20157153796 A1 I 01000 0000 0 OO0 00

<

W

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

8 October 2015 (08.10.2015)

WIPOIPCT

(10) International Publication Number

WO 2015/153796 A1l

(51

eay)

(22)

(25)
(26)
(30)

1

(72

International Patent Classification:
GO6F 17/30 (2006.01) GO6F 3/06 (2006.01)
GO6F 11/14 (2006.01)

International Application Number:
PCT/US2015/023927

International Filing Date:
1 April 2015 (01.04.2015)

Filing Language: English
Publication Language: English
Priority Data:

1798/CHE/2014 3 April 2014 (03.04.2014) IN
14/454,687 7 August 2014 (07.08.2014) US

Applicant: SANDISK ENTERPRISE IP LL.C [US/US];
951 Sandisk Drive, Milpitas, CA 95035 (US).

Inventors: KADAYAM, Harihara; 951 SanDisk Drive,
Milpitas, CA 95035 (US). NEELAKANTA, Niranjan,
Patre; 951 SanDisk Drive, Milpitas, CA 95035 (US).
TAPSE, Ajit, Kumar; 951 SanDisk Drive, Milpitas, CA
95035 (US). KRISHNAN, Manavalan; 951 SanDisk
Drive, Milpitas, CA 95035 (US). O'KRAFKA, Brian,
Walter; 951 SanDisk Drive, Milpitas, CA 95035 (US).
GEORGE, Johann; 951 SanDisk Drive, Milpitas, CA
95035 (US).

(74

(8D

(84)

Agents: WILLIAMS, Gary, S. et al.; Morgan Lewis &
Bockius LLP, 2 Palo Alto Square, 3000 El Camino Real,
Suite 700, Palo Alto, CA 94306 (US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

(54) Title: METHODS AND SYSTEMS FOR PERFORMING EFFICIENT SNAPSHOTS IN TIERED DATA STRUCTURES

Data Swrage System 100 -\‘

Storage Controller 120

111

Management Moduie 140

in-

R CTRL l Cﬁ’?}(\ﬁ) Memory
| — 144 Storage Medium 130
{e.g.. non-volatile
| i MEmory)
i 101 ! 103
Computer System {[‘\ E;rczoder ol Storage s"\
N | 135 Lt e (]
110 i 1] =2 | Mediurm % §
V] Bufier{ i Decoder Vo Vi
Error Control Module 125 Snapshot Metadata
I 128
|

Figure 1

(57) Abstract: A memory controller detects a request, with a key to a data object and a value, to perform an operation. The memory
controller locates the data object by mapping the key to a location of the data object in a tiered data structure and identifies a se -
quence number of the data object. When the sequence number of the data object is greater than a sequence number of a snapshot of
the tiered data structure, the memory controller replaces the data object with a moditied data object, including the key and the value,
and assigns the modified object a unique sequence number. When the sequence number of the data object is less than the sequence
number of the snapshot, the memory controller inserts a new data object, including the key and the value, into the tiered data struc-
ture and assigns the new data object the unique sequence number.

WO 2015/153796 PCT/US2015/023927

Methods and Systems for Performing Efficient
Snapshots in Tiered Data Structures

TECHNICAL FIELD

[0001] The disclosed embodiments relate generally to memory systems, and in

particular, to improving the performance and reliability of tiered data structures.
BACKGROUND

[0002] The speed of many computer operations is frequently constrained by the speed
and efficiency with which data can be stored and retrieved from data structures associated
with a device. Many conventional data structures take a long time to store and retrieve data.
However, tiered data structures can be used to dramatically improve the speed and efficiency
of data storage. Some tiered data structures enable data searches, data insertions, data
deletions, and sequential data access to be performed in logarithmic time. However, further
improvements to tiered data structures can further increase the speed, efficiency, and
reliability with which data can be stored and retrieved, thereby improving the performance of

devices relying on such tiered data structures.

SUMMARY

[0003] Various implementations of systems, methods and devices within the scope of
the appended claims each have several aspects, no single one of which is solely responsible
for the attributes described herein. Without limiting the scope of the appended claims, after
considering this disclosure, and particularly after considering the section entitled “Detailed
Description” one will understand how the aspects of various implementations are used to

improving the performance and reliability of tiered data structures.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] So that the present disclosure can be understood in greater detail, a more

particular description may be had by reference to the features of various implementations,

cnma nfurhich aradlluctrated in the appended drawings. The appended drawings, however,
‘¢ pertinent features of the present disclosure and are therefore not to

be considered limiting, for the description may admit to other effective features.

[0005] Figure 1 is a block diagram illustrating an implementation of a data storage

system in accordance with some embodiments.

WO 2015/153796 PCT/US2015/023927

[0006] Figure 2A is a block diagram illustrating data structures associated with a

management module in accordance with some embodiments.

[0007] Figure 2B is a block diagram illustrating data structures associated with a

storage medium in accordance with some embodiments.

[0008] Figure 3 is a block diagram of a memory management module in accordance

with some embodiments.

[0009] Figure 4A illustrates an example of a tiered data structure in accordance with

some embodiments.

[0010] Figures 4B-4E illustrate the performance of example operations on the

example tiered data structure in Figure 4A in accordance with some embodiments.

[0011] Figures 5A-5D illustrate the performance of example operations on a tiered

data structure in accordance with some embodiments.

[0012] Figures 6A-6F illustrate a flowchart representation of a method of managing a

tiered data structure in accordance with some embodiments.

[0013] Figures 7A-7C illustrate a flowchart representation of a method of managing a

tiered data structure in accordance with some embodiments.

[0014] In accordance with common practice the various features illustrated in the
drawings may not be drawn to scale. Accordingly, the dimensions of the various features may
be arbitrarily expanded or reduced for clarity. In addition, some of the drawings may not
depict all of the components of a given system, method or device. Finally, like reference

numerals may be used to denote like features throughout the specification and figures.

DETAILED DESCRIPTION

[0015] The various implementations described herein include systems, methods

and/or devices used to improve the performance and reliability of tiered data structures.

[0016] Some embodiments include a method of managing a datastore storing one or
more tiered data structures. In some embodiments, the method is performed by a memory
controller (e.g., management module 140, Figures 1 and 3) with one or more processors (e.g.,
CPU(s) 142, Figures 1 and 3) and memory (¢.g., memory 302, Figure 3). In some
embodiments, the memory controller is operatively coupled with or, alternatively, includes

non-volatile memory that includes the datastore. In some embodiments, the non-volatile

2

WO 2015/153796 PCT/US2015/023927

memory (e.g., storage medium 130, Figures 1 and 2B) comprises one or more non-volatile
memory devices. In some embodiments, the one or more non-volatile memory devices
includes one or more three-dimensional (3D) memory devices and circuitry associated with
operation of memory elements in the one or more 3D memory devices. In some
embodiments, the circuitry and one or more memory elements in a respective 3D memory
device, of the one or more 3D memory devices, are on the same substrate (e.g., a silicon
substrate). The method includes detecting a request to perform an update operation of a first
data object in a tiered data structure of the one or more tiered data structures stored in the
datastore, the request includes first key information corresponding to the first data object and
a new value for the first data object. The method includes: locating the first data object using
a key-map to map the first key information to a location of the first data object in the
datastore; and identifying a sequence number associated with the first data object. In
accordance with a first determination that the sequence number associated with the first data
object is greater than a first boundary sequence number corresponding to a first snapshot of
the tiered data structure, the method includes: replacing the first data object in the tiered data
structure with a modified first data object including the first key information and the new
value; and assigning the modified first object a unique sequence number. In accordance with
a second determination that the sequence number associated with the first data object is less
than or equal to the first boundary sequence number corresponding to the first snapshot of the
tiered data structure, the method includes: while maintaining the first data object in the tiered
data structure, inserting a second data object into the tiered data structure, the second data
object including the first key information and the new value; and assigning the second data

object the unique sequence number.

[0017] Some embodiments include a computer system or device (e.g., data storage
system 100, Figure 1 or management module 140, Figures 1 and 3), comprising: one or more
processors; and memory storing one or more programs to be executed by the one or more
processors, the one or more programs comprising instructions for performing or controlling
performance of any of the methods described herein. Some embodiments include a non-
transitory computer readable storage medium, storing one or more programs for execution by
one or more processors of a computer system or device (e.g., data storage system 100, Figure
1 or management module 140, Figures 1 and 3), the one or more programs including
instructions for performing any of the methods described herein. Some embodiments include

a computer system or device (e.g., data storage system 100, Figure 1 or management module

WO 2015/153796 PCT/US2015/023927

140, Figures 1 and 3) comprising: means for performing the operations of any of the methods

described herein.

[0018] Numerous details are described herein in order to provide a thorough
understanding of the example implementations illustrated in the accompanying drawings.
However, some embodiments may be practiced without many of the specific details, and the
scope of the claims is only limited by those features and aspects specifically recited in the
claims. Furthermore, well-known methods, components, and circuits have not been described
in exhaustive detail so as not to unnecessarily obscure more pertinent aspects of the

implementations described herein.

[0019] Figure 1 is a diagram of an implementation of a data storage system 100 in
accordance with some embodiments. While some example features are illustrated, various
other features have not been illustrated for the sake of brevity and so as not to obscure more
pertinent aspects of the example embodiments disclosed herein. To that end, as a non-limiting
example, data storage system 100 includes a storage controller 120, and a storage medium
130, and is used in conjunction with a computer system 110. In some embodiments, storage
medium 130 includes a single memory device (e.g., a volatile memory device or a non-
volatile memory (“NVM?”) device such as magnetic disk storage device, optical disk storage
device, a flash memory device, a three-dimensional (*3D”’) memory device, or other NVM
memory device) while in other implementations storage medium 130 includes a plurality of
memory devices. In some embodiments, storage medium 130 includes NAND-type flash
memory or NOR-type flash memory. Further, in some embodiments, storage controller 120 is
a solid-state drive (“SSD”) controller. However, one or more other types of storage media

may be included in accordance with aspects of a wide variety of embodiments.

[0020] Computer system 110 is coupled to storage controller 120 through data
connections 101. However, in some embodiments computer system 110 includes storage
controller 120 as a component and/or a sub-system. Computer system 110 may be any
suitable computer device such as a computer, a laptop computer, a tablet device, a wearable
computing device, a netbook, an internet kiosk, a personal digital assistant, a mobile phone, a
smart phone, a gaming device, a computer server, or any other computing device. Computer
system 110 is sometimes called a host or host system. In some embodiments, computer
system 110 includes one or more processors, one or more types of memory, a display and/or
other user interface components such as a keyboard, a touch screen display, a mouse, a track-

pad, a digital camera and/or any number of supplemental devices to add functionality.
4

WO 2015/153796 PCT/US2015/023927

[0021] Storage medium 130 is coupled to storage controller 120 through connections
103. Connections 103 are sometimes called data connections, but typically convey commands
in addition to data, and optionally convey metadata, error correction information and/or other
information in addition to data values to be stored in storage medium 130 and data values
read from storage medium 130. In some embodiments, however, storage controller 120 and
storage medium 130 are included in the same device as components thereof. Furthermore, in
some implementations storage controller 120 and storage medium 130 are embedded in a
host device, such as a mobile device, tablet, other computer or computer controlled device,
and the methods described herein are performed by the embedded storage controller. Storage
medium 130 may include any number (i.c., one or more) of memory devices including,
without limitation, non-volatile semiconductor memory devices, such as flash memory. For
example, flash memory devices can be configured for enterprise storage suitable for
applications such as cloud computing, or for caching data stored (or to be stored) in
secondary storage, such as hard disk drives. Additionally and/or alternatively, flash memory
can also be configured for relatively smaller-scale applications such as personal flash drives

or hard-disk replacements for personal, laptop and tablet computers.

[0022] In some embodiments, storage medium 130 comprises persistent memory
(e.g., non-volatile memory such as flash memory), and storage medium 130 includes a subset
or a superset of the following data structures or data regions: persistent key-map 132; log
stream 134; and datastore 136. In some embodiments, datastore 136 comprises one or more
NVM devices such as magnetic disk storage device(s), optical disk storage device(s), flash
memory device(s), 3D memory device(s) (as further described herein), or other non-volatile
solid state storage device(s). Storage medium 130 and its included data structures or data
regions (e.g., persistent key-map 132, log stream 134, and datastore 136) are described below

in more detail with reference to Figure 2B.

[0023] In some embodiments, storage medium 130 is divided into a number of
addressable and individually selectable blocks (sometimes also herein called “slabs”™). In
some embodiments, the individually selectable blocks are the minimum size erasable units in
a flash memory device. In other words, each block contains the minimum number of memory
cells that can be erased simultancously. Each block is usually further divided into a plurality
of pages and/or word lines, where each page or word line is typically an instance of the
smallest individually accessible (readable) portion in a block. In some embodiments (e.g.,

using some types of flash memory), the smallest individually accessible unit of a data set,

5

WO 2015/153796 PCT/US2015/023927

however, is a sector, which is a subunit of a page. That is, a block includes a plurality of
pages, each page contains a plurality of sectors, and each sector is the minimum unit of data

for reading data from the flash memory device.

[0024] For example, one block comprises a predetermined number of pages, for
example, 64 pages, 128 pages, 256 pages or another suitable number of pages. Blocks are
typically grouped into a plurality of zones. Each block zone can be independently managed to
some extent, which increases the degree of parallelism for parallel operations and simplifies

management of storage medium 130.

[0025] In some embodiments, storage controller 120 includes a management module
140, an input buffer 123, an output buffer 124, an error control module 125 and a storage
medium interface (1/0) 128. Storage controller 120 may include various additional features
that have not been illustrated for the sake of brevity and so as not to obscure more pertinent
features of the example embodiments disclosed herein, and that a different arrangement of
features may be possible. Input buffer 123 and output buffer 124 provide an interface to
computer system 110 through data connections 101. Similarly, storage medium 1/0 128
provides an interface to storage medium 130 though connections 103. In some embodiments,
storage medium 1/O 128 includes read and write circuitry, including circuitry capable of
providing reading signals to storage medium 130 (e.g., reading threshold voltages for NAND-
type flash memory).

[0026] In some embodiments, management module 140 includes one or more
processing units (CPU(s), also sometimes called one or more processors) 122 configured to
execute instructions in one or more programs (e.g., stored in memory 302 (Figure 3) of
management module 140) and in-memory 144. In some embodiments, one or more CPUs 142
are shared by one or more components within, and in some cases, beyond the function of
storage controller 120. In some embodiments, in-memory 144 comprises a portion of the
memory associated with management module 140, and in-memory 144 comprises one or
more volatile memory devices. For example, the one or more volatile memory devices
comprising in-memory 144 include high-speed random access memory such as DRAM,
SRAM, DDR RAM, or other random access solid state memory devices. Management
module 140 is coupled to input buffer 123, output buffer 124 (connection not shown), error
control module 125 and storage medium 1/O 128 in order to coordinate the operation of these

components.

WO 2015/153796 PCT/US2015/023927

[0027] Error control module 125 is coupled to storage medium 1/0O 128, input buffer
123 and output buffer 124. Error control module 125 is provided to limit the number of
uncorrectable errors inadvertently introduced into data. In some embodiments, error control
module 125 is executed in software by one or more CPUs 122 of management module 140,
and, in other embodiments, error control module 125 is implemented in whole or in part
using special purpose circuitry to perform encoding and decoding functions. To that end,
error control module 125 includes an encoder 126 and a decoder 127. Encoder 126 encodes
data by applying an error control code to produce a codeword, which is subsequently stored

in storage medium 130.

[0028] When the encoded data (e.g., one or more codewords) is read from storage
medium 130, decoder 127 applies a decoding process to the encoded data to recover the data,
and to correct errors in the recovered data within the error correcting capability of the error
control code. Those skilled in the art will appreciate that various error control codes have
different error detection and correction capacities, and that particular codes are selected for
various applications for reasons beyond the scope of this disclosure. As such, an exhaustive
review of the various types of error control codes is not provided herein. Moreover, those
skilled in the art will appreciate that each type or family of error control codes may have
encoding and decoding algorithms that are particular to the type or family of error control
codes. On the other hand, some algorithms may be utilized at least to some extent in the
decoding of a number of different types or families of error control codes. As such, for the
sake of brevity, an exhaustive description of the various types of encoding and decoding

algorithms generally available and known to those skilled in the art is not provided herein.

[0029] During a write operation, input buffer 123 receives data to be stored in storage
medium 130 from computer system 110 (e.g., write data). The data held in input buffer 123 is
made available to encoder 126, which encodes the data to produce one or more codewords.
The one or more codewords are made available to storage medium I/O 128, which transfers
the one or more codewords to storage medium 130 in a manner dependent on the type of

storage medium being utilized.

[0030] A read operation is initiated when computer system (host) 110 sends one or
more host read commands on control line 111 to storage controller 120 requesting data from
storage medium 130. Storage controller 120 sends one or more read access commands to
storage medium 130, via storage medium I/O 128, to obtain raw read data in accordance with

memory locations (addresses) specified by the one or more host read commands. Storage
7

WO 2015/153796 PCT/US2015/023927

medium I/O 128 provides the raw read data (e.g., comprising one or more codewords) to
decoder 127. If the decoding is successful, the decoded data is provided to output buffer 124,
where the decoded data is made available to computer system 110. In some embodiments, if
the decoding is not successful, storage controller 120 may resort to a number of remedial

actions or provide an indication of an irresolvable error condition.

[0031] Figure 2A is a block diagram illustrating data structures or data regions
associated with management module 140 in accordance with some embodiments. In some
embodiments, the data structures or data regions are stored in in-memory 144 of management
module 140, which comprises one or more volatile memory devices. For example, the one or
more volatile memory devices comprising in-memory 144 include high-speed random access
memory such as DRAM, SRAM, DDR RAM, or other random access solid state memory
devices. In some embodiments, in-memory 144 includes a subset or a superset of the
following data structures or data regions: non-persistent key-map 202; log record buffer 204;

cache 206; and transaction table 208.

[0032] In Figure 2A, non-persistent key-map 202 includes a plurality of entries
mapping keys to locations in datastore 136. For example, entry 212 maps respective key
information associated with a data object stored in datastore 136 to location information. In
some embodiments, the location information includes a pointer to a location in datastore 136
or a location in datastore 136. In some embodiments, the key information includes a unique
key or information from which a unique key can be identified such as a shortened key and a
location/length of a key prefix. In some embodiments, the location information includes an
identifier number of a leaf node in a respective tiered data structure of the one or more tiered
data structures stored in datastore 136, where the data object associated with the key
information is included in the leaf node. In some embodiments, the location information is an
index number associated with a slab in datastore 136 that stores the leaf node to which the

data object associated with the key information belongs.

[0033] For example, management module 140 receives, from computer system 110, a
request to perform a transaction including two or more memory operations on datastore 136.
In this example, a first memory operation includes replacing the value of a data object stored
in datastore 136 that corresponds to key 77 with a new value. Continuing with this example,
management module 140 locates the data object in datastore 136 associated with the first
memory operation by mapping key 77 in non-persistent key-map 202 to location information

pointing to or giving the location of the data object in datastore 136. For example, key 77, in
8

WO 2015/153796 PCT/US2015/023927

non-persistent key-map 202, is mapped to an index number for a slab in datastore 136 that

stores a leaf node that includes the data object corresponding to key 77.

[0034] In Figures 2A, log record buffer 204 includes one or more operation commit
records associated with pending memory operations being performed on datastore 136. In
some embodiments, an operation commit record is populated and stored in log record buffer
204 prior to the operation commit record being written to log stream 134 in storage medium
130. With reference to the above example, management module 140 populates an operation
commit record for the first memory operation that includes a subset or a superset of the
following: a transaction identifier associated with the request to perform the transaction; key
77; location information pointing to the index number of the old slab in datastore 136 that
stored the data object prior to the first memory operation; and location information pointing
to the index number of the new slab in datastore 136 storing the data object after the first

memory operation.

[0035] In Figures 2A, cache 206 stores nodes and/or data objects retrieved from a
respective tiered data structure of the one or more tiered data structures stored in datastore
136. In some embodiments, cache 206 optionally includes data object cache portion 212,
storing data objects retrieved from datastore 136, and node cache portion 214, storing nodes
retrieved from datastore 136. With respect to the example above, management module 140
stores in node cache portion 214 of cache 206 nodes of a respective tiered data structure that
were traversed in order to locate the data object corresponding to key 77, and management
module 140 also stores in data object cache portion 212 of cache 206 the data object
corresponding to key 77.

[0036] In Figure 2A, transaction table 208 stores entries associated with each request
to perform a transaction received from a requestor (e.g., computer system 110, Figure 1).
With reference to the above example, in response to receiving the request from computer
system 110 to perform a transaction including two or more memory operations on datastore
136, management module 140 stores entry 214 in transaction table 208. In some
embodiments, a respective entry in transaction table 208 includes a unique transaction
identifier and a timestamp corresponding to the time the transaction request was received or
the time the entry was created. In some embodiments, when the transaction is complete and
after a transaction commit record is written to log stream 134, management module 140

deletes the entry corresponding to the complete transaction from transaction table 208.

WO 2015/153796 PCT/US2015/023927

[0037] Figure 2B is a block diagram illustrating data structures or data regions stored
in storage medium 130 in accordance with some embodiments. In some embodiments,
storage medium 130 includes one or more non-volatile memory devices such as magnetic
disk storage device(s), optical disk storage device(s), flash memory device(s), 3D memory
device(s), or other non-volatile solid state storage device(s). In some embodiments, storage
medium 130 includes a subset or a superset of the following data structures or data regions:

datastore 136; persistent key-map 132; log stream 134; and snapshot metadata 138.

[0038] In Figure 2B, datastore 136 includes a plurality of slabs 220. In some
embodiments, slabs 220 are all a predetermined size. For example, slabs 220 are cach 8 KB
in size. Alternatively, in some embodiments, slabs 220 are one of a number of predetermined
sizes. In one example, slabs 220 are allocated in four predetermined sizes: 8 KB, 16 KB, 32
KB, and 64 KB. In some embodiments, datastore 136 is organized into one or more tiered
data structures. In some embodiments, a respective tiered data structure (“TDS”) includes a
plurality of nodes with one root node, zero or more internal nodes, and one or more leaf
nodes. Each of the nodes (e.g., root, internal, and leaf nodes) comprising the respective TDS
is stored in a separate slab 220, and each of the leaf nodes of the respective TDS includes one

or more data objects.

[0039] In Figure 2B, each of slabs 220 at least includes a unique index number 222
and a status flag 224 indicating whether the slab is free (i.e., neither occupied by nor storing a
node) or occupied by a node of one of the one or more tiered data structures stored in
datastore 136. In some embodiments, a respective free slab 220 only includes a unique index
number 222 and a status flag 224 indicating that respective free slab 220 is free. In some
embodiments, a respective occupied slab 220 further includes a node number 226 of a
respective node in a respective TDS of the one or more tiered data structures that is stored at
respective occupied slab 220, a tiered data structure number 228 corresponding to the
respective TDS of the one or more tiered data structures that includes the respective node,

and data 229.

[0040] In some embodiments, data 229 includes one or more data objects included in
the respective node. In some embodiments, a respective data object comprises key
information and a corresponding value. In some embodiments, the key information includes a
unique key or information from which a unique key can be identified such as a shortened key
and a location/length of a key prefix. In some embodiments, the corresponding value is data.

In some embodiments, the corresponding value is a pointer identifying a location where the
10

WO 2015/153796 PCT/US2015/023927

data is stored. In some embodiments, the one or more data objects included in the respective
node are contiguous data objects where the unique key information for a respective
contiguous data object is adjacent or substantially adjacent to the corresponding value for the
respective contiguous data object or other data for the respective contiguous data object that
is adjacent to the corresponding value. In some embodiments, the one or more data objects
included in the respective node are split data objects where the unique key information for a
respective split data object is separated from the corresponding value for the respective split
data object by other data for other data objects and the unique key information for the
respective split data object is stored with a pointer that identifies a location of the

corresponding value for the respective split data object.

[0041] In Figure 2B, persistent key-map 132 includes a plurality of entries mapping
keys to locations in datastore 136. For example, entry 232 maps respective key information
associated with a data object stored in datastore 136 to location information. In some
embodiments, the location information includes a pointer to a location in datastore 136 or a
location in datastore 136. In some embodiments, the key information includes a unique key or
information from which a unique key can be identified such as a shortened key and a
location/length of a key prefix. In some embodiments, the location information includes an
identifier number of a leaf node in a respective tiered data structure of the one or more tiered
data structures stored in datastore 136, where the data object associated with the key
information is included in the leaf node. In some embodiments, the location information is an
index number associated with a slab in datastore 136 that stores the leaf node to which the

data object associated with the key information belongs.

[0042] In Figure 2B, log stream 134 includes a plurality of records 230 (e.g., 230-1,
230-2, 230-3, 230-4, ...). A respective record 230 is associated with a record type: start
transaction record, transaction commit record, or operation commit record. An operation
commit record is associated with one of three memory operations types performed on
datastore 126: replacement, deletion, or insertion. A respective record 230 at least includes
the record type, a unique sequence number (i.e., seqno), and a transaction identifier (i.e.,
txid). In some embodiments, unique sequence numbers are assigned to records 230 in

monotonically ascending order.

[0043] In some embodiments, records 230 each corresponds to a transaction that is
associated with a transaction identifier. In some embodiments, a respective complete

transaction corresponds to a first start transaction record in log stream 134 that includes a first
11

WO 2015/153796 PCT/US2015/023927

transaction identifier and a first transaction commit record in log stream 134 that includes the
first transaction identifier. In some embodiments, the respective complete transaction also
corresponds to one or more operation commit records that include the first transaction
identifier. In some embodiments, a respective incomplete transaction corresponds to a second
start transaction record in log stream 134 that includes a second transaction identifier for
which there is not a corresponding transaction commit record in log stream 134 that includes
the second transaction identifier. In some embodiments, the respective incomplete transaction
also corresponds to zero or more operation commit records that include the second

transaction identifier.

[0044] In some embodiments, a respective start transaction record in log stream 134
includes a unique log sequence number and a transaction identifier (e.g., corresponding to the
transaction to which the respective start transaction record belongs). In some embodiments, a
respective transaction commit record in log stream 134 includes a unique log sequence
number and a transaction identifier (e.g., corresponding to the transaction to which the

respective transaction commit record belongs).

[0045] In some embodiments, a first example operation commit record in log stream
134, that corresponds to a replacement operation of a first data object, includes a unique log
sequence number, a transaction identifier (e.g., corresponding to the transaction to which the
first operation commit record belongs), key information corresponding to the first data object,
a pointer to the old location of the first data object in datastore 136 (e.g., the slab storing the
leaf node with the old first data object prior to the replacement operation), and a pointer to the
new location of the first data object in datastore 136 (e.g., the slab storing the leaf node with
the new first data object after the replacement operation). In some embodiments, a second
example operation commit record in log stream 134, that corresponds to a deletion operation
of a second data object, includes a unique log sequence number, a transaction identifier (e.g.,
corresponding to the transaction to which the second operation commit record belongs), key
information corresponding to the second data object, a pointer to the old location of the
second data object (e.g., the slab storing the leaf node with the old second data object prior to
the deletion operation), and a pointer to a new location in datastore 136 (e.g., the slab storing
the leaf node with the new second data object with a tombstone after the deletion operation).
In some embodiments, a third example operation commit record in log stream 134, that
corresponds to an insertion operation of a third data object, includes a unique log sequence

number, a transaction identifier (e.g., corresponding to the transaction to which the third

12

WO 2015/153796 PCT/US2015/023927

operation commit record belongs), key information corresponding to the third data object, a
pointer to old location of the third data object in datastore 136 (e.g., the slab storing the leaf

node with the new third data object after the insertion operation).

[0046] In Figure 2B, snapshot metadata 138 includes zero or more entries each
corresponding to a snapshot of one of the one or more tiered data structures stored in
datastore 136. The number of entries in snapshot metadata 138 corresponds to the number of
snapshots being maintained. A respective snapshot entry 242 includes a sequence number
associated with the snapshot, a timestamp corresponding to when the snapshot was performed
or when snapshot entry 242 was created, and a version number associated with the snapshot.
In some embodiments, the sequence number of a respective snapshot entry corresponds to a
highest (or latest) unique sequence number of a data object in TDS (or multiple tiered data
structures) subject to the snapshot when the snapshot was performed. In some embodiments,
respective snapshot entry 242 also includes an indication (not shown) of the TDS
corresponding to the snapshot (e.g., the TDS on which the snapshot was performed).
Alternatively, in some embodiments, each of the one or more tiered data structures stored in

datastore 136 includes a node storing snapshot metadata.

[0047] Figure 3 is a block diagram illustrating an implementation of management
module 140 in accordance with some embodiments. Management module 140 typically
includes one or more processors 142 (also sometimes called CPU(s), processing unit(s),
microprocessor(s), microcontroller(s), or core(s)) for executing modules, programs and/or
instructions stored in memory 302 and thereby performing processing operations, memory
302, one or more communication interfaces 304, one or more storage interfaces 308, and one
or more communication buses 306 for interconnecting these components. One or more
communication buses 306 optionally include circuitry (sometimes called a chipset) that
interconnects and controls communications between system components. In some
embodiments, management module 140 is operatively coupled with storage medium 130 by
one or more communication buses 306 and one or more storage interfaces 308 (e.g., storage
medium I/O 128 such as a PCI bus, PCle bus, or the like). In some embodiments,
management module 140 is operatively coupled with internal requestor(s) and/or external
requestors (e.g., computer system 110) by one or more communication buses 306 and one or
more communication interfaces 304. Memory 302 includes one or more semiconductor
memory devices such as high-speed random access memory (e.g., DRAM, SRAM, DDR

RAM or other random access solid state memory devices), and may include non-volatile

13

WO 2015/153796 PCT/US2015/023927

memory (e.g., one or more NVM devices such as magnetic disk storage device(s), optical
disk storage device(s), flash memory device(s), 3D memory device(s), or other non-volatile
solid state storage device(s)). Memory 302 optionally includes one or more storage devices
remotely located from one or more processors 142. Memory 302, or alternately the non-
volatile memory device(s) within memory 302, comprises a non-transitory computer readable
storage medium. In some embodiments, memory 302, or the computer readable storage
medium of memory 302 stores the following programs, modules, and data structures, or a

subset thereof:

operating logic 310 includes procedures for handling various basic system services

and for performing hardware dependent tasks;

e communications module 312 that is used for communicating with other computer
systems or computer components (e.g., one or more communication interface 304 and

one or more storage interfaces 308);

e request handling module 314 for detecting and processing requests received from

internal requestors and/or external requestors (e.g., computer system 110, Figure 1);

o cache management module 320 for storing and retrieving information (e.g., data

objects and nodes) from cache 206, optionally including:

o cache storage module 322 for storing information (e.g., data objects and

nodes) in cache 206;

o cache search module 324 for performing searches based on requested
information (e.g., a search for a requested data object or retrieving a node for

use in searching for a requested data object) in cache 206; and

o cache eviction policies 326 for determining which information (e.g., data

objects and/or nodes) to evict from cache 206;

o tiered data structure (“TDS”’) module 330 for storing and retrieving information (e.g.,
data objects and nodes) within one or more tiered data structures stored in datastore

136 (e.g., TDS 400, Figure 4A), optionally including:

o TDS storage module 332 for performing memory operations (e.g.,
replacement, deletion, and insertion operations) by writing information (e.g.,
inserting a new data object or replacing/updating the value of a data object) to

leaf nodes stored in cache 206 or deleting information (e.g., deleting a data

14

WO 2015/153796 PCT/US2015/023927

object and/or replacing the value of a data object with a tombstone) from leaf
nodes stored in cache 206 so as to create new/modified leaf nodes and writing

the new/modified leaf nodes to datastore 136;

o TDS search module 334 for searching through the one or more tiered data
structures for requested data (e.g., locating and retrieving a data object or node
corresponding to a memory operation in a transaction requested by a

requestor);

o metadata generator 336 for generating metadata for data objects that are stored
in leaf nodes of the one or more tiered data structures, where the metadata
enables the data objects to be located with TDS search module 334 in response

to transaction requests from requestors;

o response generator 342 for generating responses to requests from internal and/or

external requestors based on data retrieved in response to the requests;

o allocation module 344 for allocating free slabs in datastore 136 for which to write a

new/modified leaf node of a TDS;

e mapping module 345 for updating non-persistent key-map 202 and persistent key-map
132;

e logrecord module 346 for managing zero or more pending operation commit records
in log record buffer 204 and for writing an operation commit records from log record

buffer 204 to log stream 134;

o snapshot module 348 for performing a snapshot of one or more specified tiered data
structures stored in datastore 136 and writing a snapshot entry to snapshot metadata

138 for the snapshot;

e cleanup module 350 for performing a cleanup process (e.g., either in the background,
as described in Figures 6A-6F, or in-place, as described in Figures 7A-7C) in

response to detecting a trigger; and

e in-memory 144 storing information in volatile memory, including but not limited to

the following data structures:

o non-persistent key-map 202 for mapping key information to location

information (e.g., a slab index number) associated with the location of a data

15

WO 2015/153796 PCT/US2015/023927

object in datastore 136 that corresponds to the key information (and, in turn,

the location of a leaf node to which the data object belongs);

o log record buffer 204 storing one or more operation commit records associated

with pending memory operations being performed on datastore 136;

o cache 206 storing nodes and/or data objects retrieved from the one or more

tiered data structures stored in datastore 136, optionally including:

= data object cache portion 212 storing zero or more data objects
retrieved from the one or more tiered data structures stored in datastore

136; and

* node cache portion 214 storing zero or more nodes retrieved from the

one or more tiered data structures stored in datastore 136; and

o transaction table 208 storing entries associated with each request to perform a

transaction received from a requestor (e.g., computer system 110, Figure 1).

[0048] Each of the above identified elements may be stored in one or more of the
previously mentioned memory devices, and corresponds to a set of instructions for
performing a function described above. The above identified modules or programs (i.e., sets
of instructions) need not be implemented as separate software programs, procedures or
modules, and thus various subsets of these modules may be combined or otherwise re-
arranged in various embodiments. In some embodiments, memory 302 may store a subset of
the modules and data structures identified above. Furthermore, memory 302 may store
additional modules and data structures not described above. In some embodiments, the
programs, modules, and data structures stored in memory 302, or the computer readable
storage medium of memory 302, provide instructions for implementing respective operations

in the methods described below with reference to Figures 6A-6F and/or 7A-7C.

[0049] Although Figure 3 shows management module 140, Figure 3 is intended more
as a functional description of the various features which may be present in a non-volatile
computer system than as a structural schematic of the embodiments described herein. In
practice, and as recognized by those of ordinary skill in the art, items shown separately could

be combined and some items could be separated.

[0050] Figure 4A illustrates an example of a tiered data structure in accordance with

some embodiments. Tiered data structure 400 includes a plurality of nodes. The plurality of

16

WO 2015/153796 PCT/US2015/023927

nodes are organized in a tiered structure in which each respective node is connected to one or
more other nodes in levels (tiers) above and/or below the respective node. A parent node for a
respective node in tiered data structure 400 is a node that is a level (tier) above the respective
node in tiered data structure 400 and refers to the respective node. A child node for a
respective node in tiered data structure 400 is a node that is a level (tier) below the respective
node in tiered data structure 400 and refers to the respective node. Two nodes are at the same
level if they have a same number of nodes to traverse to reach root node 402. Root node 402
is an external node that has no parent node, typically there is only one root node for tiered
data structure 400. Internal nodes 404 are nodes that have both a parent node and one or more
child nodes and are thus internal to the tiered data structure. Leaf nodes 406 are nodes that do
not have child nodes and are thus “external” nodes. Root node 402 and internal nodes 404
include references that indicate which child nodes are associated with a particular range of
data. For example, root node 402 in Figure 4A indicates that internal node 404-1 is associated
with data with keys between 1 and 136. Internal node 404-1 indicates that: internal node 404-
2 is associated with data objects having keys between 1 and 24; internal node 404-3 is
associated with data objects having keys between 25 and 66; and internal node 404-4 is
associated with data objects having keys between 67 and 136. Similarly, internal node 404-3
indicates that: leaf node 406-2 includes data with keys between 25 and 30; leaf node 406-3
includes data with keys between 31 and 58; and leaf node 406-4 includes data with keys

between 59 and 66, and so on.

[0051] Navigating the tiered data structure typically, but optionally, relies on the
assumption that keys are always sorted in a predefined key order (e.g., monotonically
ascending), so that a node that is associated with data having keys between a first value and a
second value is associated with all data in the tiered data structure that has keys between the
first value and the second value. In some embodiments, cach leaf node has a maximum size
and when the leaf node exceeds the maximum size, the leaf node is split into two leaf nodes.
In some embodiments, cach leaf node has a minimum size and when a leaf node is below the
minimum size, the leaf node is combined with one or more other leaf nodes. In some
embodiments, each non-leaf node (e.g., root node or internal node) has a maximum number
of child nodes, and when splitting of a leaf node results in a non-leaf node having more than
the maximum number of child nodes, the non-leaf node is split to accommodate the extra
child nodes. In some embodiments, each non-leaf node (e.g., root node or internal node) has a

minimum number of child nodes, and when a combining two or more leaf nodes results in a

17

WO 2015/153796 PCT/US2015/023927

non-leaf node having less than the minimum number of child nodes, the non-leaf node is
combined with one or more other non-leaf nodes to accommodate the reduced number of
child nodes. The tiered data structure may additionally conform to some or all of the rules

associated with B-Trees, B+Trees, B*Trees or other tiered data structures.

[0052] Figure 4B illustrates an example of efficient cache utilization in a tiered data
structure in accordance with some embodiments. In Figure 4B, populated cache 410-a is an
example of cache 206 from Figure 2A that is populated with one or more data objects and
one or more nodes that were retrieved to respond to prior requests for data objects by one or
more internal or external requestors. For example, one of the prior requests was a request for
data object 58, so management module 140 traversed through tiered data structure 400 in
Figure 4A by traversing, in sequence, root node 402, internal node 404-1, internal node 404-3
to identify and retrieve leaf node 406-3, which includes data object 58. After retrieving data
object 58, data object 58 is cached in data object cache portion 212 and the traversed nodes
are cached in node cache portion 214. In Figure 4B, the data objects in the populated cache
410 are shown in order of “staleness” where more stale data objects are near the bottom of
data object cache portion 212 and less stale (¢.g., fresher) data objects are near the top of data
object cache portion 212, as data objects are refreshed, they are reordered in the cache to
represent their staleness, even though the data objects are, in many circumstances, not
actually moved within the cache. Similarly, in Figure 4B, the nodes in the populated cache
410 are shown in order of “staleness” where more stale nodes are near the bottom of node
cache portion 214 and less stale (e.g., fresher) data objects are near the top of node cache
portion 214, as nodes are refreshed, they are reordered in the cache to represent their
staleness, even though nodes are, in many circumstances, not actually moved within the

cache.

[0053] In Figure 4B, in response to a request (e.g., “request 17’) for data object 61,
management module 140 determines that data object 61 is not in data object cache portion
212 in populated cache 410-a. Subsequently, management module 140 traverses through
tiered data structure 400 in Figure 4A by traversing, in sequence, root node 402, internal node
404-1, internal node 404-3 to identify and retrieve leaf node 406-4, which includes data
object 61. When traversing tiered data structure 400, management module 140 is able to use a
number of cached nodes to improve response time (e.g., by using root node 402, internal
node 404-1 and internal node 404-3 to determine that leaf node 406-4 has be retrieved from

tiered data structure 400). Management module 140 caches the traversed nodes in node cache

18

WO 2015/153796 PCT/US2015/023927

portion 214 and caches data object 61 in data object cache portion 212 as shown in updated
cache 410-b in Figure 4B. In order to make room for the traversed nodes and retrieved data
object, data object 2 and leaf node 406-1 are evicted from cache 206 in accordance with a

cache eviction policy, as shown in updated cache 410-b in Figure 4B.

[0054] In Figure 4B, in response to a request (e.g., “request 2”) for data object 25,
management module 140 determines that data object 25 is in data object cache portion 212 in
populated cache 410-b. As data object 25 is already in data object cache portion 212,
management module 140 does not traverse tiered data structure 400 to retrieve data object 25,
because data object 25 is retrieved from cache 206. In conjunction with being retrieved, data
object 25 is refreshed in data object cache portion 212 so that it is less stale than object 61
rather than being more stale than data object 61, as shown in updated cache 410-c in Figure
4B. In some embodiments, data object 25 is identified in data object cache portion 212 using
a hash table to locate a portion of data object cache portion 212 that includes data object 25.
As no new data objects or nodes were added to cache 206, no data objects or nodes are

evicted from cache 206.

[0055] In Figure 4B, in response to a request (e.g., “request 3”) for data object 70,
management module 140 determines that data object 70 is not in data object cache portion
212 in populated cache 410-c. Subsequently, management module 140 traverses through
tiered data structure 400 in Figure 4A by traversing, in sequence, root node 402, internal node
404-1, internal node 404-4 to identify and retrieve leaf node 406-5, which includes data
object 70. When traversing tiered data structure 400, management module 140 is able to use a
number of cached nodes to improve response time (e.g., by using root node 402 and internal
node 404-1 to determine that internal node 404-4 and leaf node 406-5 have to be retrieved
from tiered data structure 400). Management module 140 caches the traversed nodes in node
cache portion 214 and caches data object 70 in data object cache portion 212 as shown in
updated cache 410-d in Figure 4B. In order to make room for the traversed nodes and
retrieved data object, data object 33, internal node 404-3, and leaf node 406-3 are evicted
from cache 206 in accordance with a cache eviction policy, as shown in updated cache 410-d

in Figure 4B.

[0056] While the preceding examples have been shown with a small number of data
objects and nodes, it should be understood that in a typical cache, a much larger number of
data objects and nodes are stored in the cache and similar processes are performed. For

example, in an 2 GB DRAM cache with a 1 GB data object cache portion, a 1 GB node cache
19

WO 2015/153796 PCT/US2015/023927

portion, an average node size of 8§ KB and an average data object size of 1 KB, the data
object cache portion would hold approximately 1 million data objects and the node cache
portion would hold approximately 250,000 nodes. In some embodiments, only internal nodes
404 are cached in node cache portion 214. In some embodiments, root node 402 and leaf
nodes 406 are cached in node cache portion 214, but most leaf nodes are quickly evicted from
node cache portion 214, while internal nodes 404 are frequently used and are thus frequently
refreshed in cache 206, so that node cache portion 214 includes primarily internal nodes 404
during normal operation (e.g., 50% or more of the capacity of node cache portion 214 is
occupied by internal nodes). Using a data object cache in addition to a node cache instead of
solely using a node cache improves the performance of the cache by increasing the likelihood
that a requested data object will be available from the cache. For example, using a 1 GB data
object cache in addition to a 1 GB node cache approximately quadruples the object capacity

of the cache as compared with a 2 GB node cache.

[0057] Figures 4C-4E illustrate examples of compaction of information in a tiered
data structure in accordance with some embodiments. Figure 4C shows an example leaf node
406-4 from tiered data structure 400 in Figure 4A. Leaf node 406-4 includes data for data
objects 59, 60, 61, 63 and 66. For cach of these data objects (e.g., DO59, DO60, DO61,
D063, DO66), leaf node 406-4 includes a corresponding fixed length header (H59, H60,
H61, H63, and H66, respectively) and corresponding metadata (e.g., M59, M60, M61, M63,
and M66, respectively). The fixed length headers include a metadata type in embodiments
where there are a plurality of different metadata types for metadata of the data objects, and an
offset (e.g., a number of bytes) from a particular portion of the leaf node (e.g., a beginning or
an end of the leaf node) to the location of the data object in the leaf node. The fixed length
headers each have the same length, and can, thus, be used to perform a binary search through
data objects in the leaf node. In some embodiments, the fixed length headers are packed to
the left in the leaf node and the data objects and metadata are packed to the right in the leaf
node, so that there is a growing area in the middle of the leaf node that increases or decreases
in size as additional data objects are added to, or removed from, the leaf node. Packing the
headers and data objects in different directions enables both the headers and the data objects
to have fixed points to refer to when the data objects and nodes are identified by offsets (e.g.,
the headers can be identified based on an offset from a left edge of the leaf node, and the data

objects and metadata can be identified based on an offset from a right edge of the leaf node).

20

WO 2015/153796 PCT/US2015/023927

[0058] The data objects (e.g., DO59, DO60, DO61, DO63, DO66) in leaf node 406-4
each include unique key information (e.g., K59, K60, K61, K63, K66, respectively) and a
corresponding value (e.g., V59, V60, V61, V63, V66, respectively). In some embodiments,
the unique key information for some of the data objects is a full unique key for the data
objects, while the unique key information for other data objects is a portion of a unique key
for the data objects, and the metadata for these data objects indicates a location of a key
prefix that is shared with one or more other data objects that can be used to recreate the
unique key for the data object in combination with the unique key information stored with the
data object. For example, data object 59 includes a full unique key in unique key information
K59, while data object 60 includes a partial key in unique key information K60 and metadata
M60 associated with data object 60 is used to identify a location of a key prefix (e.g., a
portion of K59 that serves as a key prefix for data object 60 and, in combination with unique
key information K60 can be used to determine a unique key for data object 60). Similarly,
data object 61 includes a partial key in unique key information K61 and metadata M61
associated with data object 61 is used to identify a location of a key prefix (e.g., a portion of
K59 that serves as a key prefix for data object 61 and, in combination with unique key

information K61 can be used to determine a unique key for data object 61).

[0059] Metadata (e.g., M59, M60, M61, M63, and M66) for a corresponding data
object optionally includes one or more of the following: key length information 434
indicating a length of unique key information associated with the corresponding data object;
data length information 436 indicating a length of the corresponding data object or the value
of the corresponding data object; prefix offset information 438 that indicates a location of a
start of a key prefix for the corresponding data object; prefix length information 440 that
indicates a length of the key prefix for the corresponding data object; data overflow pointer
442 that indicates a location of data for the corresponding data object that is too large to fit in
the leaf node; and global version information 444 that indicates a version of the
corresponding data object. In some embodiments, global version information 444 includes
information identifying the order of each change to data objects in tiered data structure 400
(Figure 4A) or data objects in datastore 136 (Figures 1 and 2B), which can be used to
determine whether a change to a first data object occurred before or after a change to a

second, different, data object.

[0060] In some embodiments different data objects have different types of metadata

with different lengths, sometimes called variable-length metadata. Using variable length

21

WO 2015/153796 PCT/US2015/023927

metadata enables shorter metadata to be used in many situations, and using shorter metadata
increases the number of data objects that can be stored in a leaf node. As one example, there
are four types of metadata, type-0 metadata, type-1 metadata, type-2 metadata and type-3
metadata. Type-0 metadata is used when the data object has the same key prefix, key length,
and data length as the preceding data object, in which case the metadata includes only global
version information 444 (e.g., represented as a 64-bit unsigned integer), and other
information such as key prefix location, data length and key length are determined by looking
at the metadata corresponding to the preceding data object. Type-1 metadata is used when the
data object has a key length and data length that can each fit in a single byte and data that fits
in the leaf node, in which case the metadata includes key length information 434 (e.g.,
represented as an 8-bit unsigned integer), data length information 436 (e.g., represented as an
8-bit unsigned integer), prefix offset information 438 (e.g., represented as a 16-bit unsigned
integer), prefix length information 440 (e.g., represented as an 8-bit unsigned integer), and
global version information 444 (e.g., represented as a 64-bit unsigned integer). Type-2
metadata is used when the data object has a key length and data length that can each fit in two
bytes, in which case the metadata includes key length information 434 (e.g., represented as a
16-bit unsigned integer), data length information 436 (e.g., represented as a 16-bit unsigned
integer), prefix offset information 438 (e.g., represented as a 16-bit unsigned integer), prefix
length information 440 (e.g., represented as a 16-bit unsigned integer), data overflow pointer
442 (e.g., represented as a 64-bit unsigned integer), and global version information 444 (e.g.,
represented as a 64-bit unsigned integer). Type-3 metadata is used for data objects that do not
fit in the other categories, in which case the metadata includes key length information 434
(e.g., represented as a 32-bit unsigned integer), data length information 436 (e.g., represented
as a 32-bit unsigned integer), prefix offset information 438 (e.g., represented as a 16-bit
unsigned integer), prefix length information 440 (e.g., represented as a 32-bit unsigned
integer), data overflow pointer 442 (e.g., represented as a 64-bit unsigned integer), and global
version information 444 (e.g., represented as a 64-bit unsigned integer). Type-3 metadata is
the most flexible metadata type, but is also the largest of these four metadata types. Enabling
the use of other types of metadata (e.g., type-0, type-1, or type-2) saves space in the leaf node
when type-3 metadata is not needed to store all of the relevant metadata for a data object.
While the example above describes four types of metadata, the principles described above
(e.g., using a shorter formats for metadata where the shorter format enables all of the

necessary metadata information to be conveyed by the shorter metadata) would apply equally

22

WO 2015/153796 PCT/US2015/023927

to other types of metadata and thus, in principle, any number of types of metadata could be

used in an analogous manner.

[0061] Figure 4D illustrates an example of deleting a data object from leaf node 406-
4. In the upper part of Figure 4D, before data object 63 has been deleted, leaf node 406-4 is
shown with highlighting in black to indicate the information in leaf node 406-4 that will be
deleted when the deletion operation is performed. After data object 63 has been deleted,
header H63 is deleted from leaf node 406-4, as shown in the lower part of Figure 4D, and the
remaining headers (e.g., H59, H60, H61, and H66) are repacked against the left edge of leaf
node 406-4. Additionally, after data object 63 has been deleted, data object DO63 and
corresponding metadata M63 are deleted as shown in the lower part of Figure 4D, and the
remaining data objects (e.g., DO59, DO60, DO61, and DO66) and metadata (e.g., M59, M60,
M61, and M66) are repacked against the right edge of leaf node 406-4. Additionally, before
data object 63 was deleted, data object 66 relied on a portion of the key of data object 63 as a
key prefix for data object 66. Thus, after data object 63 and its corresponding unique key
information K63 is deleted, data object 66 can no longer rely on the portion of the key of data
object 63 as a key prefix. Thus, in Figure 4D, unique key information K66 for data object 66
is updated to include a full unique key for data object 66, and metadata M66 is updated to
include a null value for the prefix offset information to indicate that there is no key prefix for
data object 66 and that the unique key information K66 for data object 66 includes a full
unique key. Alternatively, in some circumstances, management module 140 determines that
there is another data object (e.g., data object 59) in leaf node 406-4 that is associated with
unique key information that could be used as a new key prefix for data object 66, and unique
key information K66 is updated to include a portion of the unique key for data object 66 that,
when combined with the new key prefix can be used to generate the full unique key for data
object 66, and metadata M66 is updated to point to unique key information (e.g., K59) for the
other data object so that a portion of unique key information (e.g., K59) for the other data
object can be used as a key prefix for data object 66. Additionally, in many circumstances,
repacking the data objects and headers as described above after deleting data object 63 will
change locations of data objects, metadata and headers relative to the locations from which
offsets identifying locations of these elements are measured, and thus after a data object,
header, and metadata have been deleted, management module 140 updates the offset
information in the header and metadata corresponding to one or more of the other data

objects (e.g., data objects that remain in leaf node 406-4 after to deleting data object 63).

23

WO 2015/153796 PCT/US2015/023927

[0062] Figure 4E illustrates an example of adding a data object to leaf node 406-4. In
the upper part of Figure 4E, before data object 65 has been added, leaf node 406-4 is shown
with data object DO65 that is to be added to leaf node 406-4. After data object 65 has been
added, new header H65 is added in between header H63 and header H66, as shown in the
lower part of Figure 4E, and the headers (e.g., H59, H60, H61, H63, H65, and H66) are
repacked against the left edge of leaf node 406-4. Additionally, after data object 65 has been
added, data object DO65 and corresponding metadata M65 are added to leaf node 406-4 as
shown in the lower part of Figure 4E, and the data objects (e.g., DO59, DO60, DO61, DO63,
DO65, and DO66) and metadata (e.g., M59, M60, M61, M63, M65, and M66) are repacked
against the right edge of leaf node 406-4. Additionally, before data object 65 was added, data
object 66 relied on a portion of the key of data object 63 as a key prefix for data object 66 and
data object 63 was adjacent to metadata M66 for data object 66. Thus, after data object 65 is
added in between data object 63 and data object 66, metadata M66 of data object 66 is
updated to indicate a different offset for the key prefix for data object 66, because the relative
position between metadata M66 and unique key information K63 has changed. Moreover, in
Figure 4E, newly added data object 65 is also able to use a portion of unique key information
K63 as a key prefix, and thus metadata M65 of data object 65 is updated to identify a portion
of K63 as a key prefix that can be combined with unique key information K65 to generate a
full unique key for data object 65. Additionally, in many circumstances, repacking the data
objects and headers as described above after adding data object 65 will change locations of
data objects, metadata and headers relative to the locations from which offsets identifying
locations of these elements are measured, and thus after a new data object, new header and
new metadata have been inserted, management module 140 updates the offset information in
the header and metadata corresponding to one or more of the other data objects (e.g., data

objects that were in leaf node 406-4 prior to adding data object 65).

[0063] In some situations one or more data objects are updated without adding or
deleting a data object from leaf node 406-4. However, even though a data object has not been
added or deleted, updating a data object will, in some circumstances change a size of the data
object (e.g., by changing a type of metadata used by the data object to a smaller or larger size
of metadata or by changing a length of the data to a smaller or larger length). The change in
the data object or associated metadata will, in many circumstances, change locations of data
objects, metadata and headers relative to the locations from which offsets identifying

locations of these elements are measured, and thus after a data object or metadata has been

24

WO 2015/153796 PCT/US2015/023927

updated, management module 140 updates the offset information in the header and metadata

corresponding to one or more of the other data objects.

[0064] Figures 5A-5D illustrate example operations performed on a tiered data
structure in accordance with some embodiments. Figures SA-5D show a portion of tiered data
structure (“TDS”) 502 that includes internal node 504 and leaf nodes 506. In Figures SA-5D,
in accordance with predefined parameters, internal node 504 is associated with a minimum
number of two leaf nodes 506 and a maximum number of four leaf nodes 506. Thus, in
Figures SA-5D, internal node 504 includes at least two and at most four key information —
sequence number parings (e.g., shown in Figures SA-5D as K -Q) pointing to data objects
in leaf nodes 506. In Figures 5A-5D, in accordance with predefined parameters, leaf nodes
506 have a maximum size whereby a respective leaf node 506 includes at most four data
objects and a minimum size whereby the respective leaf node 506 includes at least two data
objects. In Figures SA-5D, data objects 512 included in leaf nodes 506 are each associated
with a key information — sequence number paring (e.g., shown in Figures 5SA-5D as K _-Q)
and data (e.g., a value shown in Figures 5SA-5D as V). In some embodiments, the sequence
numbers associated with data objects 512 are unique numbers that are assigned to new data

objects by management module 140 in monotonically ascending order.

[0065] In Figure 5A, state 532 shows TDS 502 and snapshot metadata 138 after
management module 140 performs a first snapshot of TDS 502. In state 532, internal node
504-1 includes: (key 3 — sequence number 3) pointing to rightmost data object 512-3 in leaf
node 506-1; (key 5 — sequence number 5) pointing to rightmost data object 512-5 in leaf node
506-2; and (key 8 — sequence number 8) pointing to rightmost data object 512-8 in leaf node
506-3. In state 532, leaf node 506-1 includes: data object 512-1 corresponding to (key 1 —
sequence number 1) with value (V1); data object 512-2 corresponding to (key 2 — sequence
number 2) with value (V2); and data object 512-3 corresponding to (key 3 — sequence
number 3) with value (V3). In state 532, leaf node 506-2 includes: data object 512-4
corresponding to (key 4 — sequence number 4) with value (V4); and data object 512-5
corresponding to (key 5 — sequence number 5) with value (V5). In state 532, leaf node 506-3
includes: data object 512-6 corresponding to (key 6 — sequence number 6) with value (V6);
data object 512-7 corresponding to (key 7— sequence number 7) with value (V7); and data
object 512-8 corresponding to (key 8 — sequence number 8) with value (V).

[0066] In Figures SA-5D, snapshot metadata 138 includes snapshot entries for TDS

502. In state 532, snapshot metadata 138 includes snapshot entry 522 corresponding to the
25

WO 2015/153796 PCT/US2015/023927

first snapshot of TDS 502. Snapshot entry 522 includes the following fields: A) sequence
number 8 corresponding to the highest sequence number associated with a data object (e.g.,
data object 512-8) at the time of the first snapshot; B) a timestamp; and C) version number 1
indicating that snapshot entry 522 corresponds to a first snapshot of TDS 502. In some
embodiments, snapshot entry 522 indicates that data objects associated with sequence

numbers 1-8 (e.g., data objects 512-1, ..., 512-8) are locked in the first snapshot.

[0067] In some embodiments, management module 140 receives from a requestor
(e.g., computer system 110, Figure 1) a request to perform an update/replacement operation
whereby an old value of a respective data object is to be updated/replaced with a new value
or a request to perform a deletion operation whereby an old value associated with a respective
data object is to be replaced with a tombstone to indicate that the respective data object has
been deleted. After receiving the request, management module 140 determines whether the
respective data object is locked in a snapshot by comparing the unique sequence number of
the data object with the highest sequence number (sometimes also called a boundary
sequence number) included in the snapshot entries of snapshot metadata 138. If the sequence
number of the respective data object is less than or equal to the boundary sequence number,
management module 140 cannot perform the update/replacement or deletion operation on the
respective data object in-place, and, instead, management module 140 creates a new data
object so as to perform the update/replacement or deletion operation. However, if the unique
sequence number of the respective data object is greater than the boundary sequence number,
management module 140 performs the update/replacement or deletion operation in-place on

the respective data object.

[0068] In Figure 5A, state 534 shows TDS 502 and snapshot metadata 138 after
management module 140 performs an update operation of the data object corresponding to
key 2. For example, management module 140 receives a request to update the old value of a
data object that corresponds to key 2 with a new value. In this example, management module
140 determines that data object 512-2, which corresponds to key 2, is locked in the first
snapshot because its unique sequence number (2) is less than the boundary sequence number
(8) corresponding to the first snapshot in snapshot entry 522. Continuing with this example,
while maintaining data object 512-2, management module 140 inserts new data object 512-9

corresponding to (key 2 — sequence number 9) with the new value (V9) into leaf node 506-1.

[0069] In state 534, leaf node 506-1 includes: data object 512-1 corresponding to (key

1 — sequence number 1) with value (V1); new data object 512-9 corresponding to (key 2 —
26

WO 2015/153796 PCT/US2015/023927

sequence number 9) with value (V9); data object 512-2 corresponding to (key 2 — sequence
number 2) with value (V2); and data object 512-3 corresponding to (key 3 — sequence
number 3) with value (V3). State 534 indicates that new data object 512-9 was inserted to the

left of data object 512-2 (i.e., reverse key order).

[0070] In Figure 5B, state 536 shows TDS 502 and snapshot metadata 138 after
management module 140 performs an update operation of the data object corresponding to
key 1. For example, management module 140 receives a request to update the old value of a
data object that corresponds to key 1 with a new value. In this example, management module
140 determines that data object 512-1, which corresponds to key 1, is locked in the first
snapshot because its unique sequence number (1) is less than the boundary sequence number
(8) corresponding to the first snapshot in snapshot entry 522. Continuing with this example,
while maintaining data object 512-1, management module 140 inserts new data object 512-10
corresponding to (key 1 — sequence number 10) with the new value (V10) into leaf node 506-
1. Continuing with this example, the insertion of new data object 512-10 causes leaf node
506-1 to be split into leaf nodes 506-4 and 506-5 between data object 512-9 and data object
512-2 because the insertion causes leaf node 506-1 to exceed the maximum leaf node size

(e.g., a leaf node cannot include more than four data objects).

[0071] In state 536, internal node 504-2 includes: (key 2 — sequence number 9)
pointing to rightmost data object 512-9 in leaf node 506-4; (key 3 — sequence number 3)
pointing to rightmost data object 512-3 in leaf node 506-5; (key 5 — sequence number 5)
pointing to rightmost data object 512-5 in leaf node 506-2; and (key 8 — sequence number 8)
pointing to rightmost data object 512-8 in leaf node 506-3. In state 536, leaf node 506-4
includes: new data object 512-10 corresponding to (key 1 — sequence number 10) with value
(V10); data object 512-1 corresponding to (key 1 — sequence number 1) with value (V1); and
data object 512-9 corresponding to (key 2 — sequence number 9) with value (V9). In state
536, leaf node 506-5 includes: data object 512-2 corresponding to (key 2 — sequence number
2) with value (V2); and data object 512-3 corresponding to (key 3 — sequence number 3) with
value (V3). State 536 indicates that new data object 512-10 was inserted to the left of data

object 512-1 (i.e., reverse key order).

[0072] In Figure 5B, state 538 shows TDS 502 and snapshot metadata 138 after
management module 140 performs an update operation of the data object corresponding to
key 2. For example, management module 140 receives a request to update the old value of a

data object that corresponds to key 2 with a new value. In this example, management module
27

WO 2015/153796 PCT/US2015/023927

140 determines that data object 512-9 is the data object corresponding to key 2 with the
highest sequence number (e.g., the newest data object corresponding to key 2). Continuing
with this example, management module 140 then determines that data object 512-9 is not
locked in the first snapshot because its unique sequence number (9) is greater than the
boundary sequence number (8) corresponding to the first snapshot in snapshot entry 522.
Further in this example, management module 140 updates/replaces the old value (e.g., V9) of
data object 512-9 with the new value (V11) in-place so as to create new data object 512-11

corresponding to (key 2 — sequence number 11) in leaf node 506-4.

[0073] In state 538, internal node 504-3 includes: (key 2 — sequence number 11)
pointing to rightmost data object 512-11 in leaf node 506-4; (key 3 — sequence number 3)
pointing to rightmost data object 512-3 in leaf node 506-5; (key 5 — sequence number 5)
pointing to rightmost data object 512-5 in leaf node 506-2; and (key 8 — sequence number 8)
pointing to rightmost data object 512-8 in leaf node 506-3. In state 538, leaf node 506-4
includes: data object 512-10 corresponding to (key 1 — sequence number 10) with value
(V10); data object 512-1 corresponding to (key 1 — sequence number 1) with value (V1); and
new data object 512-11 corresponding to (key 2 — sequence number 11) with value (V11).

[0074] In Figure 5C, state 540 shows TDS 502 and snapshot metadata 138 after
management module 140 performs a second snapshot of TDS 502. In state 540, snapshot
metadata 138 includes snapshot entry 524 corresponding to the second snapshot of TDS 502.
Snapshot entry 524 includes the following fields: A) sequence number 11 corresponding to
the highest sequence number associated with a data object (e.g., data object 512-11) at the
time of the second snapshot; B) a timestamp; and C) version number 2 indicating that
snapshot entry 524 corresponds to a second snapshot of TDS 502. In some embodiments,
snapshot entry 524 indicates that data objects associated with sequence numbers 1-11 (e.g.,

data objects 512-1, ..., 512-11) are locked in the second snapshot.

[0075] In Figure 5C, state 542 shows TDS 502 and snapshot metadata 138 after
management module 140 performs a deletion operation of the data object corresponding to
key 2. For example, management module 140 receives a request to delete a data object that
corresponds to key 2. In this example, management module 140 determines that data object
512-11 is the data object corresponding to key 2 with the highest sequence number (e.g., the
newest data object corresponding to key 2). Continuing with this example, management
module 140 then determines that data object 512-11 is locked in the second snapshot because

its unique sequence number (11) is equal to the boundary sequence number (11)
28

WO 2015/153796 PCT/US2015/023927

corresponding to the second snapshot in snapshot entry 524. Continuing with this example,
while maintaining data object 512-11, management module 140 inserts new data object 512-
12 corresponding to (key 2 — sequence number 12) with a tombstone into leaf node 506-4. In

some embodiments, the tombstone indicates that the associated data object has been deleted.

[0076] In state 542, leaf node 506-4 includes: data object 512-10 corresponding to
(key 1 — sequence number 10) with value (V10); data object 512-1 corresponding to (key 1 —
sequence number 1) with value (V1); new data object 512-12 corresponding to (key 2 —
sequence number 12) with a tombstone; and data object 512-11 corresponding to (key 2 —
sequence number 11) with value (V11). State 542 indicates that new data object 512-12 was
inserted to the left of data object 512-11 (i.e., reverse key order).

[0077] In some embodiments, in response to receiving a request from the requestor
(e.g., computer system 110, Figure 1) to perform a cleanup process on one or more specified
snapshots, management module 140 performs a cleanup process on a TDS (or multiple tiered

data structures) associated with one or more specified snapshots, by:

. A) identifying a cleanup sequence number, where the cleanup sequence number is a
highest sequence number associated with the snapshot entries of the one or more

specified snapshots;

. B) deleting entries associated with the one or more specified snapshots from snapshot

metadata 138;

. () identifying sets of redundant data objects, where a respective set of redundant data

objects includes two or more data objects corresponding to same key information;

. D) for a respective set of redundant data objects, identifying a data object with a

highest sequence number;

. E) for a respective set of redundant data objects, removing all data objects that are
both: (i) associated with sequence numbers less than the sequence number of the
identified data object with the highest sequence number in the set of redundant data
objects; and (i1) associated with sequence numbers less than or equal to the cleanup

sequence number; and

. F) removing, from the TDS, all data objects that include a tombstone.

29

WO 2015/153796 PCT/US2015/023927

[0078] In some embodiments, when the request does not specify one or more
snapshots, management module 140 performs the cleanup process as to an oldest or all

snapshots included in snapshot metadata 138.

[0079] In Figure 5D, state 544 shows TDS 502 and snapshot metadata 138 after
management module 140 performs a cleanup process. For example, management module 140
receives a request to perform a cleanup process as to the first and second snapshots of TDS
502. In response to receiving this request, management module 140 identifies a cleanup
sequence number (11) as the sequence number associated with the second snapshot in
snapshot entry 524 and deletes snapshot entries 522 and 524 from snapshot metadata 138.
Subsequently, management module 140 removes redundant data objects 512-11 and 512-2
from TDS 502 because data object 512-12 corresponds to the same key information as data
objects 512-11 and 512-2 (e.g., key 2) but has a higher sequence number (e.g., sequence
number 12) than data objects 512-11 and 512-2. Management module 140 also removes
redundant data object 512-1 from TDS 502 because data object 512-10 corresponds to the
same key information as data object 512-1 (e.g., key 1) but has a higher sequence number
(e.g., sequence number 11) than data objects 512-1. Furthermore, management module
removes data object 512-12 from TDS 502 because it includes a tombstone. Continuing with
this example, the removal of data objects 512-1, 512-2, 512-11, and 512-12 and causes leaf
nodes 506-4 and 506-5 to merge into leaf node 506-6 because the removal causes leaf nodes
506-4 and 506-5 to fall below the minimum leaf node size (e.g., a leaf node must include at

least two data objects).

[0080] In state 544, internal node 504-4 includes: (key 3 — sequence number 3)
pointing to rightmost data object 512-3 in leaf node 506-6; (key 5 — sequence number 5)
pointing to rightmost data object 512-5 in leaf node 506-2; and (key 8 — sequence number 8)
pointing to rightmost data object 512-8 in leaf node 506-3. In state 544, snapshot metadata
138 includes no snapshot entries, and leaf node 506-6 includes: data object 512-10
corresponding to (key 1 — sequence number 10) with value (V10); and data object 512-3

corresponding to (key 3 — sequence number 3) with value (V3).

[0081] Attention is now directed to Figures 6A-6F, which illustrate a method 600 of
managing a datastore storing one or more tiered data structures in accordance with some
embodiments. Method 600 is, optionally, governed by instructions that are stored in a non-
transitory computer readable storage medium and that are executed by one or more

processors of a memory controller (e.g., management module 140, Figures 1 and 3). Each of
30

WO 2015/153796 PCT/US2015/023927

the operations shown in Figures 6A-6F typically corresponds to instructions stored in a
computer memory or non-transitory computer readable storage medium (e.g., memory 302 of
management module 140 in Figure 3). The computer readable storage medium optionally
(and typically) includes a magnetic or optical disk storage device, solid state storage devices
such as flash memory, 3D memory (as further described herein), or other non-volatile
memory device or devices. The computer readable instructions stored on the computer
readable storage medium typically include one or more of: source code, assembly language
code, object code, or other instruction format that is interpreted or executed by one or more
processors. In various embodiments, some operations in method 600 are combined and/or the

order of some operations is changed from the order shown in Figures 6A-6F.

[0082] In some embodiments, method 600 is performed in a data storage system (e.g.,
data storage system 100, Figure 1) that includes: (A) a memory controller (e.g., management
module 140, Figures 1 and 3) with one or more processors (e.g., CPU(s) 142, Figures 1 and
3) and associated memory (e.g., memory 302, Figure 3); (B) a non-volatile memory with
snapshot metadata (e.g., snapshot metadata 138, Figure 2B) and a datastore (e.g., datastore
136, Figure 2B) storing one or more tiered data structures; and (C) a volatile memory with a
key-map (e.g., non-persistent key-map 202, Figure 2A) storing datastore location information
for a plurality of keys corresponding to data objects in the one or more tiered data structures
stored in the datastore. In some embodiments, the non-volatile memory (“NVM”) comprises
one or more NVM devices such as magnetic disk storage device(s), optical disk storage
device(s), flash memory device(s), 3D memory device(s), or other NVM memory device(s).
In some embodiments, the volatile memory comprises one or more volatile memory devices
such as DRAM, SRAM, DDR RAM, or other random access solid state memory device(s). In
some embodiments, the memory controller is operatively coupled with or, alternatively,

includes the non-volatile memory and/or the volatile memory.

[0083] The memory controller detects (602) a request to perform an update operation
of a first data object in a tiered data structure of the one or more tiered data structures stored
in the datastore, the request includes first key information (e.g., a unique key or information
from which a unique key can be identified such as a shortened key and a location/length of a
key prefix) corresponding to the first data object and a new value for the first data object. In
some embodiments, the corresponding value is data. In some embodiments, the
corresponding value is a pointer identifying a location where the data is stored. In some

embodiments, the data objects are contiguous data objects where the unique key information

31

WO 2015/153796 PCT/US2015/023927

for a respective contiguous data object is adjacent or substantially adjacent to the
corresponding value for the respective contiguous data object or other data for the respective
contiguous data object that is adjacent to the corresponding value. In some embodiments, the
data objects are split data objects where the unique key information for a respective split data
object is separated from the corresponding value for the respective split data object by other
data for other data objects and the unique key information for the respective split data object
is stored with a pointer that identifies a location of the corresponding value for the respective
split data object. For example, prior to state 534 in Figure 5A, management module 140
receives a request to update the old value of a data object that corresponds to key 2 with a

new value.

[0084] The memory controller locates (604) the first data object using a key-map to
map the first key information to a location of the first data object in the datastore. In some
embodiments, management module 140 locates the first data object by mapping the first key
information to location information in non-persistent key-map 202. In some embodiments,
the located first data object is a data object corresponding to the first key information with the
highest sequence number. In some embodiments, the location information is the location of
the data object in datastore 136, a pointer to the location of the data object in datastore 136, or
the location of a slab in datastore 136 storing a leaf node of a respective TDS of the one or
more tiered data structures stored in datastore 136 that includes the first data object. For
example, with reference to Figure 5A, in response to receiving the request to update the old
value of the data object that corresponds to key 2 with a new value, management module 140

determines that data object 512-2 in TDS 502 corresponds to key 2.

[0085] The memory controller identifies (606) a sequence number associated with the
first data object. In Figures 5A-5D, for example, data objects 512 included in leaf nodes 506
are cach associated with a key information — sequence number paring (e.g., shown in Figures
5A-5D as K -Q) and data (e.g., a value shown in Figures 5SA-5D as V). For example, with

reference to Figure 5SA, data object 512-2 is associated with sequence number 2.

[0086] In accordance with a first determination (608) that the sequence number
associated with the first data object is greater than a first boundary sequence number
corresponding to a first snapshot of the tiered data structure, the memory controller: replaces
(610) the first data object in the tiered data structure with a modified first data object
including the first key information and the new value; and assigns (612) the modified first

data object a unique sequence number. In some embodiments, the boundary sequence number
32

WO 2015/153796 PCT/US2015/023927

is the highest sequence number associated with the snapshot entries in snapshot metadata
138. In some embodiments, when a snapshot is performed on a respective TDS, the sequence
number of the snapshot is the highest sequence number assigned to a data object in the
respective TDS at the time the snapshot was performed. In some embodiments, when the
snapshot is performed on two or more tiered data structures stored in datastore 136, the
sequence number of the snapshot is the highest sequence number assigned to a data object in
the two or more tiered data structures at the time the snapshot was performed. In Figure 5A,
for example, the first snapshot corresponding to snapshot entry 522 is the only snapshot of
TDS 502, and, thus, the sequence number associated with the first snapshot (8) is the

boundary sequence number.

[0087] In some embodiments, when the first data object is not locked in one of the
snapshots, the first data object is replaced or updated in-place. In some embodiments, the first
data object is replaced by a modified first data object that includes the new value. However,
in some other embodiments, the first data object is not replaced by the modified first data
object and, instead, the first data object is updated to include the new value. In Figure 5B, for
example, state 538 shows TDS 502 after management module 140 performs an update
operation of the data object corresponding to key 2. For example, management module 140
receives a request to update the old value of a data object that corresponds to key 2 with a
new value. In this example, management module 140 determines that data object 512-9 is the
data object corresponding to key 2 with the highest sequence number (e.g., the newest data
object corresponding to key 2). Continuing with this example, management module 140 then
determines that data object 512-9 is not locked in the first snapshot because its unique
sequence number (9) is greater than the boundary sequence number (8) corresponding to the
first snapshot in snapshot entry 522. Further in this example, management module 140
updates/replaces the old value (e.g., V9) of data object 512-9 with the new value (V11) in-
place so as to create new data object 512-11 corresponding to (key 2 — sequence number 11)

in leaf node 506-4.

[0088] In some embodiments, in accordance with the first determination, the memory
controller stores (614) the modified first object in the respective leaf node of the tiered data
structure in a first manner corresponding to a sorting scheme associated with the key
information. In Figure 5B, for example, state 538 shows that new data object 512-11 was

stored in leaf node 506-4 in the predefined key order (e.g., right-to-left). For example, in

33

WO 2015/153796 PCT/US2015/023927

Figures 5A-5D, the predefined key order for the keys in TDS 502 is monotonically

ascending.

[0089] In some embodiments, the first boundary sequence number corresponds to
(616) a highest sequence number assigned to a data object in the tiered data structure prior to
the first snapshot. In some embodiments, the boundary sequence number is the highest
sequence number associated with the snapshot entries in snapshot metadata 138. In some
embodiments, when a snapshot is performed on a respective TDS, the sequence number of
the snapshot is the highest sequence number assigned to a data object in the respective TDS
at the time the snapshot was performed. In some embodiments, when the snapshot is
performed on two or more tiered data structures stored in datastore 136, the sequence number
of the snapshot is the highest sequence number assigned to a data object in the two or more

tiered data structures at the time the snapshot was performed.

[0090] In some embodiments, the memory controller stores (618) snapshot metadata
in a respective leaf node of the tiered data structure, the snapshot metadata includes the first
boundary sequence number, corresponding to one or more snapshots (e.g., including the first
snapshot) of the tiered data structure. In some embodiments, a snapshot is performed on one
or more specified tiered data structures or all of the one or more tiered data structures stored
in datastore 136. In some embodiments, snapshot metadata 138 stores a snapshot entry for
cach snapshot of the one or more tiered data structures stored in datastore 136. A respective
snapshot entry for a snapshot in snapshot metadata 138 includes a sequence number of the
snapshot, a timestamp of the snapshot (e.g., indicating the time the snapshot was performed
or the time the snapshot entry was created), and a version number of the snapshot. In some
embodiments, the respective snapshot entry also includes an indication of the one or more
tiered data structures on which the snapshot was performed. In some embodiments, snapshot
metadata 138 is located in a specified node with a well-known ID of one of the one or more
tiered data structures stored in datastore 136. In this way, the node comprising snapshot
metadata 138 is not (or is infrequently) evicted from cache 206, and the node comprising
snapshot metadata 138 is accessed every time the tiered data structure is read from or written
to. Alternatively, in some embodiments, each of the one or more tiered data structures stored
in datastore 136 includes a node with a well-known ID that stores snapshot metadata

corresponding to snapshots of the respective TDS.

[0091] In accordance with a second determination (620) that the sequence number

associated with the first data object is less than or equal to the first boundary sequence
34

WO 2015/153796 PCT/US2015/023927

number corresponding to the first snapshot of the tiered data structure, the memory controller:
inserts (622) a second data object into the tiered data structure while maintaining the first data
object in the tiered data structure, the second data object including the first key information
and the new value; and assigns (624) the second data object the unique sequence number. In
this embodiment, when the first data object is locked in one of the snapshots, a second data
object that includes the new value is inserted into the TDS. In Figure 5B, for example, state
536 shows TDS 502 after management module 140 performs an update operation of the data
object corresponding to key 1. For example, management module 140 receives a request to
update the old value of a data object that corresponds to key 1 with a new value. In this
example, management module 140 determines that data object 512-1, which corresponds to
key 1, is locked in the first snapshot because its unique sequence number (1) is less than the
boundary sequence number (8) corresponding to the first snapshot in snapshot entry 522.
Continuing with this example, while maintaining data object 512-1, management module 140
inserts new data object 512-10 corresponding to (key 1 — sequence number 10) with the new

value (V10) into leaf node 506-1.

[0092] In some embodiments, in accordance with the second determination, the
memory controller stores (626) the second data object in the respective leaf node in a second
manner that is substantially opposite to the first manner. In Figure 5B, for example, state 536
shows that new data object 512-10 was inserted into leaf node 506-4 to the left of data object
512-1. As such, new data object 512-10 was inserted into leaf node 506-4 in a direction
substantially opposite to the predefined key order (e.g., right-to-left).

[0093] In some embodiments, after assigning the modified first object or the second
data object the unique sequence number, the memory controller performs (628) a second
snapshot of the tiered data structure, where the snapshot is associated with a second boundary
sequence number different from the first boundary sequence number. Figure 5C, for example,
state 540 shows snapshot metadata 138 after management module 140 performs a second
snapshot of TDS 502. In state 540, snapshot metadata 138 includes snapshot entry 524
corresponding to the second snapshot. Snapshot entry 524 includes the following fields: A)
sequence number 11 (e.g., a boundary sequence number) corresponding to the highest
sequence number associated with a data object (e.g., data object 512-11) at the time of the
second snapshot; B) a timestamp; and C) version number 2 indicating that snapshot entry 524
corresponds to a second snapshot of TDS 502. In Figure 5C, for example, state 540 shows

that the sequence number in snapshot entry 524 (11) corresponding to the second snapshot of

35

WO 2015/153796 PCT/US2015/023927

TDS 502 is higher and different from the sequence number in snapshot entry 522 (8)
corresponding to the first snapshot of TDS 502.

[0094] In some embodiments, the memory controller determines (630) whether one or
more requests to perform memory operations on the tiered data structure are complete, where
the one or more requests include the request to perform the update operation. In some
embodiments, management module 140 or a component thereof (e.g., snapshot module 348,
Figure 3) performs the second snapshot of a specified TDS (or two or more specified tiered
data structures) in accordance with a determination that the one or more requests to perform
memory operations on the specified TDS are complete. As such, management module 140 or
a component thereof (e.g., snapshot module 348, Figure 3) waits to perform a snapshot on the
specified TDS until all pending memory operations or transaction on the specified TDS are
completed. As such, the snapshot is performed on a stable, consistent state of the specified

TDS.

[0095] In some embodiments, the memory controller detects (632) a trigger to
perform a cleanup process as to one or more snapshots. In some embodiments, the cleanup
process is triggered according to a predefined schedule, by an event, or on-demand by a
request from a requestor (e.g., computer system 110, Figure 1). For example, the event
includes a predetermined number of transactions or memory operations performed on the one
or more tiered data structures stored in datastore 136 or restart/power-on of data storage

system 100.

[0096] In some embodiments, in response to detecting the trigger, the memory
controller performs (634) the cleanup process as to the one or more snapshots. In some
embodiments, in response to the request to perform the cleanup process, management module
140 or a component thereof (e.g., cleanup module 350, Figure 3) identifies a cleanup
sequence number as the highest sequence number of the one or more specified snapshots.
With reference to Figures 5C-5D, for example, management module 140 receives a request to
perform a cleanup process as to the first and second snapshots (e.g., corresponding to
snapshot entries 522 and 524, respectively). In this example, in response to receiving the
request to perform the cleanup process, management module 140 or a component therecof
(e.g., cleanup module 350, Figure 3) identifies a cleanup sequence number as the highest
sequence number of the first and second snapshots. Continuing with this example, in Figure

5C, state 542 indicates that the sequence number corresponding to the second snapshot (11)

36

WO 2015/153796 PCT/US2015/023927

in snapshot entry 524 is the highest sequence number between the snapshot entries 522 and

524 in snapshot metadata 138. Thus, in this example, the cleanup sequence number is 11.

[0097] In some embodiments, as part of the cleanup process, the memory controller
identifies (636) one or more sets of redundant data objects in the tiered data structure that
cach include two or more data objects that are associated with same key information. For
example, in state 542 of Figure 5C, a first set of redundant data object includes data objects
512-1 and 512-10, which are both associated with key 1, and a second set of redundant data
object includes data objects 512-2, 512-11, and 512-12, which are associated with key 2.

[0098] In some embodiments, as part of the cleanup process, for a respective set of
the one or more sets of redundant data objects (638), the memory controller: identifies a
respective data object associated with a highest sequence number compared to one or more
other data objects in the respective set of redundant data objects; and removes the one or
more other data objects, distinct from the respective data object, in the respective set of
redundant data objects from the tiered data structure. In some embodiments, the one or more
other data objects that are removed are data objects (i) associated with sequence numbers less
than the sequence number of the identified data object with the highest sequence number in
the set of redundant data objects, and (i1) associated with sequence numbers less than or equal
to the cleanup sequence number. In some embodiments, the memory controller also removes
all data objects that include a tombstone in the TDS (or multiple tiered data structures)

associated with the one or more specified snapshots.

[0099] In Figure 5D, for example, state 544 shows TDS 502 after management
module 140 performs the cleanup process. For example, management module 140 receives a
request to perform a cleanup process as to the first and second snapshots. Subsequently,
management module 140 removes redundant data objects 512-11 and 512-2 from TDS 502
because data object 512-12 corresponds to the same key information as data objects 512-11
and 512-2 (e.g., key 2) but has a higher sequence number (e.g., sequence number 12) than
data objects 512-11 and 512-2. Management module 140 also removes redundant data object
512-1 from TDS 502 because data object 512-10 corresponds to the same key information as
data object 512-1 (e.g., key 1) but has a higher sequence number (e.g., sequence number 11)
than data objects 512-1. Furthermore, management module removes data object 512-12 from
TDS 502 because it includes a tombstone. After performing the cleanup process, leaf node

506-6, in state 544, includes: data object 512-10 corresponding to (key 1 — sequence number

37

WO 2015/153796 PCT/US2015/023927

10) with value (V10); and data object 512-3 corresponding to (key 3 — sequence number 3)
with value (V3).

[00100] In some embodiments, as part of the cleanup process, the memory controller
deletes (640) information corresponding to the one or more snapshots from snapshot
metadata, where the snapshot metadata corresponding to the one or more snapshots of the
tiered data structure is stored in a respective leaf node of the tiered data structure. In Figure
5D, for example, state 544 shows snapshot metadata 138 after management module 140
performs the cleanup process. In response to receiving the request to perform the cleanup
process as to the first and second snapshots, management module 140 deletes from snapshot
metadata 138 snapshot entries 522 and 524 that correspond to the first and second snapshots,

respectively. In state 544, for example, snapshot metadata 138 includes no snapshot entries.

[00101] In some embodiments, the trigger identifies (642) the one or more snapshots
on which to perform the cleanup process. With respect to the example described above in
steps 638 and 640, management module 140 receives a request to perform a cleanup process
as to the first and second snapshots. In some embodiments, when the trigger does not specify
one or more snapshots, an oldest snapshot or all snapshots are specified in the request to

perform the cleanup process.

[00102] In some embodiments, the memory controller detects (644) a second request to
perform a deletion operation of a third data object in the tiered data structure, the second
request includes second key information corresponding to the third data object. For example,
with respect to Figure 5C, management module 140 receives a request to delete a data object

that corresponds to key 2.

[00103] In some embodiments, the memory controller locates (646) the third data
object using the key-map to map the second key information to a location of the third data
object in the datastore. In some embodiments, management module 140 locates the third data
object by mapping the second key information to location information in non-persistent key-
map 202. For example, with reference to Figure 5C, in response to receiving the request to
delete the data object that corresponds to key 2, management module 140 determines that
data objects 512-3 and 512-11 are associated with key 2. In this example, management
module 140 determines that data object 512-11 is the data object corresponding to key 2 with

the highest sequence number (e.g., the newest data object corresponding to key 2).

38

WO 2015/153796 PCT/US2015/023927

[00104] In some embodiments, the memory controller identifies (648) a sequence
number associated with the third data object. For example, with reference to Figure 5C, data

object 512-11 is associated with sequence number 11.

[00105] In some embodiments, in accordance with a determination that the sequence
number associated with the third data object is greater than the first boundary sequence
number corresponding to the first snapshot of the tiered data structure, the memory controller
(650): replaces the third data object in the tiered data structure with a modified third data
object including the second key information and a tombstone; and assigns the modified third
object a second unique sequence number. For example, management module 140 determines
that the third data object is not locked in one of the snapshots of the TDS because its unique
sequence number is greater than boundary sequence number. Continuing with this example,
management module 140 updates/replaces in-place the old value the third data object with a

tombstone so as to create a third modified data object with a new unique sequence number.

[00106] In some embodiments, in accordance with a determination that the sequence
number associated with the third data object is less than or equal to the first boundary
sequence number corresponding to the first snapshot of the tiered data structure, the memory
controller (652): inserts a fourth data object into the tiered data structure while maintaining
the third data object in the tiered data structure, the fourth data object including the second
key information and the tombstone; and assigns the fourth data object the second unique
sequence number. Continuing with the example in steps 646 and 648, management module
140 determines that data object 512-11 is locked in the second snapshot because its unique
sequence number (11) is equal to the boundary sequence number (11) corresponding to the
second snapshot in snapshot entry 524. Continuing with this example, while maintaining data
object 512-11, management module 140 inserts new data object 512-12 corresponding to
(key 2 — sequence number 12) with a tombstone into leaf node 506-4. In some embodiments,
the tombstone indicates that the associated data object has been deleted. In state 542 of Figure
5C, leaf node 506-4 includes: data object 512-10 corresponding to (key 1 — sequence number
10) with value (V10); data object 512-1 corresponding to (key 1 — sequence number 1) with
value (V1); new data object 512-12 corresponding to (key 2 — sequence number 12) with a
tombstone; and data object 512-11 corresponding to (key 2 — sequence number 11) with value

(V11).

[00107] It should be understood that the particular order in which the operations in

Figures 6A-6F have been described is merely exemplary and is not intended to indicate that
39

WO 2015/153796 PCT/US2015/023927

the described order is the only order in which the operations could be performed. One of
ordinary skill in the art would recognize various ways to reorder the operations described
herein. Additionally, it should be noted that details of other processes described herein with
respect to other methods described herein (e.g., method 700) are also applicable in an
analogous manner to method 600 described above with respect to Figures 6A-6F. For
example, the tiered data structures, data objects, nodes, and cleanup process described above
with reference to method 600 optionally have one or more of the characteristics of the tiered
data structures, data objects, nodes, and cleanup process described herein with reference to
other methods described herein (e.g., method 700). For brevity, these details are not repeated

here.

[00108] Attention is now directed to Figures 7A-7C, which illustrate a method 700 of
managing a datastore storing one or more tiered data structures stored in accordance with
some embodiments. Method 700 is, optionally, governed by instructions that are stored in a
non-transitory computer readable storage medium and that are executed by one or more
processors of a memory controller (e.g., management module 140, Figures 1 and 3). Each of
the operations shown in Figures 7A-7C typically corresponds to instructions stored in a
computer memory or non-transitory computer readable storage medium (e.g., memory 302 of
management module 140 in Figure 3). The computer readable storage medium optionally
(and typically) includes a magnetic or optical disk storage device, solid state storage devices
such as flash memory, 3D memory (as further described herein), or other non-volatile
memory device or devices. The computer readable instructions stored on the computer
readable storage medium typically include one or more of: source code, assembly language
code, object code, or other instruction format that is interpreted or executed by one or more
processors. In various embodiments, some operations in method 700 are combined and/or the

order of some operations is changed from the order shown in Figures 7A-7C.

[00109] In some embodiments, method 700 is performed in a data storage system (e.g.,
data storage system 100, Figure 1) that includes: (A) a memory controller (e.g., management
module 140, Figures 1 and 3) with one or more processors (e.g., CPU(s) 142, Figures 1 and
3) and associated memory (e.g., memory 302, Figure 3); (B) a non-volatile memory with
snapshot metadata (e.g., snapshot metadata 138, Figure 2B) , a log stream (e.g., log stream
134, Figure 2B), and a datastore (e.g., datastore 136, Figure 2B) storing one or more tiered
data structures; and (C) a volatile memory with a cache (e.g., cache 206, Figure 2A) and a

key-map (e.g., non-persistent key-map 202, Figure 2A) storing datastore location information

40

WO 2015/153796 PCT/US2015/023927

for a plurality of keys corresponding to data objects in the one or more tiered data structures
stored in the datastore. In some embodiments, the non-volatile memory (“NVM”) comprises
one or more NVM devices such as magnetic disk storage device(s), optical disk storage
device(s), flash memory device(s), 3D memory device(s), or other NVM memory device(s).
In some embodiments, the volatile memory comprises one or more volatile memory devices
such as DRAM, SRAM, DDR RAM, or other random access solid state memory device(s). In
some embodiments, the memory controller is operatively coupled with or, alternatively,

includes the non-volatile memory and/or the volatile memory.

[00110] The memory controller detects (702) a request to perform an update operation
of a first data object in a tiered data structure of the one or more tiered data structures stored
in the datastore, the request includes first key information (e.g., a unique key or information
from which a unique key can be identified such as a shortened key and a location/length of a
key prefix) corresponding to the first data object and a new value for the first data object. In
some embodiments, the corresponding value is data. In some embodiments, the
corresponding value is a pointer identifying a location where the data is stored. In some
embodiments, the data objects are contiguous data objects where the unique key information
for a respective contiguous data object is adjacent or substantially adjacent to the
corresponding value for the respective contiguous data object or other data for the respective
contiguous data object that is adjacent to the corresponding value. In some embodiments, the
data objects are split data objects where the unique key information for a respective split data
object is separated from the corresponding value for the respective split data object by other
data for other data objects and the unique key information for the respective split data object
is stored with a pointer that identifies a location of the corresponding value for the respective
split data object. For example, prior to state 534 in Figure 5A, management module 140
receives a request to update the old value of a data object that corresponds to key 2 with a

new value.

[00111] The memory controller detects (704) a request to perform a cleanup process as
to one or more snapshots of the tiered data structure. In some embodiments, the cleanup
process is triggered according to a predefined schedule, by an event, or on-demand by a
requestor (e.g., computer system 110, Figure 1). For example, the event includes a
predetermined number of transactions or memory operations performed on the one or more
tiered data structures stored in datastore 136 or restart/power-on of data storage system 100.

In some embodiments, the request includes one or more specified snapshots for the cleanup

41

WO 2015/153796 PCT/US2015/023927

process. In some embodiments, when the request does not specify one or more snapshots for

the cleanup process, the cleanup process is performed for an oldest snapshot or all snapshots.

[00112] In some embodiments, in response to the request to perform the cleanup
process, management module 140 or a component thereof (e.g., cleanup module 350, Figure
3) identifies a cleanup sequence number as the highest sequence number of the one or more
specified snapshots. With reference to Figures 5C-5D, for example, management module 140
receives a request to perform a cleanup process as to the first and second snapshots (e.g.,
corresponding to snapshot entries 522 and 524, respectively). In this example, in response to
receiving the request to perform the cleanup process, management module 140 or a
component thereof (e.g., cleanup module 350, Figure 3) identifies a cleanup sequence number
as the highest sequence number of the first and second snapshots. Continuing with this
example, in Figure 5C, state 542 indicates that the sequence number corresponding to the
second snapshot (11) in snapshot entry 524 is the highest sequence number between the
snapshot entries 522 and 524 in snapshot metadata 138. Thus, in this example, the cleanup

sequence number is 11.

[00113] The memory controller locates (706), in the datastore, the first data object
using a key-map to map the first key information to a first slab in the datastore storing the
first data object. In some embodiments, management module 140 locates the first data object
by mapping the first key information to location information in non-persistent key-map 202.
In some embodiments, the located first data object is a data object corresponding to the first
key information with the highest sequence number. In some embodiments, the location
information is the location of the data object in datastore 136, a pointer to the location of the
data object in datastore 136, or the location of a slab in datastore 136 storing a leaf node of a
respective TDS of the one or more tiered data structures stored in datastore 136 that includes
the first data object. For example, with reference to Figure 5A, in response to receiving the
request to update the old value of the data object that corresponds to key 2 with a new value,

management module 140 determines that data object 512-2 in TDS 502 corresponds to key 2.

[00114] The memory controller retrieves (708) a first leaf node of the tiered data
structure from the first slab, the first leaf node includes the first data object. For example,
with reference to Figure 5A, after locating data object 512-2, management module 140

retrieves leaf node 506-1, including data object 512-2, from datastore 136.

42

WO 2015/153796 PCT/US2015/023927

[00115] The memory controller stores (710) the first leaf node or a copy thereof in the
cache. Continuing with the example in steps 706 and 708, management module 140 stores

leaf node 506-1 or a copy thereof in cache 206.

[00116] The memory controller identifies (712) a sequence number associated with the
first data object. In Figures 5A-5D, for example, data objects 512 included in leaf nodes 506
are cach associated with a key information — sequence number paring (e.g., shown in Figures
5A-5D as K -Q) and data (e.g., a value shown in Figures 5SA-5D as V). For example, with

reference to Figure 5SA, data object 512-2 is associated with sequence number 2.

[00117] In accordance with a first determination (714) that the sequence number
associated with the first data object is greater than a boundary sequence number, the memory
controller: replaces (716) the first data object in the cached first leaf node or copy thereof
with a modified first data object including the first key information and the new value so as to
generate modified first leaf node; and assigns (718) the modified first data object a unique
sequence number. In some embodiments, the boundary sequence number is the highest
sequence number associated with the snapshot entries in snapshot metadata 138. In some
embodiments, the boundary sequence number corresponds to the cleanup sequence number.
However, in other embodiments, the boundary sequence number corresponds to a later
snapshot that is not included in the one or more specified snapshots. In some embodiments,
when a snapshot is performed on a respective TDS, the sequence number of the snapshot is
the highest sequence number assigned to a data object in the respective TDS at the time the
snapshot was performed. In some embodiments, when the snapshot is performed on two or
more tiered data structures stored in datastore 136, the sequence number of the snapshot is the
highest sequence number assigned to a data object in the two or more tiered data structures at
the time the snapshot was performed. In Figure 5A, for example, the first snapshot
corresponding to snapshot entry 522 is the only snapshot of TDS 502, and, thus, the sequence

number associated with the first snapshot (8) is the boundary sequence number.

[00118] In some embodiments, when the first data object is not locked in one of the
snapshots, the first data object is replaced or updated in-place. In some embodiments, the first
data object is replaced by s modified first data object that includes the new value. However,
in some other embodiments, the first data object is not replaced by the modified first data
object and, instead, the first data object is updated to include the new value. In Figure 5B, for
example, state 538 shows TDS 502 after management module 140 performs an update

operation of the data object corresponding to key 2. For example, management module 140
43

WO 2015/153796 PCT/US2015/023927

receives a request to update the old value of a data object that corresponds to key 2 with a
new value. In this example, management module 140 determines that data object 512-9 is the
data object corresponding to key 2 with the highest sequence number (e.g., the newest data
object corresponding to key 2). In this example, management module 140 retrieves leaf node
506-4, which includes data object 512-9, and stores leaf node 506-4 or a copy thereof in
cache 206. Continuing with this example, management module 140 then determines that data
object 512-9 is not locked in the first snapshot because its unique sequence number (9) is
greater than the boundary sequence number (8) corresponding to the first snapshot in
snapshot entry 522. Further in this example, management module 140 updates/replaces the
old value (e.g., V9) of data object 512-9 with the new value (V11) in-place so as to create
new data object 512-11 corresponding to (key 2 — sequence number 11) in cached leaf node
506-4 or the copy thereof so as to generate a modified leaf node. For example, in state 538 of
Figure 5B, modified leaf node 506-4 includes: data object 512-10 corresponding to (key 1 —
sequence number 10) with value (V10); data object 512-1 corresponding to (key 1 — sequence
number 1) with value (V1); and new data object 512-11 corresponding to (key 2 — sequence

number 11) with value (V11).

[00119] In accordance with a second determination (720) that the sequence number
associated with the first data object is less than or equal to the boundary sequence number,
the memory controller: while maintaining the first data object in the cached first leaf node or
copy thereof, inserts (722) a second data object into the cached first leaf node or copy thercof
including the first key information and the new value so as to generate modified first leaf
node; and assigning (724) the modified first data object a unique sequence number. In this
embodiment, when the first data object is locked in one of the snapshots, a second data object
that includes the new value is inserted into the TDS. In Figure 5B, for example, state 536
shows TDS 502 after management module 140 performs an update operation of the data
object corresponding to key 1. For example, management module 140 receives a request to
update the old value of a data object that corresponds to key 1 with a new value. In this
example, management module 140 retrieves leaf node 506-4, which includes data object 512-
1, and stores leaf node 506-4 or a copy thereof in cache 206. In this example, management
module 140 determines that data object 512-1, which corresponds to key 1, is locked in the
first snapshot because its unique sequence number (1) is less than the boundary sequence
number (8) corresponding to the first snapshot in snapshot entry 522. Continuing with this

example, while maintaining data object 512-1, management module 140 inserts new data

44

WO 2015/153796 PCT/US2015/023927

object 512-10 corresponding to (key 1 — sequence number 10) with the new value (V10) into
cached leaf node 506-4 or the copy thereof so as to generate a modified leaf node. For
example, in state 536 of Figure 5B, modified leaf node 506-4 includes: new data object 512-
10 corresponding to (key 1 — sequence number 10) with value (V10); data object 512-1
corresponding to (key 1 — sequence number 1) with value (V1); and data object 512-9

corresponding to (key 2 — sequence number 9) with value (V9).

[00120] The memory controller performs (726) the cleanup process on the modified
first leaf node by identifying (728) one or more sets of redundant data objects in the modified
first leaf node, where a respective set of redundant data objects includes two or more data
objects with same key information. After generating the modified leaf node by performing
the update operation on the cached leaf node, management module 140 or a component
thereof (e.g., cleanup module 350, Figure 3) performs the cleanup process on the modified
leaf node by identifying zero or more sets of redundant data objects in the modified leaf node,
where a respective set of redundant data objects includes two or more two or more data
objects with same key information. For example, with respect to modified leaf node 506-4 in
state 536 of Figure 5B, the identified set of redundant data object includes data objects 512-1
and 512-10, which are both associated with key 1.

[00121] For a respective set of redundant objects, the memory controller (730):
identifies a respective data object associated with a highest sequence number compared to the
one or more other data objects in the respective set of redundant data objects; and removes
the one or more other data objects, distinct from the respective data object, in the respective
set of redundant data objects from the modified first leaf node. In some embodiments, the one
or more other data objects that are removed are data objects (1) associated with sequence
numbers less than the sequence number of the identified data object with the highest
sequence number in the set of redundant data objects, and (i1) associated with sequence
numbers less than or equal to the cleanup sequence number. In some embodiments, the
memory controller also removes all data objects from the modified leaf node that include a
tombstone. For example, with respect to modified leaf node 506-4 in state 536 of Figure 5B,
after identifying the set of redundant data object (e.g., data objects 512-1 and 512-10),
management module 140 identifies data object 512-10 as the data object in the set of
redundant data objects with the highest sequence number (e.g., 10) and removes data object
512-1 from modified leaf node 506-4 as data object 512-1 is both (i) associated with a

sequence number (¢.g., 1) that is lower than the sequence number associated with data object

45

WO 2015/153796 PCT/US2015/023927

512-10 (e.g., 10) and (ii) associated with a sequence number (¢.g., 1) that is lower than the
cleanup sequence number (e.g., 8, when the request to perform the cleanup process specified

the first snapshot).

[00122] The memory controller allocates (732) a second slab in the datastore for the
modified first leaf node. In some embodiments, after performing the cleanup process on the
modified leaf node, management module 140 or a component thereof (e.g., allocation module

344, Figure 3) allocates a free slab in datastore 136 for the modified leaf node.

[00123] The memory controller assigns (734) the first key information, in the key-map,
to the second slab. In some embodiments, management module 140 or a component thereof
updates keys in non-persistent key-map 202 that previously mapped to the slab storing the
unmodified leaf node (e.g., the retrieved leaf node) to map to the slab allocated for the

modified leaf node in step 732.

[00124] The memory controller writes (736) the modified first leaf node to the second
slab in the datastore. In some embodiments, management module 140 or a component thereof

writes the modified leaf node to the slab allocated for the modified leaf node in step 732.

[00125] In some embodiments, while maintaining the unmodified first leaf node at the
first slab, the memory controller writes (738) an operation commit record corresponding to
the update operation to the log stream, the operation commit record includes the first key
information, a pointer to the first slab, and a pointer to the second slab. In some
embodiments, the update operation is one of two or more memory operations included in a
transaction requested by the requestor. The transaction is associated with a unique transaction
identifier, and the operation commit record corresponding to the update operation also
includes the unique transaction identifier. In some embodiments, after writing the modified
leaf node in step 736, the management module 140 or a component thereof writes an
operation commit record to log stream 134 that includes the unique transaction identifier, the
first key information, a pointer to the slab storing the unmodified leaf node (e.g., the retrieved

leaf node), and a pointer to the slab allocated for the modified leaf node in step 732.

[00126] It should be understood that the particular order in which the operations in
Figures 7A-7C have been described is merely exemplary and is not intended to indicate that
the described order is the only order in which the operations could be performed. One of
ordinary skill in the art would recognize various ways to reorder the operations described

herein. Additionally, it should be noted that details of other processes described herein with

46

WO 2015/153796 PCT/US2015/023927

respect to other methods described herein (e.g., method 600) are also applicable in an
analogous manner to method 700 described above with respect to Figures 7A-7C. For
example, the tiered data structures, data objects, nodes, and cleanup process described above
with reference to method 700 optionally have one or more of the characteristics of the tiered
data structures, data objects, nodes, and cleanup process described herein with reference to
other methods described herein (e.g., method 600). For brevity, these details are not repeated

here.

[00127] Semiconductor memory devices include: volatile memory devices such as
dynamic random access memory (“DRAM?”) or static random access memory (“SRAM”)
devices; non-volatile memory devices such as resistive random access memory (“ReRAM”),
electrically erasable programmable read only memory (“EEPROM?”), flash memory (which
can also be considered a subset of EEPROM), ferroelectric random access memory
(“FRAM?”), and magnetoresistive random access memory (“MRAM?”); and other
semiconductor elements capable of storing information. Furthermore, each type of memory
device may have different configurations. For example, flash memory devices may be

configured in a NAND or a NOR configuration.

[00128] The memory devices can be formed from passive elements, active elements, or
both. By way of non-limiting example, passive semiconductor memory elements include
ReRAM device elements, which in some embodiments include a resistivity switching storage
element, such as an anti-fuse, phase change material, etc., and optionally a steering element,
such as a diode, etc. Further by way of non-limiting example, active semiconductor memory
elements include EEPROM and flash memory device elements, which in some embodiments
include elements containing a charge storage region, such as a floating gate, conductive

nanoparticles or a charge storage diclectric material.

[00129] Multiple memory elements may be configured so that they are connected in
series or such that each element is individually accessible. By way of non-limiting example,
NAND devices contain memory clements (e.g., devices containing a charge storage region)
connected in series. For example, a NAND memory array may be configured so that the array
is composed of multiple strings of memory in which each string is composed of multiple
memory elements sharing a single bit line and accessed as a group. In contrast, memory
elements may be configured so that each element is individually accessible such as a NOR
memory array. One of skill in the art will recognize that the NAND and NOR memory

configurations are exemplary, and memory elements may be otherwise configured.
47

WO 2015/153796 PCT/US2015/023927

[00130] The semiconductor memory elements included in a single device, such as
memory elements located within and/or over the same substrate (e.g., a silicon substrate) or
in a single die, may be distributed in a two- or three- dimensional manner (such as a two
dimensional (“2D”’) memory array structure or a three dimensional (“3D”’) memory array

structure).

[00131] In a two dimensional memory structure, the semiconductor memory elements
are arranged in a single plane or single memory device level. Typically, in a two dimensional
memory structure, memory clements are located in a plane (e.g., in an x-z direction plane)
which extends substantially parallel to a major surface of a substrate that supports the
memory elements. The substrate may be a wafer on which the material layers of the memory
elements are deposited and/or in which memory elements are formed or it may be a carrier
substrate which is attached to the memory elements after they are formed. As a non-limiting

example, the substrate may include a semiconductor such as silicon.

[00132] The memory elements may be arranged in the single memory device level in
an ordered array, such as in a plurality of rows and/or columns. However, the memory
elements may be arranged in non-regular or non-orthogonal configurations as understood by
one of skill in the art. The memory elements may each have two or more electrodes or contact

lines, including a bit line and a word line.

[00133] A three dimensional memory array is organized so that memory elements
occupy multiple planes or multiple device levels, forming a structure in three dimensions
(i.e., in the x, y, and z directions, where the y direction is substantially perpendicular and the

x and z directions are substantially parallel to the major surface of the substrate).

[00134] As a non-limiting example, each plane in a three dimensional memory array
structure may be physically located in two dimensions (one memory level) with multiple two
dimensional memory levels to form a three dimensional memory array structure. As another
non-limiting example, a three dimensional memory array may be physically structured as
multiple vertical columns (e.g., columns extending substantially perpendicular to the major
surface of the substrate in the y direction) having multiple elements in each column and
therefore having elements spanning several vertically stacked planes of memory devices. The
columns may be arranged in a two dimensional configuration, such as in an x-z plane,

thereby resulting in a three dimensional arrangement of memory elements. One of skill in the

48

WO 2015/153796 PCT/US2015/023927

art will understand that other configurations of memory elements in three dimensions will

also constitute a three dimensional memory array.

[00135] By way of non-limiting example, in a three dimensional NAND memory
array, the memory elements may be connected together to form a NAND string within a
single plane, sometimes called a horizontal (e.g., x-z) plane for ease of discussion.
Alternatively, the memory elements may be connected together to extend through multiple
parallel planes. Other three dimensional configurations can be envisioned where some NAND
strings contain memory elements in a single plane of memory elements (sometimes called a
memory level) while other strings contain memory elements which extend through multiple
parallel planes (sometimes called parallel memory levels). Three dimensional memory arrays

may also be designed in a NOR configuration and in a ReRAM configuration.

[00136] A monolithic three dimensional memory array is one in which multiple planes
of memory elements (also called multiple memory levels) are formed above and/or within a
single substrate, such as a semiconductor wafer, according to a sequence of manufacturing
operations. In a monolithic 3D memory array, the material layers forming a respective
memory level, such as the topmost memory level, are located on top of the material layers
forming an underlying memory level, but on the same single substrate. In some
implementations, adjacent memory levels of a monolithic 3D memory array optionally share
at least one material layer, while in other implementations adjacent memory levels have

intervening material layers separating them.

[00137] In contrast, two dimensional memory arrays may be formed separately and
then integrated together to form a non-monolithic 3D memory device in a hybrid manner. For
example, stacked memories have been constructed by forming 2D memory levels on separate
substrates and integrating the formed 2D memory levels atop each other. The substrate of
each 2D memory level may be thinned or removed prior to integrating it into a 3D memory
device. As the individual memory levels are formed on separate substrates, the resulting 3D

memory arrays are not monolithic three dimensional memory arrays.

[00138] Associated circuitry is typically required for proper operation of the memory
elements and for proper communication with the memory elements. This associated circuitry
may be on the same substrate as the memory array and/or on a separate substrate. As non-
limiting examples, the memory devices may have driver circuitry and control circuitry used

in the programming and reading of the memory elements.

49

WO 2015/153796 PCT/US2015/023927

[00139] Further, more than one memory array selected from 2D memory arrays and
3D memory arrays (monolithic or hybrid) may be formed separately and then packaged
together to form a stacked-chip memory device. A stacked-chip memory device includes

multiple planes or layers of memory devices, sometimes called memory levels.

[00140] The term “three-dimensional memory device” (or 3D memory device) is
herein defined to mean a memory device having multiple layers or multiple levels (e.g.,
sometimes called multiple memory levels) of memory elements, including any of the
following: a memory device having a monolithic or non-monolithic 3D memory array, some
non-limiting examples of which are described above; or two or more 2D and/or 3D memory
devices, packaged together to form a stacked-chip memory device, some non-limiting

examples of which are described above.

[00141] A person skilled in the art will recognize that the invention or inventions
descried and claimed herein are not limited to the two dimensional and three dimensional
exemplary structures described here, and instead cover all relevant memory structures
suitable for implementing the invention or inventions as described herein and as understood

by one skilled in the art.

[00142] It will be understood that, although the terms “first,” “second,” etc. may be
used herein to describe various elements, these elements should not be limited by these terms.
These terms are only used to distinguish one element from another. For example, a first data
object could be termed a second data object, and, similarly, a second data object could be
termed a first data object, which changing the meaning of the description, so long as all
occurrences of the “first data object” are renamed consistently and all occurrences of the
“second data object” are renamed consistently. The first data object and the second data

object are both data objects, but they are not the same data object.

[00143] The terminology used herein is for the purpose of describing particular
embodiments only and is not intended to be limiting of the claims. As used in the description

(13 2% ¢
a

of the embodiments and the appended claims, the singular forms an,” and “the” are
intended to include the plural forms as well, unless the context clearly indicates otherwise. It
will also be understood that the term “and/or” as used herein refers to and encompasses any
and all possible combinations of one or more of the associated listed items. It will be further
understood that the terms “comprises’ and/or “comprising,” when used in this specification,

specify the presence of stated features, integers, steps, operations, elements, and/or

50

WO 2015/153796 PCT/US2015/023927

components, but do not preclude the presence or addition of one or more other features,

integers, steps, operations, elements, components, and/or groups thereof.

[00144] As used herein, the term “if” may be construed to mean “when” or “upon” or
“in response to determining” or “in accordance with a determination” or “in response to
detecting,” that a stated condition precedent is true, depending on the context. Similarly, the
phrase “if it is determined [that a stated condition precedent is true]” or “if [a stated condition
precedent is true]” or “when [a stated condition precedent is true]” may be construed to mean
“upon determining” or “in response to determining” or “in accordance with a determination”
or “upon detecting” or “in response to detecting” that the stated condition precedent is true,

depending on the context.

[00145] The foregoing description, for purpose of explanation, has been described with
reference to specific implementations. However, the illustrative discussions above are not
intended to be exhaustive or to limit the claims to the precise forms disclosed. Many
modifications and variations are possible in view of the above teachings. The
implementations were chosen and described in order to best explain principles of operation

and practical applications, to thereby enable others skilled in the art.

51

WO 2015/153796 PCT/US2015/023927
What is claimed is:

1. A method of managing a datastore storing one or more tiered data structures,
comprising:
at a memory controller with one or more processors, the memory controller is operatively
coupled with the datastore:
detecting a request to perform an update operation of a first data object in a tiered data
structure of the one or more tiered data structures stored in the datastore, the request includes
first key information corresponding to the first data object and a new value for the first data
object;
locating the first data object using a key-map to map the first key information to a
location of the first data object in the datastore;
identifying a sequence number associated with the first data object;
in accordance with a first determination that the sequence number associated with the
first data object is greater than a first boundary sequence number corresponding to a first
snapshot of the tiered data structure:
replacing the first data object in the tiered data structure with a modified first
data object including the first key information and the new value; and
assigning the modified first object a unique sequence number; and
in accordance with a second determination that the sequence number associated with
the first data object is less than or equal to the first boundary sequence number corresponding
to the first snapshot of the tiered data structure:
while maintaining the first data object in the tiered data structure, inserting a
second data object into the tiered data structure, the second data object including the first key
information and the new value; and

assigning the second data object the unique sequence number.

2. The method of claim 1, wherein the tiered data structure includes a plurality of
internal nodes and a plurality of leaf nodes, a respective leaf node of the plurality of leaf
nodes stores one or more data objects; and

wherein each of the one or more data objects includes key information and a
corresponding value and each of the one or more data objects is associated with a unique

sequence number.

52

WO 2015/153796 PCT/US2015/023927

3. The method of claim 2, wherein, in accordance with the first determination, the
modified first object is stored in the respective leaf node of the tiered data structure in a first
manner corresponding to a sorting scheme associated with the key information; and

wherein, in accordance with the second determination, the second data object is stored
in the respective leaf node in a second manner that is substantially opposite to the first

manner.

4. The method of any of claims 1-3, wherein the first boundary sequence number
corresponds to a highest sequence number assigned to a data object in the tiered data

structure prior to the first snapshot.

5. The method of any of claims 1-4, wherein snapshot metadata, including the first
boundary sequence number, corresponding to one or more snapshots of the tiered data
structure, including the first snapshot, is stored in a respective leaf node of the tiered data

structure.

6. The method of any of claims 1-5, further comprising:
detecting a second request to perform a deletion operation of a third data object in the
tiered data structure, the second request includes second key information corresponding to the
third data object;
locating the third data object using the key-map to map the second key information to
a location of the third data object in the datastore;
identifying a sequence number associated with the third data object;
in accordance with a determination that the sequence number associated with the third
data object is greater than the first boundary sequence number corresponding to the first
snapshot of the tiered data structure:
replacing the third data object in the tiered data structure with a modified third
data object including the second key information and a tombstone; and
assigning the modified third object a second unique sequence number; and
in accordance with a determination that the sequence number associated with the third
data object is less than or equal to the first boundary sequence number corresponding to the
first snapshot of the tiered data structure:
while maintaining the third data object in the tiered data structure, inserting a
fourth data object into the tiered data structure, the fourth data object including the second
key information and the tombstone; and

53

WO 2015/153796 PCT/US2015/023927

assigning the fourth data object the second unique sequence number.

7. The method of any of claims 1-6, further comprising:

after assigning the modified first object or the second data object the unique sequence
number, performing a second snapshot of the tiered data structure, wherein the snapshot is
associated with a second boundary sequence number different from the first boundary

sequence number.

8. The method of claim 7, further comprising:

determining whether one or more requests to perform memory operations on the
tiered data structure are complete, wherein the one or more requests include the request to
perform the update operation; and

wherein performing the second snapshot comprises performing the second snapshot of
the tiered data structure in accordance with a determination that the one or more requests are

complete.

9. The method of any of claims 1-8, further comprising:
detecting a trigger to perform a cleanup process as to one or more snapshots;
in response to detecting the trigger, performing the cleanup process as to the one or
more snapshots, including:
identifying one or more sets of redundant data objects in the tiered data
structure that each include two or more data objects that are associated with same key
information;
for a respective set of the one or more sets of redundant data objects:
identifying a respective data object associated with a highest sequence
number compared to one or more other data objects in the respective set of redundant data
objects; and
removing the one or more other data objects, distinct from the
respective data object, in the respective set of redundant data objects from the tiered data

structure.

10. The method of claim 9, wherein performing the cleanup process as to the one or more
snapshots further includes:
deleting information corresponding to the one or more snapshots from snapshot

metadata;

54

WO 2015/153796 PCT/US2015/023927

wherein the snapshot metadata corresponding to the one or more snapshots of the

tiered data structure is stored in a respective leaf node of the tiered data structure.

11. The method of any of claims 9-10, wherein the trigger identifies the one or more

snapshots on which to perform the cleanup process.

12. A data storage system, comprising:
a datastore storing one or more tiered data structures; and
a memory controller with one or more processors, memory, and one or more
programs, wherein the one or more programs are stored in the memory and configured to be
executed by the one or more processors, the one or more programs including instructions for:
detecting a request to perform an update operation of a first data object in a
tiered data structure of the one or more tiered data structures stored in the datastore, the
request includes first key information corresponding to the first data object and a new value
for the first data object;
locating the first data object using a key-map to map the first key information
to a location of the first data object in the datastore;
identifying a sequence number associated with the first data object;
in accordance with a first determination that the sequence number associated
with the first data object is greater than a first boundary sequence number corresponding to a
first snapshot of the tiered data structure:
replacing the first data object in the tiered data structure with a
modified first data object including the first key information and the new value; and
assigning the modified first object a unique sequence number; and
in accordance with a second determination that the sequence number associated with
the first data object is less than or equal to the first boundary sequence number corresponding
to the first snapshot of the tiered data structure:
while maintaining the first data object in the tiered data structure,
inserting a second data object into the tiered data structure, the second data object including
the first key information and the new value; and

assigning the second data object the unique sequence number.

13. The data storage system of claim 12, wherein the tiered data structure includes a
plurality of internal nodes and a plurality of leaf nodes, a respective leaf node of the plurality
of leaf nodes stores one or more data objects; and

55

WO 2015/153796 PCT/US2015/023927

wherein each of the one or more data objects includes key information and a
corresponding value and each of the one or more data objects is associated with a unique

sequence number.

14. The data storage system of claim 13, wherein the one or more programs, when
executed by the one or more processors, cause the data storage system to:

store the modified first object, in accordance with the first determination, in the
respective leaf node of the tiered data structure in a first manner corresponding to a sorting
scheme associated with the key information; and

store the second data object, in accordance with the second determination, in the

respective leaf node in a second manner that is substantially opposite to the first manner.

15. The data storage system of any of claims 12-14, wherein the first boundary sequence
number corresponds to a highest sequence number assigned to a data object in the tiered data

structure prior to the first snapshot.

16. The data storage system of any of claims 12-15, wherein snapshot metadata, including
the first boundary sequence number, corresponding to one or more snapshots of the tiered
data structure, including the first snapshot, is stored in a respective leaf node of the tiered data

structure.

17. The data storage system of any of claims 12-16, wherein the one or more programs,
when executed by the one or more processors, cause the data storage system to:

detect a second request to perform a deletion operation of a third data object in the
tiered data structure, the second request includes second key information corresponding to the
third data object;

locate the third data object using the key-map to map the second key information to a
location of the third data object in the datastore;

identify a sequence number associated with the third data object;

in accordance with a determination that the sequence number associated with the third
data object is greater than the first boundary sequence number corresponding to the first
snapshot of the tiered data structure:

replace the third data object in the tiered data structure with a modified third

data object including the second key information and a tombstone; and

assign the modified third object a second unique sequence number; and

56

WO 2015/153796 PCT/US2015/023927

in accordance with a determination that the sequence number associated with the third
data object is less than or equal to the first boundary sequence number corresponding to the
first snapshot of the tiered data structure:
while maintaining the third data object in the tiered data structure, insert a
fourth data object into the tiered data structure, the fourth data object including the second
key information and the tombstone; and

assign the fourth data object the second unique sequence number.

18. The data storage system of claim 12, wherein the one or more programs, when
executed by the one or more processors, cause the data storage system to perform the method

of any of claims 1-11.

19. A non-transitory computer readable storage medium storing one or more programs,
the one or more programs comprising instructions, which when executed by a memory
controller with one or more processors, cause the memory controller to:
detect a request to perform an update operation of a first data object in a tiered data
structure of one or more tiered data structures stored in a datastore, the request includes first
key information corresponding to the first data object and a new value for the first data object;
locate the first data object using a key-map to map the first key information to a
location of the first data object in the datastore;
identify a sequence number associated with the first data object;
in accordance with a first determination that the sequence number associated with the
first data object is greater than a first boundary sequence number corresponding to a first
snapshot of the tiered data structure:
replace the first data object in the tiered data structure with a modified first
data object including the first key information and the new value; and
assign the modified first object a unique sequence number; and
in accordance with a second determination that the sequence number associated with
the first data object is less than or equal to the first boundary sequence number corresponding
to the first snapshot of the tiered data structure:
while maintaining the first data object in the tiered data structure, insert a
second data object into the tiered data structure, the second data object including the first key
information and the new value; and

assign the second data object the unique sequence number.

57

WO 2015/153796 PCT/US2015/023927

20. The non-transitory computer readable storage medium of claim 19, wherein the one or
more programs, when executed by the one or more processors, cause the memory controller

to perform the method of any of claims 1-11.

58

PCT/US2015/023927

WO 2015/153796

gEl
glepespy ousdeusg

GCT aimseied

L aunbiy

$TT wesns Bo

A
deu-Aay) IUSISISIS

{Asowsw
seoa-ucu “6e)
JET wnipsyy abeioig

e0t

oL SINPOW I0UCT JOUg

jz4)
Jeyng

cor
Byng

ot

- 4

gct B Bpoos

ol pooed

WrIpayy g—

obeing | meww:m -
a2 oo
fLouia Ammﬂmo
lm\mm

Y

0% sinpopy 1uswebeuepy

027 ssyohuon abrioig

LOL

WHSAS Jaindwiony

J Dy
bii

W/{. GO7T weisAs ofeiois BiRe]

1122

WO 2015/153796

PCT/US2015/023927

in-Memory 144 {e.g., volatile memory)

212

Non-persistent Key-map

20

N

Key

Pirfloc

Key

Pirfloc

Key

Pir/loc

&89

888

Log Record

Buffer 204

Cache 206

DO Cache
212

Node Cache
214

214

Transaction

Table 208

Txid

Timestamp

Txid

Timestamp

X1

X1

Figure 2A

2122

WO 2015/153796 PCT/US2015/023927
Storage Medium 130 (e.g., non-volatile memory}
Datastore 136
Slab 220-1 Slab 220-2 | Slab 220-3 | Stab 220-4
fdx No idx No ldx No {dx No
222-1 222-2 222-3 2224
Status Flag Status Flag Status Flag § Status Flag
224-1 224-2 224-3 - 224-4
Node No Nodsa No Node No Node No
226-1 226-2 228-3 226-4
TOS No TDS No TDS No TS No
228-1 228-2 228-4 228-4
Data 228-1 Data 229-2 Data 228-4 Data 288-4
Slab 220-5 Slab 220-6 Slab 220-7 (Slab 220-8
I No i No o ldx No & idx No
222-8 222-8 222-7 222-8
Status Flag Status Flag Status Flag § Status Flag
224-5 224-5 224-7 224-8
Node No Node No MNode No Node No
228-5 226-8 2267 226-8
TDS No TDE No TS No TDS No
228-5 228-8 228-7 228-8
Data 228-5 Oatg 228-7 Data 229-8

Log Stream 134

Persistent Key-map 132

232

/

seqno, tid, ..»

Record 230-1 <record type, log Key Ptr/lLoc
seqno, ixid, ..>

Key Pir/L.oc
Record 230-2 <record type, iog
seqno, txid, ..> Key Ptr/lLoc
Record 230-3 <record type, log § §

242

322

Record 230-4 <record type, log Snapshot Metadata 138
segno, bad, ..» »
- Segne | Timestamp | Ver
g *] &
® &]
& & ®
Figure 2B

WO 2015/153796 PCT/US2015/023927

Management Operating Logic 310
Modute 140 Communications Module 312
\& Mem?)og}é\ Request Handling Module 314
Cache Mgmt Module 320
Cache Storage Module 322
Communication Storage Cache Search Module 320
Interface(s) interface(s) Cache Eviction Policies 328
304 308
Tiered Data Structure (TDS) Module 330
TS Storage Module 332
306‘1
TDS Search Module 334
Metadata Generator 336
Reasponse Generator 342
CPU(s
14§) Allocation Module 344

Mapping Module 245

Log Record Module 346

Snapshot Module 348

Cleanup Moduie 350

in-Memory 144

Non-persistent Key-map 202

Log Record Buffer 204

Cache 206

Data Object Cache 212

Node Cache 214

Transaction Table 208

11

Storage Medium

130 Bulfer Error Control

123
Persistent Key- — Module 125

map 132

Log Stream 134
Buffer

Datastore 136 124

Snapsho
Metadata 1

i
38 Figure 3

4/22

PCT/US2015/023927

WO 2015/153796

v ainbig

{0849}

G-901 SPON e8]

{90-6G)

-90p @PON 87

{(9g-1¢}

{08-c2)

Z-90p BPON JETT

(8-t}

4

18
POy
BPON 1BLIRIL

t

6% Le
e POv
SPON |BUISIU

o901 SPON B8

)

x4
&y
SPON |BUISIU]

&

L9 T4
L-v0Py

1

SPON |BLLSIU]

veZ LiEL

¢0Y 8PON 100

5% samonag
GEI R

L-90F SPON e8]

5f22

PCT/US2015/023927

WO 2015/153796

£-p0y ‘£-90F SSPON
£¢ 10800 Bleg
SSUCHIIAT

L-FOF Z0F SOPON
B8N BYSED

-907 SPON jesT

207 8pON 100y

L-yOF SPON [BUisiy]

7-vOb SPON jewasiu

G-40P SpPON jeat]

Y12 eused spoN

L8 10800 B1eC

L 1o8lao B1eq

Q¢ 10elgD eleq

L9 108la0 s18Q

¢z 18l geg

024 108lan Bieg

Z1¢ 94sed 0OQ

{04 wealap eeq Joj)
¢ 1sanbay Joye

B-0TF ayoed pajepdn

&

€
1sanbay

BUON
ISUCHMAZT

gz 1welyo gpeg
188 syoBs

gy aunbiy

€907 OPON jesT

0¥ 8pON 100y

b-y0¥ SPON [BUISiY]

0P SPON [Blisiy

7-907 SPON jesT

¥1Z auoed spoN

oz 18lan Beg

L8 10elg0 eleg

L 108l00 Bleqg

26 sl gieg

L9 10800 B1eC

G 10800 Breg

Z1Z 84sesd Og

&

Z
188nbay

{gz welap vieg 404}
7 1sanbeay Joye

FHIF auoen parepds

L-Q0F BPON
Z 18lgo preq
SBUCHIIAT

L-p0¥ ‘C-#0F '20F SSPON

1280 BYIED

€-90p @PON je87

0¥ 8pON 100Y

L-p0y OPON [Blieu

0P SPON [BlBiU

P-90F SpON jesT

P1¢ auoed aponN

rapbiclielgRcitcly:

L8 10elg0 e1eg

gz 1welao eeg

L 10800 BiRQg

86 wslan Beg

19 108lao eleg

Zie auoed Od

{19 1sian s1eg JO4)
;, 15enbey Joye

G-01% syoe pajepdn

&

b
188nbayy

L-O07 9PON jes

207 8pON 100y

L-yUF SPON [BUisiy]

C-¥0v SPON [BLaIU

©-90v SPON jesT

Y12 aused spoN

2 18lao geg

¢ 1080 eleq

L8 1ela0 sjeq

¢z 1slqo sieg

L 1oslao Bieg

8% 1walgD Breg

Z1¢ 94sed 0OQ

e-3iy
ayoes paeindod

822

PCT/US2015/023927

WO 2015/153796

1444 vy

o
e
LTS
L3S
wa
o
e
©an
@
oa
e
®a
e
o
LS
»x
o
o
nnnnnnn
o
©a
LTS
LTS
o
LTS
ey
LTS
LD
-
®a
ETS
LTS
e
L,
ETS
LTS
.
LT

DY 8unbiy

Oy 8ey

9ty

LOA

L9 | LI 09A 09N | 6SA

IBSHO Xi8id

199 | 995 | 99m] £an | £9 mmﬁm%\/ 29 | Zow

-
e
=
»?
>
o®
o®
-
"
»
"
o
»
o
o
"
®
=
=
]
>
o®
o
o
-*
»
"
»
?

Y S SN S S

LIOISIOA [BOOID) | JBILICH MOLIBAQ) BIR(m%mcmj X124 119SUO XUu8id | yibua gleg |

Pev
ibus Aay
BIB(] adi
O} sy | viepeisiy

Lan | 0900

Eie(] O} 19SH(}

¥a0p
2PON jeaT

7122

PCT/US2015/023927

ay 8inbi
y-907p

BPOHN J887
ENES mmﬁm%\/ z9x | 29| 19A | 19 | Lo] 09A | 09v | 0on] eS| Bex | somy W,
9SG0 XBaIg
{9900 | 99m {1900 tew | 0900 eee
£9 198i90 BieQ
BIB(] 01 19SUO Bunsiaq Joyy
£9 10eiqo veg
90 | 99 293 |zom] Lo | 1ovt | 1o] 09A | 093 |ooni] 6SA | 6ovt |sa] Buneisg siosed
e e e P
"_ WO MBI T
L9s0a| som L9001 19N 10900 | 09w | 8500

EHERUB RS éf/

790V
uonsiaq 19alqo ey SpON §297]

WO 2015/153796

822

PCT/US2015/023927

v-90%
BPON jeaT

\a

3y aanbidg

03] 69

99A | 9% | 99| s9A | s9% | com |

OGN £ mmémmm\f ALY

v
PLad
=
»
o
o
s
»
s
©
a
>
-
-
-
-
-
e

18RO XiRdd

1ESHO M8

-
we®
-
-
o
o
-
-
®
-
o
~
-
o
°
s
"
»
o
o
=
-
»
222

SOW 1900

900

m@mem 99W |

49 1aiqo eleg
Buiissu ey

9 10alg0 e1eg
Bunuoasy) si0i8g

WO 2015/153796

|90 | 9ov

mwﬁmmm\/ £ mmgmmm\/ 2O

WSEO xR

Lco00

L9 | 090a

ESED

Go0d

S~

eled 01 18840

uonsesy 1o8lao geg

v-207
BPON feaT

822

WO 2015/153796

PCT/US2015/023927
Snapshot Metadata 138 Internal Node 5041 State 532 (After
performing
Segno | Timestamp | Ver snapshot 1)
K3-Q3 | K5-Q5 | K8-Q8
8 4
\\»522
DO DO DO »le] Do DO
512-1 | 512-2 | 512-3 512-6 | 512-7 | 512-8
K1-01 § K2-02 § K3-Q3 K6-Q6 | K7-Q7 | K&8-Q8
V1 V2 V3 Ve V7 V8
Leaf Node 508-1 Leaf Node 506-2
A
DO DO

5124 § 5128
K4-Q4 | KB-Q5
V4 V5

Leaf Node 508-2

N\

Tiered Data
Structure 502

State 5334 (After
Snapshot Metadata 138 internal Node 504-1 updating K2)
Segno | Timestamp | Ver
K3-Q3 | K5-QF | K808
Q8 1
\522
16 Do Do DO DO DO 16
512-1 § 512-8 § 5122 | 512-3 512-6 | 5127 | 512-8
Ki-Q1 § K2-Q0 § K2-Q2 | K303 KE-Qi6 | K7-Q7 | K8-Q8
V1 1'% V2 V3 V6 V7 V8
Leaf Node 506-1 Leaf Node 506-3
v
oo Do
512-4 | 512-5 *
K4-Q4 | K5-05
vé V3 Tisred Data
Structure 502
Leaf Node 506-2 T

Figure 5A

10/22

PCT/US2015/023927

WO 2015/153796

€-90G SPON jea]

¢-90G SPON jeo]

gg a4nbig

G-90G SPON jee’]

¥-90G SPON jeaT

8A IN S7AN GA YA en [4)\ LLA AN OLA
80-8M | LO-/A | 90-9 GO-GM | YO cO-EM | 2O-oH LLO-2M § LO-IM [0LO-IM
3-CLS 1-CLS 9-¢clS g-2lg ¥clSg €-2lS ¢¢clg LL-¢LS L-¢lS | 0l-¢1l§

od od oda oa (0]@] od oda oa od od

80-8M | 5D-6y | so-ed | Lo \ _ 80
[225 Bp | dweysewi] | oubsg

(e mc.:mua: 706 24n]onJ1g -

leyy) ‘8¢S a1B1S eje paJtail €-70G SPON [eulaiu] T elepelop ljoysdeug

€-90G SPON jea]

¢-90G SPON jesT]

G-90G SPON jeo’]

¥-90G SPON jea]

8A IN 9A SA vA eA ZA 6A LA OLA
80-8M | LULM | 909 GO | YO £O-eM | ¢O-H gO-2M | LO-IM | 0LO-LM
8CiS | 7215 | 9Cig G21G | 7Cis €215 | TTIS 6216 | T2rg | o1cis
od od od oda od oa od od od oda
\ L 80
80-8 | SO-GM | €O-eM | 6D
> VA4S sop | dwersswiy | oubeg
(1) Bunepdn 706 2n}onnsg 8T1 ejepejo|y Joysdeus
PYy) 966 -
UV) ‘9EG e1e1s eyeq] pesol) 750G OPON [eusaiy|

11/22

PCT/US2015/023927

WO 2015/153796

26 8unbid

£-90% SPON jea

¢-90% SPON (e8]

G-90% SPON 1897

P-90% SPON {Ea7

EA
X
£-Cly

Qg

N
FAONA

ALY
Qa

£O-EM

LD~

TH0C apoN [RUISILY

8A LA A GA A
UM § LDIM | 809 G1-GM | vOP
821G g-Ciy G-cla | 7Ll
QG ele O OG
20-8% | SD-GH
(23 Bunejep [
By} TP 8ies THT 4nionig
eIeQ pasaly

£-90% SPON jea

¢-90% SPON (e8]

A
12802
ol
Od

{z 1ousdeus BuLioued
ey} TFS s

bAA {1} LA LA
D258 ZLO-2M | 1O 0LU-EM
bi-dlG g 24219 § 121G | 1-2LY

g o0 O Od

4 LD

\\\ b 20
772G isa 1 duseissuly | oubsg

§ET eepelspy Jousdeug

P-90% SPON {Ea7

20-8% | SD-GH

kA OLA

LLO-2X | LO-b 0101

RTARS B AR RIRFARY

00 o4

LD

SO-E | 11D \\. g 80
FAAY a1 dwessuny | oubsg

o

706 2inonag
BilE(paJsi]

TH0C apoN [RUISILY

GET eiepelep jouysdeus

12i22

PCT/US2015/023927

WO 2015/153796

ag ainbid

©-90% SPON B8

¢-904 SPON je8T

9-904 SPON JEST

{(z 9 | s1ousdeus

01 58 $$3004d dnured
sy Buillouad

BYY) FFG e1B1s

(

% 2INISNAS
g3eq) PeIBL)

06 SPON [Bllieiul

BA LA 9A GA A EA OLA
G078 § L0741 909 SOGHM | ¥O A SUEA 1 0RO
ggie | LELE ¢ 9-CLk SRR B AR E£-¢ly | Ob-€ly

00 0a GG oda Qd Qd Qad

g0-8% | S0-GH | 0

jan | dweissus} | oubeg

FE T mEpesp jousdeug

13/22

WO 2015/153796 PCT/US2015/023927

600

Detect a request {o perform an update operation of a first data object in 8 L—g03

tiered data structure of the one or maore tiered data structures stored in a

datastore, the reqguest includes first key information corresponding to the
first data object and a new value for the first data object

!

Locate the first data object using a key-map o map the first key 504
information to a location of the first data object in the datastore

!

identify a sequence number associated with the first data object =" 506

in accordance with a first determination that the sequence number L~g08
associated with the first data object is greater than a first boundary
seqguence number corresponding to a first snapshot of the tiered data
struciure:

Heplace the first data object in the tiered data structure with a
madified first data object including the first key information and the
new value

:

Assign the modified first data obiect a unique sequence number

et 510

et 512

Figure BA

14/22

WO 2015/153796 PCT/US2015/023927

in accordance with a first determination that the sequence number g8
associated with the first data object is greater than a first boundary
sequence number corresponding o a first snapshot of the tiered data
structure:

? in accordance with the first determination, the modified first object g...-«f“’“‘ﬁ’!zl
{ is stored in a respective leaf node of the tiered data structure in a

i first manner corresponding to a sorting scheme associated with the
{ Key information |

Soo GUOUO OMR GOUOD KR OUOUD RRKRRX OOOUO KKXKR OUUOU KNKRX OUOUO RKRKKR GOUOD KROGIX OUOUO KKK COUOD KRXKR | OUOU0 RXKRR OOKKK XKRKR OOKKR KRKRX GRKXND

The first boundary sequence number corresponds to a highest L,,,/"\gq 8
sequence number assigned (o a data object in the tiered data E
structure prior to the first snapshot |

E

{ number, corresponding o one or more snapshots of the tiered ¢
| daia structure, including the first snapshot, is stored ina
E

!

§

!

§ , . .

- Snapshot metadata, including the first boundary sequence W”"’"‘ms
§

§) :

{1 respective leafl node of the tiered data siructure |

§

Figure 6B

18/22

WO 2015/153796 PCT/US2015/023927

in accordance with a second determination that the sequence number L~g20
associated with the first data object is less than or egual (o the first
boundary sequence number corresponding to the first snapshot of the
tiered dala structure

While maintaining the first data object in the liered data structure, " 822
insert a second data object inlo the tiered data siructure, the
second data object inciuding the first key information and the new
vaiue

'

Assign the second data object the unigue seguence number e 524

i
i Inaccordance with the second determination, the second data 526
| object is stored in the respective leaf node in a second manner that
{ is substantially opposite o the first manner |

unique sequence number, perform a second snapshot of the tiered data ;
structure, where the snapshat is associated with a second boundary
sequence number different from the first boundary sequence number

Determine whether one or more requests o perform memary &530
operations on the tiered data structure are complete, whergin the
one or more requests include the request to perform the update
operation; and

Performing the second snapshot comprises performing the second
snapshot of the liered data structure in accordance with a
determination that the one or more requests are complets

Figure 6C

16/22

WO 2015/153796 PCT/US2015/023927

i
Detect a trigger to perform a cleanup process as o one or more 632
stapshots |

In response o detecting the trigger, perform the cleanup process as fo 834
the one or more snapshots, including: !

r !

{ Identifying one or more sets of redundant data objects in the tiered |_le—~gng
| data structure that each include two or more data objects thatare | |

g associated with same key information o

For a respeclive set of the one or more sels of redundant data @mﬁag
objects:

i
| g
5 identifying a respective data object associated with a highest »
I sequence number compared to one or more other data objects in P
é the respective set of redundant data objects; and § §
| pod
| o
| pod

Removing the one or more other data objects, distinct from the
respective data object, in the respective set of redundant data
objects from the tiered data structure

i Deleting information corresponding to the one or more snapshotls Lr"“’"ﬁci(}
; from snapshot metadata, where the snapshot metadata P
; corresponding to the one or more snapshots of the tiered data 4
{ structure is stored in a respective leaf node of the tiered data
i structure £

|
{ The trigger identifies the one or more snapshots on which o g4
! perform the cleanup process P

Figure 6D

17i22

WO 2015/153796 PCT/US2015/023927

f |
i Detect a second request to perform a deletion operation of a third data | G44
| Object in the tiered data structure, the second request includes second
| key information corresponding to the third data object i

f i
| Locate the third data object using the key-map o map the second key L6546
| information to a location of the third data object in the datastorg; |

Figure 6k

18/22

WO 2015/153796 PCT/US2015/023927

In accordance with a delermination that the seguence number
associated with the third data object is greater than the first boundary
sequence number corresponding 1o the first snapshot of the tiered data
structure:

Replace the third data object in the tiered dala structure with a modified
third data object including the second key information and a tombstone;
and

Assign the modified third object a second unigue sequence number

in accordance with a determination that the sequence number =652
associated with the third data object is less than or equal to the first
boundary sequence number corresponding o the first snapshot of the
tiered data structure: {

a fourth data object into the tiered data structure, the fourth data object
including the second key information and the tombstone; and

Assign the fourth data object the second unigue seguence number

E
|
E
|
I While maintaining the third data object in the tiered data structure, insert §
|
E
|
E

Figure 6F

19422

WO 2015/153796 PCT/US2015/023927

700

Detect a request to perform an update operation of a first data object in a 702

tiered data structure of the one or more tiered data structures stored in a

datastore, the reguest includes first key information corresponding to the
first data object and a new value for the first data object

!

Detect a reqguest io perform a cleanup process as o one or more o 704
snapshots of the tiered dala structure

.

Locate, in the datastore, the first data obiect using a key-map to map the "706
first key information to a first slab in the datastore storing the first data
obiect

!

Retrieve a first leaf node of the tiered data structure, that includes the | _~-qq
first data object, from the first slab

!

Store the first leaf node or a copy thereof in the cache 710
identify a sequence numbaer assaciated with the first data object 712

Figure 7A

20022

WO 2015/153796 PCT/US2015/023927

in accordance with a first determination that the sequence number WYLV
associated with the first data object is greater than a boundary sequence
number corresponding 1o the one or more snapshots:

Replace the first data object in the cached first leaf node or copy
thereof with a modified first dala object including the first key
information and the new value so as to generate a modified first leaf
node

!

Assign the modified first data object a unique sequence number

et 716

et 718

In accordance with a second determination that the sequence number L—720
associated with the first data object is less than or equal {o the boundary
sequence number corresponding to the one or more snapshots:

While maintaining the first dala object in the cached first leaf node (722
or copy thereof, insert a second data object info the cached first leaf
node or copy thereof, the second data object including the first key
information and the new value so as to generate a modified first leaf
node

:

Assign the second data object the unigue seguence number e 724

Figure 7B

21122

WO 2015/153796 PCT/US2015/023927

Perform the cleanup process on the modified first leaf node, including:

{ identifying one or more sets of redundant data objects in the
i maodified first leaf node that each include two or more data objects
| that are associated with same key information |

objects:

|
§ E
| ldentifying a respective data obiect associated with a highest 5
! sequence number compared to one or more other data objects in 5
§ the respective set of redundant data objects; and g
| E
§ E
| E

Removing the one or more other data objects, distinct from the
respective data object, in the respective set of redundant dats
abjects from the modified first leaf node

1
For a respective set of the one or more sets of redundant data e

T 26

-

730

Allocate a second slab in the datastore for the modified first leaf node

T3

!

Assign the first key information, in the key-map, to the second slab

T 34

!

Write the modified first leaf node 1o the second slab

T 30

!

While maintaining the unmodified first leaf node at the first slab, write an
operation commif record (o the log stream including the first key
information, a pointer to the first slab, and a pointer {o the second slab

7 38

Figure 7C

22122

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2015/023927

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F17/30 GO6F11/14
ADD.

GO6F3/06

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

figures 1-3

figure 10

figure 1

paragraph [0097] - paragraph [0132]

paragraph [0145] - paragraph [0159]

paragraph [0024] - paragraph [0032]

X US 2004/167898 Al (MARGOLUS NORMAN H [US] 1-20
ET AL) 26 August 2004 (2004-08-26)

A US 2007/156842 Al (VERMEULEN ALLAN H [US] 1-20
ET AL) 5 July 2007 (2007-07-05)

A US 2012/259863 Al (BODWIN JAMES M [US] ET 1-20
AL) 11 October 2012 (2012-10-11)

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

22 June 2015

Date of mailing of the international search report

30/06/2015

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Alliot, Sylvain

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2015/023927
Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2004167898 Al 26-08-2004 US 2004167898 Al 26-08-2004
US 2004167901 Al 26-08-2004
US 2004167902 Al 26-08-2004
US 2004167903 Al 26-08-2004
US 2004167913 Al 26-08-2004
US 2004167934 Al 26-08-2004
US 2004167935 Al 26-08-2004
US 2004167938 Al 26-08-2004
US 2004167939 Al 26-08-2004
US 2004167940 Al 26-08-2004
US 2004167943 Al 26-08-2004
US 2004168057 Al 26-08-2004
US 2004168058 Al 26-08-2004
US 2004205112 Al 14-10-2004
US 2006026220 Al 02-02-2006

US 2007156842 Al 05-07-2007 CA 2637218 Al 12-06-2008
CN 103353867 A 16-10-2013
EP 1977346 Al 08-10-2008
JP 5047988 B2 10-10-2012
JP 2009522659 A 11-06-2009
KR 20080091171 A 09-10-2008
KR 20130101587 A 13-09-2013
KR 20140025580 A 04-03-2014
KR 20140110035 A 16-09-2014
US 2007156842 Al 05-07-2007
US 2010174731 Al 08-07-2010
US 2011161293 Al 30-06-2011
US 2012226712 Al 06-09-2012
US 2013212165 Al 15-08-2013
WO 2008069811 Al 12-06-2008

US 2012259863 Al 11-10-2012 US 2012259863 Al 11-10-2012
US 2014236911 Al 21-08-2014

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - claims
	Page 54 - claims
	Page 55 - claims
	Page 56 - claims
	Page 57 - claims
	Page 58 - claims
	Page 59 - claims
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - wo-search-report
	Page 83 - wo-search-report

