01/02952 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
11 January 2001 (11.01.2001)

0O 0 I O

(10) International Publication Number

WO 01/02952 A2

GO6F 9/00

(51) International Patent Classification’:

(21) International Application Number: PCT/GB00/02560

(22) International Filing Date: 3 July 2000 (03.07.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

9915692.9 5 July 1999 (05.07.1999) GB

(71) Applicant (for all designated States except US): AQTIVE
LIMITED [GB/GB]; Birmingham Research Park, Vincent
Drive, Edgbaston, Birmingham, West Midlands B15 2SQ
(GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): DIX, Alan, John
[GB/GB]; 142 Windemere Road, Kendal, Cumbria LA9
5EZ (GB). BEALE, Russell [GB/GB]; Sunrise Cottage, 2
The Rocks, Holy Cross, Clent DY9 9QE (GB). WOOD,
Andrew, Michael [GB/GB]; 110 Westminster Road, Selly
Park, Birmingham B29 7RS (GB).

(74) Agents: MCCALLUM, William, Potter et al.; Cruik-
shank & Fairweather, 19 Royal Exchange Square, Glasgow
G1 3AE (GB).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO,NZ, PL, PT,RO,RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG,

CIL, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
Without international search report and to be republished
upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: IMPROVED SOFTWARE INTERFACE AGENT

(57) Abstract: A software agent is described that can suggest to the user appropriate software services, documents or other resources
on a network or local computer. It also describes a novel software framework for the implementation of software agents and several
other embodiments of the underlying invention. The underlying software framework, aQtiveSpace, is based on component programs
called Qbits which have a variety of types of interaction which together allow highly flexible interconnection. The main embodiment,
referred to in this document as aQtiveDesk and available commercially as onCue, is a desktop software agent that watches the users
activity and each time the user copies text or other data it uses various recogniser programs (implemented as Qbits) to determine
what kind of data is provided and then invokes various service programs (also Qbits) depending on the kind of data. These services
include local desktop applications, Internet applications and shortcuts to web pages. Other embodiments, BrainStorm, SiteStore and
DeskStore, also incorporate the principle of suggesting appropriate resources based on the users current activity and context.

10

15

20

25

30

35

WO 01/02952 PCT/GB00/02560

-1 -

IMPROVED SOFTWARE INTERFACE AGENT

The present invention relates to software interface
agents particularly, but not exclusively, for providing
assistance to a user in performing computer-based tasks.

Interface agents that work collaboratively with
users on the desktop have recently received a lot of
attention. These interface agents operate alongside a
user, helping the user to use more traditional
applications to complete everyday tasks. Such agents
can provide a variety of assistance, such as context
sensitive help, automation of repetitive tasks or
presenting sensible default values or actions.

To date, one difficulty has been defining the term
"interface agent". There are many definitions.
However, as used hereinafter, a software interface agent
is defined as a software entity that provides active
assistance to a user with computer-based tasks.

There are various types of interface agents, such as
user agents, autonomous agents, guiding agents and co-
operative agents. Agents may also be based on
combinations of these categories. The assistance
provided by agents can be active or passive, or a
combination of both.

Many existing software systems provide, or support,
integration mechanisms of one form or another. Such
systems may be conveniently organised into four general
categories; application-application interaction; user-
application interaction; agent-agent interaction, and
agent-application interaction. Applicant-application
interaction covers techniques such as data integration,
client/server architecture, distributed objects, message
queues and buses and component architectures. User-
application interaction includes user interfaces, such as
side-by-side windows, cut-and-paste and drag-and-drop,
and scripting systems for allowing users to extend their
computer systems by automating relatively simple tasks

with programs/scripts written in high level language,

10

15

20

25

30

35

WO 01/02952 PCT/GB00/02560

-2 -

such as Apple's Open Script Architecture (0OSA) and user-
interface technology, such as the X Window System and
SmallTalk 80 for enabling the production of highly
interactive graphical user-interfaces. Agent-agent
interactive systems have been developed for the field of
artificial intelligence and distributed artificial
intelligence. One example is the Knowledge Query and
Markup Language (KQML) which is a product of the DARPA
Knowledge Sharing Effort/Initiative which defines a
format and meaning of a set of messages that can be
communicated between agents that comply with the format.
Other types of agent-to-agent interaction is achieved
using mobile agent systems which are pieces of code which
have the ability to transport themselves across a network
to new locations. Agent-application interaction systems
include a toolkit for building agents, such as IBM's
Agent Building Environment (ABE) toolkit which is written
in C++. A further development of agent-application
interaction systems is the proposal and development of a
standard to cover such interactions. The Foundation for
Intelligent Physical Agents (FIPA) is a recently created
standards organisation to "identify, select, augment and
develop specifications of generic agent technologies
which are usable across a large number of applications
and provide a high level of inter-operability amongst
applications”
(http://drogo.cselt.stet.it/fipa/spec/£7613.htm) .

The FIPA group identified four classes of components
in the environments the agents might interact with;
humans, other agents, software applications and the
physical world.

Existing software interface agents suffer from a number
of disadvantages as listed in the thesis of Wood (Wood,
Andrew M., PhD Thesis, Cameo; Supporting Agent-
Application Interaction Catalogued April 26 1999). A
software interface agent should satisfy a number of

requirements to allow an interface agent to be used with

10

15

20

25

30

35

WO 01/02952 PCT/GB00/02560

-3-

a single machine, networked and used with multiple user
machines. Interface agents need to be able to actively
and passively sense, and effect, some subset of an
application's data, operations and events. Interface
agents also need the ability to detect at runtime which
facilities (including events) an application provides (at
some semantic level) how to use them at a syntactic/
protocol level. In addition, interface agents need the
capability to explore the local environment, as defined
by the domains in which they participate, allowing them
to discover the applications that are available to them
at runtime. The environment itself must also be
flexible enough to deal with, and provide notification
of, changes in the number of applications and their
capabilities dynamically at runtime and, finally, the
environment should be extendible enough to take advantage
of distributed and possibly temporarily networked
machines and also to support multiple users.

An object of the present invention is to provide a
software interface agent which obviates or mitigates at
least one disadvantage of known interface agents.

A further object of the present invention is to
provide a software interface agent which satisfies the
above-mentioned requirements to provide an integrated
software interface agent.

This is achieved, in its broadest aspect, by using
the concept of status/event analysis to decompose systems
into a set of software interface agents which can
interact with each other and which are modelled as
consisting of a set of software components, the
components defining an internal state, a set of in-
events, in-status, out-events and out-status.
Interactions between the software components are further
modelled as a set of state transitions and the
interstitial behaviour. These components interact with
each other and each of the components can be queried to

obtain a specification of the interfaces so that further

10

15

20

25

30

35

WO 01/02952 PCT/GB00/02560

-4 -

objects in the system can find components which provide a
certain type of interface functionality at runtime.

The software interface agent may be best explained
by its implementation as a software interface agent which
assists a user of a computer. In a preferred
arrangement, this interface referred to as "aQtiveDesk"
(aQtiveDesk is the internal development name of the
product released commercially under the name "onCue"), is
implemented in Java. The aQtiveDesk interface agent is
one of many interface agents which use specific software
objects which include instructions and data which may be
embodied in the processing unit of a computer or
incorporated onto software in a software product, such as
a floppy disk or a CD. The aQtiveDesk is a software
agent which augments existing user interfaces.

Existing user interfaces usually allow a user to
select a certain subset of data from a current
application, for example a word processing document, and
let the user cut or copy this selection to a clipboard.
The user then locates the destination for the data by
loading or switching to a different application (or a
different place in the same application) and then pastes
the selection from the clipboard into this new location.
The aQtiveDesk interface agent augments this by
suggesting destinations for the data once it has been
selected. If an appropriate suggestion is made by the
interface agent, then the user does not have to find the
destination; the user simply accepts the agent's
suggestion and the agent will do the work. It should be
understood that the aQtiveDesk interface agent does not
stop the user from locating a destination in the normal
way, 1f desired. It works collaboratively with the user
by supplementing the user's usual actions.

According to a first aspect of the present
invention, there is provided a method of providing active
assistance to a user performing a computer type task by

using a software interface agent with a control unit,

10

15

20

25

30

35

WO 01/02952 PCT/GB00/02560

-5-

said method comprising the steps of:

providing a software interface agent for monitoring
the activities of a user, said agent recording data
representative of the user's activities,

analysing the data obtained from said user's
activities,

identifying events/data present in said user's
activities and generating data corresponding to said
identified events/data,

comparing said generated data with a database of
information services or data accessible by said user's
control unit, and

selecting at least one service corresponding to the
analysed and identified data and displaying to a user a
representation of said selected service, said
representation being selectable by the user to access
said selected service.

Preferably, said method is performed in real-time
when a user is using the control unit. Alternatively,
said method may be performed when the control unit is not
being used on a stored work product of the user.

In a preferred arrangement, the method is usable
with a user control unit which is conveniently a
computer. Alternatively, the method is usable with any
gsimilar device which incorporates an embedded computer
processing unit, such as a microprocessor.

Conveniently, such similar devices may be a television
control, a telephone handset, either landline or cellular
phone.

Preferably, a graphical representation of the
service 1is presented to the user. Alternatively, an
audible representation of the service is provided to the
user.

Therefore, a user's activities may be monitored via a
keyboard, a television/video control, a telephone, use of
items having of personal data, such as smart cards,

magnetic strip credit cards, bank cards and the like.

10

15

20

25

30

35

WO 01/02952 PCT/GB00/02560

-6~

In fact, the software interface agent may be used for any
activities which are electronically communicatable and
recordable for generating suggestions to the user of a
control unit for related activities or areas.

According to a further aspect of the present
invention, there is provided a software interface agent
for monitoring the activities of a user using a control
device and for providing prompts based on a review of
data from the user's activities to the user to allow the
user to decide to accept said prompts, said software
interface agent comprising,

clipboard program means for monitoring the
activities of a user, data recognition program means for
comparing user input data with a user definable database
of recognition program elements, and for providing a
corresponding data recogniser output data,

user service program means coupled to at least one
user service for receiving said recogniser output data
and for activating said service, obtaining the results of
said services, and

indication means for providing to the user an
indication that a service has been performed, the user
being capable of interacting with the indication means to
obtain the results of the service performed.

Preferably, said indication means is a graphical
display means. Alternatively, said indication means is
an audible message provider.

Preferably, said computer program is operable in a
host personal computer, laptop, palmtop or the like.
Preferably, the software interface agent is downloadable
from the internet to a user's host machine.
Alternatively, said computer program is operable in a
control unit such as a web TV remote control, a
telephone, a cellphone which have a processing unit with
a memory for receiving said program.

Preferably, said at least one service is a web

browser program which is launched when said recogniser

10

15

20

25

30

35

WO 01/02952 PCT/GB00/02560

output data is received.

Conveniently, the computer program includes further
program elements for calculating what has been copied to
the clipboard program means from the user's activities.

Conveniently, the service program means includes
data types corresponding to a plurality of different
services, said data type being generated by said data
recognition program means.

In one arrangement, said services and data types are

related:
Histogram Table
Services Encyclopaedia Words
Thesaurus Single Word
SumIt! Number List
Excel - Qbit Table
Web Searches Words

Conveniently also, recognition program elements have

in-type and out-type data related as follows

Recogniser in-type out-type
words recogniser (Wr) text words

table recogniser (Tr) text table
single word recog (SWr) words single word
number list recogniser (NLr) text number list

Each recogniser program element has two nodes, a
first node being settable and corresponding to the input
of the recogniser, a second node being listenable and
corresponding to the output of the recogniser.

Conveniently, said service program means has a first
settable node, a listenable node for receiving data items
received at said clipboard, and a callable node returning
the results of a service.

Preferably, the graphical display means is a
computer screen and a graphic window representing a
desktop service is displayable, said window being
clickable-on and being interactive with said user.

Conveniently, said window displays a plurality of

services icons found by said software interface agent,

10

15

20

25

30

35

WO 01/02952 PCT/GB006/02560

-8-

each said services being actuatable by said user by
clicking on a selected icon.

Advantageously, said icons may include search
engines for browsing the worldwide-web, user desktop
items such as CD encyclopaedias and dictionaries and
graphical display programs.

Conveniently, the software interface agent operates
in real-time while the user is using the computer.
Alternatively, the software interface agent may not
operate in real-time; it may operate on a user's work
product after it has been created.

Conveniently, software interface agent data
recognition program means and said user service program
means may operate in synchronous or asynchronous
versions.

Advantageously, said software interface agent
supports both synchronous and asynchronous operation and
converts automatically between said versions.

Conveniently, said asynchronous versions are used in
networked environments.

According to a further aspect of the present
invention, there is provided a computer program product
comprising:

a computer usable medium having computer readable
code means in said medium for monitoring the activities
of a user operating a control device and for providing to
the user prompts or suggestions to allow the user to
perform further activities using said control device,
said computer program product having:

computer readable program code means for monitoring
the activities of a user and for receiving data from the
user's activities, computer readable program code means
for comparing the data from said user's activities with a
user definable database of data recognition elements and
for providing outputs from said data recognition
elements,

computer readable program code means for receiving

10

15

20

25

30

35

WO 01/02952 PCT/GB00/02560

-9-

said data recognition element outputs and for executing a
service function and obtaining the results of said
service,

computer readable program and code means for causing
said control unit to indicate to the user when the
results of said service are available to the user to
access.

Preferably, said computer program product is stored
on a computer disk and said control unit is a PC-type,
laptop or a palmtop computer. Alternatively, said
computer program product is stored on any other form of
electronically readable medium, such as a programmable
read-only-memory integrated circuit (PROM) which may be
located in a computer, TV control unit, cellphone or the
like.

Preferably also, the computer program product is
created at the user's location by downloading the
software interface agent from the internet.

Preferably also, the computer program product
includes computer readable code means for causing the
computer to display a window or icon on a computer screen
to indicate the results on said service, said icon being
clickable-on by a user to display the results of the
service.

According to a further aspect of the present
invention, there is provided a control unit having a
software interface agent loaded in the form of a computer
program product, saild computer program product having a
computer usable medium having a plurality of executable
program code means for monitoring the activities of a
control unit user, executing at least one service based
on data from the user's activities and for obtaining
results of said service, and for providing an indication
to the user that results have been obtained for
inspection by said user.

Preferably, the control unit is a computer.

Preferably, the computer program product is a disk;

10

15

20

25

30

35

WO 01/02952 PCT/GB00/02560

-10-

either a floppy disk or a CD or delivered over the
internet. Conveniently, the program code means includes
display code means for displaying icons in a window
display to the user, said icons being representative of
salid services performed by said software interface agent.
Alternatively, the indication to the user is provided by
an audio signal from audio signal generating means.

Preferably, said software interface agent operates
in real-time as the user performs activities with the
control unit or computer.

Alternatively, said software interface agent may
operate on a user's work product not in real-time.

Conveniently, the software interface agent supports
synchronous and asynchronous operation.

These and other aspects of the invention will become
apparent from the following description, when taken in
combination with the accompanying drawings, in which:

Fig. 1 is a schematic diagram of the system
architecture of an embodiment of the software interface
agent according to the present invention;

Fig. 2 is a diagrammatic representation of node
interactions of one of the Qbits shown in Fig. 1;

Fig. 3 is a schematic diagram of a demand-driven
currency exchange Qbit;

Fig. 4 is a schematic diagram of a data-driven
currency exchange Qbit;

Fig. 5 is a screen display of an E-mail message
which contains text, a table and a web page URL and an
aQtiveDesk floating window with icons selectable by the
user;

Fig. 6 depicts part of the E-mail message with a
word selected and the aQtiveDesk window with additional
icons;

Fig. 7 depicts part of the E-mail message of Fig. 5
with a table selected by the user and the floating window
containing different icons;

Fig. 8 depicts a display of dancing histograms after

10

15

20

25

30

35

WO 01/02952 PCT/GB00/02560

-171-

the histogram icon in the floating window is selected;

Fig. 9 depicts an Excel (trademark Microsoft) 3D
chart which is displayed when the Excel icon in the
floating window is selected by the user;

Fig. 10 depicts a flowchart of the sequence of
events performed by the user in order to select the
dancing histogram shown in Fig. 9;

Fig. 11 is a general flowchart of the sequence of
events performed by a recogniser program used with the
aQtiveDesk software interface agent;

Fig. 12 depicts a screen display when a user is
using a Brainstorm software interface agent;

Fig. 13 is a flowchart of a sequence of events which
is performed by the Brainstorm software interface agent
when being run by a user;

Fig. 14 depicts a screen display of the results
obtained using software interface agent called SiteStorm
which is part of the Brainstorm software interface agent
family and which is simulated using Macromedia space
Dreamwaver (trademark), and

Figs 15a-15e are flowcharts of the sequence of
events performed by the SiteStorm interface agent leading
to the screen display shown in Fig. 4.

Reference is first made to Fig. 1 of the drawings
which depicts the system architecture of the software
interface agent. On the top level are a number of
software interface agents or products, generally
indicated by reference numerals 10a, b, ¢ and d, which
are connected to and sit on top of smaller software
components which are computer programs 12a,b,c etc. in
their own right, each such program being known as a Qbit
(trademark), which interact with the overlying software
interface agents 10a, 10b, 10c etc. and which may
interact with each other, as will be later described.
The Qbits 12 sit upon a software framework 14, known as
aQtiveSpace (trademark), which produces context/sensitive

applications from the Qbits 12. The aQtiveSpace program

10

15

20

25

30

35

WO 01/02952 PCT/GB00/02560

12.

14 is particularly suited for systems that dynamically
reconfigure themselves as new Qbits are added. This
ability to reconfigure is exemplified in the aQtiveDesk
framework (described later) which automatically links
together components (Qbits) based on the type of data
they accept. Each Qbit program interacts with the
aQtiveSpace software 14 which is built on top of the Java
virtual machine 16. Each of the software interface
agent products, such as aQtiveDesk 10a or Brainstorm 10Db,
comprises a selected set of Qbits which may interact with
each other. As will be later described these Qbit
programs can be written by any suitable third party
developer taking advantage of the status event features
and self-description features offered by the aQtiveSpace
software framework.

Each Qbit 10 has a series of named nodes, each node
acting like the named attributes and methods of an object
but with some differences and additional semantics. The
nodes act like plugs and sockets by which each Qbit 12
can be connected to its environment, i.e. software
interface product 10a, b, the aQtiveSpace software
framework 14, and to each other Qbit 12a,b,c etc.

Each node performs one or more of six kinds of

interaction;

Set - wvalue can be given to the node (e.g.
setting an attribute);

Get - a value can be requested from the node
(e.g. getting the value of an attribute);

Call - the node can be called as the normal
object method call;

Listen - the node can give a value to a "settable"
node;

Give - the node can request a value from a
"giveable" node, and

Supply - the node can invoke a "callable" node.

The above six kinds of interaction can be classified

in two ways, namely by data flow and by initiative

10

15

20

25

WO 01/02952 PCT/GB00/02560

-13-

(control flow).

Firstly, dealing with data flow, in the case of Set
and Give data flows into the node. 1In the case of Get
and Listen, data flows out from the node. In the case
of Call and Supply, the data flow is bi-directional.

Insofar as initiative interactions are concerned, in
the case of Set, Get and Call, the control comes from
outside the node (external initiative), another Qbit (or
arbitrary Java code) has invoked the relevant Set, Get or
Call method on the node. In the case of the Listen,
Give and Supply interactions, the control comes from
within (internal initiative) as the node invokes the
appropriate interaction when it is ready. The internal
initiative interactions correspond to "callbacks" which
are found in many systems. They each have a means of
establishing a connection to one or more nodes and then
invoke these nodes when ready (in the reference
implementation, a Java Node object has appropriate
methods Listen, Give or Supply; the connection is
established by passing the required node objects, which
are to be invoked later).

The interactions can be matched in pairs as each
internal initiative interaction has a corresponding
external interaction. For example, a listenable node is
given a settable node in its Listen method. It invokes
the Set method on the node every time it is ready it is
ready to donate a value. Table 1 set forth below

depicts the node interaction characteristics:

10

15

20

25

30

35

40

WO 01/02952 PCT/GB00/02560

-14-
Table 1 : Interaction Characteristics
Interaction Data Flow Initiative Pair
set in external
get out external
call bidirectional external
listen out internal set
give in internal get
supply bidirectional internal call

The input and output data of each node, where
relevant, are also typed (e.g. number, text, image).

The nodes of one Qbit can be connected to nodes of
another Qbit where they are compatible, that is where
they can function as complementary pairs and have
compatible types. The node interactions are represented
as a block as shown in Fig. 2 where the control flow runs
from left to right, input is represented by a hole 20
waiting to be filled and output is represented as a peg
22.

In the representation shown in Fig. 2, two nodes are
connectable if they have corresponding hole/peg
combinations. Although not shown, the "shape" (in
programming terms, the type of data they produce or
consume) of the holes and pegs can be altered so that if
there 1s interaction between a hole and a peg, then the
shapes of the respective holes and pegs must also
correspond.

The method by which the nodes are described means
that Qbits can be dynamically connected together by other
Qbits or program code. This is different from, for
example, object oriented programming languages, where an
object tends to have a lot of information about many
other types of objects. Each Qbit may have internal
gstructure, including other Qbits, but the external
behaviour of each Qbit is very similar in that it can be
fully connected to other Qbits in the way schematically
represented in Fig. 2.

Although connections between Qbits can be

10

15

20

25

30

35

WO 01/02952 PCT/GB00/02560

-15-

established statically when an application is configured,
the "plug-and-play" nature of the Qbit programs means it
is particularly straightforward to connect Qbits together
and then disconnect them from one to another while a
program is running. In Fig. 2, the right hand side
interactions, Listen, Give and Supply are established by
a method/function call on the node which is establishes
the link.

Note that Qbits are a "plug-and-play" technology
because of their external connectivity. Typically
computer programs know about the sub-programs they invoke
at design time. Although this is also possible for
Qbits, they can be written so that many or all of their
interactions with other bits are via their Qbit nodes.
The semantic completeness of these nodes means that Qbits
can be linked externally (i.e. by another program or
QObit) without previously knowing about each other. 1In
the preferred implementations the Qbits nodes are also
explicitly typed allowing automatic linking of related
nodes. This is the technique used in the aQtiveDesk
embodiment where nodes in the service and recogniser
Obits are invoked based on whether their types match
those of the available data.

The interactions between Qbits is explained by the
following example which deals with two variants of a
pounds to dollars currency converter to see how the
interactions described above work together. Each of the
currency converters makes use of the same "exchange rate"
Qbit which monitors online sources to obtain the current
pounds to dollars exchange rate. The Qbits have one
node called "rateNow" which is both gettable and
listenable. The current exchange rate can be obtained
by "get"-ting the node value or by registering a settable
node with the listen part of the node. In the latter
case, the listening node will be "set" if the exchange
rate changes.

The first type of currency converter is a demand-

10

15

20

25

30

35

WO 01/02952 PCT/GB00/02560

-16-

driven currency converter which is shown schematically in
Fig. 3 of the drawings. The currency converter has two
QObits: a currency converter 30 and an exchange rate 32.
The "currency converter'" Qbit 30 has two nodes. The
"convert" feature is a callable node 34, that is, if it
is given an amount in pounds, the convert nodes returns
the corresponding amount in dollars. The "rate" feature
is a giveable node 36 and is where it looks to get the
current exchange rate. As part of the configuration of
the demand-driven currency converter, the "rateNow" node
38 of the "exchange rate" Qbit 32 is registered with the
"rate" node 36 of the "currency converter" Qbit 30.

When an external call is made to the convert node 34, the
currency converter Qbit 30 asks its rate node 36 to
obtain the value and it performs a "get" function on the
"rateNow" node 38 which obtains the required value.
Accordingly, the currency converter Qbit 30 is then able
to complete the currency conversion and return the result
of the "convert" call.

The second type of currency converter is a data-
driven currency converter shown schematically in Fig. 4
of the drawings which has a currency converter Qbit 40
and an exchange rate Qbit 42. The converter Qbit 40 has
a "convert" node 44, just like the converter 30, but
instead of the giveable "rate node" it has a settable
"rate node" 45. This node can be linked to the exchange
rate Qbit 42 but using a slightly different method: this
time it is the "rate" node that is registered as a
listener to the "rateNow" node. When the exchange rate
Qbit notices a change in the current rate, it checks to
see if there are any registered listeners and, if so,
does a "set" function on each listener with the new rate.
The currency converter is then responsible for keeping an
internal copy of the value associated with the "rate"
node. When the data-driven currency converter is next
asked to perform a conversion, it simply uses this same

value of rate knowing that it is up-to-date.

10

15

20

25

30

35

WO 01/02952 PCT/GB00/02560

-17-

Both the demand-driven currency converter and the
data-driven currency converter perform the same function,
that is they perform a conversion that is correct with
respect to the current status of the exchange rate. The
variants allow different ways of obtaining up to date
status information. These examples show that
1) the software framework is equally good at managing

demand-driven and data-driven actions;

2) the same software components, for example, an
exchange rate Qbit, can be used with either variant,
and

3) the Qbits can be combined together dynamically
without Qbits necessarily "knowing about each
other".

As well as data that is passed in an interaction, a
"context" object can also be passed. The initiator of
interaction supplies the context object. In a case of
set, get and call, this context object is passed to the
node when the interaction is invoked. In the case of
listen, give and supply, a context object is passed
through the node when the relationship is established.
For example, node A is "listenable" and node B is
"gsettable". Some external code, for example part of node
B QObit, but possibly completely external, creates a
context of object C, then establishes a listen
relationship with the method such as:

A.listen (C,B)

Later A has data (D) ready and evokes B's set
interaction with code like:

B.set (C,D)

Node A passes the context on so that node B can, for
example, match the "set" with a corresponding "listen".

These context object transfers can be used to
establish "conversations" for several independent
interactions and can be regarded as part of a more
protracted pattern. In particular, "call" can be

regarded as a simple conversion "set" followed by the

10

15

20

25

30

35

WO 01/02952 PCT/GB00/02560

-18-

corresponding "get", which has been included as a
primitive for convenience.

With regard to the nodes described above, it will be
understood that all node interactions may have both
synchronous and asynchronous versions. For example, one
can invoke the "set" method and wait for the method to
return indicating that the "set" was successful
(synchronous) . Alternatively, a variant can be used
that establishes the request to set the node but allows

the "setting" Qbit/code to continue to execute

(asynchronous) . The asynchronous version of "set" can
be thought of as a kind of "fire and forget" node. For
"call" and "get", where a return value is required, a

"callback" can be registered for the value when it is
ready. This may be a "settable" node, or a simpler
callback object, depending on the implementation.
Asynchronous interactions are particularly useful in
networked environments where there may be considerable
delays if Qbits are located in different parts of the
network. The current reference implementation allows
either form of interaction, that is synchronous or
asynchronous, and automatically converts between
synchronous and asynchronous versions as described later.
The current referenced aQtiveSpace implementation is
coded in Java and is particularly well suited for certain
aspects of the implementation. However, it is not a
necessary part of the aQtiveSpace software framework: it
is possible to have the aQtiveSpace software
implementation built over other platforms, such as C++.
The main parts of the aQtiveSpace interface are the
Obit interface and the node interface and these are
further explained in detail below:
The Qbit interface defines four methods:

String getName ()
get the name of the Qbit (optional)

Node getNode (String name)
get the named node

WO 01/02952 PCT/GB00/02560

-19-

Node [] getNodes (nodeTypeSpec spec)

find all nodes of a particular type

Node getNode (String name, NodeTypeSpec spec)
get the node and verify its type

The "getNodes" method makes it possible to discover
the interaction possibility of a Qbit without knowing the
names of its nodes beforehand (a reflection mechanism) .

The Node interface is more complicated, as it
includes methods corresponding to all the interaction
kinds:

First of all there are several methods to get the
name, parent Qbit and type of the node:

String getName ()
Get the name of this node..
Qbit getQbit ()
Return a reference to the Qbit that this node is part of.
NodeType getType ()

Get the type (input type, output type and interactions) of
this node.

boolean is(Interaction inter)

Says whether the node can perform the required interaction.
The parameter inter can be either a specific interaction
kind such as GIVE, or SET, or can be a combination
interaction kind such as:

"SET" and (GET)".

Then there are methods for set, get and call, with a
synchronous and asynchronous version of each.

void set (Context, SyncSetOptions, Data)
A synchronous version of set. This method will wait until
the set has happened or an exception is returned.

void set (Context, SetOptions, Data, SetManager
setter)
An asynchronous version of set. Any exceptions are returned

to the setter object at some later point in time. This
function returns immediately. The setter object may be null
if a result is not expected or needed.

Data get (Context, SyncGetOptions)

A synchronous version of get.This method will block until
the data is available.

void get (Context, GetOptions, GetManager getter)
An asynchronous version of get. The results of the get are
returned to the getter object at some later point in
time. This function returns immediately.
Data call (Context, SyncCallOptions, Data)
A synchronous version of call. This method will block until
the parameter data has been sent and a result is returned.
void call (Context, CallOptions, Data, Call Manager)

An asynchronous version of call.The results of the call are
returned to the caller object at some later point in time.
This function returns immediately.

10

15

20

25

30

35

40

WO 01/02952 PCT/GB00/02560

-20-

void listen(Context, ListenOptions, Node listen,
ListenManager)

This method sets up a listening dependency between nodes.
When an event occurs, a set message will be sent/set
method will be called on the node listener. This method is
essentially an event registration.

void given(Context, GiveOptions, Node giver,
GiveManager)

This method sets up a giving(supply) dependency between
nodes. When a value is needed by this node it will get it
from the giver. This method is to get()what listen() is to
set ().

void supply(Context, SupplyOptions, Node supplier,
SupplyManager)
This method sets up a supply(need) dependency between
nodes .When a function is required by this node it will
call the supplier. This method is to call ()whatgive() is
to get ().
The Java implementation of aQtiveSpace uses the two
different types of Java method for each node type to
automatically convert between synchronous and
asynchronous versions of the nodes. For example, suppose
a particular Qbit supplies a synchronous version of a
gettable node:
Data get (Context, SyncGetOptions)
The aQtive space architecture uses Java's built-in
inheritance mechanisms to supply a asynchronous stub
similar to the following skeleton code:
void get (Context context, GetOptions options,
GetManager getter)
{
Thread thread = new
GetThread(this, context,options, getter) ;
this.start () ;
return;
}
where the GetThread class is like the following skeleton
code:
class GetThread
{
public GetThread (Node node, Context context,
GetOptions options, GetManager getter)

{

10

15

20

25

30

35

40

WO 01/02952 PCT/GB00/02560

-21 -

// code to save parameters in Java instance
variables

}

void run()
{
Data val = node.get (context,options) ;
// N.B. possibly long wait for synchronous
get to complete
getter.setResult (val) ;

J
Similar translations are performed for the other node
types.

Finally, there are methods to cancel a part-finished
interaction (asynchronous) and to deregister listeners
etc.

void cancel (Context, CancelOptions)
Method that allows a client of the node to quit the
current interaction.
void unlisten (Context, UnlistenOptions)
This method removes a listening dependency between nodes.
This method is essentially an event deregistration.
void ungive (Context, UngiveOptions)
This method removes a give (supply) dependency between
nodes.This method is to get() what unlisten() is to set{).
void unsupply (Context, UnsupplyOptions)
This method removes a supply (need) dependency between
nodes.This method is to call() what ungive() 1is to get().

A specific embodiment of the invention will now be
described with reference to Figs. 5 to 10 of the
accompanying drawings. The embodiment is a desktop
application using a software interface agent hereinafter
referred to as aQtiveDesk (trademark) which is the
internal development name of the product to be released
commercially under the name "onCue".

The aQtiveDesk software interface agent will first
be described with reference to series of actions
performed by a user and then it will be explained how the
software interface agent monitors the users actions and

then prompts the user via icons on a displayed window to

10

15

20

25

30

35

WO 01/02952 PCT/GB00/02560

-2~
take further action.

Reference is first made to Fig. 5 of the drawings
which depicts a computer screen display 50 on which is an
E-mail message from a colleague. The E-mail message
contains text 52, a table 54 laid out with spaces and a
URL of a web page 56 in the text. When the aQtiveDesk
software agent is active, a small floating window 58
appears on the display with icons to allow the user to
obtain help about the software interface agent and to set
preferences etc.

As the user scrolls through the E-mail message,

either using keys or a mouse, the user selects the word

"histograms", as shown in Fig. 6. When this word is
selected (shown inverted), the aQtiveDesk window 58
changes. Several new icons appear suggesting to the user

several possibilities which the user may wish to do with
the words "histograms". For example, the aQtiveDesk
software interface agent suggests looking up "histograms"
in various online search engines: Ask Jeeves (trademark)
60, HotBot (trademark) 62, AltaVista (trademark) 64 and
Yahoo (trademark) 66. It also suggests looking up an
online thesaurus 68 and dictionary 70. Finally, it also
suggests looking up the words "histograms" in the user's
CD copy of Encyclopaedia Britannica (trademark) 72.

The user decides to select the thesaurus and clicks
on the thesaurus icon 68 and the aQtiveDesk software
interface agent then launches a web browser program and
directs the web browser program to a thesaurus service
which then returns a web page listing similar words such
as "charts", "diagrams" etc.

The user then decides to select the table 54 in the
E-mail message. This is illustrated in Fig. 7 of the
drawings with the table 54 shown inverted. When the
table is selected, the aQtiveDesk window 58 changes again
and displays different icons. This time, search engines
are not suggested. Instead, the aQtiveDesk software

agent suggests three desktop programs; dancing histograms

10

15

20

25

30

35

WO 01/02952 PCT/GB00/02560

-23-

74, a calculation program called sumIt!)+ 76 and
Microsoft Excel (trademark) 78. The user views the
suggested icons and then selects the dancing histograms
icons 74. The aQtiveDesk software interface agent
launches the dancing histogram application which is
displayed in Fig. 8 as a window 80 on top of the E-mail
message displayed. It will be seen that the dancing
histogram 74 represents graphically, and in an animated
form, the data contained in the table 54 in the E-mail
messadge. The user then selects the Excel icon 78 and in
presses down a mouse button (not shown), to reveal a menu
of possibilities of things to do with Excel (not shown),
including drawing a 3D chart. The user selects the 3D
chart and the aQtiveDesk software interface agent
responds by opening the Excel program and pastes the
table data into a new worksheet 82 shown in Fig. 9 and
then instructs the Excel program to draw the 3D chart 84
which appears within the worksheet 82. The user just has
to watch the 3D chart 84 appear.

Thus, it will be seen that the aQtiveDesk software
agent monitors the activities of the user and creates
prompts in the aQtiveDesk window 58 for the user to
select to expand the scope of the user's activities in a
certain area. This can be done either online by
generating a web browser or offline by activating the
user's peripheral, such as a CD drive.

The sequence of operations will also be described
with reference to the flow chart shown in Fig. 10 of the
drawings which explains how the aQtiveSpace software
interface agent 14 interacts with the aforementioned Qbit
programs to generate the further services for the user
which are displayed by the icons. This will now be
explained with reference to what happens when the user
selects the table shown in Fig. 7 of the drawings.

Firstly, the aQtiveDesk software agent 14 is
selected by the user. The agent 14 loads a collection of

specific Qbit programs, some of which are integral to the

10

15

20

25

30

35

WO 01/02952 PCT/GB00/02560

-24 -

aQtiveDesk product, such as a clipboard watcher Qbit 90
that monitors for the user's cut/copy actions, an
aQtiveDesk window Qbit 92 for displaying aQtiveDesk's
suggestions to the user in the form of icons in the
window, a web browser Qbit program which is used to send
the default web browser, for example NetScape, Navigator
or Microsoft Explorer, to a selected URL. Other Qbit
programs are optional and a configuration file is used to
record which Qbit programs require to be loaded. The
user can modify this set. The optional Qbits are of two
kinds: recogniser Qbit programs which use simple
heuristics and artificial intelligence (AI) to calculate
what has been copied to the clipboard, and services which
encapsulate things which can be suggested by the user.
In addition to all of these Qbit programs are the code
for the aQtiveSpace underlying software component
infrastructure and the aQtiveDesk software framework
which is the code constructed on top of the aQtiveSpace
and which brings together further aQtiveDesk components.

In one sense the aQtiveDesk framework is simply
another software component but this component acts as the
"glue" between the other Qbit programs orchestrating the
efforts and activities of these Qbit programs. In
addition, the other Qbit software programs are written in
special patterns to enable the aQtiveDesk framework to
link them together. The particular patterns used in this
embodiment include specially named nodes for the Qbits
(depending on their function within the framework). For
recognisers this includes TryRecognise (settable) and
Recognise (listenable) and for services TryProvide
(settable) and Provide (listenable). The "glue" perfomed
by the framework is the particular linking together of
these depending on the types of their nodes as described
in the example below. Java code for a sample recogniser
Qbit and service Qbit is given in appendix A.

Each of the services is a Qbit program which has a

data type which it can accept. 1In this example, the

10

15

20

25

30

35

40

WO 01/02952 PCT/GB00/02560

-25-

following services correspond to certain data types:

Service Type
Histogram Table
Services Encyclopaedia Words
Thesaurus Single Word
SumIt! Number List
Excel - Qbit Table
Web Searches Words

Each recogniser is a Qbit program which has a type
which it looks at (in-type) and a type it recognises

(out-type), as will be later described.

Recogniser in-type out-type
words recogniser (Wr) text words

table recogniser (Tr) text table
single word recog (SWr) words single woxrd
number list recogniser (NLr) text number list

In use, when the aQtiveDesk software interface agent
is selected, it generally sits in the background. Only
the clipboard watcher Qbit program 90 is active which
waits for a copy or cut to happen. When the aQtiveDesk
framework initialises itself, it establishes itself as a
listener with the clipboard Qbit 90, all the recogniser
Qbits 92 recognise nodes and all the service Qbits 94
provide nodes.

When the user selects and copies the word
"histograms", the clipboard watcher Qbit program 90
notices and passes the copied text to the aQtiveDesk
framework. The clipboard watcher Qbit 90 sets the node
used by the aQtiveDesk framework when it 1s registered
with the Qbit 90. The aQtiveDesk framework then looks
for Qbit recogniser 92 or service Qbits 94 that can use
the text. The general form of a recogniser 92 is shown
in Fig. 11. The Java code for MiniFigureRecog in Appendix A
can be seen to follow this flow diagram. The recogniser
Obits Wr, Tr and NLr are all activated. Each recogniser
must have two nodes: TryRecognise 140 and Recognise 142.
The recogniser may have other nodes as well, but these
are ignored by aQtiveDesk framework. The TryRecognise

node is settable and corresponds to the input of the

10

15

20

25

30

35

WO 01/02952 PCT/GB00/02560

-26-

recogniger. The Recognise node is listenable and
corresponds to the output.

In this example, because it is only text that has
been selected, both the Tr and NLr recogniser Qbits fail
to recognise the text (it is neither a table nor a list
of numbers) but the word recogniser Qbit (Wr) does
recognise the text. The aQtiveDesk framework looks at the
type of each recognisers' TryRecognise node. If any
match it "sets" their TryRecognise nodes (box 144). Some
recognisers may instantly be able to check the text,
others may need to consult local or network resources
(box 146). 1If the recogniser does not recognise the text
it does nothing. If it does recognise it, it tells all
Recognise listeners (box 148), in particular the
aQtiveDesk framework which matches the revised data type
against all recognises' TryRecognise nodes and sets the
TryRecognise node of any that match; these may again
recognise the data etc. The Wr simply looks at the text
and decides whether this text could be considered a
sequence of "words". It clearly can and so announces to
the aQtiveDesk that the text can be regarded as words.
The aQtiveDesk software interface agent records this (box
96) and because the aQtiveDesk now knows the selected
text is words, it activates the single word recogniser
Obit 92a which is based on matching the in-type of single
words (SWr). At the same time, the aQtiveDesk software
program activates the web search service Qbits 94a and
also the CD-ROM encyclopaedia 94b because these services
just expect words. Because the text is recognised to a
collection of words, it involves the services posting
back (line 98) to the aQtiveDesk interface agent, data
structures that make it easy to view the text as a series
of words.

The single word recogniser recognises that the words
are, in fact, a single word as there is only one of them
and it announces this back to the aQtiveDesk framework 96

which activates the Thesaurus and Dictionary services as

WO 01/02952 PCT/GB00/02560

10

15

20

25

30

35

-27-

they require a single word each.

Finally, the aQtiveDesk interface agents creates and
displays icons of all the aQtiveDesk services in the
aQtiveDesk window on the user display.

Each service Qbit has one or more of the following:
A settable node called TryProvide and corresponding
listenable node called Provide - used for services that
return new data items to be copied to the clipboard, for
example, the SumlIt! Service that adds together selected
numbers and copies back the result.

Any other settable node - used for services that
perform actions, for example, the histogram that launches
a window.

A callable node returning a result of type URL -
used to call a browser, for example, the Thesaurus
service.

The aQtiveDesk framework also keeps track of which
of the converted data is relevant for each particular
service. The exception to this is the TryProvide node
which the aQtiveDesk framework sets there and then. The
service Qbit can then announce zero, one or more copyable
data items using its Provide node (in a similar fashion
to recognisers). In particular, this will include the
aQtiveDesk framework which records the copyable data for
later use and marks the service as active.

Depending on how fast the recognisers operate, this
process may finish before the user has time to act, or if
some of the recognisers are slow, extra services may be
added even as the user interacts with the aQtiveDesk
window.

It will be understood that the selection of services
offered depends dynamically on the kind of data selected
by the user and also it will be understood that the
recognition of the type of data may take several steps;
for example, text is recognised as words which, in turn,
may be recognised as a single word.

When the user selects an icon in the aQtiveDesk

WO 01/02952 PCT/GB00/02560

10

15

20

25

30

35

-28-

window, the aQtiveDesgk framework program examines the
settable or callable nodes of the service whose input
types match the available data. The aQtiveDesk framework
treats services that generate a URL for the browser
specially because URLs are so common. It asks the
service for the URL and then the active framework passes
this URL to the browser.

The above explanation of what happens when a word is
selected is similar to what happens to when the table 54
is selected by the user as is shown in Fig. 10. When
the table 54 is selected initially, all the aQtiveDesk
framework knows is that it has seen more copied text.
This copied text (the table) is passed to the same three
Qbit recognisers 92a,b,c for processing: Wr, NLr and Tr.
This time the word recogniser Qbit Wr, fails to recognise
the table because it is too long, split over several
lines or it has too many numbers. However, the number
list recogniser Qbit 92b (NLr) recognises that the table
because it ignores other words and looks for any numbers
in the data. The table recogniser Qbit 92c (Tr) also
recognises the data as a table.

This time there are no repeat runs through the
recogniser Qbits because none of the recogniser Qbits can
deal with tables and number lists; the recogniser Qbits
can just generate them. However, two services Qbits
994c, 94d require tables (histograms and Excel) and one
requires a numbers list. These three services are then
activated and presented to the user as icons 74,76,78 in
the aQtiveDesk window 58.

In this case, the recogniser Qbits 92 and the data
structures they post back are more complex. For the
table, this includes: the title of table (where present);
the number of columns; the number of rows; column labels
(where present); row labels (where present), and
numerical table data. However, the same principles of
operations by the recogniser Qbits hold as for the simple

word recogniser Qbits. The text ig recognised as having

WO 01/02952 PCT/GB00/02560

10

15

20

25

30

35

-29-

a certain form and the fact that the text does have a
certain form, together with the transformed data, is
"announced" by the recognisers to all Qbits that can use
this type of data.

In this example, when the user selects the histogram
icon 74, the aQtiveDesk framework software program
receives the user selection 99, sets the relevant node,
simply passes the table data to the histogram Qbit and
requests that the histogram Qbit 99 uses this as a signal
to create its window etc. This histogram Qbit has only
a single action to perform which is to set the data
structure, codifying the table data and displaying it as
an interactive histogram 74 in window 80. This Qbit
program is a sort of mini-application which runs entirely
within the aQtiveSpace framework.

When the Excel icon 78 is selected, the activity is
different. Whereas the histogram Qbit only has a single
action to perform, there are several possible actions
that the Excel Qbit can perform on the table data,
including pasting the table into an Excel spreadsheet and
using variants of the Excel charting functions. The
user therefore chooses the appropriate actions from a
menu (not shown) that drops down from the icon. Only
actions which are appropriate for the table data are
suggested and revealed in the dropdown menu. When the
user selects the 3D chart 84 (Fig. 9), the Excel Qbit
starts the Excel program, if not already started, and
then remotely controls the Excel application to produce
the 3D chart. The user needs to perform no further
interaction with the display or keyboard/mouse to create
this chart. In this case, it will be understood that
the Excel service Qbit program acts as a wrapper or
controller for the existing application on the user's
desktop.

As previously noted, one of the advantages of the
invention and the aQtiveDesk embodiment is the ability to

easily extend it with Qbits developed either by the

10

15

20

25

30

35

WO 01/02952 PCT/GB00/02560

-30-

inventors and third-party developers. The code samples
in appendix A show how Qbits can be written in Java to
fit into the aQtiveDesk framework. 1In the prefered
embodiment, these Qbits can then be easily added into the
aQtiveDesk by inserting the Java class files into
particular locations and updating configuration files.

In addition, simple Qbits can be added to the
aQtiveDesk embodiment using XML files. Appendix B shows
examples of such XML Qbits.

Reference is now made to a second embodiment of the
present invention in which a software interface agent
product 10b, known as Brainstorm (trademark), as shown in
Fig. 1 is used with the Qbits 12 and aQtiveSpace software
framework 14 which sits on top of the same Java virtual
machine 16. A description of the operation of
Brainstorm will be given with reference to Figs. 12 and
13 of the drawings.

Fig. 12 depicts part of a desktop display 100
running a word processing package. The user is a pupil
doing homework, for example on the French Revolution.

The Brainstorm software interface agent 10b is active and
running in the background. As user types, text is
displayed by the word processing document. The
Brainstorm interface agent 10b simply appears as an
unobtrusive icon 102 on the edge of the desktop display
100.

As the user types, the user notices that the
Brainstorm icon has become highlighted. The user knows
that this means that the Brainstorm interface agent 10b
has found something useful in relation to the word
processing product and accordingly the user clicks on the
Brainstorm icon.

When the user clicks on the Brainstorm icon, a
window 104 opens which lists a selection of web pages
which are relevant to different parts of the essay on the
French Revolution. It will be seen from the window 104

that some of the pages 104a,b have already been

WO 01/02952 PCT/GB00/02560

10

15

20

25

30

35

-31-

downloaded so the user can view them immediately.

Reference is now made to Fig. 13 of the drawings
which depicts a flowchart of the sequence of events being
performed by the Brainstorm software interface agent 10b.

When the Brainstorm software interface agent 10b is
launched, it uses the user's personal profile to select
appropriate local and Internet resources, including
search engines and subscription services. As the user
types the essay into the word processor, the Brainstorm
interface agent Qbit 106 monitors the current document.
It extracts the text (box 108) and strips out common
words using appropriate keywords for the document as a
whole, each paragraph, each sentence, each phrase and the
user's current words (box 110). The keywords which are
extracted are used to construct searches (box 112) which
are submitted to the resources 114 which may either be
local or remote. If the search for a phrase, sentence
or paragraph returns too many results, keywords from the
surrounding text are added to reduce the items to more
relevant ones.

When the Brainstorm software interface agent 10b has
begun to receive sufficient results (box 116), it
highlights the Brainstorm icon 102 to show to the user
that the results are available. The Brainstorm
interface agent 10b continues to submit further searches
as the user types more text. It also starts to retrieve
the most relevant documents/pages which are stored (box
118) so that they are instantly available to the user and
they are also used to further check the relevance of
pages and to ascertain which part of the document to
which they are most relevant. The resulting
pages/documents from the search results are retrieved and
further filtered and sorted (box 120). When the
Brainstorm icon is clicked it opens the window 104 which
lists the most important sentences, phrases etc. against
the search results as shown in Fig. 12 and the user can

select these results for display (box 122).

10

15

20

25

30

35

WO 01/02952 PCT/GB00/02560

-32-~

Reference is now made to further embodiments of the
present invention relating to further software interface
agents or products; SiteStorm (trademark) and DeskStorm
(trademark) which are two additional software interface
agent products from the Brainstorm family. The
discussion on the preceding pages refer to the key agent
of the Brainstorm family which works alongside a Word
processor which is referred to below as Wordstorm to
distinguish it from the Brainstorm family in general.
Each of these products takes, as an input, a collection
of documents (SOURCE): in the case of SiteStorm, the
input is web pages in a web site, and in the case of
DeskStorm, the files on the user's machine, i.e. on a
disk. SiteStorm/DeskStorm then extracts keywords and
other indexing information from the SOURCE and uses this
information to search a selected remote document archives
including the web (TARGETS). The most appropriate
documents from this search (the RESULTS) are then
organised using the structure of the SOURCE and can be
displayed alongside the SOURCE. Whereas Wordstorm and
aQtiveDesk operate in real-time as the user works,
SiteStorm and DeskStorm in the background building up and
elaborating the RESULTS, while the user is working on
other topics.

The following description relates to the SiteStorm
software interface agent/product which operates in
accordance with the sequence of events in Figs. 15a-15e
resulting in a screen display of the type shown in Fig.
14. A user opens the SiteStorm agent and selects his
web site as the SOURCE.

The user leaves the SiteStorm agent to work in the
background and continues with day-to-day work on the
computer. When the user is not connected to the
Internet, the SiteStorm agent is quiescent but when the
user is connected the occasional whirr of the hard disk
is noticed.

Some time later the user opens the SiteStorm agent

WO 01/02952 PCT/GB00/02560

10

15

20

25

30

35

-33-

{(or a site editing tool with SiteStorm support) and the
user views the web site. Against each web page are
listed potential remote web pages or other documents that
may be relevant. When pages are arranged in groups, for
example in a directory hierarchy, suggestions are also
made for the group as a whole.

The results of the SiteStorm agent search are
displayed to the user in a window 130 which appears on
the user's desktop. Although the result is
superficially similar to online indexes such as Alexa
(trademark), SiteStorm's results are subtlely different.
Instead of looking at each page of the SOURCE
independently for related TARGETS document, the whole
SOURCE is taken into account. Whereas a simpler search
using keywords for the individual pages would have given
the same or similar results for related pages within the
SOURCE because they cover a similar overall area,
SiteStorm's contextual features mean that different, more
specific pages are offered.

Firstly, SiteStorm records the chosen site and if
there is not a local copy of the site SiteStorm, may,
optionally, download the site for faster subsequent
processing. SiteStorm also makes use of the structure of
the site. This it can either build itself (using the
directory and link structure of the site and clustering
in step 2 below) and/or use a user selected structure as
shown in Fig. 15b. Normally, the latter would be in
conjunction with a site management tool.

SiteStorm then performs the following steps:

1. SiteStorm examines each page in the SOURCE and
determines keywords and other indexing items for the
page (Fig. 15c). This stage uses lists of common
words to remove "noise" words and may also use
standard indexing techniques such as stemming.

2. If required SiteStorm uses these keywords to build
clusters of SOURCE pages (Fig. 15b).

3. SiteStorm uses the clustering and other structure of

10

15

20

25

30

35

WO 01/02952

PCT/GB00/02560

-34 -

the site to classify and weight keywords using
standard weighting techniques (Fig. 15c). If a
keyword/indexing item is common to many pages in a
cluster/related part of the site, then it is
allocated to the cluster/directory/index page and
given a lower weighting/priority for the individual
page. This is because these keywords are deemed to
denote the topic as a whole, as opposed to the
specific sub-topic of the page. For multi-level
hierarchies/clusters, this process is continued for
higher levels also. Where keywords are determined
for a whole cluster/group of pages, then they may
also be added (with low weight) to all pages within
that cluster/group (Fig. 15c). This is to ensure
that a page with a single image and a title "The
Guillotine" will have different suggested pages when
it is found in the context of an office equipment
site than it would if in a site on the French
Revolution.

The keywords are used to initiate searches in the
TARGET (web searches and other repositories).
Depending on the nature of the TARGET the keywords
and other index items will be transformed
appropriately to make valid "queries" or searches.
The returned pages are the initial candidate RESULT
set of documents (Fig. 15d).

The RESULT documents are allocated to the closest
matching page(s) in the SOURCE. However, where a
RESULT document is equally close to several pages
within the same cluster/group, it is allocated to
the cluster rather than the individual documents
(Fig. 15d).

Local matching of RESULT documents against their
related SOURCE pages may lead to the removal of
some pages.

The RESULT set may also grow. Hyperlinks may be

followed for web documents leading to new documents

10

15

20

25

30

35

WO 01/02952 PCT/GB00/02560

-35-

which can be matched locally against keywords.

These additional pages can then be allocated as in

step 5. Also, if the set of RESULT documents

associated with a particular SOURCE page all contain
similar words, then these may be added as tentative
additional keywords for that SOURCE page and the
process from step 2 on may be repeated using this
larger set of keywords.

8. Parts of this process are continually repeated and
reviewed in the background as pages in the SOURCE
are updated (leading to different keywords) and as
the TARGET repositories change.

The appropriate RESULT documents are then listed
against each SOURCE document (Fig. 15e). Depending on
the kind of site display and on user options, this list
may also contain the RESULT documents for associated
clusters/groups, suitably marked.

Various modifications may be made to the embodiments
hereinbefore described without departing from the scope
of the invention. For example, although the software
interface agent is described as being usable with a
computer, it will be understood that the software
interface agent may be used with other control units,
such as a TV remote control, a cellphone of the like.

The results obtained by the program may be indicated to

the user visually as in the case of a graphic icon or

audibly by a beep, or by a tactile indication in the case
of a cellphone, that the results had been obtained.

It will be appreciated that a number of similar
products may be obtained based on the same concept and
using different combinations of Qbits which are settable
by a user. For example, a software interface agent may
include a four function on-screen calculator so that when
the user selects a number, the aQtiveDesk software
interface agent suggests adding it to the calculator.
Thus, as the user moves around a set of documents

selecting numbers, these are automatically added to a

WO 01/02952 PCT/GB00/02560

10

15

20

25

30

35

-36-

running total. The calculator also recognises
arithmetic expressions so that when the user selects an
expression in a document, the aQtiveDesk software
interface agent suggests passing it to the calculator to
evaluate. The calculator may be a stand alone
calculator or may enhance the basic aQtiveDesk software
interface agent. The user can customise the calculator
keypad to include its own or third party functions by
selecting appropriate Qbits to perform numeric functions,
such as business or scientific calculations.

Other software interface agents may be specifically
directed to web-based products. For example, a software
interface agent to let the user look ahead to summary of
pages and a further software interface agent which
manages access to local and remote mirrors of frequently
used sites. Other software interface agents may provide
interactive visualisations of web sites and also guide
users round key features of web sites. All of the
products use a common server-site web map on activated
sites which is linked to summaries, providing update
information and providing data visualisations. Such
software interface agents will include some of the
features described above with reference to the aQtiveDesk
and Brainstorm implementations.

The users of the software could be any person or
organisation who use a computer to access information or
resources, such information or resources usually residing
on the computer used by the user and/or on a network that
the computer may be connected to and/or on the internet.
There is a large potential market for internet use.

There is a large potential market for corporates who
wanted to use the software on their intranet and/or
extranets, providing the advantage to users that it can
suggest the "right thing at the right time" (see
'Customer Code' example in Appendix B). Because the
software can suggest things to the user, there is a

market for it as an advertising and marketing tool,

WO 01/02952 PCT/GB00/02560

10

15

20

25

30

35

-37-

allowing marketers and advertisers to offer targetted
content to people. Websites and portals can utilise this
feature to retain users by suggesting aspects of their
site to users. The software technology can have many
alternative instantiations, each offering a different
targetted product to a specific market, but in every case
the software acts as a broker between the information and
the user, providing faster and easier access to that
information for the user.

Advantages of the invention are that use of the
status/event analysis concept enables the creation and
use of observeable methods and observeable data. This
means that it makes it easier to program or produce
systems which observe and react to the electronic and
physical environment. The use of self-describing
objects allow the typed inspection of methods, data and
particular events. Because of the modular nature of the
program elements, the Qbits, collections of many
applications can be provided which share common
components and these common components can be combined to
form specific customised applications, either by a
provider or by an end-user. The use of modular
components allows a wide product range to be implemented,
although it may be provided in three main categories:
web-based products; end-user desktop products as well as
corporate productivity products. The software interface
agent can be used synchronously or asynchronously,
although asynchronous use is considered to be essential
for networked applications. In addition, the software
interface agent has the advantage of being used in real-
time, that is when the user is actually working on a
document or is actively using a control unit and receives
a response from the software interface agent that the
user recognises as being related to their current work,
such response time typically but not necessarily being
less than ten seconds. This timing is achieved on any

computer system that fulfils or exceeds the minimum

WO 01/02952 PCT/GB00/02560

10

15

20

25

-38-

requirements of 386 processor or equivalent, 4MB RAM,
running any operating system typically but not
exclusively Windows (3.1, 95, 98, NT), Macintosh 0S,
Linux, Solaris, Unix. In addition, the software
interface agent can also be used in non real-time; that
ig, after completion of a task, the interface agent can
peruse a work product so that when the user then next
activates the control unit or computer, a list of prompts
or suggestions can be provided. The software interface
agent has the advantage of being suppliable on a floppy
disk or CD drive or it can be embodied into a specific
chip or integrated circuit within a control unit or a
computer or by an internet download. A further advantage
is that the user can set or define the components which
are required for a particular interface agent, thus
giving a wide variety of applications. Other advantages
are that the software interface agent can react in ways
that are appropriate to a user's current actions and/or
data and the software interface agent can integrate data
from a wide variety of sources, both from the user's
computer and from a local or global network. A further
advantage is that a software interface agent does not
interrupt the user, even in real-time activities, and
provides a non-intrusive prompt that the user may wish to
take advantage of to further extend enquiries or

investigations.

15

20

25

30

40

45

WO 01/02952 PCT/GB00/02560

-39-
APPENDIX A
This appendix includes the Java code for a
simplified version of the SumIt! Qbit. It consists of
three parts:
MiniNumberList

A Java class for the type of data recognised.

MiniFigureRecogniser
A java class for the recogniser Qbit written in
the recogniser pattern. It looks at the user's
copied text, checks whether it is a list of
numbers and if so converts them into a

MiniNumberList object.

MiniSumIt
A Java class for the service Qbit written in
the service pattern for copying back data into

the clipboard.

{/
//====----_MiniNumberList

package com.agtive.user.minisumit;

import java.util.Vector;
import java.util.StringTokenizer;

public class MiniNumberList

i
protected double[] fiqures;
ublic DoubleList (double fiqures
R
this.fiqures = figqures;
— 1
public MiniNumberList (String str)
—_i
Vector vfiqures = new Vector();
StringTokenizer toks = new StringTokenizer(str, "\t\n\r ");
while (toks.hasMoreTokens ())
I ¢
String tok = toks.nextToken () ;
if (tok.length() == 0)
continue;
try
{

viiqures.addElement(Double.valueOf (tok))

}
catch (NumberFormatException e) {}

10

15

20

25

30

35

40

45

50

WO 01/02952 PCT/GB00/02560

-40-

|

fiqures = new double| vfiqures.size()]1:
for ((int i = 0; i < fiqures.length; i++)
figures[i] = ((Double)vfiqures.elementAt(i)
) .doubleValue () ;

R S
public int length ()
N
return fiqures.length;
—1
public double sum()
1
double res = 0.0;
for (int i = 0; i < figures.length; i++)
res += fiqures[i];
return res;
1
1
I
I
e —— MiniFigureRecogniser

package com.agtive.user.minisumit;

import java.io.*;

import java.net.*;

import java.awt.*;

import djava.util.*;

import com.agtive.gbit.*;

import com.agtive.gbit.pattern.*;

public class MiniFiqureRecog implements RecogniserlPattern

S

public final static Type outRecognise = Type.forClass (
MiniNumberList.class) ;
public Listen listenRecognise; // Recognise is a listenable node

{**
* aQOtive Desk sets this node if the clipboard data is
* recognised as a String (basic text type)
—_*/
public void setTrvRecognise(String string)

— 1

MiniNumberlList nl = new MiniNumberList (string) ;

if (nl.length() > 1) // singe numbers or non-numbers not
recognised
- {

listenRecognise.set(Data.newData(nl))
// aQtiveDesk will take this data as 'recognised’
// and pass it to other Qbit recognisers or services
// _that match this type

15

20

25

30

35

40

45

50

55

WO 01/02952 PCT/GB00/02560
-41-
// In particular, the service MiniSumIt will be
activated
- 1
Y
1
/!
/]
] — MiniSumlt

package com.agtive.user.minisumit;

import java.io.*;

import java.net

* -
Ly}

import java.awt

* .
s ra

import java.util.*;

import com.agtive.gbit.*;

import com.agtive.gbit.pattern.*;

import com.agtive.desktop.Config;

public class MiniSumIt implements ServicelPattern

.

public final static Type outlIcon = Type.forClass(Image.class) ;

public Data getIcon() // icon displayed by aQtiveDesk for this

service

—

return Data

.newData (Config.getImage (

"com/agtive/user/minisumit/minisumit.gif"));

i

public final static Type outHelp = Type.forClass(String.class) ;

public Data getHelp ()

L

return Data

.newData ("Sum the numbers") ;

|

public final static Type outProvide = Type.forClass(String.class

I

public Listen

* aQtive

listenProvide; // Provide is a listenable node

Desk sets this node if the clipboard data is

* recognised as a MiniNumberlist

public void setTryProvide(MiniNumberlist figures)

double val = fiqures.sum();

int len = figures.length();
listenProvide.set(Data.newData(""+val), "sum") ;
listenProvide.set(Data.newData{ ""+(val/len)), "average"

) :

// aQtive Desk will put these in the copy back menu

for MiniSumIt
— 1

WO 01/02952 PCT/GB00/02560

-42-

WO 01/02952 PCT/GB00/02560

-43-

APPENDIX B

XML Qbits are an easy way to specify simply Qbits.

This appendix includes the definitions of four complete
example XML Qbits:
Pet Lovers Heaven

Recogiser for fixed keywords and associated

service taking user to fixed web page.
HCI Book Search

A Qbit service that links to a web search

engine.

Customer Code
A Qbit recogniser for customer codes as may be
found in a corporate Intranet and associated
service linking into relevant Intranet

resources.

Surelynot Date
Regular expression recogniser and associated
service for date-based web
service. .Demonstrates multiple menu items for
service and URL using component parts of a

recognised type (day, month, vyear).

XML Qbits can be combined with Java Qbits in the
aQtiveDesk embodiment. XML Qbits can be used to produce

recognisers or services.

Many of the Qbits in the commercial version of aQtiveDesk
(onCue) are written using the XML Qbit API.

/i

e Pet Lovers Heaven

<?xml version="1.0" standalone="no" ?>

<!DOCTYPE Obit PUBLIC
w_//aOtive//QObit Specification V1.2Beta//EN"

"http://www.aQtive.com/dtd/gbit vl1.2Beta.dtd">

<1'-- Keyword Qbit Template -->
<!'-- Copyright aQtive limited 1999 -->

<Qbit>

WO 01/02952 PCT/GB00/02560

-44 -

<1-- Recogniser Bits -->

<Recogniser>

<Name>Pet lLovers Heaven Recogniser</Name>

<Recognises>
<Match Type="Kevywords">dog, goldfish, rat</Match>

</Recognises>

<!-- N.B. Recogniser "Is" should match Service "For" -->

<Is Type="User" Name="Keywords for Pet Lovers Heaven'>

<Field Name='Matched" Expand="Yes">$0</Field>

</Is>

</Recogniser>

<1-- Service Bits -->

<Service>

<Name>Pet Lovers Heaven</Name>

<Icon>user/images/rat.gif</Icon>

<Author>Paula Elizabeth Tomkins</Author>

<Help>A page with all sorts of things about pets</Help>

<For Type="User" Name="Keywords for Pet lLovers Heaven">

<URL Label="pet lovers page">http://www.surelynot.com/pet-lovers/pet-
lovers.html</URL>

</For>

</Service>

</Qbit>
I

| n—— HCI Book Search
<?xml version="1.0" standalone='"no" ?>

<!DOCTYPE Qbit PUBLIC
"-//aQtive//Qbit Specification V1.2Beta//EN"

"http://www.aQtive.com/dtd/gbit _vl.2Beta.dtd">

<1-- HCI Book Search -->

<!'-- Author Alan Dix -->

<1-- Copyright aQtive Ltd 1999 -->
<Qbit>

<!-- Service Bits -->

<Service>

<Name>HCI Book Search</Name>

<Icon>user/images/eve-icon.gif</Icon>

WO 01/02952 PCT/GB00/02560

-45-

<Author>Alan Dix</Author>

<Help>Search for references to this topic in the HCI book</Help>

<For Name="com.agtive.gbits.general.SomeWords" Type="Java Class'>

<URL_Expand="Yes" Label="search_ the HCI

book">http://www.hcibook.com/hecibook/search/dosearch. cqgi?query=$0</UR

L>

</For>
</Service>
</Qbit>

1/

e Customer Code

<?xml version="1l.0" standalone="no" ?>

<!DOCTYPE QObit PUBLIC

"_//a0tive//Obit Specification V1.2Beta//EN"

"hittp: //www.aQtive.com/dtd/gbit vl.2Beta.dtd">

<1-- Reqular Expression Qbit Template -->
<!-- Author Alan Dix ==->

<!-- Copyright aQtive Ltd 1999 -->
<Obit>

<!-- Recogniser Bits —->

<Recogniser>

<Name>Customer Code Recogniser</Name>

<Recognises>
<Match Type="RegExp">"\s* (C[A-Za-z][0-9]1{4,6})\s*$</Match>

</Recognises>

<1-- N.B. Recogniser "Is" should match Service "For" =-->

<Is Type="User" Name='"Customer Code Type">

<Field Name="code" Expand="Yes">$1</Field>

</Is>
</Recogniser>

<!-- Service Bits -->

<Service>

<Name>Customer Code</Name>

<Icon>user/images/customer.gif</Icon>

<Author>Alan Dix</Author>

<Help>Look up the customer on ACME's Corporate Intranet</Help>

<For Type='"User" Name="Customer Code Type'>

WO 01/02952 PCT/GB00/02560

~-46-

<URL Expand="Yes" Label="look up customer code"

>http://internalserver.acme.com/intranetsearch.cgi?code=$0</URL>
</Foxr>

</Service>

</QObit>

e Surelynot Date

<?xml version="1.0" standalone="no'" ?>

<!'DOCTYPE Qbit PUBLIC

"-//aQtive//Qbit Specification V1.2Beta//EN"

"hitp://www.aQtive.com/dtd/gbit v1.2Beta.dtd">

<!-- Example Date Qbit =-->

<!--Author: Alan Dix -->

<!--Copvright aQtive limited 1999 —-->

<0Obit>
<1-- Recogniser Bits -->

<1-- recognises dates such as 12/12/99 3-7-1997 1-1/2000 01/01/2000

abc -—=>

<Recogniser>

<Name>Example Date Recogniser</Name>

<Recognises>

<Match Type="RegExp">"\s*([0-312[0-91) [-/] ([0-3]?[0-9]) [-/1 ([0~
9]1{2}1[0-91{4})\s*$</Match>

</Recognises>

<1-- N.B. Recogniser "Is" should match Service "For" -->

<Is Type="User" Name="Surelynot Date Type'">

<Field Name="DD" Expand="Yes">$1</Field>

<Field Name="MM" Expand="Yes">$2</Field>

<Field Name="YY" Expand="Yes">$3</Field>
</Is>

</Recogniser>

<!1-- Service Bits -->

<Service>

WO 01/02952 PCT/GB00/02560

-47-

<Name>Surelynot Date</Name>

<Icon>user/images/date.gif</Icon>

<Author>Alan Dix</Author>

<Help>Look up a date in surelynot date</Help>

<For Type="User" Name="Surelynot Date Type'>

<URL Label="lookup the date - UK format"

Exgand="Yes">http://www.surelvnot.com[dates(date.cqi?dav=${DD}&amEgmo

nth=3${MM} & year=${YY}</URL>

<URL Label="lookup the date - US format"

Expand="Yes">http://www.surelynot.com/dates/date. cqi?day=${MM} &mo

nth=S${DD}&year=${YY}</URL>
</For>

</Service>

</Qbit>

1/

10

15

20

25

35

WO 01/02952 PCT/GB00/02560

-48-

CLAIMS

1. A method of providing active assistance to a user
performing a computer type task by using a software
interface agent with a control unit, said method
comprising the steps of:

providing a software interface agent for monitoring
the activities of a user, said agent recording data
representative of the user's activities,

analysing the data obtained from said user's
activities,

identifying events/data present in said user's
activities and generating data corresponding to said
identified events/data,

comparing said generated data with a database of
information services or data accessible by said user's
control unit, and

selecting at least one service corresponding to the
analysed and identified data and displaying to a user a
representation of said selected service, said
representation being selectable by the user to access
said selected service.
2. A method as c¢laimed in claim 1 wherein said method
is performed in real-time when a user is using the
control unit.
3. A method as claimed in claim 1 wherein said method
may be performed when the control unit is not being used
on a stored work product of the user.
4. A method as claimed in any preceding claim wherein
the method is usable with a user control unit which is
conveniently a computer.
5. A method as claimed in any one of claims 1 to 3
wherein the method is usable with any similar device
which incorporated an embedded computer processing unit,
such as a microprocessor.
6. A method as claimed in any preceding claim wherein a
graphical representation of the service is presented to

the user.

10

15

20

25

30

35

WO 01/02952 PCT/GB00/02560

-49-

7. A method as claimed in any one of claims 1 to 5
wherein an audible representation of the service is
provided to the user.
8. A software interface agent for monitoring the
activities of a user using a control device and for
providing prompts based on a review of data from the
user's activities to the user to allow the user to decide
to accept sald prompts, said software interface agent
comprising,

clipboard program means for monitoring the
activities of a user, data recognition program means for
comparing user input data with a user definable database
of recognition program elements, and for providing a
corresponding data recogniser output data,

user service program means coupled to at least one
user service for receiving said recogniser output data
and for activating said service, obtaining the results of
said services, and

indication means for providing to the user an
indication that a service has been performed, the user
being capable of interacting with the indication means to
obtain the results of the service performed.
9. A software interface agent as claimed in claim 8
wherein said indication means is a graphical display
means.
10. A software interface agent as claimed in claim 8
wherein said indication means is an audible message
provider.
11. A software interface agent as claimed in claim 9 or
10 wherein said computer program is operable in a host
personal computer, laptop, palmtop or the like.
12. A software interface agent as claimed in any one of
claims 9 to 11 wherein the software interface agent is
downloadable from the internet to a user's host machine.
13. A software interface agent as claimed in claim 9 or
10 wherein said computer program is operable in a control
unit such as a web TV remote control, a telephone, a

cellphone which have a‘processing unit with a memory for

WO 01/02952 PCT/GB00/02560

10

15

20

25

30

35

-50-

receiving said program.

14. A software interface agent as claimed in any one of
claims 8 to 13 wherein said at least one service is a web
browser program which is launched when said recogniser
output data is received.

15. A software interface agent as claimed in claim 14
wherein the computer program includes further program
elements for calculating what has been copied to the
clipboard program means from the user's activities.

16. A software interface agent as claimed in any one of
claims 8 to 15 wherein the service program means includes
data types corresponding to a plurality of different
services, said data type being generated by said data
recognition program means.

17. A software interface agent as claimed in any one of
claims 8 to 16 wherein each recogniser program element
has two nodes, a first node being settable and
corresponding to the input of the recogniser, a second
node being listenable and corresponding to the output of
the recogniser.

18. A software interface agent as claimed in claim 17
wherein said service program means has a first settable
node, a listenable node for receiving data items received
at said clipboard, and a callable node returning the
results of a service.

19. A software interface agent as claimed in any one of
claims 8 to 18 wherein the graphical display means is a
computer screen and a graphic window representing a
desktop service is displayable, said window being
clickable-on and being interactive with said user.

20. A software interface agent as claimed in claim 19
wherein said window displays a plurality of services
icons found by said software interface agent, each said
services being actuatable by said user by clicking on a
selected icon.

21. A software interface agent as claimed in claim 20
wherein said icons may include search engines for

browsing the worldwide-web, user desktop items such as CD

15

20

25

30

WO 01/02952 PCT/GB00/02560

-51 -

encyclopaedias and dictionaries and graphical display
programs. ’
22. A software interface agent as claimed in any one of
claims 8 to 21 wherein the software interface agent
operates in real-time while the user is using the
computer.
23. A software interface agent as claimed in any one of
claims 8 to 21 wherein the software interface agent may
not operate in real-time; it may operate on a user's work
product after it has been created.
24. A software interface agent as claimed in any one of
claims 8 to 23 wherein software interface agent data
recognition program means and said user service program
means may operate in synchronous or asynchronous
versions.
25. A software interface agent as claimed in claim 24
wherein said software interface agent supports both
synchronous and asynchronous operation and converts
automatically between said versions.
26. A software interface agent as claimed in claim 23 or
24 wherein said asynchronous versions are used in
networked environments.
27. A computer program product comprising:
a computer usable medium having computer readable code
means in said medium for monitoring the activities of a
user operating a control device and for providing to the
user prompts or suggestions to allow the user to perform
further activities using said control device, said
computer program product having:

computer readable program code means for monitoring
the activities of a user and for receiving data from the
user's activities, computer readable program code means
for comparing the data from said user's activities with a
user definable database of data recognition elements and
for providing outputs from said data recognition
elements,

computer readable program code means for receiving

said data recognition element outputs and for executing a

15

20

25

30

WO 01/02952 PCT/GB00/02560

-52-

service function and obtaining the results of said

service,

computer readable program and code means for causing
said control unit to indicate to the user when the
results of said service are available to the user to
access.
28. A computer program product as claimed in claim 27
wherein said computer program product i1s stored on a
computer disk and said control unit is a PC-type, laptop
or a palmtop computer.
29. A computer program product as claimed in claim 27
where in said computer program product is stored on any
other form of electronically readable medium, such as a
programmable read-only-memory integrated circuit (PROM)
which may be located in a computer, TV control unit,
cellphone or the like.
30. A computer program product as claimed in any one of
claims 27 to 29 wherein the computer program product is
created at a user's location by downloading the software
interface agent from the internet.
31. A computer program product as claimed in any one of
claims 27 to 30 wherein the computer program product
includes computer readable code means for causing the
computer to display a window or icon on a computer screen
to indicate the results on said service, said icon being
clickable-on by a user to display the results of the
service.
32. A control unit having a software interface agent
loaded in the form of a computer program product, said
computer program product having a computer usable medium
having a plurality of executable program code means for
monitoring the activities of a control unit user,
executing at least one service based on data from the
user's activities and for obtaining results of said
service, and for providing an indication to the user that
results have been obtained for inspection by said user.
33. A control unit as claimed in claim 32 wherein the

control unit is a computer.

10

WO 01/02952 PCT/GB00/02560

-53-

34. A control unit as claimed in claim 32 or 33 wherein
the computer program product is a disk; either a floppy
disk or a CD or delivered over the internet.

35. A control unit as claimed in any one of claims 32 to
34 wherein the program code means includes display code
means for displaying icons in a window display to the
user, said icons being representative of said services
performed by said software interface agent.

36. A control unit as claimed in any one of claims 32 to
34 wherein the indication to the user is provided by an
audio signal from audio signal generating means.

37. A control unit as claimed in any one of claims 32 to
36 wherein said scftware interface agent operates in
real-time as the user performs activities with the
control unit or computer.

38. A control unit as claimed in any one of claims 32 to
37 wherein the software interface agent supports

synchronous and asynchronous operation.

WO 01/02952

1/11

PCT/GB00/02560

aQtiveDesk || Brainstorm Notes/Office 3rd Pa
12a ' 1 I I | 1 I I I I rtyl 1/2k
n : -
126 = O AP it s o
[T T T T T T T T ~F1)
12c- aQtiveSpace
14 I
§ JAVA VM
16—
Fig.1

SUBSTITUTE SHEET (RULE 26)

WO 01/02952 PCT/GB00/02560

2/11
38 32
//
convert rate \ rateNow
currency exchange
external — converter rate
call —_— 3 L
callable\ L ﬂivable Igettablbel&
ist
3 4 (36 istenable
30

external
source

Fig.3

external
source

42 Fig.4

rateNow rate
exchange 45
rate 7
) ettable &
istenable Seftable
currency
converter
convert
external 40
call -— TN

callable 44

SUBSTITUTE SHEET (RULE 26)

WO 01/02952 PCT/GB00/02560

To:i*Sarah Bailey' <sb17@hiraeth.com>
From: “Jane Greystoke"
Cc: "Alan Dix" <alan@aqtive.bham.ac.uk>
Subject: BBC Neuws

|Sarah,

|Please tell ARlan that I'd be very happy for him to use our sales figures
as an example in his agtiveSpace dems that he's giving on Monday.

The up-to-date figures are below. - 52
Flnppy Banana Fruits (1880's tons)
993 994 1995 1996 1997 1998 = 50
apples 12 15 17 19 17 15
bananas 21 20 21 22 23 24 54 =]
lclementines 26 25 24 20 17 20 2 /
jdates 6 7 7 3 7 6]

Tell him ['ve found the dancing histograms very useful at sales conferences.
BTW, I‘ve been checking out some of the textile sites you manage at Hiraeth.
11 especially like Tex's page at http://wwu.hiraeth.com/ytg/tex.htm

J

v
jyours

lsane 56

jane Greystoke &
Marketing Director
I;oppy Banana lnternatinnal

T T T I - - T !ér,'ﬁi.!é

Fig.5

20 21 22 23
25 24 28 17
7 7 3 7

the dancing very useful
ing out some of the textile sites y

x's page at http://wwu.hiraeth.com

Fig.6

iPlease tell Alan that I'd be very happy for him to use
{as an example in his aQtiveSpace demo that he's giving
{The up-to-date figures are below. 54

Floppy Banana Fruits (1660°'s tons)
1993 1994 1995 19946 1997 1998
12 15 17 19 17
21 208 21 22 23
lementines 26 25 24 20 17
ates 6 7 7 3 7

JTell him I've found the dancing histograms very useful
BTW, I've been checking out some of the textile sites y

Fig.7

SUBSTITUTE SHEET (RULE 26)

WO 01/02952 PCT/GB00/02560

4/11

Floppy Banana Fruits (1000's tons)

. dates

cHEAES

. bansnas

1903 1004 1005 1908 1007 1008 .OPFIH

ry happy fo
e demo that
DW . i

8Baiis

1008

-

170

g

4

1997 . \ ;é
\
8

0

19937 1994 1995799 1997 1999
12 15, 7 9] 7
2 pi] 2 A

.) A0 o

3 :

SUBSTITUTE SHEET (RULE 26)

WO 01/02952

5/11

watch clipboard
for changes

Y

pass clipboard data
to recognisers

feedback
data to more
recognisers

receive
recognised data

96 _/

'

check for
suitable services

|

create toolbar
for services

wait for
user

receive
user selection

f

run
selected services

— [
B B cemermnes
‘B
.-oﬂll

ool
woin
e

PCT/GB00/02560

90

recognisers

words

single word
recogniser

recogniser

table
recogniser

number list
recogniser

92¢

92b

services
NEEs

searches
B2a

Thesaurus]
dictionary

CDrom
encyclopedia

o8

histogram

Fig.10

SUBSTITUTE SHEET (RULE 26)

WO 01/02952 PCT/GB00/02560

6/11

Recogniser

TryRecognise
(settable node)

|1
140_|

Y
check if data

invoke
listeners on
<::m Recognise
142- node

Recognise
(listenable node)

TryRecognise
HDI:? node is set]L_//"‘M

isofrightkind T™~—___ | 146

148

Fig.11

SUBSTITUTE SHEET (RULE 26)

WO 01/02952 PCT/GB00/02560

7M1

— P
M T

Hon o Shoteut!n chancutrg

FIp2ee Tejnetese

104a

¥ Microsolt Word - My school homew s

4—100

104b

Qomid Depardiwy 12,436
ratense Om of the

ou o I
ke ywonts. ..

L8 L1 DY VUIULIVIL

*/Asual Cafe

dbDE
0%
Inteinet

E «plarer

The French Revolution was a pretty weird happening, in which lots of posh people lost their heads to|
the guillotine and the peasants were revolting,

One of the strangest things was the aristocrats did not publish their strife on the world wide web but
instead relied on books like those written by Gerald Depardieu.

Fig.12

130

l

a
(f‘ (
- COMMmMuYnNity.htm TODO.htm
general.htm aQD.htm DE usercom.htm
managementhtm B+Ey webcomhtm

artners.htm
P s00 also

http:/iwww.xxx.comiinfolz.htmi
http:ilinfo.ax.net/pa gesisummary/sum.htmt

history.htm
contact.htm

ag-in-news.htm

http:/iwww.rockall.ac.uk/accomodation.htmi
httpiizzz.malinteresting_site. html

ptess.htm

news.htm E»

javacomhtm

Fig.14

SUBSTITUTE SHEET (RULE 26)

WO 01/02952 PCT/GB00/02560

8/11
read user
configuration
102
- !
display select
' normal icon appropriate

resourses

|

POy — monitor 1 06
E oot e e s i e current
hra (wrt e a? Aa0? ety e Sag v document

!

extract | —110
keywords ‘

| 112

create and F_/

send searches

(s

receive
116 search results

J
display

102 ~ active icon
//
user clicks \ @
i 120
con fiterand —"

114

Fig.13

appropriate

local and
remote

resourses

(

initiate
downioads

sort results
104 begin to
@ /] download
T B re— display results pages
- e ———— |
122
use
téser select:ts / download
ocuments
display pages
L - documents
s

SUBSTITUTE SHEET (RULE 26)

WO 01/02952

Stage 1
determine structure

user

Fig.15a

9/11

PCT/GB00/02560

Stage 1
determine structure

Stage 2

generate index
terms

pages

Stage 3

find ap?ropriate
or each
document/cluster

Stage 4
display results

choice
of

use directory
structure (SS/DS)

based on link

structure (SS only)

system derived
clusters (SS/DS)

user defined
structure (SS/DS)

Fig.15b

cluster/directory
structure

5B5]B ™
R rh

oolormho

A

SUBSTITUTE SHEET (RULE 26)

WO 01/02952 PCT/GB00/02560

10/11

Stage 2
generate index terms

f '
for each document
find index terms

Y
determine raw < @

index terms N

for each cluster (bottom up)
find common child index terms

\ more?

N

for each cluster/document
(top down) weaken weight of ==
use feedback terms strong in parent
to give
weighted terms

to stage 3

Fig.15¢c

SUBSTITUTE SHEET (RULE 26)

WO 01/02952

Stage 3
find appropriate pages

!

for each document/cluster
find matching pages
using raw index terms

11/11

more?

N

for each cluster (bottom up)

PCT/GB00/02560

Stage 4
find appropriate pages

Y

for each document/cluster
rank matching pages
based on feedback weights

(from stage 2)

|

find pages common
to many children

V

add these pages to cluster
matches remove from children

to stage 4

Fig.15d

more?

N

display ranked pages as
appropriate (e.g. as list after
relevant document in listing,
in graphical window,in menu

!

done i

Fig.15e

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

