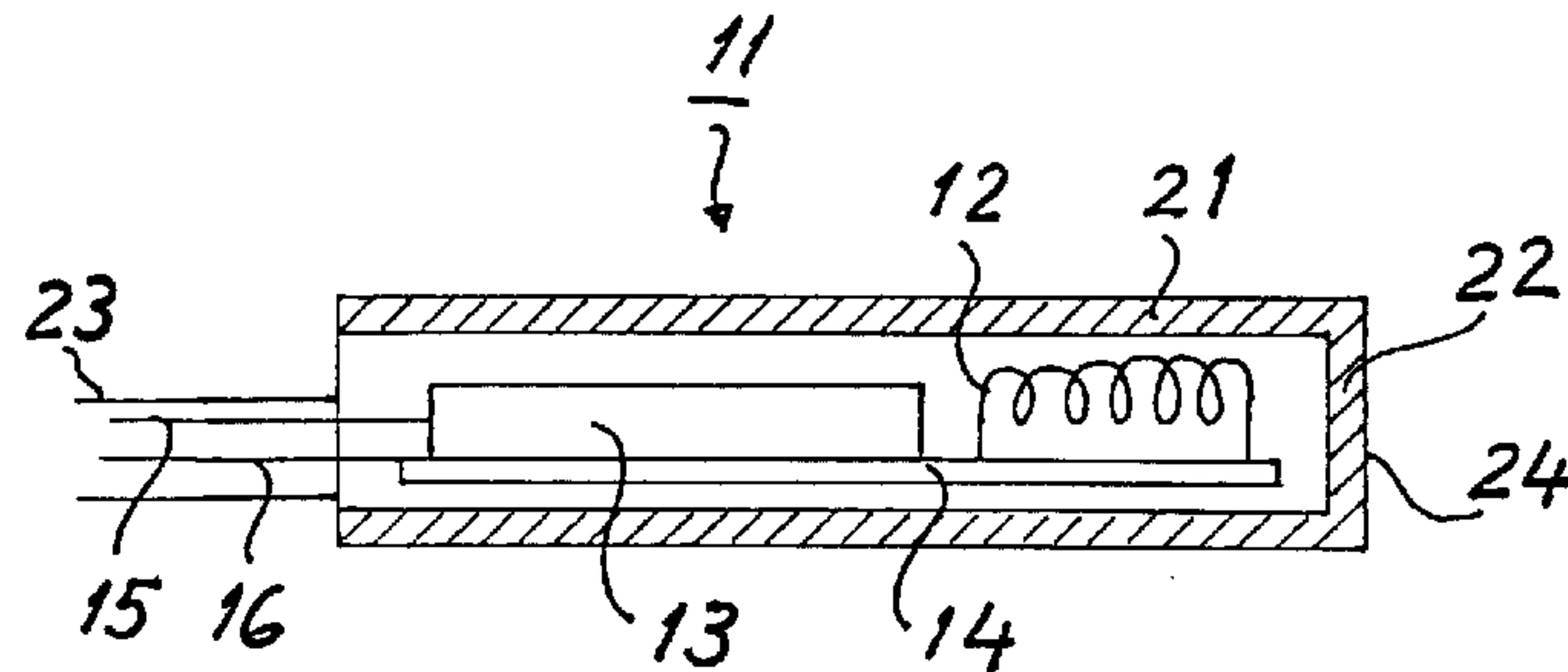


(21) (A1) **2,260,764**
(22) 1999/02/05
(43) 1999/08/13

(72) HEIMLICHER, Peter, CH


(71) OPTOSYS SA, CH

(51) Int.Cl.⁶ H03K 17/95

(30) 1998/02/13 (98810116.8) EP

(54) **COMMUTATEUR DE PROXIMITÉ INDUCTIF A BOITIER
MONOBLOC**

(54) **INDUCTIVE PROXIMITY SWITCH WITH A ONE-PIECE
HOUSING**

(57) An inductive proximity switch is provided which comprises a coil, means for supplying the coil with periodic transmitting current pulses, and means for processing signals which correspond to voltages induced in said coil after the end of a transmitting current pulse by the decaying current which previously flows in the detected body due to the voltage induced therein by the transmitting current pulse. In order to improve the robustness of the proximity switch so that it is suitable for durable use in an aggressive environment, the coil (12), the means for supplying the coil with a periodical transmitting current, and the signal processing means are arranged in a cylindrical housing (21) which is closed on the side of the active surface (24) of the proximity switch and consists of a metal which is not ferromagnetic and whose specific electric resistance is relatively high.

Abstract

An inductive proximity switch is provided which comprises a coil, means for supplying the coil with periodic 5 transmitting current pulses, and means for processing signals which correspond to voltages induced in said coil after the end of a transmitting current pulse by the decaying current which previously flows in the detected body due to the voltage induced therein by the transmitting 10 current pulse. In order to improve the robustness of the proximity switch so that it is suitable for durable use in an aggressive environment, the coil (12), the means for supplying the coil with a periodical transmitting current, and the signal processing means are arranged in a 15 cylindrical housing (21) which is closed on the side of the active surface (24) of the proximity switch and consists of a metal which is not ferromagnetic and whose specific electric resistance is relatively high.

- 1 -

INDUCTIVE PROXIMITY SWITCH WITH A ONE-PIECE HOUSING

The present invention refers to an inductive proximity switch comprising:

- 5 - a coil;
- means for supplying the coil with periodic transmitting current pulses; and
- means for processing signals which correspond to voltages induced in said coil after the end of a
- 10 transmitting current pulse by the decaying current which previously flows in the detected body due to the voltage induced therein by the transmitting current pulse.

A proximity switch of the above-mentioned kind is known from European patent specification EP-A-0492029 B1. In this proximity switch, coil 12 is supplied with periodical transmitting current pulses. The effective signal is obtained by a suitable electronic circuit which responds to the received voltage induced in coil 12 by the decaying of the current which previously flows in the detected body due to the voltage induced therein by the transmitting current pulse.

In a development of the proximity switch known from EP-A-0492029 B1, the just mentioned voltage induced in the coil is integrated over a relatively short time window in order to obtain a smoothed useful signal after suitable processing. This signal is compared to a reference voltage in order to generate an output signal which signals the presence of a detected body in the vicinity of the proximity switch if such a body is present. Such a proximity switch allows an outstanding switching distance in the detection of metallic bodies, e.g. of aluminum or steel.

- 2 -

The components of known proximity switches operating according to the principle described in EP-A-0492029 B1 are usually contained in a housing which consists of two or more parts and which is generally composed at least of an 5 elongate metallic cylinder and of a cap of a synthetic material which seals active surface 24, i.e. the exit surface of the magnetic field generated by the coil. Such a housing is inappropriate for applications where the proximity switch is exposed to shocks on the synthetic cap, 10 to particularly aggressive environments, or to an increased ambient pressure. Such ambient conditions require a very rugged housing. In particular, it is very difficult to achieve a liquid- and gas-tight seal of the cap of the proximity switch. If a conventional proximity switch is used 15 in the cited environments, the components of the proximity switch will be damaged quickly and a short lifetime of the latter is likely.

An aim of the invention is therefore to provide an inductive 20 proximity switch of the kind described in European patent specification EP-A-0492029 B1 which is suitable for use under conditions of mechanical stresses exerted on the active surface of the proximity switch, in aggressive environments, and under high ambient pressure, and which 25 still allows an outstanding switching distance in the detection of metallic bodies, e.g. of aluminum or steel.

According to the invention, this aim is attained by an inductive proximity switch of the kind described in European 30 patent specification EP-A-0492029 B1 wherein said coil, said means for supplying the coil with a periodical transmitting current, and said means for processing said signals are arranged in a cylindrical housing which is closed on the side of the active surface of the proximity switch and which

- 3 -

consists of a metal which is not ferromagnetic and whose specific electric resistance is relatively high.

The robustness of a proximity switch according to the 5 invention is such that it can even be used for very demanding applications in extremely difficult environments while the positive properties of the proximity switch, especially the outstanding switching distance it allows in the detection of metallic bodies, e.g. of aluminum or steel, 10 are conserved.

An exemplary embodiment of the invention is described hereinafter with reference to the accompanying figures 1 and 2.

15

FIG. 1 shows a schematic cross-section of a proximity switch according to the invention; and

20

FIG. 2 shows a perspective view of the proximity switch according to Fig. 1.

As shown in a schematic manner in FIG. 1, a proximity switch 11 according to the invention contains a coil 12 and an 25 electronic circuit 13. Circuit 13 comprises means for supplying coil 12 with periodic transmitting current pulses having a period T which is typically comprised between 50 and 500 microseconds, and means for the processing of signals which correspond to induced voltages generated in 30 coil 12 when a detected body is situated within the range of the variable magnetic field which is built up by coil 12 as it is supplied with the periodical transmitting current. The operation of circuit 13 is as described in European patent specification EP-A-0492029 B1.

35

- 4 -

Coil 12 and circuit 13 are e.g. mounted on a printed circuit board 14. Electronic circuit 13 is connected by conductors 15 and 16 of a cable 23 to the apparatus or system (not shown) where the signals obtained by proximity switch 11 are 5 further processed.

As shown in FIG. 1, all components of a proximity switch 11 according to the invention are arranged in a housing 21 which consists of a single piece, that is of a housing which 10 is a one-piece housing. As shown by Fig. 2, housing 21 has preferably a cylindrical shape. Housing 21 can however have any other suitable shape. It can for instance have the shape of an elongated quadrangular right prism. Housing 21 also includes a closure 22 of the cylinder or prism on the side of 15 the active surface 24 of the proximity switch. Closure 22 replaces the cap used in embodiments of the prior art and has approximately the same wall-thickness as such a prior art cap. As can be appreciated from Fig. 1, closure 22 has a wall-thickness which is sufficient to provide a good 20 mechanical protection of coil 12 which lies behind it. In the case of a cylindrical housing 21, the wall-thickness of closure 22 lies in a range of 3 to 10% of the outer diameter of housing 21. In the case of a non-cylindrical housing 21, the wall-thickness of closure 22 lies in a range of 3 to 10% 25 of the diameter of a circle inscribed into the active surface of proximity switch 11.

Housing 21 consists of a metal which is not ferromagnetic and whose specific electric resistance is relatively high, 30 preferably non-magnetic stainless steel. Due to these properties, only very small eddy currents are produced in active surface 24 during operation of the proximity switch, and the voltages which are thereby induced in coil 12 are negligible in the measuring window of the useful signal. In 35 the detected metallic bodies e.g. of steel or aluminum,

- 5 -

however, substantially stronger eddy currents are generated, and the voltages thereby induced in the coil are strong enough to allow the detection of such bodies at an exceptionally large switching distance.

5

Housing 21 is entirely made of metal and therefore offers a very good protection of the components of proximity switch 11 from aggressive environments.

10

- - - - -

- 6 -

Claims

1. An inductive proximity switch comprising:

- a coil;

5 - means for supplying the coil with periodic transmitting current pulses; and

- means for processing signals which correspond to voltages induced in said coil after the end of a transmitting current pulse by the decaying current which 10 previously flows in the detected body due to the voltage induced therein by the transmitting current pulse, wherein

said coil (12), said means for supplying the coil with a periodical transmitting current, and said means for

15 processing said signals are arranged in a cylindrical housing (21) which is closed on the side of the active surface (24) of the proximity switch and consists of a metal which is not ferromagnetic and whose specific electric resistance is relatively high.

20

2. An inductive proximity switch according to claim 1, wherein said housing (21) is made of one piece.

3. An inductive proximity switch according to claim 1 or 25 2, wherein said housing (21) is made of non-magnetic stainless steel.

- - - - -

Fetherstonhaugh & Co
Ottawa, Canada
Patent Agents

1/1

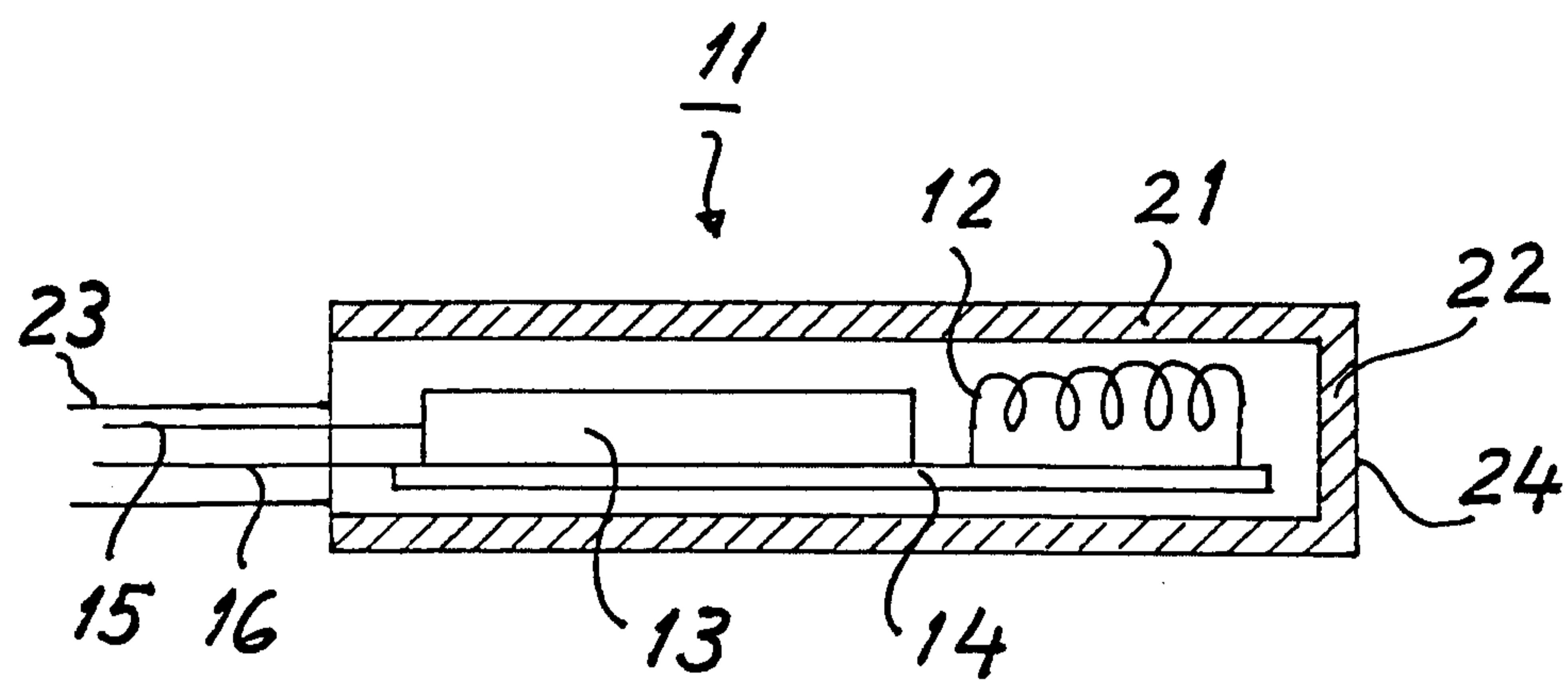


Fig. 1

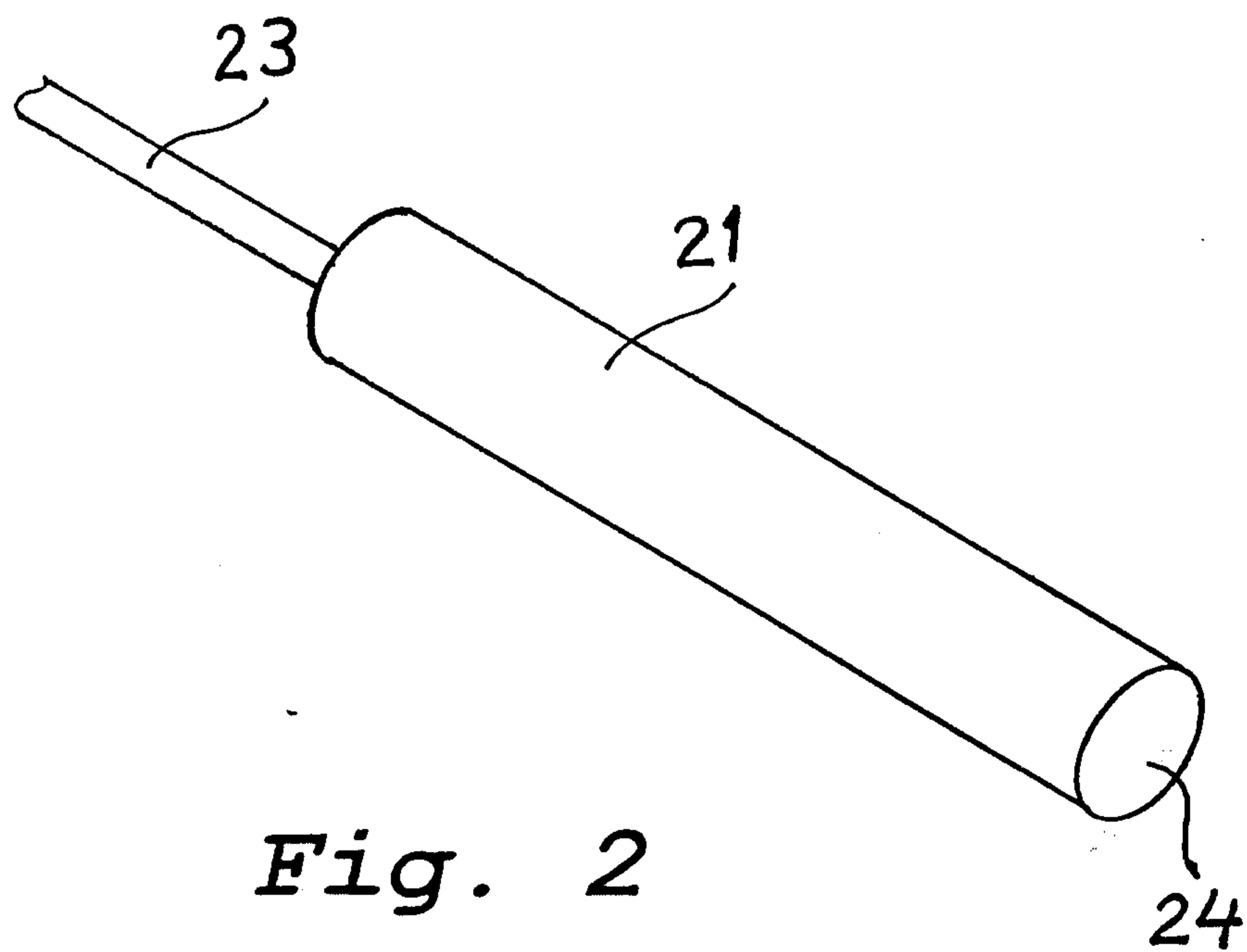


Fig. 2