

(12) Oversættelse af ændret
europæisk patentsskrift

Patent- og
Varemærkestyrelsen

(51) Int.Cl.: **H 04 N 19/463 (2014.01)** **H 04 N 19/117 (2014.01)** **H 04 N 19/13 (2014.01)**
H 04 N 19/176 (2014.01) **H 04 N 19/18 (2014.01)** **H 04 N 19/467 (2014.01)**
H 04 N 19/48 (2014.01) **H 04 N 19/91 (2014.01)**

(45) Oversættelsen bekendtgjort den: **2024-11-04**

(80) Dato for Den Europæiske Patentmyndigheds
bekendtgørelse om opretholdelse af patentet i ændret form: **2024-08-21**

(86) Europæisk ansøgning nr.: **18185339.1**

(86) Europæisk indleveringsdag: **2012-11-06**

(87) Den europæiske ansøgnings publiceringsdag: **2019-05-29**

(30) Prioritet: **2011-11-07 FR 1160109**

(62) Stamansøgningsnr: **17154805.0**

(84) Designerede stater: **AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR**

(73) Patenthaver: **Dolby International AB, 77 Sir John Rogerson's Quay, Block C, Grand Canal Docklands, Dublin, D02 VK60, Irland**

(72) Opfinder: **HENRY, Félix, 5 rue de la Galerie, 35760 SAINT GREGOIRE, Frankrig**
CLARE, Gordon, 11 chemin de la Métairie, 35740 Pace, Frankrig

(74) Fuldmægtig i Danmark: **Plougmann Vingtoft A/S, Strandvejen 70, 2900 Hellerup, Danmark**

(54) Benævnelse: **AFKODNINGSINDRETNING TIL ET DATASIGNAL SOM REPRÆSENTERER MINDST ET BILLEDE**

(56) Fremdragne publikationer:
ANONYMOUS: "High Efficiency Video Coding (HEVC) Working Draft 4", 97. MPEG MEETING;18-7-2011 - 22-7-2011; TORINO; (MOTION PICTURE EXPERT GROUP OR ISO/IEC JTC1/SC29/WG11), no. N12186, 2 octobre 2011 (2011-10-02), XP030018681,
JEAN-MARC THIESSE ET AL: "Rate Distortion Data Hiding of Motion Vector Competition Information in Chroma and Luma Samples for Video Compression", IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 21, no. 6, 1 juin 2011 (2011-06-01), pages 729-741, XP011325921, ISSN: 1051-8215, DOI: 10.1109/TCSVT.2011.2130330
SUNG MIN KIM ET AL: "Data Hiding on H.264/AVC Compressed Video", 22 aoÃ»t 2007 (2007-08-22), IMAGE ANALYSIS AND RECOGNITION; [LECTURE NOTES IN COMPUTER SCIENCE], SPRINGER BERLIN HEIDELBERG, BERLIN, HEIDELBERG, PAGE(S) 698 - 707, XP019097872, ISBN: 978-3-540-74258-6 * le document en entier *
QIMING LI ET AL: "A Reversible Data Hiding Scheme for JPEG Images", 21 septembre 2010 (2010-09-21), ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2010, SPRINGER BERLIN HEIDELBERG, BERLIN, HEIDELBERG, PAGE(S) 653 - 664, XP019151677, ISBN: 978-3-642-15701-1 * le document en entier *
XIAOJING MA ET AL: "A Data Hiding Algorithm for H.264/AVC Video Streams Without Intra-Frame Distortion Drift", IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 20, no. 10, 1 octobre 2010 (2010-10-01), pages 1320-1330, XP011317382,

ISSN: 1051-8215

HADAR O ET AL: "Rate distortion optimization for efficient watermarking in the DCT domain", BROADBAND MULTIMEDIA SYSTEMS AND BROADCASTING, 2008 IEEE INTERNATIONAL SYMPOSIUM ON, IEEE, PISCATAWAY, NJ, USA, 31 mars 2008 (2008-03-31), pages 1-8, XP031268612, ISBN: 978-1-4244-1648-6

PARUCHURI J K ET AL: "Joint optimization of data hiding and video compression", CIRCUITS AND SYSTEMS, 2008. ISCAS 2008. IEEE INTERNATIONAL SYMPOSIUM ON, IEEE, PISCATAWAY, NJ, USA, 18 mai 2008 (2008-05-18), pages 3021-3024, XP031392649, ISBN: 978-1-4244-1683-7

SUNG MIN KIM ET AL: "Data Hiding on H.264/AVC Compressed Video", 22 août 2007 (2007-08-22), IMAGE ANALYSIS AND RECOGNITION; [LECTURE NOTES IN COMPUTER SCIENCE], SPRINGER BERLIN HEIDELBERG, BERLIN, HEIDELBERG, PAGE(S) 698 - 707, XP019097872, ISBN: 978-3-540-74258-6 * le document en entier *

US-A1- 2011 268 183

US-B1- 7 203 372

JCTVC-H0227: "Sign Data Hiding without RDOQ", Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG 16 WP3 and ISO/IEC JTC1/SC29/WG11 8th Meeting, 10 February 2012 (2012-02-10), San Jose, CA, USA Retrieved from the Internet: URL:http://phenix.it-sudparis.eu/jct/doc/end_user/current_document.php?id=4530

Gordon Clare (Orange), Felix Henry (Orange-ftgroup), Joel Jung (Orange), Stephane Pateux (Orange): "CE11: Sign Data Hiding", 8. JCT-VC meeting; 20120201 - 20120210; San Jose; (Joint Collaborative Team on Video Coding of ISO/IEC JTC1/SC29/WG11 and ITU-T SG.16), no. JCTVC-H0224, 3 February 2012 (2012-02-03), G. Clare (Orange Labs), F. Henry (Orange Labs), J. Jung (Orange Labs): "Sign Data Hiding", 7. JCT-VC meeting; 98. MPEG meeting; 21-11-2011 - 30-11-2011; Geneva; (Joint Collaborative Team on Video Coding of ISO/IEC JTC1/SC29/WG11 and ITU-T SG.16); URL: <http://wftp3.itu.int/av-arch/jctvc-site/>, no. JCTVC-G271, 8 November 2011 (2011-11-08),

R. Cohen, S. Rane, A. Vetro, H. Sun (MERL): "Low Complexity Embedding of Information in Transform Coefficients", 5. JCT-VC meeting; 96. MPEG meeting; 16-3-2011 - 23-3-2011; Geneva; (Joint Collaborative Team on Video Coding of ISO/IEC JTC1/SC29/WG11 and ITU-T SG.16); URL: <http://wftp3.itu.int/av-arch/jctvc-site/>, no. JCTVC-E428, 12 March 2011 (2011-03-12),

J-M. THIESSE et al.: "Data hiding of Intra prediction information in chroma samples for video compression", Proc. IEEE International Conference on Image Processing, September 2010 (2010-09), pages 2861-2864, Hong Kong

I. Amonou (FT), N. Cammas (FT), G. Clare (FT), J. Jung (FT), L. Noblet (FT), S. Pateux (FT), S. Matsuo (NTT), S. Takamura (NTT), C: "Video coding technology proposal by France Telecom, NTT, NTT DoCoMo, Panasonic and Technicolor", 1. JCT-VC meeting; 15-4-2010 - 23-4-2010; Dresden; (Joint Collaborative Team on Video Coding of ISO/IEC JTC1/SC29/WG11 and ITU-T SG.16); URL: <http://wftp3.itu.int/av-arch/jctvc-site/>, no. JCTVC-A114, 7 May 2010 (2010-05-07),

F. Bossen (software & test condition coordinator): "Common test conditions and software reference configurations", 6. JCT-VC meeting; 97. MPEG meeting; 14-7-2011 - 22-7-2011; Torino; (Joint Collaborative Team on Video Coding of ISO/IEC JTC1/SC29/WG11 and ITU-T SG.16); URL: <http://wftp3.itu.int/av-arch/jctvc-site/>, 12 September 2011 (2011-09-12),

"Test Model under Consideration, JCTVC-B205", Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, 2nd Meeting: Geneva, CH, 21-28 July, 2010, no. JCTVC-B205, 28 July 2010 (2010-07-28), pages 1-163,

X. Yu, J. Wang, D. He, G. Martin-Cocher, S. Campbell: "Multiple Sign Bits Hiding", 8. JCT-VC meeting; 99. MPEG meeting; 1-2-2012 - 10-2-2012; San Jose; (Joint Collaborative Team on Video Coding of ISO/IEC JTC1/SC29/WG11 and ITU-T SG.16); URL: <http://wftp3.itu.int/av-arch/jctvc-site/>, 21 January 2012 (2012-01-21), J. Wang; D. He; X. Yu; G. Martin-Cocher (RIM): "Simplification of multiple sign bit hiding criterion", 10. JCT-VC meeting; 101. MPEG meeting; 11-7-2012 - 20-7-2012; Stockholm; (Joint Collaborative Team on Video Coding of ISO/IEC JTC1/SC29/WG11 and ITU-T SG.16); URL: <http://wftp3.itu.int/av-arch/jctvc-site/>, 29 June 2012 (2012-06-29),

Description

Field of the invention

5 The present invention relates generally to the field of image processing, and more specifically to the encoding and decoding of digital images and of sequences of digital images.

10 The invention can thus, in particular, be applied to the video encoding implemented in current video encoders (MPEG, H.264, etc.) or future ones (ITU-T/VCEG (H.265) or ISO/MPEG (HEVC)).

10 Background of the invention

15 Current video encoders (MPEG, H.264, etc.) use a representation by blocks of the video sequence. The images are split into macroblocks, each macroblock is itself split into blocks and each block, or macroblock, is encoded by intra image or inter image prediction. Thus, some images are encoded by spatial prediction (intra prediction), while other images are encoded by temporal prediction (inter prediction) with respect to one or more reference encoded-decoded images, with the aid of a motion compensation known by the person skilled in the art.

20 For each block, there is encoded a residual block, also called prediction residue, corresponding to the original block reduced by a prediction. The residual blocks are transformed by a transform of the discrete cosine transform (DCT) type, then quantized using, for example, a scalar type quantization. Coefficients, some of which are positive and others negative, are obtained at the end of the quantization step. They are then scanned in a generally zigzag read order (as in the JPEG standard), thereby providing for exploiting the significant number of zero 25 coefficients in the high frequencies. At the end of the aforementioned scan, a one-dimensional list of coefficients is obtained, which will be called "quantized residue". The coefficients of this list are then encoded by an entropy encoding.

30 The entropy encoding (for example of the arithmetic coding or Huffman coding type) is carried out as follows:

- an information item is entropically encoded in order to indicate the position of the last non-zero coefficient in the list,
- for each coefficient located before the last non-zero coefficient, an information item is entropically encoded in order to indicate

whether or not the coefficient is zero,

- for each non-zero coefficient indicated previously, an information item is entropically encoded in order to indicate whether or not the coefficient is equal to one,

5 - for each coefficient that is not zero and not equal to one, and located before the last non-zero coefficient, an amplitude information item (absolute value of the coefficient, which value is reduced by two) is entropically encoded,

10 - for each non-zero coefficient, the sign assigned to it is encoded by a '0' (for the + sign) or a '1' (for the - sign).

[0006] According to the H.264 technique for example, when a macroblock is split into blocks, a data signal, corresponding to each block, is transmitted to the decoder. Such a signal comprises:

15 - the quantized residues contained in the abovementioned list,
- information items representative of the encoding mode used, in particular:

- the prediction mode (intra prediction, inter prediction, default prediction producing a prediction for which no information is transmitted to the decoder (called "skip"));
- information specifying the type of prediction (orientation, reference image, etc.);
- the type of partitioning;
- the type of transform, for example 4x4 DCT, 8x8 DCT, etc.;
- the motion information if necessary;
- etc.

20 25 The decoding is performed image by image, and for each image, macroblock by macroblock. For each partition of a macroblock, the corresponding elements of the stream are read. The inverse quantization and the inverse transformation of the coefficients of the blocks are performed to produce the decoded prediction residue. Then, the prediction of the partition is calculated and the partition is reconstructed by adding the prediction to the decoded prediction residue.

30 The intra or inter encoding by competition, as implemented in the H.264 standard, thus relies on placing various encoding information items, such as those

mentioned above, in competition with the aim of selecting the best mode, i.e. the one which will optimize the encoding of the partition in question according to a predetermined performance criterion, for example the rate distortion cost that is well known to the person skilled in the art.

5 The information items representative of the encoding mode selected are contained in the data signal transmitted by the encoder to the decoder. The decoder is thus capable of identifying the encoding mode selected at the encoder, then applying the prediction that conforms with this mode.

10 The document "Data Hiding of Motion Information in Chroma and Luma Samples for Video Compression", J.-M. Thiesse, J. Jung and M. Antonini, International workshop on multimedia signal processing, 2011, presents a data hiding method implemented during a video compression.

15 More specifically, it is proposed to avoid including in the signal to be transmitted to the decoder at least one competition index as issued from a plurality of competition indexes to be transmitted. Such an index is for example the index MVComp which represents an information item for identifying the motion vector predictor used for a block predicted in inter mode. Such an index which can take the value 0 or 1 is not included directly in the signal of encoded data items, but transported by the parity of the sum of the coefficients of the quantized residue.

20 An association is created between the parity of the quantized residue and the index MVComp. By way of example, an even value of the quantized residue is associated with the index MVComp of value 0, while an odd value of the quantized residue is associated with the index MVComp of value 1. Two cases can arise. In the first case, if the parity of the quantized residue already corresponds to that of the index

25 MVComp which is desired to be transmitted, the quantized residue is encoded conventionally. In the second case, if the parity of the quantized residue is different from that of the index MVComp which is desired to be transmitted, the quantized residue is modified such that its parity is the same as that of the index MVComp.

30 Such a modification involves incrementing or decrementing one or more coefficients of the quantized residue by an odd value (e.g. +1, -1, +3, -3, +5, -5 etc.) and retaining only the modification which optimizes a predetermined criterion, in this case the previously mentioned rate distortion cost.

At the decoder, the index MVComp is not read in the signal. The decoder is satisfied simply with conventionally determining the residue. If the value of this residue is even, the index MVComp is set to 0. If the value of this residue is odd, the index MVComp is set to 1.

5 In accordance with the technique that has just been presented, the coefficients which undergo the modification are not always chosen optimally, such that the modification applied brings about disturbances in the signal transmitted to the decoder. Such disturbances are inevitably detrimental to the effectiveness of the video compression.

10

Object and summary of the invention

One of the aims of the invention is to remedy the drawbacks of the abovementioned prior art.

15 In accordance with the invention, an encoding device is provided according to claim 1. The other embodiments of the invention are provided according to the dependent claims. All other embodiments mentioned in the description, are considered solely as illustrative examples.

Brief description of the drawings

20 Other features and advantages will become clear upon reading about two preferred embodiments described with reference to the drawings in which:

- Figure 1 represents the main steps of the encoding method according to the invention,
- Figure 2 represents an embodiment of an encoding device according to the invention,
- Figure 3 represents the main steps of the decoding device according to the invention,
- Figure 4 represents an embodiment of a decoding device according to the invention.

30

Detailed description of the encoding part

An embodiment of the invention will now be described, in which the encoding method according to the invention is used to encode a sequence of

images according to a binary stream close to that obtained by an encoding according to the H.264/MPEG-4 AVC standard. In this embodiment, the encoding method according to the invention is for example implemented in software or hardware form by modifications of an encoder initially compliant with the H.264/MPEG-4 AVC standard. The encoding method according to the invention is represented in the form of an algorithm including steps C1 to C40, represented in **Figure 1**.

According to the embodiment of the invention, the encoding method according to the invention is implemented in an encoding device or encoder CO, an embodiment of which is represented in **Figure 2**.

In accordance with the invention, prior to the actual encoding step, an image IE of a sequence of images to be encoded in a predetermined order is split into a plurality Z of partitions $B_1, B_2, \dots, B_i, \dots, B_Z$, as represented in **Figure 2**.

It is appropriate to note that in the sense of the invention, the term "partition" means coding unit. This latter terminology is notably used in the HEVC/H.265 standard being drafted, for example in the document accessible at the following Internet address:

http://phenix.int-evry.fr/jct/doc_end_user/current_document.php?id=3286

In particular, such a coding unit groups together sets of rectangular or square shape pixels, also called blocks, macroblocks, or sets of pixels exhibiting other geometric shapes.

In the example represented in **Figure 2**, said partitions are blocks which have a square shape and are all the same size. Depending on the size of the image, which is not necessarily a multiple of the size of the blocks, the last blocks to the left and the last blocks at the bottom do not have to be square-shaped. In an alternative embodiment, the blocks can be for example of rectangular size and/or not aligned with one another.

Each block or macroblock can moreover be itself divided into subblocks which are themselves subdividable.

Such splitting is performed by a partitioning module PCO represented in **Figure 2** which uses for example a partitioning algorithm that is well known as such.

Following said splitting step, each of the current partitions B_i (where i is an integer such that $1 \leq i \leq Z$) of said image IE is encoded.

5 In the example represented in **Figure 2**, such an encoding is applied successively to each of the blocks B_1 to B_Z of the current image IE. The blocks are encoded for example according to a scan such as the raster scan, which is well known to the person skilled in the art.

The encoding according to the invention is implemented in an encoding software module MC_CO of the encoder CO, as represented in **Figure 2**.

10 During a step C1 represented in **Figure 1**, the encoding module MC_CO of **Figure 2** selects as current block B_i the first block B_1 to be encoded of the current image IE. As represented in **Figure 2**, this is the first left-hand block of the image IE.

15 During a step C2 represented in **Figure 1**, the predictive encoding of the current block B_1 by known intra and/or inter prediction techniques is carried out, during which predictive encoding the block B_1 is predicted with respect to at least one previously encoded and decoded block. Such a prediction is carried out by a prediction software module PRED_CO as represented in **Figure 2**.

Needless to say, other intra prediction modes as proposed in the H.264 standard are possible.

20 The current block B_1 can also be subjected to a predictive encoding in inter mode, during which the current block is predicted with respect to a block from a previously encoded and decoded image. Other types of prediction can of course be envisaged. Among the predictions possible for a current block, the optimal prediction is chosen according to a rate distortion criterion that is well known to the person skilled in the art.

25 Said abovementioned predictive encoding step provides for constructing a predicted block B_{p1} which is an approximation of the current block B_1 . The information items relating to this predictive encoding are intended to be included in a signal to be transmitted to the decoder. Such information items comprise notably the type of prediction (inter or intra), and if necessary, the intra prediction mode, the type of partitioning of a block or macroblock if the latter has been subdivided, the reference image index and the motion vector which are used in the inter prediction mode. These information items are compressed by the encoder CO.

During a next step C3 represented in **Figure 1**, the prediction module PRED_CO compares the data items relating to the current block B₁ with the data items of the predicted block B_{p1}. More specifically, during this step, conventionally the predicted block B_{p1} is subtracted from the current block B₁ to produce a residual block Br₁.

During a next step C4 represented in Figure 1, the residual block Br₁ is transformed according to a conventional direct transform operation such as for example a DCT type discrete cosine transform, to produce a transformed block Bt₁. Such an operation is executed by a transform software module MT_CO, as represented in Figure 2.

During a next step C5 represented in Figure 1, the transformed block Bt₁ is quantised according to a conventional quantisation operation, such as for example a scalar quantisation. A block Bq₁ of quantised coefficients is then obtained. Such a step is executed by means of a quantisation software module MQ_CO, as represented in **Figure 2**.

During a next step C6 represented in **Figure 1**, the quantised coefficients of the block Bq₁ are scanned in a predefined order. In the example represented, this is a conventional zigzag scan. Such a step is executed by a read software module ML_CO, as represented in **Figure 2**. At the end of step C6, a one-dimensional list E₁=(ε₁, ε₂, ..., ε_L) of coefficients is obtained, more commonly known as "quantised residue", where L is an integer greater than or equal to 1. Each of the coefficients in the list E₁ is associated with different digital information items which are intended to undergo an entropy encoding. Such digital information items are described below by way of example.

Assume that in the example represented, L=16 and that the list E₁ contains the following sixteen coefficients: E₁=(0, +9, -7, 0, 0, +1, 0, -1, +2, 0, 0, +1, 0, 0, 0, 0).

In this particular case:

- for each coefficient located before the last non-zero coefficient in the list E₁, a digital information item, such as a bit, is intended to be entropically encoded to indicate whether or not the coefficient is zero: if the coefficient is zero, it is for example the bit of value 0 which will be encoded, while if the coefficient is not zero, it is the bit of value 1 which will be encoded;

- for each non-zero coefficient +9, -7, +1, -1, +2, +1, a digital

information item, such as a bit, is intended to be entropically encoded to indicate whether or not the absolute value of the coefficient is equal to one: if it is equal to 1, it is for example the bit of value 1 which will be encoded, while if it is equal to 0, it is the bit of value 0 which will be encoded;

5 - for each non-zero coefficient and for which the absolute value is not equal to one and which is located before the last non-zero coefficient, such as the coefficients of value +9, -7, +2, an amplitude information item (absolute value of the coefficient at which the value two is subtracted) is entropically encoded;

10 - for each non-zero coefficient, the sign assigned to it is encoded by a digital information item, such as a bit for example set to '0' (for the + sign) or set to '1' (for the - sign).

With reference to Figure 1, the specific encoding steps according to the invention will now be described.

15 In accordance with the invention, it is decided to avoid entropically encoding at least one of the abovementioned information items. For the reasons explained earlier in the description, in a preferred embodiment, it is decided to not entropically encode at least one sign of one of said coefficients in the list E1.

20 By way of alternative example, it could notably be decided to entropically encode the least significant bit of the binary representation of the amplitude of the first non-zero coefficient in said list E1.

To this end, during a step C7 represented in Figure 1, the number of signs to hide during the later entropy encoding step is chosen. Such a step is executed by a processing software module MTR_CO, as represented in Figure 2.

25 In the preferred embodiment, the number of signs to be hidden is one or zero. Additionally, in accordance with said preferred embodiment, it is the sign of the first non-zero coefficient which is intended to be hidden. In the example represented, it is therefore the sign of the coefficient $\varepsilon 2=+9$ that is hidden.

In an alternative embodiment, the number of signs to be hidden is either zero, one, two, three or more.

In accordance with the preferred embodiment of step C7, during a first substep C71 represented in Figure 1, a sublist SE1 containing coefficients suitable for being modified, $\varepsilon'1, \varepsilon'2, \dots, \varepsilon'M$ where $M < L$, is determined from said list E1. Such

coefficients will be called modifiable coefficients hereafter in the description.

According to the invention, a coefficient is modifiable if the modification of its quantised value does not cause desynchronization at the decoder, once this modified coefficient is processed by the decoder. Thus, the processing module MTR_CO is configured initially to not modify:

5 - the zero coefficient or coefficients located before the first non-zero coefficient such that the decoder does not affect the value of the sign hidden at this or these zero coefficients,

10 - and for reasons of computation complexity, the zero coefficient or coefficients located after the last non-zero coefficient.

In the example represented, at the end of substep C71, the sublist SE1 obtained is such that $SE1=(9,-7,0,0,1,0,-1,2,0,0,1)$. Consequently, eleven modifiable coefficients are obtained.

15 During a next substep C72 represented in Figure 1, the processing module MTR_CO proceeds with the comparison of the number of modifiable coefficients with a predetermined threshold TSIG. In the preferred embodiment, TSIG has the value 4.

20 If the number of modifiable coefficients is less than the threshold TSIG, then during a step C20 represented in Figure 1, a conventional entropy encoding of the coefficients in the list E1 is carried out, such as that performed for example in a CABAC encoder, denoted by the reference CE_CO in Figure 2. To this end, the sign of each non-zero coefficient in the list E1 is entropically encoded.

25 If the number of modifiable coefficients is greater than the threshold TSIG, then during a step C8 represented in Figure 1, the processing module MTR_CO calculates the value of a function f which is representative of the coefficients in the sublist SE1.

In the preferred embodiment in which only one sign is intended to be hidden in the signal to be transmitted to the decoder, the function f is the parity of the sum of the coefficients in the sublist SE1.

30 During a step C9 represented in Figure 1, the processing module MTR_CO checks whether the parity of the value of the sign to be hidden corresponds to the parity of the sum of the coefficients in the sublist SE1, according to a convention defined beforehand at the encoder CO.

In the example proposed, said convention is such that a positive sign is associated with a bit of value equal to zero, while a negative sign is associated with a bit of value equal to one.

5 If, in accordance with the convention adopted in the encoder CO according to the invention, the sign is positive, which corresponds to an encoding bit value of zero, and if the sum of the coefficients in the sublist SE1 is even, then step C20 for the entropy encoding of the coefficients in the aforementioned list E1 is carried out, with the exception of the sign of the coefficient ε_2 .

10 If, still in accordance with the convention adopted in the encoder CO according to the invention, the sign is negative, which corresponds to an encoding bit value of one, and if the sum of the coefficients in the sublist SE1 is odd, then also step C20 for the entropy encoding of the coefficients in the aforementioned list E1 is carried out, with the exception of the sign of the coefficient ε_2 .

15 If, in accordance with the convention adopted in the encoder CO according to the invention, the sign is positive, which corresponds to an encoding bit value of zero, and if the sum of the coefficients in the sublist SE1 is odd, then during a step C10 represented in Figure 1, at least one modifiable coefficient in the sublist SE1 is modified.

20 If, still in accordance with the convention adopted in the encoder CO according to the invention, the sign is negative, which corresponds to an encoding bit value of one, and if the sum of the coefficients in the sublist SE1 is even, then also at step C10, at least one modifiable coefficient in the sublist SE1 is modified.

Such a modification operation is carried out by the processing module MTR_CO in Figure 2.

25 In the example embodiment in which $SE1=(+9,-7,0,0,+1,0,-1,+2,0,0,+1)$, the total sum f of the coefficients is equal to 5, and is therefore odd. In order that the decoder can reconstruct the positive sign assigned to the first non-zero coefficient $\varepsilon_2=+9$, without the encoder CO having to transmit this coefficient to the decoder, the parity of the sum must become even. Consequently, the processing module MTR_CO tests, during said step C10, various modifications of coefficients in the sublist SE1, all aiming to change the parity of the sum of the coefficients. In the preferred embodiment, +1 or -1 is added to each modifiable coefficient and a modification is selected from among those which are carried out.

In the preferred embodiment, such a selection forms the optimal modification according to a performance criterion which is for example the rate distortion criterion that is well known to the person skilled in the art. Such a criterion is expressed by equation (1) below:

5 (1) $J = D + \lambda R$

where D represents the distortion between the original macroblock and the reconstructed macroblock, R represents the encoding cost in bits of the encoding information items and λ represents a Lagrange multiplier, the value of which can be fixed prior to the encoding.

10 In the example proposed, the modification which brings about an optimal prediction according to the abovementioned rate distortion criterion is the addition of the value 1 to the second coefficient -7 in the sublist SE1.

At the end of step C10, a modified sublist is hence obtained, $SEm1 = (+9, +6, 0, 0, +1, 0, -1, +2, 0, 0, +1)$.

15 It is appropriate to note that during this step, certain modifications are prohibited. Thus, in the case in which the first non-zero coefficient ε_2 would have the value +1, it would not have been possible to add -1 to it, since it would have become zero, and it would then have lost its characteristic of first non-zero coefficient in the list E1. The decoder would then have later attributed the decoded sign (by calculation of the parity of the sum of the coefficients) to another coefficient, and there would then have been a decoding error.

20 During a step C11 represented in Figure 1, the processing module MTR_CO carries out a corresponding modification of the list E1. The next modified list $Em1 = (0, +9, -6, 0, 0, +1, 0, -1, +2, 0, 0, +1, 0, 0, 0, 0)$ is then obtained.

25 Then step C20 for the entropy encoding of the coefficients in the aforementioned list $Em1$ is carried out, with the exception of the sign of the coefficient ε_2 , which is the + sign of the coefficient 9 in the proposed example, which sign is hidden in the parity of the sum of the coefficients.

30 It is appropriate to note that the set of amplitudes of the coefficients in the list E1 or in the modified list $Em1$ is encoded before the set of signs, with the exclusion of the sign of the first non-zero coefficient ε_2 which is not encoded, as has been explained above.

During a next step C30 represented in Figure 1, the encoding module

MC_CO in Figure 2 tests whether the current encoded block is the last block of the image IE.

If the current block is the last block of the image IE, then during a step C40 represented in Figure 1, the encoding method is ended.

5 If this is not the case, the next block Bi is selected, which is then encoded in accordance with the order of the previously mentioned raster scan, by repeating steps C1 to C20, for $1 \leq i \leq Z$.

Once the entropy encoding of all the blocks B1 to BZ is carried out, a signal F is constructed, representing, in binary form, said encoded blocks.

10 The construction of the binary signal F is implemented in a stream construction software module CF, as represented in Figure 2.

The stream F is then transmitted via a communication network (not represented) to a remote terminal. The latter includes a decoder which will be described further in detail later in the description.

15 With primary reference to Figure 1, another embodiment of the invention will now be described.

This other embodiment is distinguished from the previous one only by the number of coefficients to be hidden which is either 0, or N, where N is an integer such that $N \geq 2$.

20 To this end, previously mentioned comparison substep C72 is replaced by substep C72a represented in dotted line in Figure 1, during which the number of modifiable coefficients is compared with several predetermined thresholds $0 < TSIG_1 < TSIG_2 < TSIG_3 \dots$, in such a way that if the number of modifiable coefficients is between $TSIG_N$ and $TSIG_N+1$, N signs are intended to be hidden.

25 If the number of modifiable coefficients is less than the first threshold $TSIG_1$, then during abovementioned step C20, conventional entropy encoding of the coefficients in the list E1 is carried out. To this end, the sign of each non-zero coefficient in the list E1 is entropically encoded.

30 If the number of modifiable coefficients is between the threshold $TSIG_N$ and $TSIG_N+1$, then during a step C8 represented in Figure 1, the processing module MTR_CO calculates the value of a function f which is representative of the coefficients in the sublist E1.

In this other embodiment, since the decision at the encoder is to hide N

signs, the function f is the modulo $2N$ remainder of the sum of the coefficients in the sublist SE_1 . It is assumed in the proposed example that $N=2$, the two signs to be hidden being the two first signs of the two first non-zero coefficients respectively, i.e. ε_2 and ε_3 .

5 During next step C9 represented in Figure 1, the processing module MTR_CO verifies whether the configuration of the N signs, i.e. $2N$ possible configurations, corresponds to the value of the modulo $2N$ remainder of the sum of the coefficients in the sublist SE_1 .

10 In the example proposed where $N=2$, there are $2^2=4$ configurations of different signs.

These four configurations comply with a convention at the encoder CO, which convention is for example determined as follows:

- a remainder equal to zero corresponds to two consecutive positive signs: +, +;
- 15 - a remainder equal to one corresponds to, consecutively, a positive sign and a negative sign: +, -;
- a remainder equal to two corresponds to, consecutively, a negative sign and a positive sign: -, +;
- a remainder equal to three corresponds to two consecutive negative signs: 20 -, -.

If the configuration of N signs corresponds to the value of the modulo 2^N remainder of the sum of the coefficients in the sublist SE_1 , then step C20 for the entropy encoding of the coefficients in the abovementioned list E_1 is carried out, with the exception of the sign of the coefficient ε_2 and of the coefficient ε_3 , which signs are hidden in the parity of the modulo 2^N sum of the coefficients.

25 If this is not the case, then step C10 for modifying at least one modifiable coefficient in the sublist SE_1 is carried out. Such a modification is executed by the processing module MTR_CO in Figure 2 in such a way that the modulo $2N$ remainder of the sum of the modifiable coefficients in the sublist SE_1 attains the value of each of the two signs to be hidden.

30 During previously mentioned step C11, the processing module MTR_CO carries out a corresponding modification of the list E_1 . A modified list E_{m1} is hence obtained.

Then step C20 for the entropy encoding of the coefficients in the aforementioned list Em1 is carried out, with the exception of the sign of the coefficient ε2 and the sign of the coefficient ε3, which signs are hidden in the parity of the modulo 2^N sum of the coefficients.

5

Detailed description of the decoding part

10

An embodiment of the decoding method according to the invention will now be described, in which the decoding method is implemented in software or hardware form by modifications of a decoder initially compliant with the H.264/MPEG-4 AVC standard.

The decoding method according to the invention is represented in the form of an algorithm including steps D1 to D12, represented in **Figure 3**.

15

According to the embodiment of the invention, the decoding method according to the invention is implemented in a decoding device or decoder DO, as represented in **Figure 4**.

20

During a preliminary step not represented in **Figure 3**, in the received data signal F, the partitions B_1 to B_z which have been encoded previously by the encoder CO, are identified. In the preferred embodiment, said partitions are blocks which have a square shape and are all the same size. Depending on the size of the image, which is not necessarily a multiple of the size of the blocks, the last blocks to the left and the last blocks at the bottom do not have to be square-shaped. In an alternative embodiment, the blocks can be for example of rectangular size and/or not aligned with one another.

25

Each block or macroblock can moreover be itself divided into subblocks which are themselves subdividable.

Such an identification is executed by a stream analysis software module EX_DO, as represented in **Figure 4**.

30

During a step D1 represented in **Figure 3**, the module EX_DO in **Figure 4** selects as current block B_i the first block B_1 to be decoded. Such a selection consists for example in placing a read pointer in the signal F at the start of the data items of the first block B_1 .

Then the decoding of each of the selected encoded blocks is carried out.

In the example represented in **Figure 3**, such a decoding is applied successively to each of the encoded blocks B_1 to B_2 . The blocks are decoded for example according to a raster scan, which is well known to the person skilled in the art.

5 The decoding according to the invention is implemented in a software decoding module MD_DO of the decoder DO, as represented in **Figure 4**.

10 During a step D2 represented in **Figure 3**, first the entropy decoding of the first current block B_1 which has been selected is carried out. Such an operation is carried out by an entropy decoding module DE_DO represented in **Figure 4**, for example of the CABAC type. During this step, the module DE_DO carries out an entropy decoding of the digital information items corresponding to the amplitude of each of the encoded coefficients in the list E_1 or in the modified list Em_1 . At this stage, only the signs of the coefficients in the list E_1 or in the modified list Em_1 are not decoded.

15 During a step D3 represented in **Figure 3**, the number of signs capable of having been hidden during previous entropy encoding step C20 is determined. Such a step D3 is executed by a processing software module MTR_DO, as represented in **Figure 4**. Step D3 is similar to previously mentioned step C7 for determining the number of signs to be hidden.

20 In the preferred embodiment, the number of hidden signs is one or zero. Additionally, in accordance with said preferred embodiment, it is the sign of the first non-zero coefficient which is hidden. In the example represented, it is therefore the positive sign of the coefficient $\epsilon_2=+9$.

25 In an alternative embodiment, the number of hidden signs is either zero, one, two, three or more.

In accordance with the preferred embodiment of step D3, during a first substep D31 represented in **Figure 3**, a sublist containing coefficients $\epsilon'_1, \epsilon'_2, \dots, \epsilon'_M$ where $M < L$ which are capable of having been modified at the encoding is determined from said list E_1 or from the modified list Em_1 .

30 Such a determination is performed the same way as in previously mentioned encoding step C7.

Like the previously mentioned processing module MTR_CO, the processing module MTR_DO is initially configured to not modify:

- the zero coefficient or coefficients located before the first non-zero coefficient,

- and for reasons of computation complexity, the zero coefficient or coefficients located after the last non-zero coefficient.

5 In the example represented, at the end of substep D31, there is the sublist SEm1 such that SEm1 = (9, -6, 0, 0, 1, 0, -1, 2, 0, 0, 1). Consequently, eleven coefficients capable of having been modified are obtained.

10 During a next substep D32 represented in Figure 3, the processing module MTR_DO proceeds with the comparison of the number of coefficients capable of having been modified with a predetermined threshold TSIG. In the preferred embodiment, TSIG has the value 4.

15 If the number of coefficients capable of having been modified is less than the threshold TSIG, then during a step D4 represented in Figure 3, a conventional entropy decoding of all the signs of the coefficients in the list E1 is carried out. Such a decoding is executed by the CABAC decoder, denoted by the reference DE_DO in Figure 4. To this end, the sign of each non-zero coefficient in the list E1 is entropically decoded.

20 If the number of coefficients capable of having been modified is greater than the threshold TSIG, then during said step D4, a conventional entropy decoding of all the signs of the coefficients in the list Em1 is carried out, with the exception of the sign of the first non-zero coefficient ε2.

25 During a step D5 represented in Figure 3, the processing module MTR_DO calculates the value of a function f which is representative of the coefficients in the sublist SEm1 so as to determine whether the calculated value is even or odd.

30 In the preferred embodiment where only one sign is hidden in the signal F, the function f is the parity of the sum of the coefficients in the sublist SEm1.

In accordance with the convention used at the encoder CO, which is the same at the decoder DO, an even value of the sum of the coefficients in the sublist SEm1 means that the sign of the first non-zero coefficient in the modified list Em1 is positive, while an odd value of the sum of the coefficients in the sublist SEm1 means that the sign of the first non-zero coefficient in the modified list Em1 is negative.

In the example embodiment in which $SEm1=(+9,-6,0,0,+1,0,-1,+2,0,0,+1)$, the total sum of the coefficients is equal to 6, and is therefore even. Consequently, at the end of step D5, the processing module MTR_DO deduces that the hidden sign of the first non-zero coefficient ϵ_2 is positive.

5 During a step D6 represented in Figure 3, and with the aid of all the reconstructed digital information items during steps D2, D4 and D5, the quantised coefficients of the block Bq1 are reconstructed in a predefined order. In the example represented, this is an inverse zigzag scan with respect to the zigzag scan carried out during previously mentioned encoding step C6. Such a step is executed
10 by a read software module ML_DO, as represented in Figure 4. More specifically, the module ML_DO proceeds to include the coefficients of the list E1 (one-dimensional) in the block Bq1 (two-dimensional), using said inverse zigzag scan order.

15 During a step D7 represented in Figure 3, the quantised residual block Bq1 is dequantised according to a conventional dequantisation operation which is the inverse operation of the quantisation performed at previously mentioned encoding step C5, in order to produce a decoded dequantised block BDq1. Such a step is executed by means of a dequantisation software module MDQ_DO, as represented in Figure 4.

20 During a step D8 represented in Figure 3, the inverse transformation of the dequantised block BDq1 is carried out, which is the inverse operation of the direct transformation performed at the encoding at previously mentioned step C4. A decoded residual block BDr1 is hence obtained. Such an operation is executed by an inverse-transform software module MTI_DO, as represented in Figure 4.

25 During a step D9 represented in Figure 3, the predictive decoding of the current block B1 is carried out. Such a predictive decoding is conventionally carried out by known intra and/or inter prediction techniques, during which the block B1 is predicted with respect to at least one previously decoded block. Such an operation is carried out by a predictive decoding module PRED_DO as represented
30 in Figure 4.

Needless to say, other intra prediction modes as proposed in the H.264 standard are possible.

During this step, the predictive decoding is carried out using decoded syntax elements at the previous step and notably comprising the type of prediction (inter or intra), and if necessary, the intra prediction mode, the type of partitioning of a block or macroblock if the latter has been subdivided, the reference image index and the motion vector which are used in the inter prediction mode.

5 Said abovementioned predictive decoding step provides for constructing a predicted block Bp1.

During a step D10 represented in Figure 3, the decoded block BD1 is constructed by adding the decoded residual block BDr1 to the predicted block Bp1. 10 Such an operation is executed by a reconstruction software module MR_DO represented in Figure 4.

During a step D11 represented in Figure 3, the decoding module MD_DO tests whether the current decoding block is the last block identified in the signal F.

15 If the current block is the last block in the signal F, then during a step D12 represented in Figure 3, the decoding method is ended.

If this is not the case, the next block Bi is selected, to be decoded in accordance with the order of the previously mentioned raster scan, by repeating steps D1 to D10, for $1 \leq i \leq Z$.

20 With primary reference to Figure 3, another embodiment of the invention will now be described.

This other embodiment is distinguished from the previous one only by the number of hidden coefficients which is either 0, or N, where N is an integer such that $N \geq 2$.

25 To this end, previously mentioned comparison substep D32 is replaced by substep D32a represented in dotted-line in Figure 3, during which the number of coefficients capable of having been modified is compared with several predetermined thresholds $0 < TSIG_1 < TSIG_2 < TSIG_3 \dots$, in such a way that if the number of said coefficients is between $TSIG_N$ and $TSIG_{N+1}$, N signs have been hidden.

30 If the number of said coefficients is less than the first threshold $TSIG_1$, then during previously mentioned step D4, the conventional entropy decoding of all the signs of the coefficients in the list E1 is carried out. To this end, the sign of each non-zero coefficient in the list E1 is entropically decoded.

5 If the number of said coefficients is between the threshold TSIG_N and TSIG_N+1, then during previously mentioned step D4, the conventional entropy decoding of all the signs of the coefficients in the list E1 is carried out, with the exception of the N respective signs of the first non-zero coefficients in said modified list Em1, said N signs being hidden.

In this other embodiment, the processing module MTR_DO calculates, during step D5, the value of the function f which is the modulo 2N remainder of the sum of the coefficients in the sublist SEm1. It is assumed in the proposed example that N=2.

10 The processing module MTR_DO hence deduces from the configuration of the two hidden signs which are assigned to each of the two first non-zero coefficients ϵ_2 and ϵ_3 respectively, according to the convention used at the encoding.

15 Once these two signs have been reconstructed, steps D6 to D12 described above are carried out.

It goes without saying that the embodiments which have been described above have been given purely by way of indication and are not at all limiting, and that a number of modifications can easily be brought about by the person skilled in the art.

20 Thus, for example, according to a simplified embodiment with respect to that represented in Figure 1, the encoder CO could be configured to hide at least N' predetermined signs, where $N' \geq 1$, instead of either zero, one or N predetermined signs. In that case, comparison step C72 or C72a would be removed. In a corresponding way, according to a simplified embodiment with respect to that represented in Figure 3, the decoder DO would be configured to reconstruct N' predetermined signs instead of either zero, one or N predetermined signs. In that case, comparison step D32 or D32a would be removed.

30 Additionally, the decision criterion applied at encoding step C72 and at decoding step D32 could be replaced by another type of criterion. To this end, instead of comparing the number of modifiable coefficients or the number of coefficients capable of having been modified with a threshold, the processing module MTR_CO or MTR_DO could apply a decision criterion which is a function of the sum of the amplitudes of the coefficients that are modifiable or capable of

having been modified, respectively, or of the number of zeros present among the coefficients that are modifiable or capable of having been modified, respectively.

Patentkrav

- 1.** Indretning (DO) til afkodning af et datasignal som repræsenterer mindst et billede opdelt i partitioner, som tidligere er blevet kodet, omfattende midler
- 5 (DE_DO) til opnåelse, ved entropi-afkodning af data fra nævnte signal, af digitale informationer associeret med resterende data vedrørende mindst en tidligere kodet partition,

hvor afkodningsindretningen er **kendetegnet ved, at** den omfatter behandlingsmidler (MTR_DO), som kan:
- 10 - bestemme, fra nævnte resterende data, en delmængde indeholdende resterende data som kan være blevet modifieret under en tidligere kodning, hvor delmængden bestemmes af en første ikke-nul-koefficient og en sidste ikke-nul-koefficient, hvor nul-koefficienterne placeret før den første ikke-nul-koefficient og nul-koefficienterne placeret efter den sidste ikke-nul-koefficient ikke kan være
- 15 blevet modifieret,

 - beregne værdien af en repræsentativ funktion af koefficienterne af de resterende data af nævnte bestemte delmængde, hvor den repræsentative funktion er pariteten af summen af koefficienterne af de resterende data af nævnte bestemte delmængde,
- 20 - opnå, ud over de digitale informationer opnået ved entropi-afkodningen, et fortegn af den første ikke-nul-koefficient, hvor fortegnet af den første ikke-nul-koefficient opnås fra pariteten af summen af koefficienterne af de resterende data af nævnte bestemte delmængde, hvor fortegnet af den første ikke-nul-koefficient opnås under anvendelse af en forudbestemt konvention.
- 25
- 2.** Afkodningsindretning (DO) ifølge krav 1, hvor den forudbestemte konvention er således, at en lige værdi af summen af koefficienterne af de resterende data i nævnte bestemte delmængde betyder, at fortegnet af den første ikke-nul-koefficient er positivt, hvorimod en ulige værdi af summen af koefficienterne af de
- 30 resterende data i nævnte bestemte delmængde betyder, at fortegnet af den første ikke-nul-koefficient er negativt.

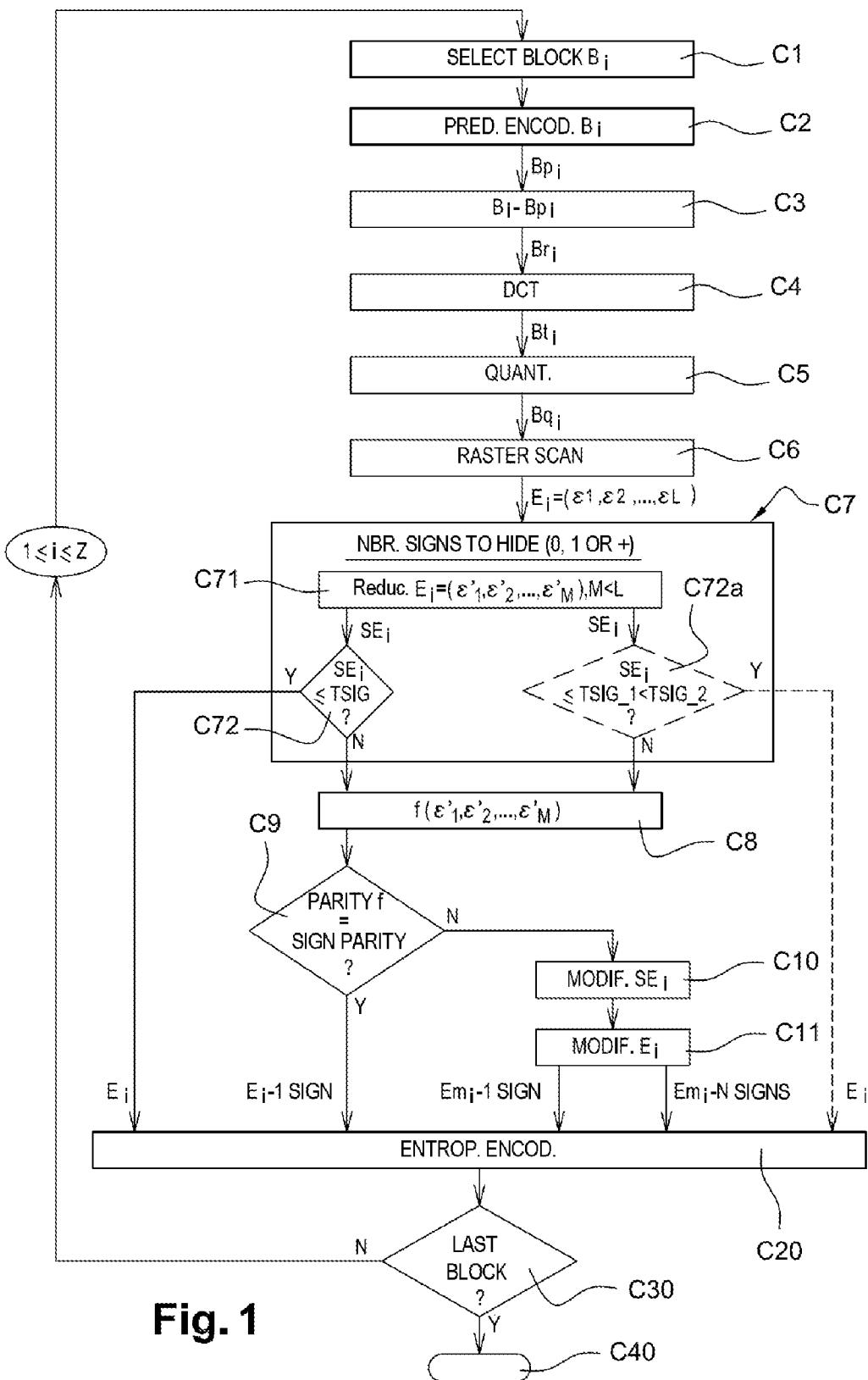
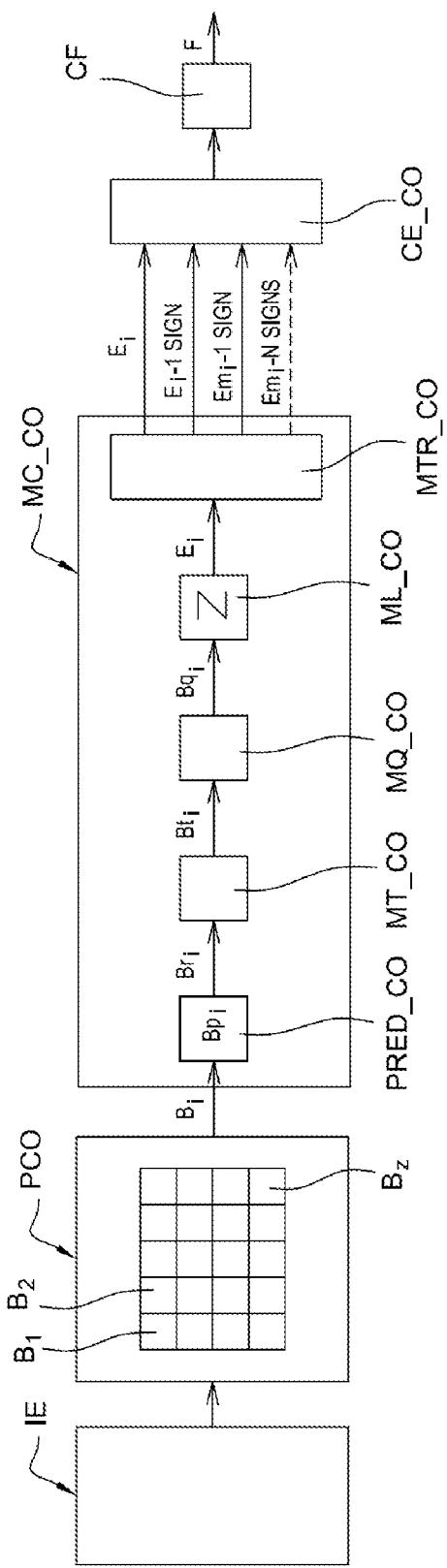



Fig. 1

Fig. 2

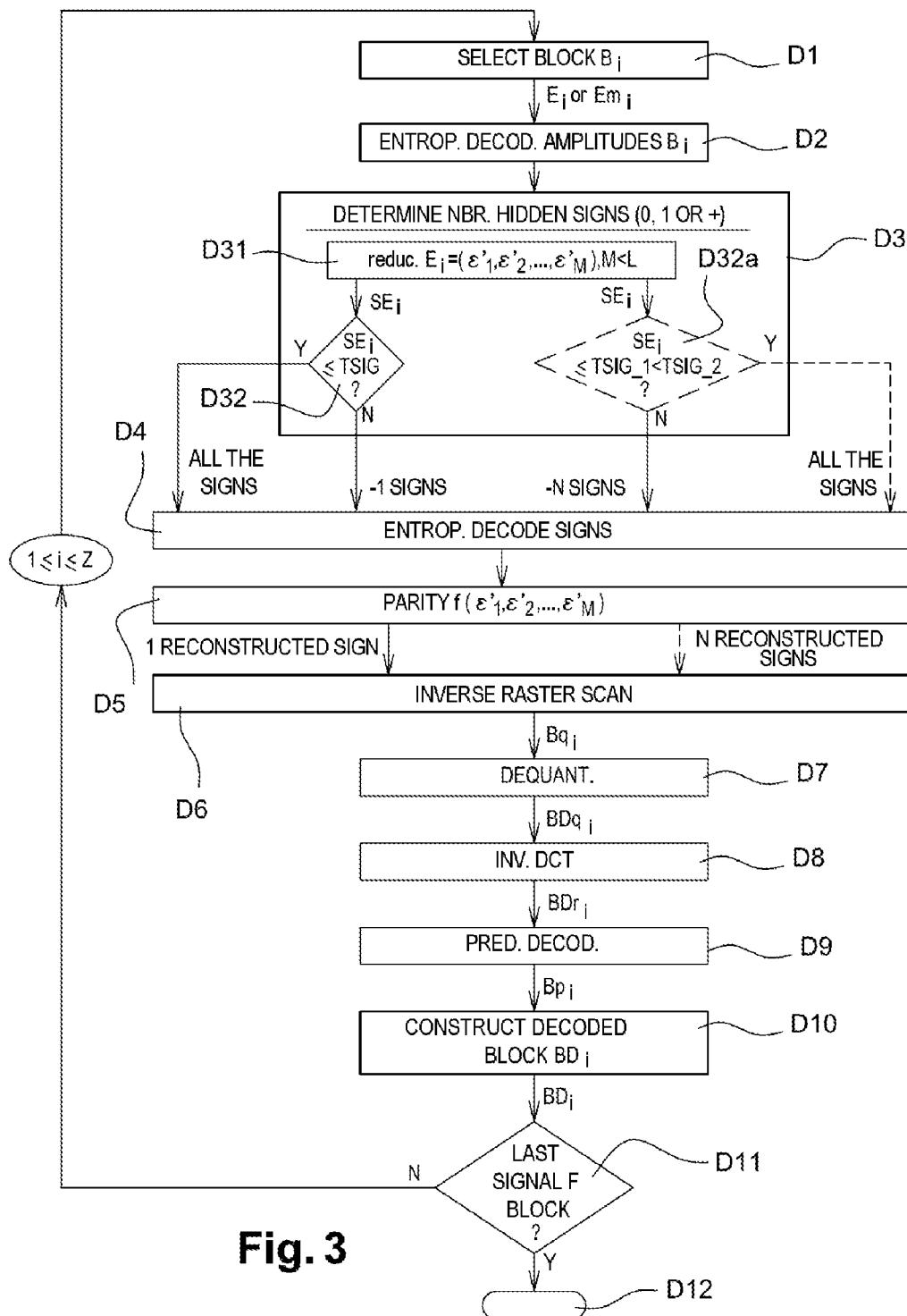
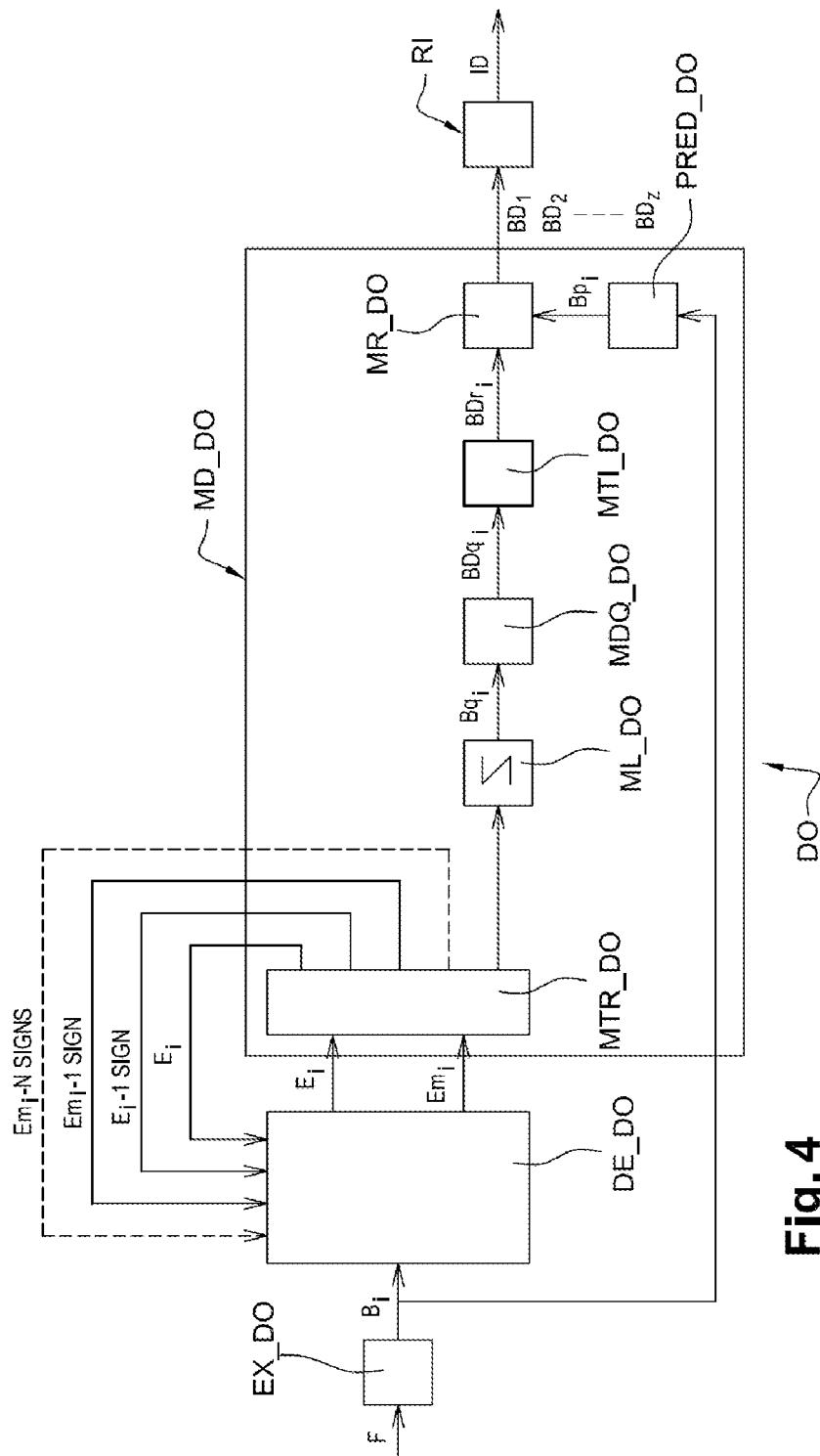



Fig. 3

Fig. 4