the present invention, a computer-usable, in particular computer-readable data
storage medium can be any data storage medium which can include, store, communicate,
propagate or transport the program for use on or in connection with the instruction-executing
system, apparatus or device. The computer-usable, in particular computer-readable data stor-
age medium can for example be, but is not limited to, an electronic, magnetic, optical, elec-
tromagnetic, infrared or semiconductor system, apparatus or device or a medium of propaga-
tion such as for example the Internet. The computer-usable or computer-readable data storage
medium could even for example be paper or another suitable medium onto which the program
is printed, since the program could be electronically captured, for example by optically scan-
ning the paper or other suitable medium, and then compiled, interpreted or otherwise proc-
essed in a suitable manner. Preferably, the data storage medium is a non-volatile data storage
medium. The computer program product and any software and/or hardware described here
form the various means for performing the functions of the invention in the example embodi-
ments. The computer and/or data processing device can in particular include a guidance in-
formation device which includes means for outputting guidance information. The guidance
information can be outputted, for example to a user, visually by a visual indicating means (for
example, a monitor and/or a lamp) and/or acoustically by an acoustic indicating means (for
example, a loudspeaker and/or a digital speech output device) and/or tactilely by a tactile in-

dicating means (for example, a vibrating element or vibration element incorporated into an

instrument).

The invention also relates to a program which, when running on a computer or when loaded
onto a computer, causes the computer to perform one or more of the transformation method
steps described herein and/or to a program storage medium on which the program is stored (in
particular in a non-transitory form) and/or to a computer on which the program is running or
into the memory of which the program is loaded and/or to a signal wave, in particular a digital
signal wave, carrying information which represents the program, in particular the aforemen-

tioned program, which in particular comprises code means which are adapted to perform any

WO 2012/130289 PCT/EP2011/054839
16

or all of the transformation method steps described herein. The program can be for instance

implemented by using a macro program.

The present invention is also directed to a cloud computer system on which a virtual machine
of one of the preceding embodiments is running. The cloud computer system comprises a
number, in particular a plurality of computers. In particular, a plurality of the virtual machines
according to one of the preceding embodiments are running on the cloud computer system. In
particular, the computers (cloud computers) of the cloud computer system work as servers.
Therefore, the cloud computer system is also called “cloud server farm” herein. A cloud com-

puter is in particular a computer which is preferably accessible by the WAN.

As mentioned above, the present invention is also directed to an electronic network system.
The electronic network system comprises the cloud computer system as mentioned above and
at least one client computer and preferably a plurality of client computers. On the client com-
puter a client application is running. The client computer is connected with the'cloud .com-
puter system via a wide area network to exchange data with one of the MeDPAP controllers
of the plurality of VMs. For exchanging the data in particular the above-mentioned controller-
URI (also called VM-URI) is used to identify the MeDPAP controller which is assigned to the
client application by means of the login server. That is, the login server (LS) has the login
server application (LiSA) which runs on the LS and assigns the controller-URI and the afore-
mentioned portal session ID to the client application. Both is used by the client application in
order to contact the MeDPAP controller assigned to the client application. Preferably, the
login server (LS), in more detail the LiSA also assigns the portal session ID to the client ap-
plication and in particular sends the portal session ID to the client application so that the client
application can use the portal session ID when the client applications accesses the virtual ma-
chine (in particular the MeDPAP controller). The electronic network system in particular
comprises the login server (LS) which (in more detail, the LiSA of which) is configured to
allow logins by the client applications; to respectively assign one of the plurality (;f the Virtual
machines to respective ones of the logged-in client applications and to respectively send the
individual VM-URIs of the assigned virtual machines to the client applications; and to in-
struct one of the MeDPAP controllers of the plurality of virtual machines to start and/or stop
the MeDPAP controller of another virtual machine in dependence on the number of logged-in

client applications.

WO 2012/130289 PCT/EP2011/054839
17

Optionally but preferably the electronic network system also comprises the login server (LS)
as far as mentioned above. The login server (in more detail the LiSA) is in particular config-
ured to allow logins from the client applications. As mentioned above, the login server (LS),
in more detail the LiSA assigns a VM-URI to the client application which has loéged info the
login server. Preferably, the login server additionally instructs one of the MeDPAP controllers
of the plurality of MeDPAP controllers running on the plurality of virtual machines to start
another virtual machine if the number of client applications logged in is determined to need a
further virtual machine. This determination is for instance performed if a predetermined num-
ber of clients exceeds a threshold. Correspondingly, in case one or more client application log
off from LS, in more detail the LiSA, the LS, in more detail the LiSA instructs the MeDPAP
controller to stop one of the running virtual machines if the number of client applications are

determined to be lower than a predetermined threshold.

Preferably, LiSA instructs the MeDPAP controller only to stop one of the running machines,
if none of the MeDPAPs on this one of the running virtual machines is occupied. Preferably,
the LiSA memorizes (i.e. by setting a flag) one of the virtual machines to be a candidate for
stopping if the number of client applications is below the predetermined thres};old. Iﬁ that
case, no new MeDPAPs are started in the memorized one of the running virtual machines. In
case all of the occupied MeDPAPs returns to an idle status in this one of the running virtual
machines, then the LiSA instructs one of the MeDPAP controllers of other virtual machines to

stop the one (memorized) virtual machine.

In the following, embodiments of the invention are discussed with reference to the figures,

wherein

Fig. 1 shows a hardware and software structure of a medical data processing system used for
implementing the invention;

Fig. 2 is a functional diagram of a login procedure used for accessing the invention,

Fig. 3ais a functional diagram of an authentication procedure used during startup of the
viewer; |

Fig. 3bis a functional diagram of communication steps between the client application and the

digital data processing application program;

WO 2012/130289 PCT/EP2011/054839
18

Fig. 4ais a functional diagram showing the operational coupling between the client applica-
tion, digital data processing application program and controller service;

Fig. 4bis a functional diagram explaining execution of the digital data processing application
program;

Fig. 5 is a functional diagram displaying the processing of digital data; and

Fig. 6ato 6f are screenshots explaining the configuration of access rights to the VM.,

As shown by Figure 1, the medical data processing system MeDProS used for implementing
the invention comprises a login server LS which enables login into the medical portal applica-
tion MedPort via a client computer client 1, client 2, ... The LS typically is a standard server
computer which is accessible via the internet. The LS runs a login server application LiSA
which is connected to medical client applications MCA1, MCA2,... via login-lines for bidi-
rectional digital communication between the MCA and LiSA. LiSA provides a login mask as
a website which is accessible via a public electronic network such as the internet (worldwide
web) and is preferably programmed in a mark-up language as HTML or XML. Each client i
runs MCAI, whereini =1, ...Y with Y denoting the total number of clients connected or con-
nectable to LiSA. In the case of Figure 1, Y = 12. The MCA is for example an application
suitable to display the contents and functionality of LiSA to a user who uses the client. For
example, the MCA may be a browser application, in particular a web browser or internet
browser which is a software application for retrieving, presenting and traversing information
resources on a public network such as the worldwide web or another local or wide area net-

work. The information to be represented in this case is provided by LiSA.

The LS is further operatively coupled, in particular by a data transfer line suitable for trans-
mission of digital data, to a login server database which may take the form of a relational da-
tabase. The login server database comprises user data and case IDs. The case IDs represent
information describing a unique identifier of a set of patient data (also called medical case),
i.e. a data set comprising in particular medical information about a patient. The user data com-

prise information describing the access rights of different client users and/or MCA users to

specific medical cases.

A client user may be any healthcare practitioner, in particular physician, who operates the

MCA and logs into LiSA by using his specific user name and password. LiSA provides an

WO 2012/130289 PCT/EP2011/054839
19

upload interface, as also called uploader, which is accessible to the client user via MCA and
provides a functionality for uploading patient data to MedPort. In particular, the client user
who performs such an upload operation is considered to be the owner of the medical case
comprising the uploaded data. The owner is provided with a functionality to assign access
rights to the medical case to other client users. For example, a client user 1, i.e. the user oper-
ating client 1 and therefore also MCA1, may open a medical case (in particular create a new
medical case) and upload patient data to that medical case. MedPort will then via LiSA pro-
vide client user 1 with a graphical user interface in MCA1 which allows him to assign user
rights to other client users, for example user client 2, i.e. the user operating client 2 and there-
fore MCA2. Such user rights may relate to the allowance to only view the patient data in an
MCA and/or the allowance to download data to a client and/or the allowance to manipulate
the case (for example, to remove patient data from the medical case or to change the informa-
tion content of the patient data). Access rights may be user rights or owner rights. Typically,
the owner has full access rights to the medical case which he owns, i.e. he is allowed to exe-
cute any functionality on the patient data or the medical case, respectively which is offered by
MedPort. Such a set of user rights is also called owner rights. Access rights for a specific cli-

ent user providing lower rights than owner rights are called medical case user rights.

The user data comprises information describing which user rights are assigned to a specific
client user, in particular the user data also comprise information whether a client user logged
into MedPort is the owner of a specific medical case. For example, the login server database
comprises a table which assigns to each client user all medical cases which have been associ-
ated with that client user (i.e. all medical cases with regard to which that client user has some
kind of access rights) and information about the kind of access rights which that client user
has for each specific medical case. The patient data which is uploaded comprises, in particular
consists of medical data, in particular medical image data and patient metadata. The patient
metadata for example comprise information describing the patient’s personal data such as his
age, gender, body measures (such as height and other geometric dimensions and weight), in-
formation about the patient’s health state (in particular information about a type of decease or

injury from which the patient is suffering).

The viewer is an application, the source code of which being accessible via LiSA and stored

on the cloud computer and downloadable for an MCA in order to be executed in a runtime

WO 2012/130289 PCT/EP2011/054839
20

environment plugin for MCA. For example, the viewer may be written in an application
framework language suitable for being run in a runtime environment such as Microsofi®
Silverlight™ or Adobe® Flash® or an environment written in HTMLS. The plug-in may thus
be a Silverlight™ web browser plugin or Flash® web browser plugin. The viewer comprises
code which, when executed, serves as a viewing plugin for graphically displaying image data.

In case a Silverlight™ plugin is used, the viewer is stored in a .xap file.

The MeDProS also comprises a virtual machine VM, which in particular is a virtual data
processing machine. The VM is a simulation of a programmable machine, in particular a
computer, more particularly a server. This simulation is constituted to be run on a computer,
in particular a server. The virtual machine is based on a server operating system such as the
Microsoft® Windows® server operating system. However, any other server operating system,
for example a server operating system based on Unix and/or Linux, may be used as a basis for
the virtual machine. The virtual machine in accordance with Figure 1 is a system virtual ma-
chine which provides a complete system platform for supporting the execution of a complete
operating system (OS). The virtual machine is run on a cloud computer, in particular a cloud
server which is connected to the world wide web (WWW). The cloud computer on which the
virtual machine is running is preferably different from the LS, in particular it is separated
from the LS in terms of constituting a hardware unit of its own. However, the cloud computer

and the LS are connected via a data transfer line.

On the VM, a web server, in particular an 1IS-web server is installed and run. This web server
executes a storage controller SC, in particular a storage service and a MeDPAP controller MC
serving as the mentioned controller service, which comprises an image cache service and a
load balance service. A bi-directional data transfer line called SC-checkline is established
between LiSA and the SC, and a bi-directional data transfer line called MC-chegkline is es-

tablished between LiSA and the MC.

Furthermore, the VM comprises a VM-storage ViMStor which is a volatile memory, in par-
ticular a random-access memory RAM. On the VM, an application is installed which, when
executed, simulates part of the ViMStor as a non-volatile memory, in particular as a hard disc.
This non-volatile memory is in the following called RAM-disc. In the RAM-disc, different

temporary storages TEMP are located for storing temporary data, which may take the form of

WO 2012/130289 PCT/EP2011/054839
21

directories which are located in the RAM-disc. In particular, the RAM-disc application is con-

figured to generate the temporary directories in the RAM-disc.

On the VM, a medical data processing application program MeDPAP is installed. According
to an embodiment of the invention, a number N of instances of MeDPAP are running on the
VM, where N preferably equals 10. The number of MeDPAPs depends on the processing
power of the virtual machine. The number is preferably greater than 1, in particular greater
than 5 and/or lower than 50 or 100 or 1000 (or 10.000). Each instance of MeDPAP running
on the VM is hereinforth also called MeDPAPi, where i = 1, ..., N. Execution of each MeD-
PAP instance and its assignment to a specific MCAi (where i = 1, ..., N) upon request of
functionalities provided by MeDPAP is controlled by the MeDPAP controller. The ViMStor
comprises a number N of temporary storages TEMPi (where i = 1, ..., N), Each MeDPAPIi is
assigned a specific and fixed TEMPi from which the MeDPAPi may read digital data as input
data for the processing conducted by MeDPAPi and to which MeDPAPi may write digital
data as output data which in particular results from the data processing (in particular, image

data processing) which is executed by MeDPAPi.

A number of preferably no more than N MCAi (where i = 1, ..., N) is allowed to establish a
connection with one VM. Each MCAI is assigned a MeDPAPI for conducting the requested
data processing functionality. Once the MeDPAP controller has assigned a MeDPAPi to
MCAI, a direct bi-directional communication link BiDiCoLi (where i = 1, ..., N) is estab-
lished between MeDPAPi and MCALI for direct exchange of digital data between MCAI and
MeDPAP;. If data processing is requested by MCAi, MCAI issues this request to MeDPAPi.

Upon a request issued by MCAI for a data processing functionality offered by MeDPAPi,
MeDPAPI requests information from the storage controller SC about a storage location of the
medical image data MID. The request from MCAI is connected to a specific medical case
which is currently being examined by the client user using MCAI. Information about the stor-
age locations of medical image data is stored for each medical case in the medical metadata
database MeMeD which serves as the above-described patient database implemented as a
relational data base service. The SC looks up the information about the storage location in
MeMeD and sends this information as a reply to MeDPAPi. The reply comprises information

about the storage location of the medical image data in the medical image data storage MI-

WO 2012/130289 PCT/EP2011/054839
22

DaS. MeDPAP1 then accesses this specific storage location in MIDaS and copies the medical
image data to TEMPi. MeDPAPi then reads input image data from TEMPi and outputs the
processing results as output data to TEMPi. The MeDPAP controller then sends the output

image data as a processed data file ProDaF as processed medical image data via a direct data

transfer line to MCAI.

A bidirectional communication line BiDiCoL is established individually and directly between
each MeDPAPi assigned to an MCAI and the respective MCAi. Therefore, the individual
BiDiCoL may also be abbreviated as BiDiCoLi (where i = 1, ..., N). In other words, there
exists a bijective mapping between the MCAis and MeDPAPis.

According to an embodiment, a number of VMs may be running on a farm of server com-
puters (SerFa). If a predefined number of MCAI having each one BiDiCoLi with a MeDPAPi
on one VM is reached, the predefined number preferably being smaller than the total number
of MCAIs being connectable to a MeDPAPI on a single VM (in the case of Figure 1 denoted
by VML), a second VM, in the case of Figure 1 denoted as VM2, is started on SerFa. SerFa is
in particular a cloud computer or group of cloud computers as described above. The proce-
dures of login, authentication, image processing and transmission of results is described for
the VM and/or VM1 above then also apply to VM2 with regard to commands and requests
issued from an MCAI, for example MCA12.

Figure 2 explains a login and software transfer procedure between MCAi and LiSA. A user
may login to LiSA by accessing the MedPort website, i.e. loading the MedPort website into
his browser. Login to LiSA is possible via input of login data into a login mask provided to
the user in the browser. The login data preferably comprise a user name and password, the
password preferably being a secure password fulfilling certain criteria of combinations of
characters. LiSA then generates a session ID for the session between MCAi and LiSA. The
session ID is, for example, sent to a client i as data contained in a cookie. The session ID is
denoted in Figure 2 as portal session ID PSIDi for the specific i-th session of MCAi in LiSA.

Together with the PSIDi, a uniform resource identifier for the VM called VM-URI is sent by
LiSA to client i.

WO 2012/130289 PCT/EP2011/054839
23

A Silverlight® plugin is downloaded to MCAI from a software distribution server and in-
stalled in the browser running on client i as a browser plugin BroPlug, if the browser does not
have any such plugin already installed. The Silverlight plugin serves as a browser plugin (run-
time environment) for the viewer. The viewer is also downloaded by LiSA to MCAI as a code
contained in a .xap file and run in the BroPlug. In the case of Figure 2, the viewer is written in
code which is executable in a Silverlight® runtime environment. Client iBroPlug is started by
accessing the viewer due to user action in MCAIi. For example, if the user chooses to view

image data in MCAL, the viewer is automatically activated.

Upon activating the viewer, the viewer is provided by the LiSA with a session ID (see Fig.
3a). The viewer is also provided with a VM-URI so that the viewer may establish connection
to the MeDPAP controller. The MeDPAP controller then checks the access rights of the
viewer and supports the communication to the viewer. The portal session ID which the viewer
has previously been given is handed over by the viewer to the MeDPAP controller and the
MeDPAP controller checks with the LiSA whether the portal session ID is valid. If the portal
session ID is valid, the MeDPAP controller allows communication between the viewer and
the MeDPAP controller. However, the viewer does not have open access to the VM (i.e. is not
able to log in into the VM as a VM uéer) and is only allowed to issue requests to and to re-
ceive replies from predefined components (in particular services) of the VM like the MeD-
PAP controller. The MeDPAP controller also assigns a MeDPAPi which is currently in idle

state to the viewer to support image data processing.

Figure 3a explains the exchange of information (messages) during startup of the viewer. At
the beginning, there is an authentification process during which the MCAI sends a request to
the MeDPAP controller. To this end, the MCAI sends (1* step) the portal session ID (PSIDi)
to the MeDPAP controller. In order to be able to contact the virtual machine which is as-
signed to the MCAI, the MCAI uses the VM-URI which the MCAI has received from LiSA.
In other words, the MCAI contacts the virtual machine which has stored a unique resource
identifier, the VM-URI. In more detail, the MeDPAP controller of the VM can be contacted
via the WAN by using the VM-URI. After the first step, the MeDPAP controller contacts in a
second step LiSA in order to ask LiSA whether the portal session ID (PSIDi) is valid or not.
Assuming LiSA answers in a third step that the PSIDi is valid, then LiSA responds with an

WO 2012/130289 PCT/EP2011/054839
24

okay signal to the MeDPAP controller. If the PSIDi is not valid, the MeDPAP controller stops

communication with MCAI.

According to an embodiment, the MeDPAP controller has already started execution of a plu-
rality of MeDPAPs before the MCAi contacts the MeDPAP controller. In particular, the
MeDPAP controller has assigned different URIs (MeDPAP-URIs) to the different MeDPAP
instances which are running on the virtual machine in an idle state (i.e. without processing
digital data) and which have been started by the MeDPAP controller. That is, for instance an
URIl (MeDPAP-URI1) has been assigned to MeDPAP1 and URI2 (MeDPAP-URI2) has
been assigned to MeDPAP2 and URIi (MeDPAP-URI) has been assigned to MeDPAPi. Fur-
thermore, preferably the MeDPAP controller has assigned storage spaces to the different
MeDPAPs which are called TEMP. In more detail, the storage space TEMP1 is assigned to
MeDPAP1, the storage space TEMP2 is assigned to MeDPAP?2 and the storage space TEMPi
is assigned to MeDPAP1.

When the MeDPAP controller receives an okay from LiSA, the MeDPAP controller checks
which one of the MeDPAPs is available, i.e. not yet assigned to another MCA. According to
the example given in Figure 3a, it is assumed that MeDPAP; is idle and available for perform-
ing processing services for MCAI. In this example, the MeDPAP controller stores the PSIDi
and in particular stores an assignment between the PSIDi, the MeDPAPi and a VM-session ID
which is assigned to the communication (session) between MCAi and MeDPAPi. The VM-
session ID is sent from the MeDPAP controller to the MCAI (for instance in the form of a
cookie). This is performed in a step 4 which also represents a confirmation that the PSIDi sent
from the MCAI is valid. Sending the PSIDi to the MeDPAP controller is preferably per-
formed by the viewer and also preferably, the viewer receives the VM-session ID which is a

unique ID assigned to the communication (session) between the viewer and the MeDPAP

controller.

In a next step 6, preferably the viewer of MCAI requests processing functionalities for proc-
essing digital data, in particular medical data from the MeDPAP controller (more particularly,
medical image data). In other words, the MCAI asks the VM for at least one of the functional-
ities of the digital data processing application program (MeDPAP). The MeDPAP controller
sends the URIi of the MeDPAPi (which has been assigned previously) to the viewer of the

WO 2012/130289 PCT/EP2011/054839
25

MCAI. Furthermore, preferably the MeDPAP controller changes the status of MeDPAPi from
idle to occupied. That is, the MeDPAP controller is aware that MeDPAPI is no longer avail-
able in case a further MCAI contacts the MeDPAP controller and asks for the processing of
digital data (i.e. asks for the functionalities of a MeDPAP). This was step number 6. In a next
step number 7, the MCAI (in more detail, the viewer of MCAI) sends the PSIDi to the MeD-
PAPi. The MeDPAPi has a uniform resource identifier which is “URIi”. Thus, the viewer
contacts the address URIi in order to send PSIDi to MeDPAPi. Preferably, the MeDPAP con-
troller has already assigned URIi to the MeDPAPi when starting the MeDPAPi. That is, pref-
erably the URIi is assigned to MeDPAPI in a status where the MeDPAPI is still idle. In this
way, the time for necessary assigning the URIi to the MeDPAPI is not spent when the MCAI
needs a MeDPAPi but already before that. This decreases the response time if the MCAI asks
for processing functionalities. In order to assign a URIi to the MeDPAPi, the MeDPAP con-
troller can for instance send a string including the URIi to the MeDPAPI, in more detail to the
communication service interface (CSI) of the MeDPAPi which in particular is or works as a
web service, in particular a WCF web service and which in particular represents an interface
to the WAN (internet). Preferably, the MeDPAPI stores the URIi and the PSIDi which it re-
ceives from the MCALI. In this way, any further requests from MCAI can be verified to be an
authenticated request. This reduces the risk of producing requests of not authorized clients. To
this end, in a step 8, the MeDPAPI preferably contacts the MeDPAP controller to ask whether
the PSIDi is valid. The MeDPAP controller checks whether the PSIDi received from the
MeDPAPi is the one which is assigned to the MeDPAPI. To this end, for instance the MeD-
PAP controller accesses a table in which all the assignments are stored. Then in a step 9, in
case the PSIDi is valid, the MeDPAP controller sends an okay to the MeDPAPI. In response
to this, the MeDPAPI preferably sends also an okay to the viewer of the MCAI and indicates
to the MCAI that the MeDPAPI is ready to be used for processing of digital data. Thus, a
unique relationship between one of the MCAI and one of the MeDPAPs (i.e. the MeDPAPi) is
established. In particular in case of a plurality of MCAs and MeDPAPs, a bijective relation-
ship between each of the MCAs and the occupied MeDPAPs is established, thus reducing the

risk of data cross talk.

In a next step (step 11), the MCAI (in more detail the viewer of the MCAI) sends a request for
processing digital data to the MeDPAPi. For instance, the MCAI sends the request to shift an

image by a number of pixels (for instance n pixels). Each MeDPAPi comprises a communica-

WO 2012/130289 PCT/EP2011/054839
26

tion service interface CSI and a digital data processing program section MDP. This request is
received by the CSI of the MeDPAPi and then transferred to the digital data processing pro-
gram (MDP) of the MeDPAPi. The MDP calculates the new image by shifting the pixels of
the image by n pixels. The new image file generated is called “image file x.png”. The MCAi
preferably transfers the portal session ID together with the instruction. Before processing, the
MeDPAPi preferably checks the validity of the portal session ID and processes only the data
if the portal session ID is valid. Herein, the term “image file” is just an example for the file of
digital data (in particular processed digital data) and in particular just an example for one or
more files which include a number of images, e.g. an image or a sequence of images (for in-

stance a stream of images) or a video sequence of images.

Figure 4a shows the process of transfer of digital data, in more detail medical image data from
the virtual machine to the MCAI. The step 11 has already been described with respect to Fig-
ure 3b. After receiving the instruction to process the image data and after generating the file
“imagefilex.png”. This file is also called “ProDaF” (processed data file) in the following. The
MeDPAPi translates the file name of the ProDaF (“imagefilex.png”) into a Uniform Resource
Identifier which is called URIx. The purpose of the URIx is to allow the MeDPAP controller
to locate the ProDaF (“imagefilex.png”) in the storage space (TEMPi) assigned to the MeD-
PAPi. To this end, the URIX can just include a translated file name of the ProDaF or can addi-
tionally include the directory path of the storage location (TEMPi). According to a preferred
embodiment, the URIX just includes the translated file name and not the path and the MeD-
PAP controller only accesses the storage space (TEMP1i) assigned to the MeDPAPI. In other
words, the MeDPAP controller already knows the location of TEMPi since MeDPAPi has one
defined storage space (TEMP1i) and no other storage space where it stores the ProDaFs. The
URIx can include as a scheme for instance HTTP and as authority for instance the IP address
of the MeDPAP controller which controls the MeDPAPi and can include only optionally as a
path the specification of the location of TEMPi (directory specification) and includes as a

query a file name of the ProDaF.

Before or after translation of the ProDaF into URIx, the ProDaF (imagefilex.png) is stored in
the TEMPi assigned to the MeDPAPi (see step 12 in Figure 4a). In another step (called step
13), the MeDPAPi transfers the URIx to the MCAI. In this way MCAI is informed about the

name of the ProDaf,

WO 2012/130289 PCT/EP2011/054839
27

In a next step (step 14), the MCAI (in more detail the viewer) sends the URIx (and the VM
session ID) to the MeDPAP controller. The MeDPAP controller has already performed an
assignment between the TEMPs and the MeDPAPs. Based on the VM session ID and the as-
signment table, the MeDPAP controller determines the TEMPi assigned to the VM session ID
and assigned to the MeDPAPi which has generated the ProDaF (“imagefilex.png”). The loca-
tion of the ProDaF (“imagefilex.png”) within the TEMPi is based on a retranslation of the
URIX into the file name. Preferably, the MeDPAP controller is constituted to only access the
TEMPi assigned to the VM session identifier in order to look for the imagefilex.png gener-
ated by the MeDPAPi. In this way, the risk of data cross talk is reduced since tie MeDPAP
controller is blocked to accessing other TEMPs in order to look for an image file and an erto-
neous retrieval of the wrong image file from other TEMPs is avoided. In order to retranslate
the URIX into the file name of the ProDaF (imagefilex.png), the MeDPAP controller uses in
particular the query part of the URIx.

Having located (step 15) the ProDaF within the TEMP1i, the MeDPAP controller reads (step
16) the ProDaF (imagefilex.png) from the TEMPi and sends (step 17) the ProDaF (image-
filex.png) to the MCAI (in more detail to the viewer of the MCAI). The MCAI then displays
the information contained in imagefilex.png to the user of the MCAIi by graphical output in
the viewer. Thus, there is a direct communication interaction between the MCAI and the
MeDPAPi for the generation and storage of ProDaFs in a TEMPi and a direct communication
interaction between the MCAIi and the MeDPAP controller for the retrieval of the ProDak's
stored in the TEMPi. The link between the two direct communication interactions is estab-
lished by generating the URIx which is specially suited to be handled by a browser since it
can be cached. So the browser can interact with the MeDPAP controller in a usual way for
retrieving images while the direct interaction between the MCAI and the MeDPAPi increases
the processing speed significantly and while due to the inventive structure, the risk of data

cross talk is significantly reduced.

According to an embodiment (see Fig. 4b), the MeDPAP controller has a timeout procedure
according to which the MeDPAP controller monitors the time expired since the last request of
the MCALI. If a predefined time has elapsed since the last request (i.e. if there is a timeout) or

if the MCAI logs off (i.e. actively stops communication with the LiSA and/or the VM), then

WO 2012/130289 PCT/EP2011/054839
28

the MeDPAP controller stops the MeDPAPi assigned to the MCAI, erases the contents of
TEMPi and starts a new MeDPAP instance which then is idle (i.e. not assigned to a client
application). Preferably, the same URIi and TEMPi is assigned to the new and idle MeDPAPi
as to the previous MeDPAPi. In order to again reduce the risk of data cross talk, the MeD-
PAPi is preferably constituted to erase the contents of TEMPi (to which it has access) during
startup of the MeDPAPi. According to an alternative embodiment, the MeDPAP controller
again erases the contents of TEMPi at startup of the new MeDPAPI. If deletion of content of
TEMPi fails, then the MeDPAPi does not become available again for a communication with a

client application, i.e. is blocked from being occupied b a client application.,

If the MCAI logs off from LiSA, then preferably LiSA informs the VM, in particular the
MeDPAP controller assigned to the MCAIi and the MeDPAP controller steps the MeDPAPI.

Figure 5 is a functional diagram for explaining the processing of the medical data and in par-
ticular the medical image data between steps 10 and 11 of Figures 3b and 4 regarding the re-
quest for processing digital data sent from MCAi to MeDPAPI. The viewer loads by means of
the SC the accessible metadata of cases (including a case ID) to the MCAI from the LiSA.
The user operating MCAI on client i selects a medical case z which is of interest to him. In a
request (step a) for data processing sent from MCAi to MeDPAPI, the case ID of medical case
z is transmitted from MCAi to MeDPAPi. MeDPAPi then requests from the storage controller
SC the storage location for the medical data for case z. Along with this request MeDPAPi
transmits the case ID for medical case z and the portal session ID to the storage controller
(step b). MeDPAPi therefore transmits the PSIDI to the storage controller during execution of
step b). MeDPAPI asks the SC for the location of the data of case z (step b). The storage con-
troller then in step c) transmits the PSIDi to LiSA and requests verification from LiSA
whether the PSIDi is valid. If LiSA in step d) confirms the validity of PSID to' the storage
controller, the storage controller then continues with step e) and sends the case ID for select-
ing the medical case z from MeMeD. MeMeD comprises information for each medical case
describing a storage location of the corresponding medical data in MIDaS. In particular, Me-
MeD comprises information about a reference from each case ID to the location of the medi-
cal image data in MIDaS. In step f), the storage controller receives information about the stor-
age location for the medical image data for medical case z. In step g), the storage controller

transmits this information about the storage location to MeDPAPi. MeDPAPI then accesses

WO 2012/130289 PCT/EP2011/054839
29

MIDaS, in particular the storage location for the medical image data for medical case z in
MIDa8, and copies the medical image data for case z, which in particular is raw image data,

to TEMP4i in order to be available as input image data for the data processing.

In accordance with one embodiment, it is also possible that more than one MCAI requests to
process medical image data which is assigned to the same medical case z. This is not at last
due to the fact that each MeDPAPi is uniquely assigned to each MCAIi and makes use of a
specific, fixed TEMPi. The raw image data contained in MIDaS are then copied by each
MeDPAPi to the assigned TEMPi for individual processing according to the commands and
requests issued by MCAL.

Figures 6a to 6¢ are screenshots from the Microsoft® Windows® user rights management
module (URM module) and explain the configuration of user rights on the VM. The MeDPAP
controller, which is the controller service for the digital processing application program as
described above, is allowed at least user rights for reading, writing and deleting with regard to
all of the TEMPi. This is described by Figure 6a, wherein the MeDPAP controllér is granted
the rights of a network service as an example for the configuration in a Microsoft® Win-
dows® server operating system environment. This user rights configuration for the MeDPAP
controller allows the MeDPAP controller to read from and write to the TEMPi. According to
Figure 6b, the only administrator user on the VM user list is denied all permissions for all
folders, i.e. all directories of the VM, this implying a complete deny of any rights to the ad-
ministrator on the VM. Figure 6¢ is an example for how a confirmation for the user rights set
according to Figures 6a and 6b may be sent to the VM. When the administrator currently
Jogged into the VM process the “OK” button shown in Figure 6¢, the changes to user rights
performed according to Figure 6a and 6b become valid and, due to loss of all rights formerly

given to the administrator, irreversible.

According to Figure 6d, the administrator is deactivated by setting the option “Account is
disabled”, i.e. by disabling the corresponding VM user account. By applying the option
marked in the screenshot shown in Figure 6e and relating to replacing inheritable permissions,
the options chosen for the administrator account are set for all members having the same
rights, i.e. belonging to a group of VM users having administrator rights. The options again

become valid upon selecting “OK” in Figure 6e.

WO 2012/130289 PCT/EP2011/054839
30

According to the screenshots from the URM module shown in Figure 6f, no user has the right
to take ownership of files or other data on the VM by setting the corresponding security set-
ting (in particular, by choosing no VM user group) for the policy “Take ownership of files or
other objects”. This option therefore is valid for maintenance VM users, service VM users and

VM users having basic user rights.

This invention (called MeDPAP invention) is technically related to the invention (called con-
figuration invention) described by the patent application having the title “Virtual Machine for
Processing Medical Data” (attorney’s reference 58 019 VI) which was filed by the applicant
on the same day and in particular makes use of the virtual machine described herein and
therefore offers complementary disclosure to the disclosure of this application. In particular
the VM as described above optionally comprises the features of the VM as described in one of
the embodiments of the parallel application. The complementary disclosure in particular in-
cludes alternative or additional features and embodiments which can be combined with the
aforementioned embodiments of the MeDPAP invention. Terms used in the complementary
disclosure which are identical to terms used in the above disclosure have the same meaning.
The complementary disclosure of the configuration invention (also called complementary

invention) is described in the following:

The complementary invention is directed to a virtual machine for processing digital data, in
particular for processing medical data, by executing a digital data processing application. The
complementary invention is also directed to a method of configuring the virtual machine and

an electronic network comprising a computer on which the virtual machine is running.

Within the medical community, in particular the community of healthcare practitioners using
medical images, it is common to discuss patient matters and to exchange data and images in
order to promote patient care. So far, the relevant information has been exchanged by physical
transfer of data storage media such as for example non-volatile magnetic memories or CD-
ROMs/DVDs. This way of sharing data is, however, time-consuming and bears the risk of

loss or unauthorized access.

WO 2012/130289 PCT/EP2011/054839
31

It is therefore desirable to provide a means enabling convenient and secure transfer of patient-

related data between members of a community.

US 2006/0122469 A1l discloses a medical monitoring system and corresponding method for
remotely monitoring a patient. Therein, an application service provision system is accessed
and a care group comprising at least one health care practitioner is defined. After assigning
the patient to the care group, the members of the care group have access to patient data which
is transmitted from a monitoring device which is worn by the patient. However, special needs
exist in the medical community for safeguarding the confidentiality of patient-related data.

That application does not address this issue.

US 2008/0006282 A1 discloses a medical imaging exchange network comprising a CT scan-
ner and an image exchange system. A computer of the CT scanner is configured to interface
with an image exchange server over a wide area network in order to make the images accessi-

ble to other authorized users’ computers for review of the images.

A problem to be solved by the complementary invention therefore is to improve data security

for medical data which is shared by a community.

This problem is solved by the subject-matter of any appended independent claim. Advantages,
advantageous features, advantageous embodiments and advantageous aspects of the comple-
mentary invention are disclosed in the following and contained in the subject-matter of the
dependent claims. Different advantageous features can be combined in accordance with the
complementary invention as long as technically sensible and feasible. In patticular, a feature
of one embodiment which has the same or similar function of another feature of another em-
bodiment can be exchanged with that other feature. In particular, a feature of one embodiment

which supplements a further function to another embodiment can be added to the other em-

bodiment.

Preferably, the complementary invention provides a virtual machine for processing digital
data. In the following the term of virtual machine is also abbreviated as VM. Within the
framework of the complementary invention, a VM is understood to be a software emulation

and/or simulation of a programmable machine (in particular, a computer, more particularly a

WO 2012/130289 PCT/EP2011/054839
32

server), where the software implementation is constrained within another computer at a higher
or lower level of symbolic abstraction. A VM is a software implementation of a computer
which executes programs like a physical computer. Within the framework of the complemen-
tary invention, the term of virtual machine encompasses both system virtual machines and
process virtual machines. A system virtual machine provides a complete system platform
which supports the execution of a complete operating system (OS). A process virtual machine
is designed to run a single program, i.e. it supports a single process. In principle, a virtual ma-
chine may be described in that the software running inside it is limited to the resources and
abstractions provided by the virtual machine and cannot brake out of the virtual world of the
virtual machine, In particular, a system virtual machine (sometimes also called hardware vir-
tual machine) allows the sharing of the underlying physical machine resources, i.e. the re-
sources of the physical machine (physical computer) on which the virtual machine is running,
between different virtual machines, each of the virtual machines running its own operating
system. The software layer providing the virtualization for the virtual machine is called a vir-
tual machine monitor or hypervisor. A process virtual machine, sometimes also called appli-
cation virtual machine, runs as a normal application inside an operating system and supports a
single process. The process virtual machine is created when that process is started, and the
process virtual machine is destroyed when the execution of the process is stopped or exited,
respectively. The purpose of a process virtual machine is to provide a platform-independent
programming infrastructure which abstracts away details of the underlying hardware or oper-
ating system on which the process virtual machine is running. Thereby, the process virtual

machine allows a program to execute in the same way on any platform.

A simulation and/or or emulation of the physical computer by the virtual machine means that
an emulator enables duplication of the functions of the physical computer in the: virtual ma-
chine. To this end, the emulator is divided into modules that correspond in principle to the
physical computer subsystem. In particular, the emulator comprises a CPU emulator or CPU
simulator (the two terms being commonly used interchangeably), a memory subsystem mod-
ule (which in particular is a volatile memory subsystem module for emulating a random ac-

cess memory — RAM), and preferably various input/output device emulators.

As examples for an operating system used as a basis for the inventive virtual machine, a ver-

sion of the Microsoft® Windows® operating system, in particular a Microsoft® Windows®

WO 2012/130289 PCT/EP2011/054839
33

server operating system, or a UNIX-type and/or LINUX-type operating system may be used.
The physical computer which is simulated by the virtual machine preferably is a server com-
puter. A server computer in particular is a physical computer which is dedicated to running at
least one service in order to serve the needs of programs running on other computers (in par-
ticular so-called client computers) which are connected to the server computer within a net-
work, The services may in particular be web services which resemble a method of communi-
cation between a client and a server within the network which in particular is an electronic
network, more particularly a client-server-network. A web service may be defined as a soft-
ware system designed to support interoperable machine-to-machine interaction over the net-
work. According to the definition of the world wide web consortium (W3C), the web service
has an interface described in machine-processable format (specifically, the web service de-
scription language WSDL). Other systems interact with the web setvice in a manner described
by its description using SOAP messages, which are typically conveyed using hypertext trans-
fer protocol (HTTP) with an extensible mark-up language (XML) serialization in conjunction

with other web-related standards.

The digital data to be processed by the VM in particular is medical data. However, any other
form of digital data such as scientific data input to or output from scientific simulations or
other technical data comprising information about physical variables may be used as digital
data, Medical data in particular is patient metadata comprising information describing per-
sonal qualities of a human being, in particular a patient, such as height, gender, geometric
body dimensions (for example height, or specific dimensions of specific limbs), weight, ad-
dress, workplace and physiological information such as a blood volume, tissue characteristics
(for example permeability, density, elasticity) or metabolic status (for example metabolic ac-
tivity, concentrations of metabolic substances such as sugar in the blood) and pathologic in-
formation such as information about a specific disease or injury from which the patient is or is
expected to be suffering. The digital data may also be image data, in particular pixel data such
as a data contained in a portable network graphics (PNG) format file or a joined photographic
experts group (JPEG) format file or a bitmap (BMP) format file. In particular, the image data
is medical image data comprising medical image information which has been acquired by
using a medical imaging method and comprises image information about a patient’s body
region, in particular, the medical image data may comprise information representing recon-

structed images (DRRs — digitally reconstructed radiographs) or a sequence of processed im-

WO 2012/130289 PCT/EP2011/054839
34

ages (e.g. streamed content and/or a video based on medical image information). The body
region may comprise soft tissue (such as an internal organ or part of the brain) or hard tissue

(such as bone tissue or cartilage).

In the field of medicine, imaging methods are used to generate image data (for example, two-
dimensional or three-dimensional image data) of anatomical structures (such as soft tissues,
bones, organs, etc.) of the human body. Medical imaging methods are understood to mean
advantageously apparatus-based imaging methods (so-called medical imaging modalities
and/or radiological imaging methods), such as for instance computed tomography (CT) and
cone beam computed tomography (CBCT; in particular volumetric CBCT), x-ray tomogra-
phy, magnetic resonance tomography (MRT or MRI), conventional x-ray, sonography and/or
ultrasound examinations, and positron emission tomography. Analytical devices are in par-
ticular used to generate the image data in apparatus-based imaging methods. The imaging
methods are in particular used for medical diagnostics, to analyse the anatomical body in or-
der to generate images which are described by the image data. The imaging methods are in

particular used to detect pathological changes in the human body.

Preferably, the VM processes the digital data by executing a digital data processing applica-
tion program. The digital data processing application program preferably is an executable
program but may alternatively be embodied by a command line program written in a script
language (hereinforth also called script). The executable program may be a program compiled
from code written in an object-oriented programming language such as for example C# or
C++ using the NET framework supplied by Microsoft®. The digital data is used preferably
as an input to the digital data processing application program. Preferably, the digital data
processing application program is also configured to output digital data. The digital data input
and/or output by the digital data processing application program in particular is medical data
as described above, therefore the digital data processing application program may also be
called a medical data processing application program and be abbreviated as MeDPAP. The
digital data processing application program is in particular configured to have medical data,
more particularly medical image data, input to the data processing algorithm which is exe-
cuted by the program and also to output such data. The digital data is processed by executing
the digital data processing application program preferably as an *.exe file (in particular, if

meant for execution in a Windows® environment) or a file in another binary format which is

WO 2012/130289 PCT/EP2011/054839
35

executable in a UNIX/LINUX environment (for example, in the executable and linking for-
mat ELF). Execution of the digital data processing application program is then initiated by

calling the program and running it on the VM, i.e. by processing it with the CPU simulator.,

The volatile memory of the VM (in the following also denoted as virtual machine storage
ViMStor) is represented by the memory subsystem module which preferably matches the ran-
dom access memory of the physical computer. Alternatively, the volatile memory of the VM
allows for advanced memory management, in which case it may be integrated into the - CPU
simulator. Preferably, the ViMStor is configured to comprise a storage space for temporary
data (in the following also denoted TEMP) for temporarily storing the digital data. TEMP in
particular takes the form of a directory or assigned memory sector in the ViMStor, Preferably,
TEMP is included in a part of the ViMStor which is a simulated file system, in particular the
file system of a disc drive (i.e. non-volatile memory, in particular non-volatile magnetic mem-
ory) which is simulated in the ViMStor. A file system is the structure of how data is stored
and computer files are organized in patticular into database for storage, organization and ma-
nipulation and retrieval by the operating system of a computer. Parts of this structure in par-
ticular are directories. This concept of simulating a file system is known as RAM disk or
RAM drive. To this end, the virtual machine is generically configured such that part of the
ViMStor is reserved for TEMP. The TEMP then is addressed just as a physical hard drive
would be addressed. Preferably, TEMP is used for storing the digital data temporarily while it
is accessed (i.e. read or written) by the digital data processing application program during
processing of the digital data. The storage space for temporary data is used to temporarily
store the input digital data and preferably also to temporarily store the output digital data, An
advantage of employing the RAM disk concept for TEMP is that the data stored on TEMP is
protected from unauthorized access. In particular, if the RAM disk, more particularly the
RAM disk application which is used for simulating the file system, is stopped or the power
supply to the underlying physical computer is cut, the contents of TEMP instantaneously be-
comes inaccessible, in particular is deleted. Among other advantages of this concept is the
advantage that, even if the underlying physical computer is booted with for example a boot
disc, the person doing so is not able to read the data stored in TEMP which would be the case

if, for example, the data were stored in a permanent memory of the underlying physical com-

puter.

WO 2012/130289 PCT/EP2011/054839
36

Preferably, the VM is configured to be accessed by any virtual machine user activated on a
virtual machine user list (hereinforth abbreviated as VM user list). The VM preferably is
based on an operation system which supports user rights management which may be imple-
mented as a user rights management module (URM module), i.e. the VM preferably is a mul-
tiuser machine. The URM module comprises the VM user list which is preferably pre-
configured in a system image for the VM. The VM user list comprises, in particular consists
of a group of maintenance VM users and a group of service VM users (being a group of tech-
nical VM users as described below). The group of maintenance VM users comprises, in par-
ticular consists of users having administrator rights (its members in the following also called
administrator or system operator — SysOp) and a group of monitoring users having basic user
rights. Administrator rights generally comprise the right to install programs on the operating
system and to configure the operating system. More particularly, administrator rights also
comprise the right to edit the VM user list, in detail to manage the rights given to a specific
VM user on the VM user list and/or to add or remove VM users to and/or from the VM user

list. Preferably, these rights are not granted to VM users having basic user rights.

The URM module provides options for activating or deactivating a VM user on the VM user
list which may be done by setting or removing a specific option for the respective VM user
account (i.e. the entry in the VM user list corresponding to that specific VM user). A user
account is an entry into the VM user list for a specific user who is assigned to a group of VM
users depending on the rights of that group of VM users which he shall share. A VM user
account allows a VM user to authenticate to VM system services and be granted authorization
to access those services. To login to a VM user account, that specific VM user to whom this
VM user account is assigned is typically required to authenticate himself with his user name
and his password for the purposes for in particular accounting, security, login and resource
management. If a VM user account has been deactivated on the VM user list, the VM user
associated with that VM user account may no longer access the VM or operate on it. Deacti-
vation of the user account (and therefore of the VM user to whom that VM user account is
assigned) is performed by opening the URM module and setting corresponding options for the
specific VM user account. The deactivation becomes valid and/or enters into force when a
specific action is performed on the VM, for example if a confirmation command is issued to

the VM or preferably at the latest when the VM user who performed the deactivation logs off

WO 2012/130289 PCT/EP2011/054839
37

from the VM. Alternatively, deactivating may be conducted by removing the user account
from the VM user list.

Another member of the group of maintenance VM users preferably is a monitoring user. The
VM user account assigned to the monitoring user may, for example, be used by the manufac-
turer or maintenance operator of the VM to login to the VM and view monitoring data com-
prising information about the activity of the VM such as for example information contained in
log files. Such monitoring information may, for example, describe the computing activity of
the CPU module or tasks performed by the digital data processing application program. The
monitoring user is preferably assigned basic user rights but not administrator rights. Prefera-
bly, the monitoring user (in particular, the monitoring user’s account) is activated on the VM
user list. Therefore, the monitoring user is allowed to access the VM, for example, by means
of remote login via an electronic network such as a local area network (LAN) or wide area
network (WAN). Access to the VM is preferably granted via a login module of the VM which
provides a login mask which allows for input of the VM user name, in particular the monitor-

ing users’ user name, and the password assigned to that VM user name.

Preferably, any maintenance VM user (in particular, all maintenance VM users) who is acti-
vated on the VM user list (in particular, by activating his user account) is denied any permis-
sion regarding TEMP, i.e. has no right to perform any possible operation on or with TEMP.
Alternatively all access rights are removed from TEMP from all users except the technical
service user. In particular, no activated maintenance VM user is allowed (i.e. has the rights) to
perform a reading, writing, copying or deleting operation on the storage space for temporary
data.Denying the permissions preferably also encompasses denying the permissions for con-
ducting any other modification to TEMP, in particular creating, copying, moving or deleting
TEMP itself. Denying the permissions is preferably performed by logging into to the VM as
an administrator, i.e. by using an administrator account, and setting corresponding options for
the storage space for temporary data for each maintenance VM user in the URM module. In
particular, denying any permissions regarding TEMP also comprises denying any permission
regarding TEMP for any administrator on the VM user list. Since the monitoring user also is a

member of the group of maintenance VM users, also his permissions regarding TEMP are

preferably denied.

WO 2012/130289 PCT/EP2011/054839
38

Preferably, any administrator (in particular, all administrators listed on the VM user list) has
been deactivated on the VM user list. Preferably, deactivating any administrator is conducted
after denying the permission regarding the storage space for temporary data. Deactivating any
administrator is preferably performed by logging into the VM as an administrator as described
above and setting and/or removing corresponding options for each administratm" in ac'count
the VM user list. Deactivating a user account means that the user account remains in the VM
user list but its use is disabled. Alternatively, deactivating may be done by removing the user
account from the VM user list. As above, this is preferably done by accessing the URM mod-
ule and setting corresponding options. Preferably, the monitoring user is not an administrator,
i.e. does not have administrator rights on the VM. Therefore, the monitoring user is preferably
not deactivated such that he has the necessary rights to perform his monitoring actions, in
particular remains able to access the VM (in particular, by login) and operate on it. Preferably,
any guest user on the VM user list is deactivated in the same manner as any administrator is

deactivated.

Preferably, the VM is in a state in which the administrator has logged off. This specific ad-
ministrator in particular is the administrator under whose VM user account any administrator
was deactivated. More preferably, logging of the administrator is performed after deactivating
any administrator on the VM user list. Thereby, no user belonging to the group of VM users
having administrator rights (hereinforth also called administrator group) can log in into the
VM after the logoff operation. In particular, the VM users belonging to the administrator
group is locked out of the VM even though his user account continues to exist on the VM user
list. In particular, deactivating any administrator on the VM user list leads to a preferably

complete inability to use any administrator account after logging off.

Preferably, the VM is configured to allow at least one service user on the VM user list to exe-
cute the digital data processing application program and to access TEMP. The at least one
service user preferably is a technical user, i.e. a system service user context, whose user ac-
count or user context, respectively, does not offer any possibility of login into the VM. This at
least one service user preferably has basic user rights on the VM, in particular the service user
has no rights allowing to change and/or continue user rights or to install any soft\;vare, in par-
ticular application, on the VM. In particular, at least one service user is activated on the VM

user list and has reading, writing and deleting rights on TEMP. In contrast thereto, no mainte-

WO 2012/130289 PCT/EP2011/054839
39

nance user on the VM user list has the rights to take ownership of TEMP or to install software
on the VM or to start software on the VM in the user context of the service user (i.e. by using
the user context of the service user). The digital data processing application program is pref-
erably executed (in particular called) by the at least one service user, in particular by using the
services user’s rights. In particular, the digital data processing application program is exe-
cuted such that it has the rights regarding TEMP which are assigned to the service user, in
particular for reading input digital data from TEMP and writing output digital data to TEMP.
A service within the context of the complementary invention is understood to be in particular
a network service. A network service is an abstracted function which is provided to users or
clients, respectively, in a computing network. A network service is a self-contained functional
component which may be realized using one or more network protocols. An example of a
network service is the world wide web which provides the internet. The internet is technically
realized by the network protocol hypertext transfer protocol (HTTP). A service may also be
described as a computer program that runs in the background rather than under the direct con-
trol of a user. Usually, a service is initiated as a background process. Within the framework of
the complementary invention, a service user is understood to be preferably a service who is
assigned a VM user account on the VM user list in order to define the user rights which that
service has when running on the VM and conducting certain operations. Preferably, at least
one such service user is allowed to execute, i.e. to call and run the digital data processing ap-
plication program. This at least one service user preferably is assigned to a controller (i.e. a
controller service) for in particular controlling initiation and exit of execution of the digital
data processing application program. This controller is also called medical data processing
application program controller (MeDPAP controller or MC). The controller is also allowed to

access TEMP, in particular to read digital data from TEMP and to write digital data to TEMP.

Preferably, the VM is present (in particular, run) on a cloud computer, in particular a cloud
server. More preferably, the VM is present on a cloud computer system which in particular
denotes a system of at least one cloud computer, in particular plural operatively intercon-
nected cloud computers such as a server farm SerFa. Preferably, the cloud computer is con-
nected to a wide area network such as the world wide web (WWW). Such a cloud computer is
located in a so-called cloud of computers which are all connected to the world wide web.
Such an infrastructure is used for cloud computing which describes computation, software,

data access and storage services that do not require end-user knowledge of physical location

WO 2012/130289 PCT/EP2011/054839
40

and configuration of the computer that delivers a specific service. In particular, the term
“cloud” is used as a metaphor for the internet (world wide web). In particular, the cloud pro-
vides computing infrastructure as a service (IaaS). The cloud computer functions as a virtual
host for the VM. Preferably, the cloud computer is an elastic compute cloud (EC2) provided

by Amazon Web Services™.

Preferably, the VM is configured to read patient metadata from a patient database and to read
medical image data from an image data storage device. To this end, the VM is connectable to
a digital data storage device comprising a relational database in which the patient metadata is
stored. This relational database is also called patient database. The image data storage device
is a file storage such as a simple storage service (S3) provided by Amazon Web Service™
which is a key-value-based file hosting service. S3 provides storage through a simple web
service interface and its design is aimed at providing scalability, high availability and low
latency at commodity posts. Data stored in the S3 is organized in so-called buckets. Each
bucket has a unique identifier within the data processing infrastructure used for implementing
the complementary invention. In particular, its name may occur only once within this infra-
structure. The data are organized in buckets by way of the file name of the file in which the

data is saved. The file name has to be unique per bucket.

Preferably, the contents of TEMP is determined when execution of the digital data processing
application is initiated, in particular, when the application starts to run. Preferably, determin-~
ing the contents of TEMP means to determine whether TEMP contains any data without limi-
tation to the kind of contents which the data represents. Determining the contents preferably is
performed by the controller of the digital data processing application program or the digital
data processing application program itself. In particular, the digital data processing applica-~
tion program may contain executable or script code which contains commands to determine
the contents of TEMP. Determining the contents in particular leads to the result of contents
either being present or not present in TEMP. Preferably, if it is determined that TEMP is not
empty, the contents of TEMP is removed, in particular deleted. TEMP being not empty in
particular means that there is some data present, in particular stored, in TEMP. The action of
deleting is again performed by preferably the digital data processing application or by its con-

troller by executing a corresponding command.

WO 2012/130289 PCT/EP2011/054839
41

Preferably, a predefined number, in particular ten, of instances of the digital data processing
application program are running or ready to run on the VM and await assignment to an appli-
cation running on a client computer and accessing the VM (in particular, by communicating
with a web server of the VM) via a login server (which will be described further below) and
the controller of the digital data processing application program. An instance being ready to
run in particular means that the digital data processing application program is contained in the
VM (in particular, installed on the VM) but has not been started in order to generate an in-
stance. Preferably, the predefined number of instances depends on the performance and/or
hardware capability of the underlying physical computer. Preferably, the digital data process-
ing application program is present as a file only once on the VM. An instance of the digital
data processing application program is the running digital data processing application pro-
gram. In particular the digital data processing application program may be executed more than
once simultaneously on the VM. Preferably, a plurality of instances of the digital data proc-
essing application program is running while the VM is running. These instances then initially
are in an idle state, i.e. they are not processing digital data which in particular means they are
neither reading input digital data nor outputting output digital data. Each client application is
assigned one idle instance of the digital data processing application program in case its func-
tionality is requested by the client application. This in particular is the case if the client appli-
cation requests to have data processed in a manner which is supported by the digital data
processing application program. The controller service assigns the specific client application
requesting such a functionality to a specific one of the instances of the digital data processing
application program. The instance then changes to an occupied state. The controller service
preferably transmits address information (in particular, a uniform resource identifier) of the
instance to the client application such that the client application may communicate directly
with the instance within a session. As long as the session is established, the controller service
receives a connection signal, in particular a ping, from each client currently being assigned to
a digital data processing application program instance. Such a connection signal is requested
by the controller service and received from each of the clients at preferably predefined inter-
vals in order to monitor the session time. If no connection signal is received by the controller
service within such an interval, it is determined (in particular, by the controller service) that
the session has been exited (in particular exited by the client), i.e. the session has finished. In
that case, the assignment between the digital data processing application program instance

and the client application is cancelled and that specific instance is stopped and restarted by the

WO 2012/130289 PCT/EP2011/054839
42

controller service and then remains running in an idle state on the VM in order to be available
for assignment to another or the same client application program upon request. If the control-
ler service determines that the session is finished, the controller service removes, in particular
deletes, the contents of TEMP, i.c. preferably any data contained in TEMP. The digital data
processing application program is allowed (in particular, by the controller service) to accept a
new assignment only if it is determined (in particular, by the controller service) that TEMP is

empty.

Preferably, any of the above-described deleting operations is conducted in a safe manner such
that the data which have been deleted may not be reconstructed. Such a safe deletion may be
implemented by overwriting the respective sectors of TEMP from which data has been de-

leted with an arbitrary, preferably statistically generated sequence of bits.

The complementary invention also relates to embodiments of the VM as described below and

by the complementary disclosure of the technically related patent application (attorney file
58044 V1) defined later:

The virtual machine (VM) preferably comprises at least one of the following components
and/or features:
o aMeDPAP controller (MC) which is preferably constituted
* 5o that it can be addressed by a Uniform Resource Identifier called
VM-URI via a wide area network (WAN), and
* to supports direct interoperable interaction with a client application
(MCA) over the wide area network (WAN),
* to assign a Uniform Resource Identifier called MeDPAP-URI to the
MeDPAP, and
* to send the assigned MeDPAP-URI to the client application via the
wide area network (WAN); and
o preferably the MeDPAP which is preferably (optionally) constituted
* to process the digital data (MD), '
» 5o that it can be addressed by the client application via the wide area

network (WAN) by using the MeDPAP-URI, and

WO 2012/130289

PCT/EP2011/054839
43

to support direct interaction with the client application over the wide
area network for receiving instructions from the client application

(MCA) to process the digital data; and/or

o wherein the MeDPARP is preferably (optionally) constituted

to store a file (Prodaf) of the processed digital data called Prodaf in a
storage space,

to translate a location of the Prodaf into an individual Unique Resource
Identifier called Prodaf-URI (URIx), and

to send the Prodaf-URI (URIx) to the client application via the wide
area network (WAN); and/or

o wherein the MeDPAP controller is preferably (optionally) constituted

to re-translate the Prodaf-URI (URIx) received from the client applica-
tion via the wide area network (WAN) into the location of the Prodaf,
to read the Prodaf by using the re-translated storage location, and

to send the Prodaf to the client application (MCA) via the wide area
network (WAN),

o wherein the virtual machine is preferably (optionally) constituted so that a plu-

rality of the MeDPAPs can be executed on the virtual machine (VM); and

o wherein the MeDPAP controller is preferably (opt1onally) constltuted

to respectively assign individual MeDPAP-URIs (URIi) to the MeD-
PAPs and to store the respective assignment between the MeDPAP-
URIs and MeDPAPs,

to be addressable by a plurality of the client applications via the wide
area network (WAN) by using the VM-URI,

to respectively assign one of the MeDPAP-URIs (URIi) to one of the
MeDPAPs, and

to respectively send the assigned MeDPAP-URIs to the assigned client

applications;

o wherein the MeDPARP is preferably (optionally) constituted so that if the plu-
rality of MeDPAPs are executed on the VM, the MeDPAPs can be respectively

addressed by one of the plurality of the client applications via the wide arca

network (WAN) by using the sent and assigned individual MeDPAP-URI

(URIi) and respectively support direct interaction with the client applications

WO 2012/130289 PCT/EP2011/054839
44

over the wide area network (WAN) for receiving instructions from the client

applications to process the digital data.

The complementary invention is also directed to a data storage medium comprising system
image data comprising information which describes a system image of the VM and/or instal-
lation data for installing at least parts of the VM (comprising preferably at least one digital
data processing application program), in particular for installing at least one component of the
VM on the VM. In case the data storage medium comprises only the installation data, pref-
erably the data storage medium does not comprise installation data for installing an operating
system of the VM. In that case, the installation data preferably contains only data for install-
ing at least one component. The term of component in particular encompasses the digital data
processing application program, the web server (comprising preferably a storage controller
and/or the controller service) and an application for generating TEMP, in particular a RAM
disk application. A system image is a copy of the entire state of the VM, in particular in a
state stored in a file on a non-volatile data storage medium (such as a permanent magnetic
memory or an optical storage medium such as a DVD or CD-ROM). The system image of the
VM preferably is a disc image which contains the complete contents and structure represent-
ing the VM, in particular comprising data describing information about the VM operating
system and any software, in particular application programs such as the digital data process-
ing application program, installed on the VM. Preferably, the system image is stored in an
ISO-compatible format or universal disc format (UDF). The system image may be used for
backup or cloning, i.e. replication, of the VM. Replication of the VM is preferably done by
loading its source code, i.e. copying its system image, onto the underlying physical computer

(in particular, into its non-volatile memory), and by preferably running the VM on that com-

puter.

As a further part of the complementary invention, an electronic network system comprising a
cloud computer and a login server is described. The electronic network system is in particular
a system of computers which is configured to be connected to a computer network, i.e. a col-
lection of computers and devices connected by communication channels that facilitate com-
munications among users and allow users to share resources. An example of such a computer
network may be any local network area (LAN) or wide area network (WAN) such as for ex-

ample the internet (world wide web — WWW), in particular any client-server network. The

WO 2012/130289 PCT/EP2011/054839
45

electronic network system is a system of computers (i.e. a system of interconnected servers
and/or clients) which is configured to be connected to such an electronic network. The cloud
computer preferably is the cloud computer on which the VM as described above is running,.
The cloud computer is preferably connected to the patient database comprising the patient
metadata and the image storage device comprising image data, in particular medical image
data as described above. The login server preferably is a standard server computer which en-
ables login to a preferably HTML-based portal application from a client computer, the portal
application being able to communicate and/or access the VM via requests sent to the web
server. The login server is preferably connected to the cloud computer and a login server da-
tabase. The login server database preferably comprises information about the client user who
has logged into the portal application. This information about the client user is preferably as-
sociated with access rights information describing access rights to the patient metadata and
the image data, in particular medical image data. In particular, the access rights information is
associated with the client user. More particularly, the login server database provides a list of
access rights to specific medical cases which have been assigned to the client user logged into
the portal application either because he is the owner of the medical case or the owner has
granted access rights to the client user. The access rights may for example be to read (view)

and/or write (copy) and/or manipulate (in particular, to process) the patient metadata and/or

medical image data.

Login into the portal application is preferably provided by a login mask provided by the in
particular HTML-based software or code which is used to make the portal application acces-
sible to client users. Preferably, the portal application is configured to connect medical users
being members of a medical user group with one another. Medical users may be any health-
care practitioners such as physicians, nurses, psychotherapists or paramedics. A medical user
group in particular is a set of medical users, more particularly medical users who have con-
nections to one another. The connections may be personal, in particular real-life acquaintan-
ces, and/or connections of a virtual kind achieved by establishing a contact within the portal
application. The portal application preferably is a kind of social network or community net-
work which allows a user to establish contact with other users by for example using a messag-
ing function provided by the portal application. The messaging function may for example be a
sub-program configured to send digital messages such as emails to the portal accounts of

other users or text messages to mobile phones. Alternatively or additionally, the portal appli-

WO 2012/130289 PCT/EP2011/054839
46

cation preferably provides a module for establishing voice-over-IP (VoIP) contact between
users. The portal is designed to connect the medical users with one another in order to enable
transfer of medical data, in particular medical image data between them. The transfer of the
medical data is preferably enabled by providing access possibilities to medical cases compris-
ing the specific medical data to different client users, in particular medical users. It is assumed
that a specific medical user creates a medical case for a specific patient and uploads medical
data which is saved in the patient database (in the case of patient metadata) and image storage
device (in the case of image data). The medical data is assigned to the medical case and the
medical user who initially uploads the medical data is called the owner of the medical data
and the medical case. The owner has full rights regarding the medical case and the medical
data, in particular he is allowed to upload, read, download, manipulate and delete the medical
case and/or the medical data. The owner is also able to assign the respective rights to other
users or to remove rights for other users which he had previously assigned. In particular, ac-
cess rights for members of the medical user group to a patient dataset, i.e. a medical case, are
therefore controlled by the owner. Transfer of the medical data between different medical
users in particular denotes an exchange of the information contained in the medical data, in

particular allowing different medical users to read the information represented by the medical

data.

Preferably, deleting the medical case, in particular the patient dataset, i.e. the patient metadata
and/or the medical image data, from the patient database and/or the image storage device,
respectively, has the consequence that no client user can access the patient dataset anymore.
In particular, deleting the patient dataset is final and may not be reversed and/or undone. Pref-
erably, deleting the patient dataset means that the patient dataset is completely removed from
the respective storage facilities without being moved to an intermediate storage such a recy-
cling bin where it could await final deletion. Preferably, deleting the patient dataset is a safe
deletion procedure, which in particular encompasses overwriting the physical memory used

for storage of the patient dataset with an arbitrary, in particular statistically generated, pattern.

A further part of the complementary invention is disclosed as a method of configuring the
above-described virtual machine. The method comprises steps which support achieving the

configuration of the virtual machine as described above.

WO 2012/130289 PCT/EP2011/054839
47

Within the framework of the complementary invention, computer program elements can be
embodied by hardware and/or software (this includes firmware, resident software, micro-
code, etc.). Within the framework of the complementary invention, computer program ele-
ments can take the form of a computer program product which can be embodied by a com-
puter-usable, in particular computer-readable data storage medium comprising computer-
usable, in particular computer-readable program instructions, “code” or a “computer pro-
gram” embodied in said data storage medium for use on or in connection with the instruction-
executing system. Such a system can be a computer; a computer can be a data processing de-
vice comprising means for executing the computer program elements and/or the program in
accordance with the complementary invention. Within the framework of the complementary
invention, a computer-usable, in particular computer-readable data storage medium can be
any data storage medium which can include, store, communicate, propagate or transport the
program for use on or in connection with the instruction-executing system, apparatus or de-
vice. The computer-usable, in particular computer-readable data storage medium can for ex-
ample be, but is not limited to, an electronic, magnetic, optical, electromagnetic, infrared or
semiconductor system, apparatus or device or a medium of propagation such as for example
the Internet. The computer-usable or computer-readable data storage medium could even for
example be paper or another suitable medium onto which the program is printed, since the
program could be electronically captured, for example by optically scanning the paper or
other suitable medium, and then compiled, interpreted or otherwise processed in a suitable
manner, Preferably, the data storage medium is a non-volatile data storage medium. The com-
puter program product and any software and/or hardware described here form the various
means for performing the functions of the complementary invention in the example embodi-
ments. The computer and/or data processing device can in particular include a guidance in-
formation device which includes means for outputting guidance information. The guidance
information can be outputted, for example to a user, visually by a visual indicating means (for
example, a monitor and/or a lamp) and/or acoustically by an acoustic indicating means (for
example, a loudspeaker and/or a digital speech output device) and/or tactilely by a tactile in-

dicating means (for example, a vibrating element or vibration element incorporated into an

instrument).

The method of configuring in accordance with the complementary invention is in particular a

data processing method which is preferably embodied by a computer program. The data proc-

WO 2012/130289 PCT/EP2011/054839
48

essing method is preferably performed using technical means, in particular a computer. The
computer in particular comprises a processor and a memory in order to process the data, in
particular electronically and/or optically. The calculating steps, in particular configuring
steps, more particularly option setting steps described are in particular performed by a com-
puter. A computer is in particular any kind of data processing device, in particular electronic
data processing device. A computer can be a device which is generally thought of as such, for
example desktop PCs, notebooks, netbooks, etc., but can also be any programmable appara-
tus, such as for example a mobile phone or an embedded processor. A computer can in par-
ticular comprise a system (network) of “sub-computers”, wherein each sub-computer repre-
sents a computer in its own right. A computer in particular comprises interfaces in order to
receive or output data and/or perform an analogue-to-digital conversion. A computer may also
be part of an electronic network such as a client-server network. Thus, the term of computer

encompasses both a client and a server.

The complementary invention therefore is also directed to a program, which, when running on
a computer or when loaded onto a computer, causes the computer to perform one or more the
method steps of the method of configuring the virtual machine. Use of such a program in-
cludes automatic configuration of the virtual machine, in particular to enable automatic ex-
traction and installation of software, preferably from the system image of the VM, in order to

install the virtual machine on a physical computer.

The complementary invention also relates to a data storage medium, in particular program
storage medium on which the program is stored (in particular in a non-transitory form) and/or
to a computer on which the program is running or into the memory of which the program is
loaded and/or to a signal wave, in particular a digital signal wave, carrying information which
represents the program, in particular the aforementioned program, which in particular com-

prises code means which are adapted to petform any or all of the method steps described

herein.

The complementary invention is in particular directed to the following embodiments. Each of

the following embodiments can be combined with an embodiment of the MeDPAP invention.

A)

B)

©)

D)

WO 2012/130289 PCT/EP2011/054839

49

A virtual machine (VM) for processing digital data, in particular medical data, by exe-
cuting a digital data processing application program, in particular a medical data proc-
essing application program (MeDPAP), the virtual machine (VM) being a simulation
of a computer and in particular being the VM as described by one of the embodiments
of the MeDPAP invention,

a) the virtual machine (VM) comprising a volatile memory (ViMStor) config-
ured to comprise a storage space for temporary data (TEMP) for temporarily storing
the digital data;

b) the virtual machine (VM) being configured to be accessed by, any virtual
machine user activated on a virtual machine user list, wherein any activated mainte-
nance virtual machine user is denied any permission regarding the storage space for
temporary data (TEMP), wherein denying any permissions is performed by logging
into the virtual machine (VM) as an administrator and setting corresponding options;

¢) wherein any administrator has been deactivated on the virtual machine user
list, wherein deactivating any administrator has been performed by logging into the
virtual machine (VM) as an administrator and setting corresponding options for each
administrator in the virtual machine user list;

d) wherein the virtual machine (VM) is in a state in which the administrator has

been logged off after deactivating the administrator on the virtual machine user list.

The virtual machine (VM) according to the preceding embodiment and/or according to
one of the embodiments of the MeDPAP invention, wherein the virtual machine (VM)
is configured to allow at least one service user on the virtual machine user list to exe-
cute the digital data processing application program and to access the storage space for

temporary data (TEMP).

The virtual machine (VM) according to the preceding embodiment and/or according to
one of the embodiments of the MeDPAP invention, wherein the virtual machine (VM)

is present on a cloud computer system.

The virtual machine (VM) according to any one of the preceding embodiments and/or

according to one of the embodiments of the MeDPAP invention, wherein the storage

WO 2012/130289 PCT/EP2011/054839
50

space for temporary data (TEMP) is a file system, in particular a file system of a non-

volatile memory, simulated in the volatile memory (ViMStor).

E) The virtual machine (VM) according to any one of the preceding embodiments and/or
according to one of the embodiments of the MeDPAP invention, comprising at
least the following components:
o aMeDPAP controller (MC) which is constituted
® g0 that it can be addressed by a Uniform Resource Identifier called
VM-URI via a wide area network (WAN), and
» to supports direct interoperable interaction with a client application
(MCA) over the wide area network (WAN),
* to assign a Uniform Resource Identifier called MeDPAP-URI to the
MeDPAP, and
» to send the assigned MeDPAP-URI to the client application via the
wide area network (WAN); and
o the MeDPAP which is constituted
* to process the digital data (MD),
» 50 that it can be addressed by the client application via the wide area
network (WAN) by using the MeDPAP-URI, and
» to support direct interaction with the client application over the wide
area network for receiving instructions from the client application
(MCA) to process the digital data
o wherein the MeDPAP is constituted
» to store a file (Prodaf) of the processed digital data called Prodafin a
storage space,
* to translate a location of the Prodaf into an individual Unique Resource
Identifier called Prodaf-URI (URIx), and
» to send the Prodaf-URI (URIx) to the client application via the wide
area network (WAN);
o wherein the MeDPAP controller is constituted
» to re-translate the Prodaf-URI (URIx) received from the client applica-
tion via the wide area network (WAN) into the location of the Prodaf,

» to read the Prodaf by using the re-translated storage location, and

WO 2012/130289 PCT/EP2011/054839
51

to send the Prodaf to the client application (MCA) via the wide area
network (WAN),

o wherein the virtual machine is constituted so that a plurality of the MeDPAPs
can be executed on the virtual machine (VM); and

o wherein the MeDPAP controller is constituted

» to respectively assign individual MeDPAP-URIs (URIi) to the MeD-
PAPs and to store the respective assignment between the MeDPAP-
URIs and MeDPAPs,

* to be addressable by a plurality of the client applications via the wide
area network (WAN) by using the VM-URI,

» to respectively assign one of the MeDPAP-URIs (URIi) to one of the
MeDPAPs, and

» to respectively send the assigned MeDPAP-URIs to the assigned client
applications;

o wherein the MeDPARP is constituted so that if the plurality of MeDPAPs are
executed on the VM, the MeDPAPs can be respectively addressed by one of
the plurality of the client applications via the wide area network (WAN) by us-
ing the sent and assigned individual MeDPAP-URI (URIi) and respectively
support direct interaction with the client applications over the wide area net-
work (WAN) for receiving instructions from the client applications to process

the digital data.

F) The virtual machine (VM) according to any one of the preceding embodiments and/or
according to one of the embodiments of the MeDPAP invention, wherein the virtual
machine (VM) is configured to read patient metadata from a patient database (Me-

MeD) and to read medical image data from an image data storage device (MIDaS).

G) The virtual machine (VM) according to any one of the preceding embodiment and/or
according to one of the embodiments of the MeDPAP invention, wherein, when exe-
cution of the digital data processing application is called, the contents of the storage
space for temporary data (TEMP) is determined and wherein preferably, if it is deter-
mined that the storage space for temporary data (TEMP) is not empty, the contents of
the storage space for temporary data (TEMP) is deleted.

WO 2012/130289 PCT/EP2011/054839

H)

D)

)

K)

L)

52

A data storage medium comprising system image data comprising information de-
scribing a system image of the virtual machine (VM) according to any one of the pre-
ceding embodiments and/or according to one of the embodiments of the MeDPAP in-
vention or installation data for installing at least one component of the virtual machine
(VM) according to any one of the preceding embodiments and/or according to one of
the embodiments of the MeDPAP invention on the virtual machine (VM) according to

any one of the preceding embodiments.

A computer on which the virtual machine (VM) according to any one of the preceding
virtual machine embodiments and/or according to one of the embodiments of the

MeDPAP invention is running.

An electronic network system comprising:

a cloud computer system on which the virtual machine (VM) according to any
one of the preceding virtual machine embodiment and/or according to one of the em-
bodiments of the MeDPAP invention is running and which cloud computer is con-
nected to a patient database (MeMeD) comprising patient metadata and an image stor-
age device (MIDaS) comprising medical image data;

a login server (LS) which enables login of a client user from a client computer
(Client) and is connected to the cloud computer system and a login server database
comprising information about the client user associated with access rights information

describing access rights to the patient metadata and the medical image data.

The electronic network according to the preceding embodiment and/or according to
one of the embodiments of the MeDPAP invention, wherein login is enabled by pro-
viding a login mask which is provided by medical network software (MedPort), which
medical network software (MedPort) is configured to connect medical users being
members of a medical user group with one another in order to enable transfer of medi-
cal data, in particular medical image data, between them.

The electronic network according to the preceding embodiment and/or according to

one of the embodiments of the MeDPAP invention, wherein the medical data is part of

WO 2012/130289 PCT/EP2011/054839

M)

N)

0)

53

a patient data set, access rights for members of the medical user group to the patient

data set being controlled by an owner of the patient data set.

The electronic network according to any one of the three preceding embodiments
and/or according to one of the embodiments of the MeDPAP invention, wherein the
medical data is part of a patient data set and wherein after deleting the patient data set

no client user can access the patient data set.

A method of configuring a virtual machine, in particular the VM of an embodiment of
the MeDPAP invention, the virtual machine (VM) being a simulation of a computer
and being configured for processing digital data, in particular medical data, by execut-
ing a digital data processing application program, in particular a medical data process-
ing application program (MeDPAP), the method comprising:

a) configuring the virtual machine (VM) to comprise a volatile memory (ViM-
Stor) which is configured to comprise storage space for temporary data (TEMP) for
temporarily storing the digital data;

b) configuring the virtual machine (VM) to be accessed by any virtual machine
user activated on a virtual machine user list, and denying any maintenance virtual ma-
chine user any permission regarding the storage space for temporary data (TEMP),
wherein the denying is performed by logging into the virtual machine (VM) as an ad-
ministrator and setting corresponding options;

¢) deactivating any administrator on the virtual machine user list by logging
into the virtual machine (VM) as an administrator, setting corresponding options for
each administrator in the virtual machine user list;

d) logging off the administrator after deactivating the administrator on the vir-

tual machine user list.

A program which, when running on a computer or when loaded onto a computer,
causes the computer to perform one or more of the method steps of the method accord-
ing to the preceding embodiment and/or a data storage medium on which the program
is stored and/or a computer on which the program is running or into the memory of
which the program is loaded and/or a signal wave carrying information which repre-

sents the program.

WO 2012/130289 PCT/EP2011/054839

L.

54

Claims

A virtual machine (VM) for processing digital data (MD), in particular medical data

by executing a digital data processing application program, in particular a medical data appli-

cation program called MeDPAP, the virtual machine (VM) being a simulation of a computer,

the virtual machine comprising at least the following components:

a MeDPAP controller (MC) which is constituted

o

so that it can be addressed by a Uniform Resource Identifier called VM-URI
via a wide area network (WAN),

to support direct interoperable interaction with a client application (MCA) over
the wide area network (WAN),

to assign a Uniform Resource Identifier called MeDPAP-URI to the MeDPAP,
and

to send the assigned MeDPAP-URI to the client application via the wide area
network (WAN); and

the MeDPAP which is constituted

O

o}

O

to process the digital data (MD),

so that it can be addressed by the client application via the wide area network
(WAN) by using the MeDPAP-URI, and

to support direct interaction with the client application over the wide area net-
work for receiving instructions from the client application (MCA) to process

the digital data.

The virtual machine of the preceding claim, comprising:

wherein the MeDPAP is constituted

O

to store a file (Prodaf) of the processed digital data called Prodaf in a storage
space,

to translate a location of the Prodaf into an individual Unique Resource Identi-
fier called Prodaf-URI (URIx), and

to send the Prodaf-URI (URIx) to the client application via the wide area net-
work (WAN);

wherein the MeDPAP controller is constituted

WO 2012/130289 PCT/EP2011/054839
55

o to re-translate the Prodaf-URI (URIx) received from the client application via
the wide area network (WAN) into the location of the Prodaf,

o to read the Prodaf by using the re-translated storage location, and

o to send the Prodaf to the client application (MCA) via the wide area network
(WAN).

3. The virtual machine of one of the preceding claims, comprising:

e wherein the virtual machine is constituted so that a plurality of the MeDPAPs can be
executed on the virtual machine; and

¢ wherein the MeDPAP controller is constituted

o to respectively assign individual MeDPAP-URIs (URIi) to the MeDPAPs and
to store the respective assignment between the MeDPAP-URIs and MeDPAPs,

o to be addressable by a plurality of the client applications via the wide area
network (WAN) by using the VM-URI,

o to respectively assign one of the MeDPAP-URIs (URIi) to one of the MeD-
PAPs, and

o to respectively send the assigned MeDPAP-URIs to the assigned client appli-
cations;

o wherein the MeDPAP is constituted so that if the plurality of MeDPAPs are executed
on the VM, the MeDPAPs can be respectively addressed by one of the plurlality of the
client applications via the wide area network (WAN) by using the sent and assigned
individual MeDPAP-URI (URIi) and respectively support direct interaction with the
client applications over the wide area network (WAN) for receiving instructions from

the client applications to process the digital data.

4. The virtual machine of the preceding claim as far as depending on the claim 2,
wherein
e the virtual machine (VM) comprises a VM data storage for storing the digital data to
be processed and/or the processed digital data;
¢ the MeDPAP controller is constituted to respectively and exclusively assign one of the

storage spaces (TEMPs) within the VM data storage to one of the MeDPAPs;

WO 2012/130289 PCT/EP2011/054839

56

the MeDPAPs are respectively constituted to respectively store the Prodafs only in the
respectively and exclusively assigned storage spaces (TEMPs); and

the MeDPAP controller is constituted to look for a respective one the Prodafs only
within the one of the storage spaces respectively and exclusively assigned to that one

of the MeDPAPs which has generated the respective one of the Prodafs.

The virtual machine of the preceding claim, wherein

the MeDPARP controller is constituted

to generate an individual identifier called VM session ID for each communication ses-
sion with one of the client applications;

to send the VM session ID to the respective client application;

to respectively assign the storage spaces (TEMPs) to the VM session IDs; and

to receive the VM session ID in addition to the request to read the Prodaf from the
client application, and

to look for the Prodaf only within the storage space (TEMPi) assigned to the received
VM session ID.

The virtual machine of the preceding claim,

wherein

the MeDPAP is configured

7.

to receive a session ID called portal session ID from the client application;
to store the received portal session ID;

to check a later received portal session ID whether it corresponds to the stored portal

session, and

to process the digital data only if the checking results indicates a correspondence.

The virtual machine according to the preceding claim,

wherein the MeDPAP controller is constituted

to stop a MeDPAP and to erase the content in the storage space (TEMPi) assigned to
the stopped MeDPAP; and

to start a new MeDPAP and wherein

WO 2012/130289 PCT/EP2011/054839

8.

57

the MeDPAP controller and/or the new MeDPAP is constituted to check whether the
storage space assigned to the new MeDPAP is empty and/or to erase the content in the

assigned storage space when the new MeDPARP is started.

The virtual machine according to one of the preceding claims,

wherein the MeDPAP controller is constituted

to start a new MeDPAP in order to maintain the number of MeDPAPs irrespective of the

number of client applications communicating with the MeDPAP controller.

9.

The virtual machine of one of the three preceding claims, wherein

the MeDPAP controller is constituted to

10.

respectively and exclusively assign one of the executed MeDPAPs to one of the com-

munication sessions;
to monitor the number of MeDPAPs assigned to the communication sessions;
to report the number to a server application called login server application (LiSA);

to receive instruction from the login server application (LiSA) to start a new virtual
machine (VM);

and to start the new virtual machine in response to the instruction.

The virtual machine of one of the preceding claims, wherein the MeDPAP controller is

constituted

* to respectively generate the VM session IDs for the communication sessions with
the client applications;

e toreceive a session ID called portal session ID from each one of the client applica-
tions which portal session ID is individual for each client application and which
origins from a server application (LiSA) which server application can be identical
with the server application mentioned in the preceding claim;

¢ to send the portal session ID to the server application

e toreceive an acknowledgement from the server application according to which the
portal session ID is valid or not; and

¢ to send the VM session ID to the client application only if the portal session ID is

valid.

WO 2012/130289 PCT/EP2011/054839
58

11. A data storage medium comprising system image data describing a system image of
the virtual machine (VM) of one of the preceding claims or comprising an installatlion pré-
gram for installing the components of the virtual machine of one of the preceding claims in
the virtual machine or a signal wave carrying information which represents the system image

or the installation program.

12. A cloud computer system (Cloud Server Farm) comprising a number of com-
puters, wherein a plurality of the virtual machines according to one of the preceding claims

are running on the cloud computer system (Cloud Server Farm).

13. An electronic network system comprising:
o the cloud computer system (Cloud Server Farm) of the preceding claim;
e a plurality of client computers on which the plurality of client applications are
running and which are connected to the cloud computer system via the wide arca
network (WAN) to exchange data with the MeDPAP controller by using the VM-
URI and to respectively exchange data with the MeDPAPs by using the MeDPAP-
URIs respectively and exclusively assigned to one of the client applications so that

only one client application is communicating with one MeDPAP.

14. A method of transforming a virtual machine into the virtual machine of one of the pre-
ceding virtual machine claims,

comprising the steps of

a) logging in to the virtual machine to be transformed; and

b) i) loading a system image of the virtual machine of the preceding virtual machine
claims into the virtual machine to be transformed or

ii) installing the components of the virtual machine of one of the virtual machine claims on

the virtual machine to be transformed.

15. A program which, when running on a computer or when loaded onto a computer,
causes the computer to perform the method steps of the method according to the preceding
claim and/or a program storage medium on which the program is stored and/or a computer on

which the program is running or into the memory of which the program is loaded and/or to a

WO 2012/130289 PCT/EP2011/054839
59

signal wave, in particular a digital signal wave, carrying information which represents the

program.

PCT/EP2011/054839

WO 2012/130289

1/11

SedIN

d°NPIN

Z1 1001 -
CINA A//
T CIVONN
CI'TH <
[ARLS)NS)
< c1o01drd
"1 TdVdAN (e _ o%ﬁ
(VO u3o]
CAIN <
passaooid) \4 e \
> ‘TH ;
1dvdaoy | H o1
”i v ; .w
TINAL |e L [TO0IAId ¥ wSoT
L7 (1@ passeo0id) ‘T TH IVON
3 (OW) 10100 VAW 3 > e
I JNdL _ M
QUIP[9YD our-uIso|
(I0ISINTA) | -ON \
o3e101S INA "1 (DS) Ie[onuos 55e103s K
> {1 °se)-
1R
> VSl » oS -
- IOAISG UISO aseq e
LA || 2eeeHoOs (10A108 UIS0T) ST s
wSo]
e JDAIS PNof)

(SOIJAHATA) WIISAS SUISSI0AJ BIB([[EIPIA] JO 2INIINIS JIEMIJOS pUB dJBMPIBH] 31

WO 2012/130289 PCT/EP2011/054839

2/11
Fig. 2: Login
(medial client Login Login
application) Server
MCA > Application
in PW LiSA
Browser
PSIDi + VM-URI
P generate
MCA - PortalSessionID

(+ cookie) PSIDi

MCAI Download Server
download
install: owiioa BROPLUG-plug-in
BROPLUG < |
MCAI Cloud Server Farm
download
BROPLUG
< viewer-plug-in (.xap)
Viewer

Install: viewer

WO 2012/130289 PCT/EP2011/054839
311

Fig. 3a: during start up of viewer

LiSA

2. valid
Portal-
3.0k session ID
(PSIDi)?

VM

MeDPAP controller

. had started MeDPAPs
1. portal- D >
(PS?DS session had assigned URIs and
TEMPs to MeDPAPS, and
MCA; VM-URI stores PSID

Authentification:

viewer Table:)

MeDPAP1: occupied,
URII1, PSIDI,
TEMP1

MeDPAP2: occupied,
URI2, PSID2,
TEMP2

A

4, ok;
VMSession ID (cookie)

MeDPAPi: idle

VM

) 5. Iwant a MeDPAP
MCAIi

Y

MeDPAP controller
viewer

Table

MeDPAP1:0ccupied , URII,
PSID 1, TEMP1

MeDPAP2: occupied, URI2,
PSID2, TEMP2

MeDPAPi: idle = occupied,
URIi, PSIDi, TEMPi

A

6. URIi of MeDPAPi
(MedPAP-URI)

WO 2012/130289

Fig. 3b:

MCAIi

viewer

7. URIi, PSIDi

10. ok!

I'm ready for use!

MCAI

viewer:
image shift
by n pixels

11. shift image by
n pixels

4/11

VMsessionlD

PCT/EP2011/054839
VM
9. PSIDi
okay!
MeDPAP controller
8.
PSIDi
okay?
MeDPAPI1, URI1
MeDPAPi, URIi
store
PSIDi <
MeDPAPN, URIN
VM
MeDPAPi
shit | MDP
calculate new
> CSI image:
imagefilex.png

PCT/EP2011/054839

WO 2012/130289

511

XTdn 4

ojesuen

Lsud-xaryefewr, oweu

VAU |«

Sud-xoryosewn
2101 71

pasn 2q 03 Idua, H Ppa319pi10 peq

NdNAL

Sud-xoyeSewr

IdNAL

TdNAL

a8e1038 (11

TIdNHL

POUTULISISP UM

uorRoo] JI1 9jqIssod

ATUO $S920€

X[U0 paseq

,oud-xoyedeut,,

Jo uonedo]
SQUIMILINAP -

UOIBOIJJUSPI UOISSIS

> N A UO paseq

1sonbar-Ty DN
£q 21q1889008
TJNHL SSUItI=Ip -
VAN TT®
10F IJINH.L Seuy=p -

ID[[ONuod- IV JAON

X[dn €t

(11 uorsses [epod + 95ew JIys 11

IOMITA

QIUOISSASINA + XN ‘Y1 \

WA

Lsud-xe[yedeun, L1

INA S IVDIA J9Jsuea) dgew] e "SI

PCT/EP2011/054839

WO 2012/130289

6/11

:DM@M: 0} w%@QOE MaUu1os -
WIdVAAPW.L MU 5B VSN MU JIE]S >
IJINH.] o580 &
IIVJAAIN dois &

JNo-auw] W[[onuod JVJddN

WA

IST[ONU0D
-dVdaIN

01 sysonbax
2I0UI OU

IOMIIA

IVON

I57e]

:qy 31

PCT/EP2011/054839

WO 2012/130289

7/11

:N:

am
UOIJR20]

¢

(,Z, QI toned0[& ,Z, (JI9sE9)

(IDA JO TOTIEd0] 0} (JIOSBD WO 99UIJAI -

[:N: az HHOMH;NQO.—H:

18 Z, 9SBd JO (JIIN SoIO1S
BIRpRIoW-ased/jusned - oSe101S BIR(] 95EW] [BOIPIIN
aseqeie(] BlepeIRIA [edIPSIN SVAA
: dPINPIN Y
WZ,, 9580 JO
(DA £doo
—_N: :N:
. A ased
- uo1BI0] 3o
:N: ﬁg QE
ased Q
I0F
al SVAIAN <
osed o ,Z,, (ITIN uonesof (3 IdVdadN
@ e
&uZ,, 9SBD JOJ BIRP oIk aXoyMm (] 7, 9580 Jo (] o582 (&
qq uotssas Jenod + (T 9580 ﬁ o
» DS Ionuo)) -o8eIolg
4 IaIsd (0
y
o (p VSI'T

WZ, 9sBd

S100[98
Iosn

VO

(11 pue o1 doys weamyaq) (QIIN) w1 dSew] [BIIPITN Jenonaed a1 pue (A BIe([BIIPIJAl JO SUIsSa0U] ¢ S

WO 2012/130289

8/11

L] Full control
[Traverse folder | execute file

B} Permission Entry for Data

Full control

Traverse folder § execute file
List Folder | read data

Read atttibutes

Read extended attributes
Create files | write data
Create folders | append data
Write attributes

Write extended attributes
Delete subfolders and filss
Delete

Figure 6 a

: a Permission Entry for Data

List Folder / read data

Read attributes

Read extended attributes
Create files f write data
Create folders { append data
Write attributes

Write extended attributes
Delete subfolders and files
Delete

|s}ula]sl=luls]=lulals]::

EEEEEEEREERE

Figure 6 b

PCT/EP2011/054839

WO 2012/130289

Perm

PCT/EP2011/054839

pply. T

Full control
- Full contral
Full controt

Manading petmission entries:

<not inherited »

tirherited -

<not inherited>

This Folder, subfolders
This folder, K
This folder, subfolders a.

Figure 6¢

dministrator Properties

Built-in account for administering the

uter/dom

WO 2012/130289

g Advanced Security Settings for TEMP

Administrators {IP-0AE2...
Maintenancellser (IP-04,.,
Guest (IP-0AE29E4FAGU. .,
NETWORK SERVICE

Manaqing permission entri

Full controt
Full control
Full control
Full control

10/11

PCT/EP2011/054839

<not inherited
<not inherited >
<not inherited»
<not inherited >

This foldet, subfolders and files
This folder, subfolders and files
This folder, subfolders and files
This folder, subfolders and files

Figure 6e

PCT/EP2011/054839

WO 2012/130289

11/11

J9 231y

510321000 dMHRE SI0RASIIMPY

5107210d(drHIeg SI03R.175!
IDTAYIES NAOMLIN IDIANIS TD01
SRR ASIIUPY

FDINEAS HOMLEN
SYSNTSIIfs a5 BT 85UBULI0)iad ‘sioeiad0 drleg sioieasiuiupy

SioyRasIUUPY

SioJRRSIIPY

siasn)

DIAYTS ‘SHSNI SIISINRASIUIMAY IDTAYES HIOMLIN IDIAYIS WIOT
IDIAYIS HUOMLIN'IDIAYIAS D01

501RLF Py

SIJRASIIWPY
sio3eA: Py

IDIAYIS SI0RNSIUMIPY IDTAYIS JHHOMLIN BDIANIS W01

SI0ELSIURPY

SI0RNSUWPY IDIANIS W20
SI03RASIUILPY IDIANIS WO
540324000 drepRg sI05M1 51032 ASIUINPY ‘EDIAYIS NHOM LN IDIAUIS TWD018UsAI8AT]
siojesedo drjpeg sioRAsUWpY

5195 dopisaq aj0WY‘sIoJey

siojeade dmypegrsiesn’sioqed
SI0)eQSIULIPY IDIANIS HUOAMLIN'IDIAYIS TWD0T

s101r4ad0 dropeg sias‘s103R ASIUIWPY ‘BUOAISAT

520210, 49110 40 S3Y)4 40 diysie
218 AdlAISS AJOPBUP mm_co_cu:\,mﬁ
WalsAS L umep unxmﬁ

530303.4p pue 53|y mhoummmﬂ

U0} [aA ssed0.d B a3e|day

uapess Buppop we ssyndwes SEEmmB
asuRwIoad Wa)sAS 3 EaB

ssazaud 3Buis 3y Ems

{58 SURLSIURU! BUINYOA E_Ptmn_B i

SAN|PA JUAWUCIALR DILMULL é_vnz—u
[0q%| 20{qo Ue AJPOLAT

Boj Ajundas pue Buypne afieusly
2oues se U0 6o u

qof yaeq e se uo Bol u :

Asoursw u) safed a0 u

543AP MASP PROJUN pUR PROT|

Aysaud Bugnpeyds aseanuy

185 Bupjiom 552304d £ eseaLUTF

UOIEIRUAYINE Jayye JuD e mumcoﬂmuEHB

Sypne Ajnoas 9)RISUSD

W33SAS @0WA4 B WO UMOPINYS 33404f7

uoneBajap Joj pajsni) 34 0) SHUNCIIL Jasn pue J3yndwod mzmcmg

saialeg RuLLS) YBnoag uo Bof Ausg

Aleao| uo fio| Auagf

3044435 B se uo foj Aueq

qof ya3eq e se uo Bof Auaqf’

oMU BU3 Wol kenduiod siYY 0] s5a308 Aus(
sweJboud Bngaqf”

iU AOQWAS 33831 W.

s329(q0 padeys auewlsd uumo‘.um

spelqo |eqod oumu‘_um

e{qo usoy e 8383 |7

apysted e B@EU_H

ok

Bl WalsAs al afiueyn T
Buppays ssseaen ssedAglt
$940322p pue sayy dnspeg|?

AJUN38S PaIURADY L3I ([2MB1] SMOPULAY

530IAI8G [UIS] UBNCIYy Uo Boj mojg -
Al[220) uo Boj mojy |

s5a004d © 40J SRIONG Adowaw ISNPY [T
URWOP 03 SUOREISHIOM PPYF>

waysAs Gupesado ayy Jo ed se Y|
S40r33U BT Wo4 4NdWOD S mmwu"&E

il

13][22 PaIST & S© JabRUEl [BRUSPSID) 5592

JETER

5932|dWs], SARRSIUWPY
SBURIBS SMopUIA,
sBumes suemyyos L7

&

uoljenbyuod 4asf nmw =

.

saqe|dwa SARRASIUIWPY

SO0 paseq-Adyod

aeyndwion 12307 UD saod AYN3IBS d1 ‘Ww)
od OIS B1emiyog [

@

suondo Aynzes B

ltHitiss sHI0N sy

$apIj0d JUNo3DY mu o]

sBuag AYindss @ =]
{umopinys dniieis) siduas
sbupyag swopuisy £
sbumas semyjos I

AQ)p3 ANjod dnoaa jeaey f

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2011/054839

A. CLASSIFICATION OF SUBJECT MATTER

ADD.

INV. HO4L29/08 GO6F21/20 HO4L29/06 GO6F9/455

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

HO4L GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

13 February 2003 (2003-02-13)
Y the whole document

[AU] ET AL) 25 September 2003
the whole document

X US 2003/033367 Al (ITOH TAKASHI [JP]) 1,2,

11-13
3-7,14,
15

Y US 2003/182400 Al (KARAGOUNIS VASILIOS 3-7

(2003-09-25)

_/__

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

20 April 2012

Date of mailing of the international search report

09/05/2012

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Maenpaa, Jari

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2011/054839

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

ANONYMOUS: "FastCGI: A High-Performance
Web Server Interface",

INTERNET CITATION,

4 November 1996 (1996-11-04), XP002251119,
Retrieved from the Internet:
URL:http://web.archive.org/19961104125755/
http://www.fastcgi.com/applibs/
1.5/fcgi-devel-kit.tar.Z

[retrieved on 2003-08-12]

the whole document

BARHAM: "XEN and the art of
Virtualization",

ACM, 2 PENN PLAZA, SUITE 701 - NEW YORK
USA,

October 2003 (2003-10), XP040168475,

the whole document

US 2006/089967 Al (GUTMANS ANDI [IL] ET
AL) 27 April 2006 (2006-04-27)

the whole document

US 7 461 144 B1 (BELOUSSOV SERGUEI M [SG]
ET AL) 2 December 2008 (2008-12-02)

the whole document

US 7 577 722 B1 (KHANDEKAR DILIP [US] ET
AL) 18 August 2009 (2009-08-18)

the whole document

US 2009/288084 Al (ASTETE NICHOLAS LUIS
[US] ET AL) 19 November 2009 (2009-11-19)
paragraphs [0062], [0113], [0118];
figure 17

1-3

1-3

4-7

4-7

14,15

1,14,15

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

International application No.
INTERNATIONAL SEARCH REPORT PCT/EP2011/054833
Box No.ll Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. I:' Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

2. I:' Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such
an extent that no meaningful international search can be carried out, specifically:

3. |:| Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. lll Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see additional sheet

-

As all required additional search fees were timely paid by the applicant, this international search report covers all searchable
claims.

2. I:' As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of
additional fees.

3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers
only those claims for which fees were paid, specifically claims Nos.:

1-7, 11-15

4. |:| No required additional search fees were timely paid by the applicant. Consequently, this international search report is
restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest The additional search fees were accompanied by the applicant's protest and, where applicable, the
payment of a protest fee.

The additional search fees were accompanied by the applicant's protest but the applicable protest
fee was not paid within the time limit specified in the invitation.

I:' No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (April 2005)

International Application No. PCT/ EP2011/ 054839

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of)
inventions in this international application, as follows:

1. claims: 1-7(completely); 11-13(partially)

A client of a plurality of clients has an URL based affinity
to a one of a plurality of service processes with wich it
can perform direct interaction over WAN as specified in
claim 3. Respective technical problem solved is to implement
efficient one-to-one session communication among a plurality
of clients and service processes.

2. claims: 1, 8, 9(completely); 11-13(partially)

Starting new service processes or virtual machines as
needed. Respective technical problem solved is to implement
a guaranteed service availability.

3. claims: 1, 10(completely); 11-13(partially)

Server (LiSA) providing portal session IDs. Respective
technical problem solved is to achieve centrally managed
authentication to a portal.

4. claims: 1, 14, 15

Method of transforming a virtual machine. Respective
technical problem solved is to facilitate deployment of
virtual machines.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2011/054839
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2003033367 Al 13-02-2003 JP 3807961 B2 09-08-2006
JP 2003058498 A 28-02-2003
US 2003033367 Al 13-02-2003
US 2003182400 Al 25-09-2003 NONE
US 2006089967 Al 27-04-2006 NONE
US 7461144 Bl 02-12-2008 NONE
US 7577722 Bl 18-08-2009 US 7577722 Bl 18-08-2009
US 2009282404 Al 12-11-2009
US 2009288084 Al 19-11-2009 US 2009288084 Al 19-11-2009
US 2009327471 Al 31-12-2009
US 2010138830 Al 03-06-2010
US 2012096158 Al 19-04-2012

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - claims
	Page 56 - claims
	Page 57 - claims
	Page 58 - claims
	Page 59 - claims
	Page 60 - claims
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - wo-search-report
	Page 73 - wo-search-report
	Page 74 - wo-search-report
	Page 75 - wo-search-report
	Page 76 - wo-search-report

