US009921927B2

a2 United States Patent
Yoshihashi et al.

US 9,921,927 B2
Mar. 20, 2018

(10) Patent No.:
45) Date of Patent:

(54) REDUNDANT SYSTEM, REDUNDANCY

METHOD, AND COMPUTER-READABLE

RECORDING MEDIUM

(71) Applicant: FUJITSU LIMITED, Kawasaki-shi,
Kanagawa (JP)

(72) Inventors: Yasuki Yoshihashi, Kobe (JP);

Tomoaki Mizoo, Kobe (JP); Toshirou

Ono, Nishinomiya (JP)
(73)

")

Assignee: Fujitsu Limited, Kawasaki (JP)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 99 days.

@
(22)

Appl. No.: 14/721,059

Filed: May 26, 2015

(65) Prior Publication Data

US 2015/0370662 Al Dec. 24, 2015

(30) Foreign Application Priority Data

Jun. 20, 2014 (IP) woooooeceeeeeeeeeeeeens 2014-127731
(51) Int. CL

GOGF 11/00

GOGF 1120
U.S. CL

CPC ... GOGF 11/2028 (2013.01); GOGF 11/2041

(2013.01); GOGF 11/2048 (2013.01); GO6F

11/2097 (2013.01); GO6F 2201/80 (2013.01);

GOGF 2201/82 (2013.01); GOGF 2201/84

(2013.01)

(2006.01)
(2006.01)
(52)

(58) Field of Classification Search
CPCcccue. GO6F 11/2056; GO6F 11/2058; GOGF
11/2094; GO6F 11/2082

See application file for complete search history.

N

(56) References Cited
U.S. PATENT DOCUMENTS
7,739,540 B2 6/2010 Akutsu et al.
7,802,131 B2* 9/2010 Watanabe GOGF 11/2069
714/6.11
7,925,914 B2 4/2011 Akutsu et al.
(Continued)
FOREIGN PATENT DOCUMENTS
Jp 6-95905 A 4/1994
Jp 2005-267216 A 9/2005
(Continued)

OTHER PUBLICATIONS

Japanese Office Action dated Oct. 3, 2017 for corresponding Japa-
nese Patent Application No. 2014-12773 1, with English Translation,
6 pages.

Primary Examiner — Philip Guyton
(74) Attorney, Agent, or Firm — Fujitsu Patent Center

(57) ABSTRACT

A primary system includes a first node and a second node
that backs up the first node. A secondary system includes a
third node and a fourth node that backs up the third node.
The first node transmits data update information generated
in response to a data update in the first node, to the second
node and the third node. The fourth node determines a
degree of progress in transactions indicated by data update
information obtained through the second node and a degree
of progress in transactions indicated by data update infor-
mation obtained through the third node, identifies data
update information indicating a further progressed transac-
tion, and reflects the data update information in stored data
of the fourth node.

5 Claims, 17 Drawing Sheets

101

PRIMARY MASTER
NODE

12~ D

PRIMARY CENTER

20'\

PRIMARY MIRROR NODE

ACTIVE DB

N
STANDBY
DB

AN

501
SECONDARY MASTER
NODE

SECONDARY CENTER

60 Y
SECONDARY MIRROR
NODE

52
STANDBY
DB

o2
STANDBY
DB

US 9,921,927 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS
8,281,179 B2 10/2012 Akutsu et al.
8,312,236 B2* 11/2012 Benhase GOGF 11/2058
711/162
2004/0250034 Al* 12/2004 Yagawa GOGF 11/2058
711/162
2004/0260736 Al* 12/2004 Kern GOGF 11/2058
2005/0210078 Al 9/2005 Maruyama et al.
2006/0010300 Al 1/2006 Arakawa et al.
2010/0036896 Al* 2/2010 Nakagawa GOGF 11/1456
707/E17.009
2010/0121823 Al 5/2010 Shiozawa et al.
2011/0251993 A1* 10/2011 Kondo GOGF 11/1456
707/613
2016/0004616 Al* 1/2016 Naritacccceeeeeee. GO6F 12/00
714/6.3
FOREIGN PATENT DOCUMENTS
Jp 2006-23889 1/2006
Jp 2008-134986 6/2008
Jp 2008-242715 10/2008
Jp 2010-113617 A 5/2010
Jp 2013-206072 10/2013

* cited by examiner

U.S. Patent Mar. 20, 2018 Sheet 1 of 17 US 9,921,927 B2

[
PRIMARY CENTER
TD\ 20 1
PRIMARY MASTER PRIMARY MIRROR NODE
NODE
st
12~
STANDBY
ACTIVE DB N
i
SECONDARY CENTER
50’\ 601
SECONDARY MASTER SECONDARY MIRROR
NODE NODE
s~ D o2~ LD
STANDBY STANDBY
DB DB

U.S. Patent Mar. 20, 2018 Sheet 2 of 17 US 9,921,927 B2

s 10 r20
PRIMARY MASTER NODE PRIMARY MIRROR NODE
r 13 f‘l 1 r 21 r23
CONTROL UNIT CONTROL UNIT
c14 = =
DB UPDATING 5 5 22
UNIT ot ot RECEIVING
2 g UNIT
15 = =
= =
INTRA-CENTER 8 8 25
NOTIFYING UNIT > >
5 5 DB UPDATING
16 = E UNIT
INSERTING S S ”
UNIT % % T
s = CENTER-TO-
{17 g s CENTER
CENTER-TO- O o) NOTIFYING
CENTER o O UNIT
NOTIFYING UNIT
22
B) E

U.S. Patent

Mar. 20, 2018

FIG.3

Sheet 3 of 17

US 9,921,927 B2

VARIABLE- | VARIABLE
HEADER | USERLQG | LENGTH | LENGTH | eBSiEY
PART PART 2
CONTROL LOG COMMIT
HEADER DISPLAY SPECIFICATION
CONTROL LOG RP
HEADER DISPLAY INFORMATION
UPDATE LOG 1 UPDATE
LOG 2 RECOVERY

POINT LOG 1

U.S. Patent

52

Mar. 20, 2018 Sheet 4 of 17 US 9,921,927 B2
fSO rGO
SECONDARY MASTER NODE SECONDARY MIRROR NODE
53 31 61 64
CONTROL UNIT CONTROL UNIT
= - 65
o z z INTRA CEN‘YI'ER
RECEIVING i - RECEIVING UNIT
UNIT o) e} 63
E11](E ¢
g CENTER-TO-
55 0 8 CENTER BUFFER
5B UPDATING z z | | [RECEWING UNIT L
UNIT = = 67
S S IDENTIFYING
[56 z z UNIT
INTRA- g_ g
CENTER = = (68
UNIT © © UNIT

62

US 9,921,927 B2

Sheet 5 of 17

Mar. 20, 2018

U.S. Patent

h

<

wn @n ¢ n ey (¥ N ©n (ARS (2 n (n (y
m, i ;m, JAON HILSVYIN AMYANODIS NOHAH omzmomm;m
w w
P SSINOOMd | : !
b HdosIIYoIaq m m
: NIIMLIG : ; “
| 3ONIYIAIG | m |
& ,“‘ 4.- 4.
¢ n £y ¥ n en () ¥ @n (n (1Y
JAON HONHMIN AMYNIND WONH aIAIFD3IY

U.S. Patent Mar. 20, 2018 Sheet 6 of 17 US 9,921,927 B2

HAS DB UPDATE
OCCURRED?

5102
UPDATE DB

EXTRACT DIFFERENCE

TRANSMIT UPDATE LOG TO PRIMARY
MIRROR NODE

CHECKPOINT LOG
CREATION TIMING?

CREATE RECOVERY POINT LOG

TRANSMIT RECOVERY POINT LOG TO S107
PRIMARY MIRROR NODE

U.S. Patent Mar. 20, 2018 Sheet 7 of 17 US 9,921,927 B2

FIG.10

(START ,

HAS DB UPDATE
OCCURRED?

5202
UPDATE DB
EXTRACT AND ACCUMULATE 5203
DIFFERENCE

CHECKPOINT
CREATION TIMING?

CREATE AND ACCUMULATE RECOVERY 5205
POINT LOG
A S206
NOTIFICATION
TIMING TO SECONDARY
MASTER NODE?
$207

CREATE FILE

TRANSMIT UPDATE FILE TO SECONDARY 5208
MASTER NODE

U.S. Patent Mar. 20, 2018 Sheet 8 of 17 US 9,921,927 B2

IS INFORMATION
RECEIVED FROM PRIMARY
MASTER NODE?

UPDATE LOG?

JYES 5303
UPDATE DB I

) 5304
ACCUMULATE UPDATE LOG I

{ f8305
ACCUMULATE RECOVERY POINT I

LOG

A 4 l

U.S. Patent Mar. 20, 2018 Sheet 9 of 17 US 9,921,927 B2

NOTIFICATION TIMING?

READ ACCUMULATED UPDATE LOGS AND 5402

RECOVERY POINT LOGS

REARRANGE READ LOGS IN ORDER OF 5403

CREATION TO CREATE UPDATE FILE

TRANSMIT UPDATE FILE TO SECONDARY J 5404

MIRROR NODE IN SECONDARY CENTER
BY COMMUNICATION BETWEEN SYSTEMS

U.S. Patent Mar. 20, 2018 Sheet 10 of 17 US 9,921,927 B2

FIG.13

(START '

IS UPDATE FILE RECEIVED?

VYES (S502

EXTRACT LOGS FROM UPDATE FILE I
» S503

. [

SEQUENTIALLY REFLECT OBTAINED UPDATE
LOGS IN DB IN CHRONOLOGICAL ORDER

HAS REFLECTION
OF ALL UPDATE LOGS BEEN
COMPLETED?

NO

» YES 5‘8505

Y

SEQUENTIALLY TRANSMIT OBTAINED UPDATE
LOGS AND RECOVERY POINT LOGS IN
CHRONOLOGICAL ORDER TO SECONDARY
MIRROR NODE

HAS TRANSMISSION OF
ALL LOGS BEEN COMPLETED?

U.S. Patent Mar. 20, 2018 Sheet 11 of 17 US 9,921,927 B2

IS UPDATE LOG
OR RECOVERY POINT LOG
RECEIVED?

s S602

ACCUMULATE UPDATE LOG OR
RECOQVERY POINT LOG IN ORDER OF
RECEPTION

4 S603

IS UPDATE FILE
RECEIVED?

VYES f3604

EXTRACT LOGS FROM UPDATE FILE I

v fSBOS

ACCUMULATE OBTAINED UPDATE
LOGS AND RECOVERY POINT LOGS
IN CHRONOLOGICAL ORDER

REFLECTION TIMING?

\ 4

s S607

IDENTIFY UPDATE LOGS WHOSE DEGREE
OF PROGRESS IN TRANSACTIONS HAS
PROGRESSED FURTHER FROM AMONG

UPDATE LOGS RECEIVED THROUGH TWO

ROUTES

s 5608

REFLECT IDENTIFIED UPDATE LOGS IN DBI

U.S. Patent Mar. 20, 2018 Sheet 12 of 17

US 9,921,927 B2

IS UPDATE LOG
OR RECOVERY POINT LOG
RECEIVED?

\ 4

YES f8702

ACCUMULATE UPDATE LOG OR RECOVERY
POINT LOG IN ORDER OF RECEPTION

IS UPDATE FILE RECEIVED?

YES

{ S704

EXTRACT LOGS FROM UPDATE FILE

s S§705

A

ACCUMULATE OBTAINED UPDATE LOGS
AND RECOVERY POINT LOGS N
CHRONOLOGICAL ORDER

REFLECTION TIMING?

DO RECOVERY
POINT LOGS HAVE SAME SERIAL
NUMBER?

4

Y

S‘S?'H)

IDENTIFY NEWER UPDATE LOGS

(8711

IDENTIFY UPDATE LOGS WHOSE DEGREE OF
PROGRESS IN TRANSACTIONS HAS
PROGRESSED FURTHER FROM AMONG
UPDATE LOGS RECEIVED THROUGH TWO
ROUTES

REFLECT IDENTIFIED UPDATE LOGS IN DB I

REFLECT lDEN'l;;\I;iSBD UPDATE LOGS I

U.S. Patent

Mar. 20, 2018

Sheet 13 of 17

(Y
PRIMARY CENTER
10 1 20 1
PRIMARY %_TPPED PRIMARY
MASTER NODE MIRROR NODE
<> 2D
12 P e »
STANDBY
ACTIVE DB DB
; 57 i
§ SECONDARY CENTER |
50 : 60 H
1y At ¥
SECONDARY SECONDARY
MASTER NODE MIRROR NODE
N > T S —— o 6o D
STANDBY STANDBY
DB DB

US 9,921,927 B2

U.S. Patent

Mar. 20, 2018

FIG.17

M

Sheet 14 of 17

US 9,921,927 B2

10‘\

PRIMARY

nall»>

STOPPED
MASTER NODE

PRIMARY CENTER

20'\

PRIMARY

MOTED
MIRROR NODEi\’V\

At

STANDBY
ACTIVE DB S
51 %
SECONDARY CENTER §
%0 60 v PRO-
SECONDARY 251\/10750 SECONDARYQ\WEAT ED

MASTER NODE

5o~

STANDBY
DB

MIRROR NODE

62-

STANDBY
DB

U.S. Patent Mar. 20, 2018 Sheet 15 of 17 US 9,921,927 B2

RECEIVED
FROM SECONDARY
MASTER NODE?

YES UPDATE LOG?
A 4 NO
REFLECT UPDATE |~ S803
LOG IN DB
’ l J (S804
A ACCUMULATE RECOVERY POINT I
LOG
A 2

IS UPDATE FILE
RECEIVED FROM PRIMARY
MIRROR NODE?

NO

VYES j—SSOS

EXTRACT LOGS FROM UPDATE FILE I

¥ fSSO?
ACCUMULATE UPDATE LOGS AND |

RECOVERY POINT LOGS IN
CHRONOLOGICAL ORDER

A 4

COMPARE DEGREES OF PROGRESS
IN TRANSACTIONS

UPDATE LOGS
FROM SECONDARY MASTER
NODE PROGRESSED
FURTHER?

VYES fSS?G

DELETE UPDATE LOGS AND
RECOVERY POINT LOGS RECEIVED
FROM PRIMARY MIRROR NODE

U.S. Patent Mar. 20, 2018 Sheet 16 of 17 US 9,921,927 B2

{ START) F|G19

NO

A

HAS SYSTEM SWITCHING
OCCURRED?

5902

EXTRACT RECOVERY POINT LOG
TRANSMITTED FROM SECONDARY
MASTER NODE

/5903
EXTRACT RECOVERY POINT LOG l

TRANSMITTED FROM PRIMARY MIRROR
NODE

DO RECOVERY
POINT LOGS HAVE SAME
SERIAL NUMBER?

YES

v /5905

IDENTIFY UPDATE LOGS NO
WHOSE DEGREE OF
PROGRESS IN TRANSACTIONS
HAS PROGRESSED FURTHER
FROM AMONG RECEIVED
UPDATE LOGS

v 5906

REFLECT IDENTIFIED UPDATE
LOGS IN DB 4

IS RECOVERY
POINT LOG FROM
SECONDARY MASTER NODE
LATEST ONE?
~S909

YES REFLECT UPDATE LOGS
RECEIVED FROM PRIMARY
MIRROR NODE AND
ACCUMULATED

ALL ACCUMULATED
UPDATE LOGS
REFLECTED?

v [3908
DELETE UPDATE LOGS AND RECOVERY I

POINT LOGS RECEIVED FROM PRIMARY
MIRROR NODE

»le

it

PERFORM SYSTEM SWITCHING r st

U.S. Patent Mar. 20, 2018

FIG.20

Sheet 17 of 17 US 9,921,927 B2

IWO

PRIMARY MASTER NODE

IWOC

MEMORY

COMMUNICATION
INTERFACE

IﬂDa

HDD

US 9,921,927 B2

1

REDUNDANT SYSTEM, REDUNDANCY
METHOD, AND COMPUTER-READABLE
RECORDING MEDIUM

CROSS-REFERENCE TO RELATED
APPLICATION

This application is based upon and claims the benefit of
priority of the prior Japanese Patent Application No. 2014-
127731, filed on Jun. 20, 2014, the entire contents of which
are incorporated herein by reference.

FIELD

The embodiments discussed herein are related to a redun-
dant system, a redundancy method, and a redundancy pro-
gram.

BACKGROUND

It is common that various types of nodes such as a web
server, an application server, and a DB (DataBase) server are
installed in a data center and each node is made redundant
for disasters and failures.

For example, there is known a redundancy technique in
which, for a node in a data center, a node in a primary system
and a node in a secondary system are prepared, and when the
node in the primary system has broken down, the node in the
secondary system takes over the processes of the broken-
down node in the primary system to continue the processes,
instead of the broken-down node in the primary system.

In addition, there is known a technique in which a data
center in a secondary system for a backup to a data center in
aprimary system is provided, and when the data center in the
primary system has experienced a disaster, the data center in
the secondary system for a backup takes over processes, by
which processes performed by the data center in the primary
system continue.

[Patent Document 1] Japanese Laid-open Patent Publication

No. 2008-134986

However, when a node that transfers logs from the data
center in the primary system to the data center in the
secondary system has broken down, logs are not transferred
to the data center in the secondary system until the node
recovers. When the data center in the primary system has
experienced a disaster during a period before the broken-
down node recovers, data lost occurs.

To inhibit data lost upon the occurrence of both of a
breakdown in the node and a data center’s experience of a
disaster, it is considered to provide a plurality of paths
through which logs are transferred between the data centers.
However, in that case, a node that receives logs through two
paths is present in the data center in the secondary system.
In this case, unless the node that receives logs through the
two paths appropriately selects which one of the logs
through the two paths is to be reflected, an increase in the
amount of data lost is caused.

SUMMARY

According to an aspect of the embodiments, a redundant
system includes a primary system including a first node and
a second node that backs up the first node; and a secondary
system including a third node and a fourth node that backs
up the third node. The first node in the primary system
includes: a processor that executes a first process including
transmitting data update information to the second node and

20

25

40

45

60

2

the third node, the data update information being generated
in response to a data update in the first node, and the fourth
node in the secondary system includes: a processor that
executes a second process including: determining a degree
of progress in transactions indicated by the data update
information obtained through the second node and a degree
of progress in transactions indicated by the data update
information obtained through the third node, specifying data
update information indicating a further progressed transac-
tion, and reflecting the specified data update information to
stored data of the fourth node.

The object and advantages of the invention will be
realized and attained by means of the elements and combi-
nations particularly pointed out in the claims.

It is to be understood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory and are not restrictive of the inven-
tion.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a diagram illustrating an exemplary overall
configuration of a redundant system according to a first
embodiment;

FIG. 2 is a functional block diagram illustrating the
functional configurations of nodes in a primary center;

FIG. 3 is a diagram illustrating an example of a user log;

FIG. 4 is a diagram illustrating an example of a control
log;

FIG. 5 is a diagram illustrating an example of a recovery
point log;

FIG. 6 is a diagram illustrating an example of an update
file transmitted by communication between systems;

FIG. 7 is a functional block diagram illustrating the
functional configurations of nodes in a secondary center;

FIG. 8 is a diagram describing an example of a compari-
son between the degrees of progress in transactions made by
a secondary mirror node;

FIG. 9 is a flowchart illustrating the flow of a notification
process from a primary master node to a primary mirror
node;

FIG. 10 is a flowchart illustrating the flow of a notification
process from the primary master node to a secondary master
node;

FIG. 11 is a flowchart illustrating the flow of an update
process performed by the primary mirror node;

FIG. 12 is a flowchart illustrating the flow of a notification
process performed by the primary mirror node;

FIG. 13 is a flowchart illustrating the flow of update and
notification processes performed by a secondary master
node;

FIG. 14 is a flowchart illustrating the flow of an update
process performed by the secondary mirror node;

FIG. 15 is a flowchart illustrating the flow of an update
process performed by a secondary mirror node according to
a second embodiment;

FIG. 16 is a diagram describing an example of the
occurrence of a failure in a redundant system according to a
third embodiment;

FIG. 17 is a diagram describing an example of system
switching of the redundant system according to the third
embodiment;

FIG. 18 is a flowchart illustrating the flow of an update
process performed by a secondary mirror node according to
the third embodiment;

US 9,921,927 B2

3

FIG. 19 is a flowchart illustrating the flow of a system
switching process performed by the secondary mirror node
according to the third embodiment; and

FIG. 20 is a diagram describing an exemplary hardware
configuration.

DESCRIPTION OF EMBODIMENTS

Preferred embodiments will be explained with reference
to accompanying drawings. Note that the invention is not
limited by the embodiments.

[a] First Embodiment
Exemplary Overall Configuration

FIG. 1 is a diagram illustrating an exemplary overall
configuration of a redundant system according to a first
embodiment. As illustrated in FIG. 1, the system is a
redundant system in which a data center is mirrored by
performing a DB quad-redundancy function, ie., a DB
quadruplication function, and includes a primary center 1
and a secondary center 5 which are data centers.

The primary center 1 is a data center including a primary
master node 10 and a primary mirror node 20, and has a
redundant configuration for performing DB mirroring. Like-
wise, the secondary center 5 is a data center including a
secondary master node 50 and a secondary mirror node 60,
and has a redundant configuration for performing DB mir-
roring. The secondary center 5 functions as a backup to the
primary center 1. Note that each node is an example of a DB
server, a storage system, etc.

The primary master node 10 is an example of a first node
having an active DB 12 to which updates by business
operations are made, and is activated as a primary node at
normal operation. When the primary master node 10 updates
the active DB 12 by a business operation application, etc.,
the primary master node 10 extracts update information
indicating, for example, differences between before and after
the update. For example, the primary master node 10 trans-
mits an update log indicating an updated content, to the
primary mirror node 20 in synchronization with the update
to the active DB 12. In addition, the primary master node 10
creates an update file including a plurality of update logs,
and transmits the update file to the secondary master node 50
at predetermined intervals.

The primary mirror node 20 is an example of a second
node having a standby DB 22 which is updated in synchro-
nization with the active DB 12, and functions as a backup to
the primary master node 10 at normal operation. When the
primary mirror node 20 receives an update log as update
information from the primary master node 10, the primary
mirror node 20 updates the standby DB 22 using the
received update log. Thereafter, the primary mirror node 20
creates an update file including update logs received from
the primary master node 10, and transmits the update file to
the secondary mirror node 60 at predetermined intervals.

The secondary master node 50 is an example of a third
node having a standby DB 52 that stores information equiva-
lent to the active DB 12. At normal operation, the secondary
master node 50 functions as a master node in a secondary
system, as primary center 1’s measures against disasters, etc.
When the secondary master node 50 receives an update file
as update information from the primary master node 10, the
secondary master node 50 extracts update logs from the
received update file and updates the standby DB 52 using the
extracted update logs. Thereafter, the secondary master node

10

15

20

25

30

35

40

45

50

55

60

65

4

50 creates an update file including the plurality of update
logs received from the primary master node 10, and trans-
mits the update file to the secondary mirror node 60 at
predetermined intervals.

The secondary mirror node 60 is an example of a fourth
node having a standby DB 62 that stores information equiva-
lent to the active DB 12. At normal operation, the secondary
mirror node 60 functions as a mirror node in the secondary
system, as primary center 1’s measures against disasters, etc.
The secondary mirror node 60 receives an update file as
update information from the primary mirror node 20 and
receives an update log from the secondary master node 50.
Then, the secondary mirror node 60 updates the standby DB
62 using either one of the pieces of received update infor-
mation.

In such a state, the primary master node 10 in a primary
system transmits data update information which is generated
in response to a data update in the primary master node 10,
to the primary mirror node 20 and the secondary master node
50.

Then, the secondary mirror node 60 in the secondary
center 5 determines the degree of progress in transactions
indicated by data update information which is obtained
through the primary mirror node 20, and the degree of
progress in transactions indicated by data update informa-
tion which is obtained through the secondary master node
50. Thereafter, the secondary mirror node 60 identifies data
update information indicating further progressed transac-
tions, and reflects the data update information in stored data
of the secondary mirror node 60.

Specifically, the secondary mirror node 60 which config-
ures a quad-redundant DB receives update information
transmitted from the primary master node 10, through two
routes from the primary mirror node 20 and the secondary
master node 50, and identifies and reflects update informa-
tion indicating transactions whose processes have pro-
gressed further. Therefore, the secondary mirror node 60 can
suppress data lost in reflection of update information.

Functional Configurations of the Nodes

Next, the functional configurations of the nodes illustrated
in FIG. 1 will be described. Although here, as an example,
functional configurations in the state of FIG. 1 will be
described, the functional configurations are not limited
thereto, and the nodes can also have the same functional
configuration.

Functional Configuration of the Primary Center

FIG. 2 is a functional block diagram illustrating the
functional configurations of the nodes in the primary center.
Here, the primary master node 10 and the primary mirror
node 20 included in the primary center 1 will be described.

Functional Configuration of the Primary Master Node

As illustrated in FIG. 2, the primary master node 10
includes a communication control unit 11, a DB 12, and a
control unit 13.

The communication control unit 11 is a processor that
controls communication with the primary mirror node 20
and with the secondary master node 50, and is a network
interface, for example. For example, the communication
control unit 11 transmits update information of the DB 12 to
the primary mirror node 20 and the secondary master node
50.

The DB 12 is a database that stores business operation
information, etc., and corresponds to the active DB 12
illustrated in FIG. 1. Updates by business operations are
made to the DB 12. The DB 12 is provided in a storage
apparatus, e.g., a hard disk. The DB 12 corresponds to the
active DB 12.

US 9,921,927 B2

5

The control unit 13 is a processor that controls the whole
process of the primary master node 10, and is an example of
a processor, for example. The control unit 13 performs the
function of implementing a DB redundant system between
the primary master node 10 and the primary mirror node 20,
and performs the function of implementing a DB redundant
system between the primary master node 10 and the sec-
ondary master node 50. Namely, the control unit 13 executes
an application that implements a DB dual-redundancy func-
tion in the primary center 1, and an application that imple-
ments DB quad-redundancy function across the centers.

The control unit 13 includes a DB updating unit 14, an
intra-center notifying unit 15, an inserting unit 16, and a
center-to-center notifying unit 17. These processors are an
example of processes performed by an electronic circuit
included in the processor or by the processor.

The DB updating unit 14 is a processor that updates the
DB 12. For example, the DB updating unit 14 updates stored
data in the DB 12 along with execution of an application, for
example.

The intra-center notifying unit 15 is a processor that
transmits update information of the DB 12 to the primary
mirror node 20 in the same system, in synchronization with
an update to the DB 12. Specifically, when the DB 12 is
updated, the intra-center notifying unit 15 extracts a differ-
ence from information obtained before and after the update.
Then, the intra-center notifying unit 15 transmits an update
log indicating differential information, as update informa-
tion to the primary mirror node 20.

Now, an example of an update log will be described. FIG.
3 is a diagram illustrating an example of a user log. FIG. 4
is a diagram illustrating an example of a control log. As
illustrated in FIG. 3, the user log which is an example of an
update log is a log indicating DB update information and
consists of “a header, a user log display, a variable-length
part, a variable-length part 2, and BC key information”.

In the “header”, information indicating an update log, a
creation date and time, etc., are set. In the “user log display”,
information indicating that it is a user log is set. The
“variable-length part” and the “variable-length part 2” are
information indicating a DB update content, e.g., a specific
record position, data before and after the update, and dif-
ferential information. In the “BC key information”, infor-
mation about DB dual-redundancy between the primary
master node 10 and the primary mirror node 20 is set. For
example, checksum information or the serial number of the
log is set.

As illustrated in FIG. 4, the control log which is an
example of an update log is a log indicating a DB control
process, e.g., a rollback process, and consists of “a header,
a control log display, and COMMIT specification”. In the
“header”, information indicating an update log, a creation
date and time, etc., are set. In the “control log display”,
information indicating that it is a control log is set. In the
“COMMIT specification”, information indicating a specific
control process, e.g., transaction information, is set.

As described above, when the DB 12 is updated, the
intra-center notifying unit 15 creates an update log, such as
the above-described user log or control log, according to
updated information. Then, the intra-center notifying unit 15
transmits the created update log to the primary mirror node
20. In addition, the intra-center notifying unit 15 notifies the
center-to-center notifying unit 17 of the created update log.
Namely, the intra-center notifying unit 15 notifies of DB
update information in synchronization with the update to the
DB 12, within the same center.

15

20

25

30

40

45

55

6

The inserting unit 16 is a processor that inserts, when
update information generated in response to a DB data
update in the primary master node 10 is transmitted to the
primary mirror node 20 and the secondary master node 50,
one or a plurality of pieces of delimiter information indi-
cating a boundary between update processing units, into
both of transmit data.

Specifically, the inserting unit 16 periodically generates a
checkpoint which is common determination information
between the nodes and which determines an update log
arrival status. Then, the inserting unit 16 transmits the
checkpoints generated periodically to the primary mirror
node 20 and notifies the center-to-center notifying unit 17 of
the checkpoints. Note that, for the checkpoint as used herein,
a recovery point log which is an example of an update log
is used. Note also that, as an example of “periodically”, for
example, five seconds can be set, but the time interval for
generating checkpoints may be changed as appropriate.

FIG. 5 is a diagram illustrating an example of a recovery
point log. As illustrated in FIG. 5, the recovery point log is
a log indicating a checkpoint that determines an update log
arrival status, and consists of “a header, a control log display,
and RP information”. In the “header”, information indicat-
ing an update log, a creation date and time, etc., are set. In
the “control log display”, information indicating that it is a
recovery point log is set. The “RP information” is informa-
tion identifying a recovery point and includes an “identifier”
and a “serial number”. The “identifier” is information iden-
tifying that it is checkpoint information of the DB quad-
redundancy function. The “serial number” is a 23-byte fixed
positive number and is a unique serial number in the DB
quad-redundant system. For example, a larger number indi-
cates a newer log.

The center-to-center notifying unit 17 is a processor that
puts together pieces of update information of the DB 12 and
periodically transmits the update information to the second-
ary master node 50 in a different system. Specifically, the
center-to-center notifying unit 17 creates an update file in
which update logs obtained from the intra-center notifying
unit 15 and recovery point logs obtained from the inserting
unit 16 are put together in chronological order, at 10-second
intervals, for example, and transmits the update file to the
secondary master node 50. Namely, between different cen-
ters, the center-to-center notifying unit 17 generates update
information in which DB update information and check-
points are periodically put together, and notifies of the
update information asynchronously with an update to the
DB 12.

FIG. 6 is a diagram illustrating an example of an update
file transmitted by communication between the systems. As
illustrated in FIG. 6, the update file consists of update logs
and a recovery point log. In the example of FIG. 6, the
update file includes an update log 1, an update log 2, a
recovery point log 1, etc., and indicates that the logs are
created in this order. Note that the update log 1 and the
update log 2 correspond to the above-described user log or
control log, and the recovery point log 1 corresponds to the
above-described recovery point log.

Functional Configuration of the Primary Mirror Node

As illustrated in FIG. 2, the primary mirror node 20
includes a communication control unit 21, a DB 22, and a
control unit 23.

The communication control unit 21 is a processor that
controls communication with the primary master node 10
and with the secondary mirror node 60, and is a network
interface, for example. For example, the communication
control unit 21 receives DB update information from the

US 9,921,927 B2

7

primary master node 10 and transmits the DB update infor-
mation to the secondary mirror node 60.

The DB 22 is a database that stores, for example, the same
business operation information as that in the DB 12 of the
primary master node 10, and corresponds to the standby DB
22 illustrated in FIG. 1. The DB 22 is updated in synchro-
nization with the DB 12. Note that the DB 22 is provided in
a storage apparatus, e.g., a hard disk. The DB 22 corresponds
to the standby DB 22.

The control unit 23 is a processor that controls the whole
process of the primary mirror node 20, and is an example of
a processor, for example. The control unit 23 performs the
function of implementing a DB redundant system between
the primary master node 10 and the primary mirror node 20,
and performs the function of implementing a DB redundant
system between the primary mirror node 20 and the sec-
ondary mirror node 60. Namely, the control unit 23 executes
an application that implements a DB dual-redundancy func-
tion in the primary center 1, and an application that imple-
ments DB quad-redundancy function across the centers.

The control unit 23 includes a receiving unit 24, a DB
updating unit 25, and a center-to-center notifying unit 26.
These processors are an example of processes performed by
an electronic circuit included in the processor or by the
processor.

The receiving unit 24 is a processor that receives update
information of the DB 12 from the primary master node 10.
Specifically, the receiving unit 24 receives an update log
which is synchronized with an update to the DB 12 of the
primary master node 10, and notifies the DB updating unit
25 and the center-to-center notifying unit 26 of the update
log. In addition, when the receiving unit 24 receives a
recovery point log, the receiving unit 24 notifies the center-
to-center notifying unit 26 of the recovery point log.

The DB updating unit 25 is a processor that updates the
DB 22 using data update information notified from the
primary master node 10. For example, the DB updating unit
25 extracts, for example, a record to be updated and updated
data from a variable-length part, etc., in a received update
log, and updates the DB 22 according to the extracted
information. The DB updating unit 25 updates the DB 22
every time an update log is received. As a result, the DB 22
can be synchronized with the DB 12 of the primary master
node 10 and functions as a mirroring DB.

The center-to-center notifying unit 26 is a processor that
puts together pieces of update information of the DB 22 and
periodically transmits the update information to the second-
ary mirror node 60 in a different system. Specifically, the
center-to-center notifying unit 26 creates an update file in
which update logs and recovery point logs received from the
primary master node 10 are put together in chronological
order, at 10-second intervals, for example, and transmits the
update file to the secondary mirror node 60. For example, the
center-to-center notifying unit 26 creates an update file
illustrated in FIG. 6 and transmits the update file to the
secondary mirror node 60.

Functional Configuration of the Secondary Center

FIG. 7 is a functional block diagram illustrating the
functional configurations of the nodes in the secondary
center. Here, the secondary master node 50 and the second-
ary mirror node 60 included in the secondary center 5 will
be described.

Functional Configuration of the Secondary Master Node

As illustrated in FIG. 7, the secondary master node 50
includes a communication control unit 51, a DB 52, and a
control unit 53.

25

40

45

8

The communication control unit 51 is a processor that
controls communication with the primary master node 10
and with the secondary mirror node 60, and is a network
interface, for example. For example, the communication
control unit 51 receives an update file including various
types of update logs, as update information of the DB 12 of
the primary master node 10, from the primary master node
10. In addition, the communication control unit 51 transmits
the update logs of the DB 12 of the primary master node 10
to the secondary mirror node 60.

The DB 52 is a database that stores business operation
information, etc., and corresponds to the standby DB 52
illustrated in FIG. 1. The DB 52 is updated asynchronously
with an update to the DB 12, using update information
notified from the primary master node 10. Note that the DB
52 is provided in a storage apparatus, e.g., a hard disk.

The control unit 53 is a processor that controls the whole
process of the secondary master node 50, and is an example
of a processor, for example. The control unit 53 executes an
application that implements the entire DB quad-redundant
system across the centers illustrated in FIG. 1, and executes
an application that implements the DB dual-redundancy
function in the secondary center 5. The DB 52 corresponds
to the standby DB 52.

The control unit 53 includes a receiving unit 54, a DB
updating unit 55, and an intra-center notifying unit 56. These
processors are an example of processes performed by an
electronic circuit included in the processor or by the pro-
Ccessor.

The receiving unit 54 is a processor that receives update
information of the DB 12 from the primary master node 10.
Specifically, the receiving unit 54 receives an update file
including update logs at predetermined intervals. Then, the
receiving unit 54 outputs the received update file to the DB
updating unit 55.

The DB updating unit 55 is a processor that updates the
DB 52 according to data update information notified from
the primary master node 10. For example, the DB updating
unit 55 extracts, from an update file received by the receiv-
ing unit 54, various types of logs included in the update file.

Then, the DB updating unit 55 identifies user logs and
control logs among the extracted logs. Thereafter, the DB
updating unit 55 reflects data updates identified by the
respective logs, in the DB 52 in chronological order in which
the logs are created. In addition, when the DB updating unit
55 extracts various types of logs from the update file, the DB
updating unit 55 outputs the extracted logs to the intra-center
notifying unit 56 in chronological order.

For example, assuming that an update file of FIG. 6 is
received, the DB updating unit 55 extracts an update log 1,
an update log 2, and a recovery point log 1 from the update
file. Then, the DB updating unit 55 first reflects a data update
identified by the update log 1 in the DB 52 and then reflects
a data update identified by the update log 2 in the DB 52.
Meanwhile, the DB updating unit 55 outputs the extracted
update log 1, update log 2, and recovery point log 1 to the
intra-center notifying unit 56.

The intra-center notifying unit 56 is a processor that
transmits update information of data reflected in the DB 52
to the secondary mirror node 60. Specifically, the intra-
center notifying unit 56 transmits update logs and recovery
point logs which are received from the primary master node
10, to the secondary mirror node 60 in chronological order
in which the logs are created.

Describing using the above-described example, the intra-
center notifying unit 56 receives an update log 1, an update
log 2, and a recovery point log 1 in turn from the DB

US 9,921,927 B2

9

updating unit 55. Then, the intra-center notifying unit 56 first
transmits the update log 1 to the secondary mirror node 60,
and then transmits the update log 2 to the secondary mirror
node 60 and transmits the last recovery point log 1 to the
secondary mirror node 60.

Functional Configuration of the Secondary Mirror Node

As illustrated in FIG. 7, the secondary mirror node 60
includes a communication control unit 61, a DB 62, a buffer
63, and a control unit 64.

The communication control unit 61 is a processor that
controls communication with the primary mirror node 20
and with the secondary master node 50, and is a network
interface, for example. For example, the communication
control unit 61 receives data update information from both
of the primary mirror node 20 and the secondary master
node 50.

The DB 62 is a database that stores business operation
information, etc., and corresponds to the standby DB 62
illustrated in FIG. 1. The DB 62 is updated asynchronously
with an update to the DB 12 of the primary master node 10,
using update information notified from the primary master
node 10. On the other hand, the DB 62 is updated in
synchronization with an update to the DB 52 of the second-
ary master node 50. Note that the DB 62 is provided in a
storage apparatus, e.g., a hard disk. The DB 62 corresponds
to the standby DB 62.

The buffer 63 is a storage area that temporarily stores
update information received from the primary mirror node
20 by communication between the centers and update infor-
mation received from the secondary master node 50 by
communication within the center. Note that the buffer 63 is
provided in a storage apparatus, e.g., a hard disk or a
memory.

The control unit 64 is a processor that controls the whole
process of the secondary mirror node 60, and is an example
of a processor, for example. The control unit 64 executes an
application that implements the entire DB quad-redundant
system across the centers illustrated in FIG. 1, and executes
an application that implements the DB dual-redundancy
function in the secondary center 5.

The control unit 64 includes an intra-center receiving unit
65, a center-to-center receiving unit 66, an identifying unit
67, and a DB updating unit 68. These processors are an
example of processes performed by an electronic circuit
included in the processor or by the processor.

The intra-center receiving unit 65 is a processor that
receives data update information from the secondary master
node 50. Specifically, the intra-center receiving unit 65
receives update logs and recovery point logs from the
secondary master node 50 and stores the update logs and the
recovery point logs in the buffer 63 in chronological order of
log creation date and time. Describing using the above-
described example, the intra-center receiving unit 65
receives an update log 1, an update log 2, and a recovery
point log 1 in turn from the secondary master node 50 and
stores the update log 1, the update log 2, and the recovery
point log 1 in the buffer 63 in the order of reception.

The center-to-center receiving unit 66 is a processor that
receives data update information from the primary mirror
node 20. Specifically, the center-to-center receiving unit 66
receives an update file including update logs and recovery
point logs, from the primary mirror node 20. Then, the
center-to-center receiving unit 66 extracts various types of
logs from the update file and stores the logs in the buffer 63
in the order of creation date and time.

The identifying unit 67 is a processor that identifies
update information whose transactions have progressed fur-

20

25

30

35

40

45

55

65

10

ther from among update information of the DB 12 obtained
through the secondary master node 50 and update informa-
tion of the DB 12 obtained from the primary mirror node 20.
Specifically, the identifying unit 67 identifies update infor-
mation whose transactions have progressed further, accord-
ing to the number of transactions indicated by update
information later than the last recovery point log included in
the update information.

Now, an example of a determination of the degrees of
progress in transactions will be described. FIG. 8 is a
diagram describing an example of a comparison between the
degrees of progress in transactions made by the secondary
mirror node 60. A “R(number)” illustrated in FIG. 8 indi-
cates a recovery point log, and “(number)” indicates the
order of receiving the recovery point log. Likewise, a
“U(number)” indicates an update log such as a user log or a
control log, and “(number)” indicates the order of receiving
the update log.

In the example of FIG. 8, the identifying unit 67 identifies
that update information is received from the primary mirror
node 20 in order of R(1), U(1), U(2), R(2), U(3), U4), R(3),
and U(5). In addition, the identifying unit 67 identifies that
update information is received from the secondary master
node 50 in order of R(1), U(1), U(2), R(2), U(3), U4), R(3),
U(5), U(6), and U(7), by extracting various types of logs
from an update file.

In this case, the identifying unit 67 determines, for the
update information from the primary mirror node 20, that
there is only one update log “U(5)” later than “R(3)” which
is the last recovery point log in the update information. On
the other hand, the identifying unit 67 determines, for the
update information from the secondary master node 50, that
there are three update logs, “U(5)”, “U(6)”, and “U(7)”, later
than “R(3)” which is the last recovery point log in the update
information.

That is, for the update information from the primary
mirror node 20 and the update information from the sec-
ondary master node 50, the identifying unit 67 identifies
“U(6)” and “U(7)” as differences between the degrees of
progress in transactions. As a result, the identifying unit 67
identifies that the transactions of the update information
from the secondary master node 50 have progressed further,
and thus notifies the DB updating unit 68 of the update
information.

The DB updating unit 68 is a processor that updates the
DB 62 using data update information whose transactions
have progressed further. Specifically, the DB updating unit
68 extracts data update information from update logs noti-
fied from the identifying unit 67 and reflects the data update
information in the DB 62. In the case of the above-described
example, the DB updating unit 68 sequentially reads update
logs received by the intra-center receiving unit 65 from the
buffer 63 in chronological order, and sequentially reflects
data updates identified by the respective logs, in the DB 62.

Flow of Processes

Next, processes performed by each node will be
described. Here, a DB update process and an update infor-
mation notification process which are performed by each
node will be described. Note that although here, as an
example, an example is described in which a checkpoint
(recovery point log) is created after a DB update, the
configuration is not limited thereto. For example, a DB
update process and a checkpoint creation process can be
performed in parallel or can also be performed using dif-
ferent flowcharts.

US 9,921,927 B2

11

Notification Process from the Primary Master Node 10 to
the Primary Mirror Node 20

FIG. 9 is a flowchart illustrating the flow of a notification
process from the primary master node to the primary mirror
node.

As illustrated in FIG. 9, if an update to the DB 12 occurs
(S101: Yes), the DB updating unit 14 of the primary master
node 10 updates the DB 12 (S102). Subsequently, the
intra-center notifying unit 15 extracts a difference between
before and after the update to the updated DB 12 (S103),
creates an update log, and transmits the update log to the
primary mirror node 20 (S104).

On the other hand, if it is checkpoint creation timing
(8105: Yes), the inserting unit 16 creates a recovery point log
including the serial number of a checkpoint (S106) and
transmits the recovery point log to the primary mirror node
20 (S107). Note that if it is not checkpoint creation timing
(8105: No), processing returns to S101 and the processes at
and after S101 are performed.

Notification Process from the Primary Master Node 10 to
the Secondary Master Node 50

FIG. 10 is a flowchart illustrating the flow of a notification
process from the primary master node to the secondary
master node.

As illustrated in FIG. 10, if an update to the DB 12 occurs
(S201: Yes), the DB updating unit 14 of the primary master
node 10 updates the DB 12 (S202). Thereafter, the center-
to-center notifying unit 17 extracts and accumulates a dif-
ference between before and after the update to the updated
DB 12 (S203).

Meanwhile, if it is checkpoint creation timing (S204:
Yes), the inserting unit 16 creates and accumulates a recov-
ery point log including the serial number of a checkpoint
(8205). Note that if it is not checkpoint creation timing
(S204: No), S205 is not performed but S206 is performed.

Thereafter, if notification timing to the secondary master
node 50 has reached (S206: Yes), the center-to-center noti-
fying unit 17 creates an update file in which accumulated
update logs and recovery point logs are described in the
order of creation (S207). Then, the center-to-center notify-
ing unit 17 transmits the created update file to the secondary
master node 50 (S208). Note that if it is not notification
timing to the secondary master node 50 (S206: No), pro-
cessing returns to S201 and the processes at and after S201
are performed.

Update Process of the Primary Mirror Node 20

FIG. 11 is a flowchart illustrating the flow of an update
process performed by the primary mirror node. As illustrated
in FIG. 11, if the receiving unit 24 of the primary mirror
node 20 receives information from the primary master node
10 (S301: Yes), the receiving unit 24 determines whether the
received information is an update log (S302).

Subsequently, if the received information is an update log
(S302: Yes), the DB updating unit 25 updates the DB 22
according to the received update log (S303) and accumulates
the update log used for the update (S304).

On the other hand, if the received information is not an
update log but is a recovery point log (S302: No), the DB
updating unit 25 accumulates the received recovery point
log in a storage unit or the like (S305).

Notification Process of the Primary Mirror Node 20

FIG. 12 is a flowchart illustrating the flow of a notification
process performed by the primary mirror node. As illustrated
in FIG. 12, if notification timing has reached (S401: Yes), the
center-to-center notifying unit 26 of the primary mirror node
20 reads accumulated update logs and recovery point logs
(S402).

10

15

20

25

30

35

40

45

50

55

60

65

12

Thereafter, the center-to-center notifying unit 26 rear-
ranges the read logs in the order of creation to create an
update file (S403) and transmits the created update file to the
secondary mirror node 60 in the secondary center 5 (S404).

Processes of the Secondary Master Node 50

FIG. 13 is a flowchart illustrating the flow of update and
notification processes performed by the secondary master
node. As illustrated in FIG. 13, if an update file is received
(S501: Yes), the DB updating unit 55 of the secondary
master node 50 extracts logs included in the update file
(S502).

Subsequently, the DB updating unit 55 sequentially
reflects update logs among the obtained logs, in the DB 52
in chronological order of creation time (S503), and repeats
such a process until reflection of all of the extracted update
logs has been completed (S504: No).

Then, if reflection of all of the extracted update logs has
been completed (S504: Yes), the intra-center notifying unit
56 sequentially transmits the update logs and recovery point
logs which are obtained from the update file, in chronologi-
cal order of creation time to the secondary mirror node 60
(S505). Thereafter, the intra-center notifying unit 56 repeats
the process until transmission of all of the logs obtained
from the update file has been completed (S506: No). If
transmission of all of the logs has been completed (S506:
Yes), processing returns to S501 and the processes at and
after S501 are repeated.

Processes of the Secondary Mirror Node 60

FIG. 14 is a flowchart illustrating the flow of an update
process performed by the secondary mirror node. As illus-
trated in FIG. 14, if the intra-center receiving unit 65 of the
secondary mirror node 60 receives an update log or a
recovery point log from the secondary master node 50
(S601: Yes), the intra-center receiving unit 65 accumulates
the received update log or recovery point log in the buffer 63
in the order of reception (S602).

On the other hand, if the center-to-center receiving unit 66
receives an update file (S603: Yes) instead of an update log
or a recovery point log (S601: No), the center-to-center
receiving unit 66 extracts logs from the update file (S604).
Subsequently, the center-to-center receiving unit 66 accu-
mulates the obtained update logs and recovery point logs in
the buffer 63 in chronological order of log creation time
(S605).

Thereafter, until the timing of reflection in the DB 62 has
reached (S606: No), processing returns to S601 and the
processes at and after S601 are performed. Then, if the
timing of reflection in the DB 62 has reached (S606: Yes),
the identifying unit 67 identifies update logs whose trans-
actions have progressed further from among the update logs
received through two routes (S607).

Thereafter, the DB updating unit 68 reflects the update
logs whose transactions have progressed further and which
are identified by the identifying unit 67, in the DB 62 in the
order in which the update logs are created (S608).

As described above, when the primary master node 10
transmits update information of the DB 12, the primary
master node 10 periodically transmits a checkpoint. The
secondary mirror node 60 receives update information and
check points through two routes. Then, the secondary mirror
node 60 can update the DB 62 using update information
whose transactions have progressed further with reference to
a check point. As a result, the secondary mirror node 60 can
suppress data lost of update information for updating the DB
62.

In addition, when the primary master node 10 has updated
the DB 12, the primary master node 10 transmits an update

US 9,921,927 B2

13

log to the primary mirror node 20. As a result, the primary
mirror node 20 can allow the state of the DB 22 to be
synchronized with that of the DB 12. In addition, the
primary master node 10 periodically transmits an update file
in which logs having been used to update the DB 12 are put
together, to the secondary master node 50. As a result, the
secondary master node 50 can update the DB 52 with
reduced update time of the DB 12 and a reduced time lag.

Therefore, even when switching occurs within a system
due to the occurrence of a failure, business operations can
continue without delay, using a standby DB. In addition,
even when switching occurs between the systems due to the
occurrence of a failure in the primary center, business
operations can continue without delay, using the DBs in the
secondary center.

[b] Second Embodiment

Meanwhile, the first embodiment describes an example in
which, for update logs received through each route, the
numbers of update logs obtained after the latest recovery
point are compared with each other to determine the degrees
of progress in transactions, by which the latest update logs
are identified. However, the configuration is not limited
thereto.

For example, first, recovery point logs are compared with
each other. If the recovery point logs are the same, the
degrees of progress in transactions can also be determined.
Hence, in a second embodiment, as another example of
identifying the latest update logs, an example will be
described in which first, recovery point logs are compared
with each other, and when the recovery point logs are the
same, the degrees of progress in transactions are determined.

FIG. 15 is a flowchart illustrating the flow of an update
process performed by a secondary mirror node. As illus-
trated in FIG. 15, if an intra-center receiving unit 65 of a
secondary mirror node 60 receives an update log or a
recovery point log from a secondary master node (S701:
Yes), the intra-center receiving unit 65 accumulates the
received update log or recovery point log in a buffer 63 in
the order of reception (S702).

On the other hand, if a center-to-center receiving unit 66
receives an update file (S703: Yes) instead of an update log
or a recovery point log (S701: No), the center-to-center
receiving unit 66 extracts logs from the update file (S704).
Subsequently, the center-to-center receiving unit 66 accu-
mulates the obtained update logs and recovery point logs in
the buffer 63 in chronological order of log creation time
(S705).

Thereafter, until the timing of reflection in a DB 62 has
reached (S706: No), processing returns to S701 and the
processes at and after S701 are performed. Then, if the
timing of reflection in the DB 62 has reached (S706: Yes),
an identifying unit 67 determines whether the accumulated
recovery point logs for the two systems have the same serial
number (S707). For example, the identifying unit 67 com-
pares the serial number of the latest recovery point log
received by the intra-center receiving unit 65 with the serial
number of the latest recovery point log received by the
center-to-center receiving unit 66.

Then, if the recovery point logs have the same serial
number (S707: Yes), the identifying unit 67 identifies, from
the update logs received through two routes, update logs
whose transactions have progressed further (S708). There-
after, a DB updating unit 68 reflects the update logs whose
transactions have progressed further and which are identified

10

15

20

25

30

35

40

45

50

55

60

65

14

by the identifying unit 67, in the DB 62 in the order in which
the update logs are created (S709).

On the other hand, if the recovery point logs have
different serial numbers (S707: No), the identifying unit 67
identifies update logs received through a route with a newer
serial number of the recovery point log, as update logs
whose processes have progressed further (S710). Thereafter,
the DB updating unit 68 reflects each of the update logs
whose processes have progressed further and which are
identified by the identifying unit 67, in the DB 62 in the
order of creation (S711).

As such, when the secondary mirror node 60 can deter-
mine, by recovery point logs, which update log is newer, the
secondary mirror node 60 omits a determination by the
degrees of progress in transactions, and reflects the newer
update log in the DB 62. In addition, when the secondary
mirror node 60 is unable to determine, by recovery point
logs, which update log is newer, the secondary mirror node
60 performs a determination by the degrees of progress in
transactions. As a result, the secondary mirror node 60 can
update the DB 62 more quickly, enabling to reduce the
number of data losses for when system switching occurs
with update logs not reflected.

[¢] Third Embodiment

Next, a third embodiment describes system switching
performed when a failure occurs in a primary master node 10
in a DB quad-redundant system described in the first
embodiment.

In addition, although the first embodiment describes an
example in which a secondary mirror node 60 accumulates
update logs received through each route and identifies and
reflects, at predetermined timing, update information whose
transactions have progressed further, the method of reflec-
tion in a DB is not limited thereto.

For example, the secondary mirror node 60 accumulates
update information received from a primary mirror node 20,
and reflects update information received from a secondary
master node 50, in the DB 62. Then, when system switching
occurs, the secondary mirror node 60 determines whether
the update information received from the primary mirror
node 20 is the latest information. If the information is the
latest one, the secondary mirror node 60 reflects the update
information and then can perform system switching.

Hence, the third embodiment describes a DB update
process of the secondary mirror node which is different than
that of the first embodiment, and a system switching process.

Overall Configuration

FIG. 16 is a diagram describing an example of the
occurrence of a failure in a redundant system according to
the third embodiment. As illustrated in FIG. 16, the overall
configuration is the same as that of FIG. 1 and thus a detailed
description thereof is omitted.

In addition, dotted lines illustrated in FIG. 16 indicate the
flow of update logs and recovery point logs. Specifically, as
in the first embodiment, the primary master node 10 trans-
mits update logs and recovery point logs to both of the
primary mirror node 20 and the secondary master node 50.
The primary mirror node 20 and the secondary master node
50 transmit the update logs and recovery point logs which
are received from the primary master node 10, to the
secondary mirror node 60. The secondary mirror node 60
receives the update logs and recovery point logs of the
primary master node 10 through two routes.

In such a state, when, as illustrated in FIG. 16, the primary
master node 10 is stopped due to a failure, etc., system

US 9,921,927 B2

15

switching occurs. Note that, for a trigger for the occurrence
of system switching, an administrator’s terminal may notify
each node, or the primary master node 10 may notify the
primary mirror node 20 of the occurrence of a failure. As
another example, it is also possible that the primary mirror
node 20 performs alive monitoring by periodically issuing
ping (Packet Internet Groper) to the primary master node 10,
and when the primary mirror node 20 has not been able to
detect a response, system switching is performed.

FIG. 17 is a diagram describing an example of system
switching of the redundant system according to the third
embodiment. When, as illustrated in FIG. 17, the primary
master node 10 is stopped, the primary mirror node 20 is
promoted to a master node in a primary system, the sec-
ondary mirror node 60 is promoted to a master node in a
secondary system, and the secondary master node 50 is
demoted to a mirror node in the secondary system. As a
result, a standby DB 22 of the primary mirror node 20 is
promoted to an active DB, and thus, the DB 22 is updated
along with the execution of an application.

Then, when the standby DB 22 is updated, the primary
mirror node 20 transmits an update file including update logs
and recovery point logs to the secondary mirror node 60. The
secondary mirror node 60 updates a standby DB 62 accord-
ing to the update logs included in the received update file.
Then, the secondary mirror node 60 transmits the update
logs and recovery point logs included in the received update
file to the secondary master node 50. The secondary master
node 50 updates a standby DB 52 according to the received
update logs.

Update Process of the Secondary Mirror Node

FIG. 18 is a flowchart illustrating the flow of an update
process performed by the secondary mirror node according
to the third embodiment. Note that the process described
here is an update process performed before system switch-
ing.

As illustrated in FIG. 18, if an intra-center receiving unit
65 receives information from the secondary master node 50
(S801: Yes), a DB updating unit 68 of the secondary mirror
node 60 determines whether the received information is an
update log (S802).

Then, if the received information is an update log (S802:
Yes), the DB updating unit 68 reflects the received update
log in the DB 62 and thereby updates the DB 62 (S803). On
the other hand, if the received information is not an update
log but is a recovery point log (S802: No), the DB updating
unit 68 accumulates the recovery point log in a buffer 63 or
the like (S804).

In addition, if, at S801, a center-to-center receiving unit
66 receives an update file from the primary mirror node 20
instead of from the secondary master node 50 (S801: No and
S805: Yes), the center-to-center receiving unit 66 extracts
logs from the update file (S806). Then, the center-to-center
receiving unit 66 accumulates the obtained update logs and
recovery point logs in the buffer 63 in chronological order of
log creation time (S807).

Thereafter, the DB updating unit 68 compares, at pre-
specified intervals, the degrees of progress in transactions,
using update logs and recovery point logs stored in the buffer
63 (S808).

Then, if the DB updating unit 68 determines that the
transactions of the update logs from the secondary master
node 50 have progressed further (S809: Yes), the DB updat-
ing unit 68 performs S810. Specifically, the DB updating
unit 68 deletes the update logs and recovery point logs
received from the primary mirror node 20, from the buffer 63
(S810).

10

15

20

25

30

35

40

45

50

55

60

65

16

On the other hand, if the DB updating unit 68 determines
that the transactions of the update logs from the primary
mirror node 20 have progressed further (S809: No), the DB
updating unit 68 repeats the processes at and after S801,
with the update logs and recovery point logs received from
the primary mirror node 20 remaining in the buffer 63.

System Switching Process of the Secondary Mirror Node

FIG. 19 is a flowchart illustrating the flow of a system
switching process performed by the secondary mirror node
according to the third embodiment. As illustrated in FI1G. 19,
the DB updating unit 68 of the secondary mirror node 60, if
system switching occurs (S901: Yes), extracts the latest
recovery point log transmitted from the secondary master
node 50 and the latest recovery point log transmitted from
the primary mirror node 20 from the buffer 63 (S902 and
S903).

Giving an example, the DB updating unit 68 of the
secondary mirror node 60 detects the occurrence of system
switching by receiving a switching notification from the
primary mirror node 20 having detected a stop of the
primary master node 10 or by receiving a switching instruc-
tion from the administrator’s terminal.

Then, if the recovery point logs have the same serial
number (S904: Yes), an identifying unit 67 identifies, from
the update logs received through the two routes, update logs
whose transactions have progressed further (S905). There-
after, the DB updating unit 68 reflects the update logs whose
transactions have progressed further and which are identified
by the identifying unit 67, in the DB 62 in the order in which
the update logs are created (S906).

On the other hand, if the recovery point logs have
different serial numbers (S904: No), the identifying unit 67
determines whether the serial number of the recovery point
log from the secondary master node 50 is newer, i.e., the
recovery point log from the secondary master node 50 is the
latest one (S907).

Then, if the recovery point log from the secondary master
node 50 is the latest one (S907: Yes), the identifying unit 67
deletes the update logs and recovery point logs received
from the primary mirror node 20, from the buffer 63 (S908).

On the other hand, if the recovery point log from the
secondary master node 50 is not the latest one but the
recovery point log from the primary mirror node 20 is the
latest one (S907: No), the DB updating unit 68 performs
S909.

Specifically, the DB updating unit 68 reflects the update
logs received from the primary mirror node 20 and accu-
mulated in the buffer 63, in the DB 62 and thereby updates
the DB 62 (S909), and repeatedly performs such a process
until reflection of all of the accumulated update logs has
been completed (S910: No).

Thereafter, if reflection of all of the accumulated update
logs at S910 has been completed (S910: Yes) or when
performance of S906 has been completed, the DB updating
unit 68 performs system switching (S911). That is, the DB
updating unit 68 performs the same processes as those
performed by the secondary master node 50 which are
described in the first embodiment, and behaves as a master
node in the secondary system.

At this time, the DB updating unit 68 of the secondary
mirror node 60 notifies the secondary master node 50 of the
occurrence of system switching, and the secondary master
node 50 performs the functions of a mirror node in the
secondary system. That is, the secondary master node 50
behaves as a general DB dual-redundant mirror DB.

As such, in the DB quad-redundant system, even when the
primary master node 10 is stopped, since each node can

US 9,921,927 B2

17

operate by automatically changing its role, business opera-
tions can continue, leading to an improvement in reliability.

In addition, since the secondary mirror node 60 can
sequentially reflect update logs received from the secondary
master node 50 until system switching occurs, the state of
the DB 62 can be maintained to be more latest compared to
the first embodiment. Therefore, even when the secondary
master node 50 is stopped, the secondary mirror node 60 can
maintain the functions as a backup while suppressing data
lost.

[d] Fourth Embodiment

Although the embodiments of the present invention have
been described so far, in addition to the above-described
embodiments, the present invention may be implemented in
various different modes.

Checkpoint

Although the above-described embodiments describe an
example in which a recovery point log including a unique
serial number in a system is used as a checkpoint, the
configuration is not limited thereto. For example, a recovery
point log including a date and time, a time, etc., can also be
used. That is, various information can be used as long as the
information can specify a unique order such as an ascending
order or a descending order in the system.

System

In addition, of the processes described in the embodi-
ments, all or some of those processes described as being
performed automatically can also be performed manually.
Alternatively, all or some of those processes described as
being performed manually can also be performed automati-
cally by publicly known methods. In addition, information
including processing procedures, control procedures, spe-
cific names, various types of data, and parameters illustrated
in the above-described document and drawings can be
arbitrarily changed unless otherwise indicated.

In addition, each component of each apparatus illustrated
in the drawings is functionally conceptual and thus does not
always physically configured as illustrated in the drawings.
Namely, a specific mode of separation or integration of each
apparatus is not limited to that illustrated in the drawings.
That is, all or some of the components can be configured by
separating or integrating them functionally or physically in
any unit, according to various types of loads, the status of
use, etc. Furthermore, all or arbitrary ones of processing
functions performed by each apparatus can be implemented
by a CPU and a program analyzed and executed by the CPU
or implemented by wired logic hardware.

Hardware

FIG. 20 is a diagram describing an exemplary hardware
configuration. Since the nodes illustrated in FIG. 1 have the
same hardware configuration, here, as an example, a descrip-
tion is made using the primary master node 10 as an
example.

As illustrated in FIG. 20, the primary master node 10
includes an HDD (Hard Disk Drive) 10a, a communication
interface 105, a memory 10c¢, and a CPU (Central Processing
Unit) 10d. In addition, the components illustrated in FIG. 20
are connected to each other by a bus or the like. Note that
the hardware illustrated here is an example and thus the
primary master node 10 may include other hardware, e.g., a
graphics interface and a mouse.

The HDD 104 stores a program that causes the functions
illustrated in FIG. 2, etc., to operate, and a DB. The

10

15

20

25

30

35

40

45

50

55

60

65

18

communication interface 105 is an interface that controls
communication with other apparatuses and is a network
interface card, for example.

The CPU 10d reads a program that performs the same
processes as those of the processors illustrated in FIG. 2,
etc., from the HDD 10a or the like and expands the program
in the memory 10c¢, and thereby allows processes that
perform the functions described in FIG. 2, etc., to operate.

Namely, the processes perform the same functions as
those of the processors included in the primary master node
10. Specifically, the CPU 10d reads a program having the
same functions as the DB updating unit 14, the intra-center
notifying unit 15, the inserting unit 16, the center-to-center
notifying unit 17, etc., from the HDD 10a or the like. Then,
the CPU 104 performs processes that perform the same
processes as those of the DB updating unit 14, the intra-
center notifying unit 15, the inserting unit 16, and the
center-to-center notifying unit 17.

As such, the primary master node 10 operates as an
information processing apparatus that performs a redun-
dancy method by reading and executing a program. In
addition, the primary master node 10 can also implement the
same functions as those in the above-described embodi-
ments, by reading the above-described program from a
recording medium by a medium reading apparatus and
executing the read program. Note that a program referred to
in other embodiments is not limited to being executed by the
primary master node 10. For example, when another com-
puter or server executes a program or when the computer
and the server execute a program in cooperation with each
other, too, the present invention can be applied in the same
manner.

In one aspect, an increase in data lost in reflection of
update information can be suppressed.

All examples and conditional language recited herein are
intended for pedagogical purposes of aiding the reader in
understanding the invention and the concepts contributed by
the inventor to further the art, and are not to be construed as
limitations to such specifically recited examples and condi-
tions, nor does the organization of such examples in the
specification relate to a showing of the superiority and
inferiority of the invention. Although the embodiments of
the present invention have been described in detail, it should
be understood that the various changes, substitutions, and
alterations could be made hereto without departing from the
spirit and scope of the invention.

What is claimed is:

1. A redundant system comprising:

a primary system including:

a first node; and

a second node that backs up the first node; and

a secondary system including:

a third node; and

a fourth node that backs up the third node, wherein

the first node in the primary system includes:

a processor that executes a first process including
transmitting data update information to the second
node and the third node, the data update information
being generated in response to a data update in the
first node, and

the fourth node in the secondary system includes:

a processor that executes a second process including:

determining a degree of progress in transactions indi-
cated by the data update information obtained
through the second node and a degree of progress in
transactions indicated by the data update information
obtained through the third node,

US 9,921,927 B2

19

specifying the data update information indicating a
further progressed transaction, and
reflecting the specified data update information to
stored data of the fourth node, wherein
the first process includes inserting, when transmitting the
data update information to the second node and the
third node, one or a plurality of pieces of delimiter
information into both of transmit data, and
the determining includes determining each of the degrees
of progress in transactions based on a number of
transactions indicated by the data update information
later than a last piece of delimiter information included
in the obtained data update information.
2. The redundant system according to claim 1, wherein the

one or the plurality of pieces of delimiter information
includes order information indicating a transmission order,
and, wherein

the determining includes determining the degrees of prog-
ress in transactions when first order information indi-
cated by a last piece of delimiter information included
in the data update information obtained from the sec-
ond node and second order information indicated by a
last piece of delimiter information included in the data
update information obtained through the third node
indicate a same order, and

the reflecting includes reflecting the data update informa-
tion including further progressed update information
among the data update information obtained from the
second node and the data update information obtained
through the third node to the stored data when the first
order information and the second order information are
different.

3. The redundant system according to claim 1, wherein

in response to a stop of the first node, the specifying
includes specifying the data update information indi-
cating the further progressed transaction, and

the reflecting includes reflecting the specified data update
information in the stored data of the fourth node, and,
wherein

the second process further includes performing control to
switch the fourth node to a primary node in the sec-
ondary system, when the reflection of the update infor-
mation indicating the further progressed transaction
completes.

4. A method for a redundant system, the method com-

prising:

transmitting, by a first node of a primary system, data
update information to a second node that backs up the

20

40

45

20

first node and a third node of a secondary system, the
data update information being generated in response to
a data update in the first node, and

determining, by a fourth node that backs up the third node,
a degree of progress in transactions indicated by the
data update information obtained through the second
node and a degree of progress in transactions indicated
by the data update information obtained through the
third node,

specifying, by the fourth node, data update information
indicating a further progressed transaction, and

reflecting, by the fourth node, the specified data update
information to stored data of the fourth node, wherein

the transmitting includes inserting, when transmitting the
data update information to the second node and the
third node, one or a plurality of pieces of delimiter
information into both of transmit data, and

the determining includes determining each of the degrees
of progress in transactions based on a number of
transactions indicated by the data update information
later than a last piece of delimiter information included
in the obtained data update information.

5. A non-transitory computer-readable recording medium

having stored therein a program that causes a computer to
execute a process comprising:

determining a degree of progress in transactions indicated
by data update information obtained through a second
node that backs up a first node of a primary system and
a degree of progress in transactions indicated by data
update information obtained through the third node of
a secondary system,

specifying the data update information indicating a further
progressed transaction, and

reflecting the specified data update information in stored
data of the computer in corresponding to a fourth node
that backs up the third node, wherein

the process includes inserting, when transmitting the data
update information to the second node and the third
node, one or a plurality of pieces of delimiter informa-
tion into both of transmit data, and

the determining includes determining each of the degrees
of progress in transactions based on a number of
transactions indicated by the data update information
later than a last piece of delimiter information included
in the obtained data update information.

#* #* #* #* #*

