背光单元和具有该背光单元的液晶显示装置

摘要

本发明涉及一种背光单元和具有该背光单元的液晶显示装置。该背光单元具有从包括在光学片中的多个片中的一个片延伸的延伸部分。该光学片位于光导板上，并且发光二极管芯片设置在该光导板的一侧。其上安装有该发光二极管芯片的柔性印刷电路板的一部分与该光导板的一部分交叠。该延伸部分与该柔性印刷电路板的该一部分交叠。因此，可以防止由于在该光导板与该柔性印刷电路板之间前进的光而导致光条纹的出现，由此获得均匀的亮度并提高图像质量。
1、一种背光单元，该背光单元包括：
光导板；
第一光源，位于所述光导板的一侧；
第一柔性印刷电路板，其中安装有所述第一光源，该第一柔性印刷电路板的一部分与所述光导板的一部分交叠；
光学片，位于所述光导板上，并且包括多个片；以及
从所述光学片延伸的第一延伸部分，
其中，所述第一延伸部分与所述第一柔性印刷电路板的所述一部分交叠。

2、根据权利要求1所述的背光单元，其中，所述第一光源是发光二极管芯片。

3、根据权利要求1所述的背光单元，其中，所述第一柔性印刷电路板的所述一部分从所述第一光源延伸到所述第一柔性印刷电路板的朝向所述光导板的端部。

4、根据权利要求2所述的背光单元，其中，所述发光二极管芯片包括红色发光二极管、绿色发光二极管和蓝色发光二极管。

5、根据权利要求2所述的背光单元，其中，所述发光二极管芯片包括白色发光二极管。

6、根据权利要求1所述的背光单元，其中，所述多个片包括漫射片、棱镜片和保护片。

7、根据权利要求1所述的背光单元，其中，所述第一延伸部分从所述多个片中的一个片延伸。

8、根据权利要求7所述的背光单元，其中，所述第一延伸部分与所述一个片一体地形成。

9、根据权利要求1所述的背光单元，其中，所述第一延伸部分分别从所述多个片中的每一个片延伸。

10、根据权利要求1所述的背光单元，该背光单元还包括位于所述
光导板的下表面的反射板。

11、根据权利要求1所述的背光单元，其中，所述光导板包括位于光入射区域的第一突起部分，该第一突起部分沿向上方向从所述光导板突起。

12、根据权利要求11所述的背光单元，其中，所述第一突起部分与所述第一光源的高度相同。

13、根据权利要求11所述的背光单元，其中，所述第一柔性印刷电路板的所述一部分被设置为至少交叠在所述第一突起部分上。

14、根据权利要求1所述的背光单元，其中，所述第一延伸部分从所述光导板朝向所述第一光源延伸。

15、根据权利要求1到14中的任意一项所述的背光单元，该背光单元还包括：

第二光源；
第二柔性印刷电路板，其中安装有所述第二光源；以及
从所述光学片延伸的第二延伸部分，
所述第二光源、所述第二柔性印刷电路板和所述第二延伸部分相对于所述光导板，分别与所述第一光源、所述第一柔性印刷电路板和所述第一延伸部分具有基本对称的位置关系。

16、根据权利要求15所述的背光单元，其中，所述光导板包括第二突起部分，该第二突起部分相对于所述光导板，与所述第一突起部分具有基本对称的位置关系。

17、一种液晶显示装置，该液晶显示装置包括：
液晶显示板；以及
背光单元，该背光单元包括：光导板，其向所述液晶显示装置发射表面光；发光二极管芯片，其位于所述光导板一侧，并朝向所述光导板发光；柔性印刷电路板，其中安装有所述发光二极管芯片，该柔性印刷电路板的一部分与所述光导板的一部分交叠；光学片，其位于所述光导板上，并且包括多个片；以及从所述光学片延伸的延伸部分，
其中，所述延伸部分与所述柔性印刷电路板的所述一部分交叠。
背光单元和具有该背光单元的液晶显示装置

技术领域
本发明涉及一种背光单元，更具体地，涉及一种能提高图像质量的背光单元和具有该背光单元的液晶显示（LCD）装置。

背景技术
阴极射线管（CRT）被广泛用于电视机及用于测量设备、信息终端等的监视器。但是，由于 CRT 先天的重量和尺寸，要解决电子设备的小型化并减轻其重量是困难的。

相反，与 CRT 相比，LCD 装置具有重量轻、功耗低、全色、高分辨率和大尺寸的优点。因此，LCD 装置被应用在各个领域。

由于 LCD 装置是光接收型装置，其调整从外部光源提供的光量来显示图像。LCD 装置需要背光单元来发光。根据发光的位置，背光单元大致被分为边缘型（edge-type）和顶底型（top-bottom）单元。背光单元可以包括发光的光源。光源的类型包括电致发光（EL）光源、发光二极管（LED）、冷阴极荧光灯（CCFL）、外部电极荧光灯（EEFL）、和热阴极荧光灯（HCFL）。

正在开发 LED 背光单元，LED 背光单元具有几乎无限的使用寿命、高亮度、以及小型化的能力。这种 LED 背光单元能够应用于从最小的显示装置到大尺寸显示装置的每一种显示装置。

图 4 是根据现有技术的 LCD 装置的剖面图。

参照图 4，反射板 116 和导板 115 保持在模制框架 117 内，LED 芯片 121 被设置为使得其顶面与模制框架 117 的一侧的保持空间 117a 的底面相对，并且 LED 芯片 121 安装到柔性 PCB 118 上。柔性 PCB 118 设置在突起部分 115a 与模制框架 117 之间。即，柔性 PCB 118 的第一部分 118a 设置在模制框架 117 上，而柔性 PCB 118 的第二部分 118b 设置在光
导板 115 的突起部分 115a 上方。该突起部分具有倾斜并突起的形状。

但是，因为柔性 PCB 118 并没有附着到光导板 115 上，所以在柔性 PCB 118 与光导板 115 的突起部分 115a 之间产生了间隙。

光学片 114 设置在光漫射板 115 上。光学片 114 可以包括漫射片 114a 和第一及第二棱镜片 114b 和 114c。

可以将包括滤色器基板 100a 和阵列基板 100b 的 LCD 板 100 设置在光导板 115 上。上偏振板 130a 和下偏振板 130b 分别附着在 LCD 板 100 的顶面和底面。

背光单元包括其上安装有 LED 芯片 121 的柔性 PCB 118、光导板 115、反射板 116 和光学片 114。

可以在光导板 115 和 LCD 板 100 之间设置光屏蔽带 112，以阻挡光从光导板 115 的边缘向上泄漏。

但是，在现有技术的 LED 背光单元中，在 PCB 与光导板之间存在间隙，因此，红色、绿色和蓝色的光通过该间隙平行于光导板前进。在这种情况下，因为与其他方向相比，每种光的发射方向具有高亮度，所以光以条纹状（line）照射。因为以条纹状发射的光不能获得均匀的亮度，所以图像质量降低。

发明内容

因此，本发明致力于一种背光单元和具有该背光单元的液晶显示装置，其基本上消除了由于现有技术的限制和缺点而导致的一个或更多个问题。

实施方式提供了一种背光单元以及具有该背光单元的 LCD 装置，该背光单元通过使光学片的一部分延伸并使光学片的该部分与 PCB 交叠，而能够防止以条纹状发射的光，由此获得亮度的均匀性，并提高图像质量。

本发明的其它优点、目的及特征在以下的说明书中部分地进行了阐述，并且在本领域的技术人员对以下说明书进行研究时而部分地变得明了，或者通过对本发明的实践而得知。本发明的这些目的和其它优点可
以通过在书面说明书、权利要求书及附图中具体指出的结构来实现和获得。

在本发明的第一实施方式中，一种背光单元包括：光导板；光源，位于所述光导板的一侧；柔性印刷电路板（PCB），其中安装有所述光源，该柔性印刷电路板的一部分与所述光导板的一部分交叠；光学片，位于所述光导板上，该光学片包括多个片；以及延伸部分，其从所述光学片延伸，其中，所述延伸部分与所述柔性印刷电路板的所述一部分交叠。

在本发明的第二实施方式中，一种液晶显示装置包括：液晶显示板；以及背光单元，该背光单元包括：光导板，其向所述液晶显示板发射表面光；光源，位于所述光导板的一侧并朝向所述光导板发射光；柔性印刷电路板，其中安装有所述光源，该柔性印刷电路板的一部分与所述光导板的一部分交叠；光学片，位于所述光导板上，该光学片包括多个片；以及延伸部分，其从所述光学片延伸，其中，所述延伸部分与所述柔性印刷电路板的所述一部分交叠。

应该理解，对本发明的以上概述和下面的详述都是示例性和说明性的，并旨在对所要求保护的本发明提供进一步说明。

附图说明

包括附图以提供对本发明的进一步理解，并入附图而构成本申请的一部分，附图示出了本发明的实施方式并与说明书一起用于解释本发明的原理。在附图中：

图 1 是根据本发明的 LCD 装置的立体图；
图 2 是图 1 中所示的 LCD 处于组装状态的剖面图；
图 3 是图 2 中的区域 A 的放大图；
图 4 是根据现有技术的 LCD 装置的剖面图。

具体实施方式

下面将详细地说明本发明的优选实施方式，在附图中示出了其实施例。
图 1 是根据本发明的 LCD 装置的分解立体图。

参照图 1，LCD 装置包括：LCD 板 10，其显示图像；以及背光单元 20，其设置在 LCD 板 10 的后侧，以提供光。该 LCD 装置还可以包括：模制框架 17，其保持并固定 LCD 板 10 和背光单元 20；以及光屏蔽带 12，其设置在 LCD 板 10 与背光单元 20 之间。

LCD 板 10 包括滤色器基板 10a、阵列基板 10b，以及设置在滤色器基板 10a 与阵列基板 10b 之间的液晶层（未示出）。滤色器基板 10a 具有多个红色滤色器、绿色滤色器和蓝色滤色器，而阵列基板 10b 具有多个薄膜晶体管（TFT）和像素电极。

LCD 板 10 的焊盘区包括：电路基板 11，其提供数据信号和驱动信号；以及驱动器 13，用于驱动 LCD 板 10。

电路基板 11 是其上安装有各种驱动装置的柔性绝缘膜，并且可以是诸如聚酯（PET）或聚酰亚胺（PI）的耐热塑料膜。

背光单元 20 包括柔性 PCB 18、LED 芯片 21、光导板 15、光学片 14 以及反射板 16，LED 芯片 21 用作光源，并且该光源不限于发光二极管芯片，还可以使用其他类型的灯作为光源，例如外部电极荧光灯（EEFL）或冷阴极荧光灯（CCFL）。

柔性 PCB 18 是柔性绝缘膜，并且可以由作为诸如聚酯（PET）或聚酰亚胺（PI）的耐热塑料膜的塑料膜制成。柔性 PCB 18 还可以具有多个导电图案。

LED 芯片 21 设置在柔性 PCB 18 上，并电连接到这些导电图案。LED 芯片 21 包括红色、绿色和蓝色 LED，或者白色 LED。

光导板 15 设置在 LED 芯片 21 侧，并且将从 LED 芯片 21 入射的光作为表面光照射到光学片 14 上。

光导板 15 包括：入射部分 15a，其与 LED 芯片 21 相邻；以及突起部分 15b，其从光导板 15 的其余部分突起到与 LED 芯片 21 相同的高度，以提高光的效率。因此，突起到与 LED 芯片 21 相同高度的突起部分 15b 使得从 LED 芯片 21 发出的光的大部分能够入射在光导板 15 上，从而提高照明效率。突起部分 15b 可以沿着光导板 15 的入射部分 15a 而形成。
这里，柔性 PCB 18 的一部分可以设置为交叠在至少突起部分 15b 上。

模制框架 17 设置有保持空间 17a，其中插动有安装到柔性 PCB 18 上的 LED 芯片 21。LED 芯片 21 朝向模制框架 17 设置在柔性 PCB 18 上。因此，柔性 PCB 18 的第一部分 18a 位于模制框架 17 内，而柔性 PCB 18 的第二部分 18b 被安装为交叠在光导板 15 上。第一部分 18a 表示从柔性 PCB 18 的一端延伸到 LED 芯片 21 的部分，而第二部分 18b 表示从 LED 芯片 21 延伸到柔性 PCB 18 的另一端的部分。设置在第一部分 18a 与第二部分 18b 之间的 LED 芯片 21 被插入到保持空间 17a 中。LED 芯片 21 的下表面可以或可以不与模制框架 17 的上表面接触。

在现有技术中，如图 4 所示，柔性 PCB 没有如上所述固定在光导板上，而仅放置在其上，从而在柔性 PCB 与光导板之间形成间隙，从 LED 芯片发出的光通过该间隙照射，因此，由于较亮光的条纹和较暗光的另一条纹而使得光以条纹形状照射。

在本发明中，阻挡了柔性 PCB 与光导板之间的间隙，从而防止了光的条纹的出现。

光学片 14 漫射并控制从光导板 15 发出的直射光。光学片 14 可以依次包括靠近光导板 15 的漫射片 14a 以及第一和第二棱镜片 14c 和 14d。为了保护第二棱镜片 14d，可以在第二棱镜片 14d 上设置第一保护片（未示出）。此外，可以在漫射片 14a 下面设置用于保护漫射片 14a 的第二保护片（未示出）。

可以在光学片 14 中所包括的多个片 14a、14c 和 14d 中的任何一个中形成延伸部分 14b。例如，可以在漫射片 14a 中形成延伸部分 14b，以便与柔性 PCB 18 的一部分交叠。延伸部分 14b 从光导板朝向发光二极管芯片 21 延伸。延伸部分 14b 可以与漫射片 14a 一体地形成。虽然在本实施方式中延伸部分 14b 被描述为形成在漫射片 14a 上，但是延伸部分 14b 可以另选地形成在漫射片 14a 以外的任何一个片上 — 例如，第一和第二棱镜片 14c 和 14d，或第一和第二保护片。

延伸部分 14b 可以设置为与柔性 PCB 18 的第二部分 18b 交叠。当被设置在柔性 PCB 18 上时，延伸部分 14b 阻挡来自 LED 芯片 21 的光通过
柔性 PCB 18 与光导板 15 之间的间隙，并防止该光沿着光导板 15 前进，从而防止了光条纹的出现。因此，在整个光导板 15 实现了均匀的亮度，而且将该均匀的亮度反射到 LCD 板 10 上，以改善从 LCD 板 10 输出的图像。

用于将所发出的光朝向光导板 15 的后部反射的反射板 16 可以设置在光导板 15 的后表面。

反射板 16 和光导板 15 堆叠在模制框架 17 中，柔性 PCB 18 插入并安装在模制框架 17 中，以使 LED 芯片 21 被插入到模制框架 17 的保持空间 17a 中。光学片 14 位于光导板 15 上，并且漫射片 14a 的延伸部分 14b 与柔性 PCB 18 的一部分交叠。

光屏蔽带 12 粘贴在光学片 14 和柔性 PCB 18 的边缘之间。

LCD 板 10 设置在光学片 14 上，并且光屏蔽带 12 位于它们之间。可以沿着 LCD 板 10 的边缘设置光屏蔽带 12。

通过下固定并紧固模制框架 17。虽然未图示，但是下盖 25 可以紧固到沿着 LCD 板 10 的边缘设置的上盖。

虽然在本实施方式中将 LED 芯片 21 描述为仅设置在光导板 15 的一侧，但是可以在光导板 15 的两侧分别设置第一和第二 LED 芯片 21。在后一情况下，可以分别在第一和第二射入部分 15a 上分别形成第一和第二突起部分 15b，并且可以分别在漫射片 14a 的两端形成第一和第二延伸部分 14b。可以将第一和第二延伸部分 14b 设置为与其中分别安装有第一和第二 LED 芯片 21 的第一和第二柔性 PCB 18 交叠。第二 LED 芯片、第二柔性 PCB、第二延伸部分和第二突起部分相对于光导板，分别与第一 LED 芯片、第一柔性 PCB、第一延伸部分和第一突起部分具有基本对称的位置关系。因此，可以防止通过从第一和第二 LED 芯片 21 发出的光朝向光导板 15 的中心前进的光而出现光条纹。

图 2 是图 1 中所示的 LCD 处于组装状态的剖面图，而图 3 是图 2 中的区域 A 的放大图。

参照图 1 到图 3，反射板 16 和光导板 15 保持在模制框架 17 内，LED 芯片 21 被设置为使得其顶面与位于模制框架 17 一侧的保持空间 17a 的
底面相对，并且 LED 芯片 21 安装在柔性 PCB 18 上。柔性 PCB 18 的第一部 18a 安装在模制框架 17 上，而第二部分 18b 被设置为交叠在光导板 15 的入射部分 15a 上。

光学片 14 设置在光导板 15 上。光学片 14 可以包括漫射片 14a 以及第一和第二棱镜片 14c 和 14d。可以在第二棱镜片 14d 的上表面和漫射片 14a 的下表面上分别设置第一和第二保护片。

可以将包括滤色器基板 10a 和阵列基板 10b 的 LCD 板 10 设置在光导板 15 上。上偏振板 30a 和下偏振板 30b 分别附着在 LCD 板 10 的顶面和底面上。

背光单元包括其上安装有 LED 芯片 21 的柔性 PCB 18、光导板 15、反射板 16 和光学片 14。

LCD 板 10 和背光单元 20 可以保持在模制框架 17 内。

可以在光导板 15 和 LCD 板 10 之间设置光屏蔽带 12。即，光屏蔽带 12 可以附着在光导板 15 和柔性 PCB 18 的边缘上，并且 LCD 板 10 可以安装在光屏蔽带 12 上。设置光屏蔽带 12 以阻挡光从光导板 15 的边缘向上泄漏。LCD 板 10 可以通过双面胶带 27 粘贴到光屏蔽带 12 上。如果在光屏蔽带 12 的顶面设置有粘合剂，则 LCD 板 10 可以被直接附着在光屏蔽带 12 上，从而不需要双面胶带 27。

光学片 14 中所包括的多个片 14a、14c 和 14d 的一个片 — 例如漫射片 14a，可以具有延伸部分 14b。延伸部分 14b 可以与漫射片 14a 一体地形成。虽然在本实施方式中，延伸部分 14b 被描述为从漫射片 14a 延伸，但是延伸部分 14b 可以另选地被形成为从第一和第二棱镜片 14c 和 14d 或第一和第二保护片之一延伸。

延伸部分 14b 可以被设置为与柔性 PCB 18 的第二部分 18b 交叠。延伸部分 14b 可以与柔性 PCB 18 的第二部分 18b 的整个表面交叠，或者与第二部分 18b 的一部分交叠。当延伸部分 14b 由此与柔性 PCB 18 的第二部分 18b 交叠时，可以阻挡在柔性 PCB 18 与光导板 15 之间泄漏的并平行于光导板 15 前进的光。因此，防止了由于平行于光导板 15 前进的泄漏光而导致出现光条纹，从而可以从光导板 15 获得均匀的亮度，并且将
均匀亮度的光入射到 LCD 板 10 上，以提高图像质量。

虽然到目前为止根据当前实施方式，将延伸部分 14b 描述为仅从光学片 14 中所包括的多个片 14a、14c 和 14d 中的一个延伸，但是可以在光学片 14 中所包括的多个片 14a、14c 和 14d 中的每一个上形成延伸部分 14b。在这种情况下，在多个片 14a、14c 和 14d 中的每一个上形成的延伸部分 14b 可以被设置为与柔性 PCB 18 的第二部分 18b 交叠。

在本发明中，使与光导板的入射部分相对应的多个片延伸，以形成延伸部分，并且该延伸部分被设置为与该柔性 PCB 的一部分交叠，从而可以防止由于通过光导板与柔性 PCB 之间的间隙平行于光导板前进的光而导致出现光条纹。

在本发明中，因为防止了光条纹的出现，所以可以获得均匀的亮度，而且可以提高图像质量。

对于本领域的技术人员，显然可以对本发明进行各种修改和变化。因此，本发明旨在涵盖落入所附权利要求及其等同物的范围内的本公开的这些修改和变化。