
USOO8898647B2 

(12) United States Patent (10) Patent No.: US 8,898,647 B2 
Sobolev et al. (45) Date of Patent: Nov. 25, 2014 

(54) METHOD AND APPARATUS FOR TEST (56) References Cited 
COVERAGE ANALYSIS 

U.S. PATENT DOCUMENTS 
(75) Inventors: Sergey Pavlovich Sobolev, 

Saint-Petersburg (RU); Sergey 5,651,111 A * 7/1997 McKeeman et al. ......... 714,38.1 
Valerievich Vinogradov 6,430,741 B1* 8/2002 Mattson et al. ... T17,154 

g s 6,668,372 B1* 12/2003 Wu ................ T17.130 
Saint-Petersburg (RU) 6,748,584 B1* 6/2004 Witchel et al. ..... T17.136 

7,120,906 B1 * 10/2006 Stephenson et al. 717, 158 
(73) Assignee: Siemens Aktiengesellschaft, Munich 7,386,838 B2 * 6/2008 Schmidt ............. T17.130 

(DE) 8,196,119 B2* 6/2012 Gill et al. ... T17.130 
8,291,399 B2 * 10/2012 Li et al. ... 717, 158 
8.484,623 B2 * 7/2013 Li et al. ... T17,132 

(*) Notice: Subject to any disclaimer, the term of this 8,739,145 B2* 5/2014 Li et al. ....... 717, 156 
patent is extended or adjusted under 35 2008/0263505 A1 * 10, 2008 StClair et al. T17,101 
U.S.C. 154(b) by 329 days. 2009/0249306 A1* 10, 2009 Li et al. ......................... 717/130 

(21) Appl. No.: 13/123,625 OTHER PUBLICATIONS 

Kim et al., Diverge-Merge Processor (DMP): Dynamic Predicated (22) PCT Filed: Oct. 9, 2008 Execution of Complex Control-Flow Graphs Based on Frequently 
(86). PCT No.: PCT/RU2O08/OOO643 Executed Paths, Dec. 2006, 12 pages.* 

Jiang et al., Context-aware statistical debugging: from bug predictors 
S371 (c)(1), to faulty control flow paths, Nov. 2010, 10 pages.* 
2). (4) Date: Apr. 11, 2011 (2), (4) Date pr. 11, (Continued) 

(87) PCT Pub. No.: WO2010/041973 Primary Examiner — Thuy Dao 
PCT Pub. Date: Apr. 15, 2010 (74) Attorney, Agent, or Firm — King & Spalding L.L.P. 

(65) Prior Publication Data (57) ABSTRACT 

US 2011/O197098 A1 Aug. 11, 2011 A method provides for a way to test coverage data used in 
testing Small computing platforms by assigning unique sig 

(51) Int. Cl. natures to each node in the control flow graph and embedding 
G06F 9/44 (2006.01) control function calls. Signatures are embedded into the pro 
G06F 9/45 (2006.01) gram during compilation time using the custom parser. When 
G06F II/36 (2006.01) the program is executed the "exercised signatures sequence 

(52) U.S. Cl. is checked for correctness and used for deriving test coverage 
CPC .................................. G06F II/3676 (2013.01) metric. This metric is used for improving unit and black-box 
USPC ............ 717/130; 717/132; 717/156: 717/158 tests. Thus, away to collect the path-based test coverage with 

(58) Field of Classification Search minimal memory and code/size impact on target system is 
CPC. G06F 11/3466; G06F 11/3688; G06F 8/20; provided. 

G06F 8/433; G06F 8/443; G06F 11/3676 
See application file for complete search history. 12 Claims, 5 Drawing Sheets 

CT Compile time 

Source Code parser 

instruen 

N 
tation 

N 

Host / COverage 
Data Analyzer 

COverage analysis SOUrCe COde 
(C file) 

Signature 
tee 

Target System 

Execution 

GCC 
GCC instrumented 

Compiling application 

ETS 

  

  

  

  

    



US 8,898,647 B2 
Page 2 

(56) References Cited 

OTHER PUBLICATIONS 

Testwell CTC++. Test Coverage Analyzer toe C/C++, www.testwell. 
fictcdesc.html, 9 pages, printed Apr. 28, 2008. 
The Manual for CoverageMeter, Code Coverage Measurement for 
C/C++, CoverageMeter Software Factory, www.coveragemeter.com/ 
manual.html, 56 pages, Jun. 5, 2008. 
International PCT Search Report, PCT/RU2008/000643, 11 pages, 
mailed Jul. 2, 2009 
Cornet, S., "Code Coverage Analysis', www.bullseye.com ?cover 
age.html, 11 pages, Jun. 5, 2008. 

Majzik, I., et al., “Control Flow Checking in Multitasking System'. 
Periodica Polytechnica Ser. Electrical Engineering, vol. 39, No. 1, 
pp. 27-36, 1995. 
LDRA: Technical Description of the LDRA Testbed, Software Qual 
ity Tools Suite, Ashling, MicroSystems, Inc., www.ashling.com/ 
technicalarticles/APB201-Testbed Description.pdf, pp. 1-26, 2000. 
The tool suite Cantara++ v.5.2.1. Technical brief IPL., www.iplbath. 
com/products/tools/pt400.uk.php, 2 pages, Jun. 5, 2008. 
Wu. X., et al., "Coverage-Based Testing on Embedded Systems', 
Automation of Software Test, AST '07, Second International Work 
shop of IEEE, 6 pages, May 20, 2007. 

* cited by examiner 



S 

US 8,898,647 B2 U.S. Patent 

  

  

  



US 8,898,647 B2 

SindTGOT 

U.S. Patent 

  

        

  

  



US 8,898,647 B2 

OSI 

U.S. Patent 

  

  



US 8,898,647 B2 Sheet 4 of 5 Nov. 25, 2014 U.S. Patent 

’’’ (10 8J 8 / 8) 6Z ’’’ SS 

  

  

  

  

  

  

    

  



U.S. Patent Nov. 25, 2014 Sheet 5 of 5 US 8,898,647 B2 

FIG 5 

NOdes COverage: 5/7(71.4%) 
LinkS COverage; 6/15(40.0%) 

ErrorS. O 

CFCR 

  



US 8,898,647 B2 
1. 

METHOD AND APPARATUS FOR TEST 
COVERAGE ANALYSIS 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application is a U.S. National Stage Application of 
International Application No. PCT/RU2008/000643 filed 
Oct. 9, 2008, which designates the United States of America. 
The contents of which are hereby incorporated by reference 
in their entirety. 

TECHNICAL FIELD 

The present invention relates to a method and an apparatus 
for test coverage analysis for testing Small computer plat 
forms like embedded systems. More specifically, the present 
invention is directed to a method and an apparatus for test 
coverage analysis having a transfer of coverage data from a 
target to a host computer. 

BACKGROUND 

Development of high integrity and mission-critical Soft 
ware systems requires the rigorous and efficient testing tech 
niques. Even more challenging task is to ensure high quality 
requirements within embedded computing systems where 
different resources constraints exist. White-box testing tech 
niques. Such as code coverage analysis is, partially meet these 
challenges but its application is very often associated with 
additional load on target systems and thus achievable in far 
from real environments. Either it is hard to get the required 
thoroughness of analysis without stressing target system too 
much. 
A lot of test coverage analysis tools already exist. Most of 

the already known tools in this field addressing basically the 
following problems: 
1. Application of test coverage analysis in testing of embed 
ded software in real environment. 
2. Support of hardware with strict computing resources con 
straints. 
3. Providing more thorough coverage metric than statement 
and decision coverage with reasonable efforts. 
4. Achieving the higher trustworthiness of coverage data with 
checking of program flow correctness. 
5. Semi-automatic execution of test coverage measurement. 
The paper Cornett, S., Code Coverage Analysis, 5 Jun. 

2008 gives a complete description of code coverage analysis 
or test coverage analysis. BullseyeCoverage tool which is 
proposed requires the file system functionality on target and 
thus cannot be used for simpler applications. 

From the publication Testwell CTC++, Test Coverage Ana 
lyzer for C/C++, 5 Jun. 2008. 
A system is known which Supports communication inter 

faces for transferring coverage data from target to host but 
still requires operating system functionality on target. 
The Manual for CoverageMeter, Code Coverage Measure 

ment for C/C++, CoverageMeter Software Factory, 5 Jun. 
2008 provides the state-of-the-art code coverage technique 
(Source code analysis, instrumentation, generation of appli 
cation), but still requires operating system functionality on 
target. 

The tool suite Cantata++V.5.2.1. Technical brief, IPL, 5 
Jun. 2008, along with other testing features is capable to 
perform integrated coverage analysis. It declares the possible 
communication of results data from target to host platform by 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

2 
means of serial, LAN, USB, JTAG. This tool does not require 
file I/O on the target platform but exact significant memory 
resources from target. 
The publication Majzik I. Pataricza A. Control Flow 

Checking in Multitasking Systems/Periodica Polytechnica 
Ser. Electrical Engineering, Vol. 39, No. 1, pp. 27-36, 1995 
shows a new watchdog-processor method SETS (Signature 
Encoded Instruction Stream) and the part of the method 
responsible for instrumentation is based on a Assigned Sig 
nature Scheme. 
None of the listed coverage analysis tools fully addresses 

the problems mentioned above. First, all known tools do not 
provide the coverage metric reporting on decisions interac 
tion which contains potential bugs not discovered by other 
coverage metrics. Program flow correctness check is not pro 
vided by these tools as well. None of the tools provides 
instrumentation granularity up to a program basic block. 

SUMMARY 

According to various embodiments, software assigned sig 
natures are used and a database of syntactically correct soft 
ware paths which are described by means of signatures tree is 
created. As a result, the control flow coverage data is derived 
and analyzed. The various embodiments can basically be seen 
as an enhanced source code instrumentation and a online 
sending and processing of signatures, when target application 
does not store the executed signatures and just sends it to host. 
In this method the coverage criterion is more thorough than 
statement and decision coverage since it reports on covered/ 
uncovered paths through control flow graph. Reducing the 
number of paths to test is achieved by using only one level of 
nodes connection to check (Successor-predecessor) during 
Source code instrumentation. It makes mostly performance 
impact to the target application and minimizes code/data size 
overhead of the target code/data memory. 
The main advantages are a coverage analysis for Small 

computing systems for example with no operating system, 
Small memory or no file and network Support; a robust and 
comprehensive coverage criterion which considers decision 
interaction in program code; a program flow correctness 
check, which proves the obtained coverage data has been the 
result of correct programs behavior and a granularity of 
instrumentation which is configurable, so certain modules, 
functions or even basic blocks can be instrumented or left out 
of coverage analysis. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The accompanying drawings, which are incorporated into 
and constitute a part of this specification, illustrate one or 
more embodiments and, together with the detailed descrip 
tion, serve to explain the principles and implementations. 

In the drawings: 
FIG. 1 is a general tooling and workflow diagram; 
FIG. 2 is a diagram illustrating the Source code transfor 

mation phase according to various embodiments; 
FIG. 3 is a diagram illustrating the target system binary 

code generation phase according to various embodiments; 
FIG. 4 is a diagram illustrating target system execution and 

coverage analysis phase according to various embodiments; 
and 

FIG. 5 is a flow diagram illustrating the control flow cov 
erage results according to various embodiments. 

DETAILED DESCRIPTION 

In the Interest of clarity, not all of the routine features of the 
implementation described herein are shown described. 



US 8,898,647 B2 
3 

FIG. 1 is showing the basic structure according to various 
embodiments and depicts a block CT with steps being 
executed during compile time and a further block RT with 
further steps being executed during runtime. 

Within the block CT in other words during compile 
time—a block SCP for a source code parser handling the 
instrumentation and a block GCC for the compiling is shown. 

During the compile-time part of the method an instru 
mented applicationIA and a signature tree ST is created out of 
a source code SC. 

Within the block RT in other words during run time—a 
first block ETS is shown, which stands for the execution of the 
instrumented application IA on the target system, and a sec 
ond block CDAH stands for a coverage data analyzer on the 
host computer which is providing a coverage analysis visu 
alization. 
The diagram of FIG. 2 is illustrating the source code trans 

formation phase according to various embodiments with the 
step PI of preprocessing & instrumentation of the Source code 
SC and the step CFGV of control graph visualization produc 
ing the control flow graph CFG. Herein the inserted “send 
signature' commands (in bold letters) become apparent. 

FIG. 3 is a diagram illustrating a target system binary code 
generation phase according to various embodiments. In this 
phase the compiler C is generating binary code TSBC on the 
target system out of the instrumented source code ISC and 
Supplemental source code SSC like coverage specific com 
munication initialization and implementation library. 

FIG. 4 is a diagram illustrating a target system execution 
and coverage analysis phase according to various embodi 
ments. In this phase the analyzer A is providing coverage 
results visualization CRV using a signatures stream SS which 
comes from the target systemTS. The analyzer A has control 
flow information extracted at the instrumentation level. This 
is implemented by the use of a serialized control flow graph, 
which is given as an argument to the analyzer. 

The flow diagram FIG. 5 is illustrating the control flow 
coverage results CFCR according to various embodiments. 
Preferably different colors indicate on the one hand covered 
links L or nodes Nandon the other hand not covered possible 
links or nodes. 

Along with graphical representation of the coverage results 
CR the overall statistics can be optionally shown. 
Compile Time 
1. Preprocess source files (using GNU C preprocessor). 
2. Identify basic blocks and language constructions (using 

Source code custom parser), put signatures and link them 
according to syntactically allowable program flow. 

Run Time 
1. Run the instrumented application on the target with one or 
more as required test scenarios. 

2. Download signatures of “exercised source code from tar 
get to host PC. 

3. Analyze sequence of "exercised signatures: compare it 
with the original signature tree and collect coverage statis 
tics. 
While the invention has been disclosed in connection with 

embodiments shown and described in detail, their modifica 
tions and improvements thereon will become readily appar 
ent to those skilled in the art. Accordingly, the spirit and scope 
of the present invention should be limited only by the follow 
ing claims. 
What is claimed is: 
1. A method for conducting test coverage analysis com 

prising: 
generating an enhanced source code instrumentation, 

wherein an instrumented code and a signature tree are 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

4 
generated during a compile time, the instrumented code 
including send signatures and the signature tree includ 
ing a database of syntactically correct Software paths; 
and 

processing the send signatures during a runtime, wherein a 
target application including the instrumented code 
executes and sends the processed send signatures to a 
host system where the processed send signatures are 
used in connection with the signature tree to analyze 
code coverage in a control flow graph. 

2. The method of claim 1, wherein generating the enhanced 
Source code instrumentation includes assigning all basic 
blocks and language constructions with send signatures dur 
ing the compile time and creating an original signature tree 
during the compile time which describes a database of Syn 
tactically correct Software paths. 

3. The method of claim 2, wherein processing the send 
signatures comprises: 

running the instrumented code on the target system with at 
least one test scenario during the runtime; 

downloading executed send signatures from the target sys 
tem to the host system during the runtime; and 

analyzing a stream of executed send signatures during the 
runtime by comparing the stream of executed send sig 
natures with the original signature tree and collecting 
coverage statistics. 

4. The method of claim 1, wherein processing of send 
signatures comprises: 

running the instrumented code on the target system with at 
least one test scenario during the runtime; 

downloading executed send signatures from the target sys 
tem to the host system during the runtime; and 

analyzing a stream of executed send signatures during runt 
ime by comparing the stream of executed send signa 
tures with the signature tree and collecting coverage 
statistics. 

5. An apparatus for conducting test coverage analysis, 
comprising: 

a source code parser stored in non-transitory computer 
readable media and programmed to generate an 
enhanced source code instrumentation including an 
instrumented code and a signature tree during a compile 
time, the instrumented code including send signatures, 
and the signature tree including a database of syntacti 
cally correct software paths; 

a compiler stored in non-transitory computer-readable 
media and programmed to translate the instrumented 
code into an instrumented binary code for execution by 
a target system including the instrumented code togen 
erate executed send signatures; and 

an analyzer Stored in non-transitory computer-readable 
media on a host system and programmed to, during a 
runtime, receive the executed send signatures from the 
target system and analyze code coverage in a control 
flow graph using the received executed send signatures 
in connection with the signature tree from the Source 
code parser. 

6. The apparatus of claim 5, wherein generating the 
enhanced source code includes assigning all basic blocks and 
language constructions with send signatures during the com 
pile time and creating an original signature tree during the 
compile time which describes a database of syntactically 
correct software paths. 

7. The apparatus of claim 6, wherein the apparatus is pro 
grammed to: 

run the instrumented code on the target system with at least 
one test scenario during runtime; 



US 8,898,647 B2 
5 

receive executed send signatures from the target system to 
the host system during runtime; and 

analyze the received stream of executed send signatures 
during runtime by comparing the stream of executed 
send signatures with the original signature tree and col 
lecting coverage statistics. 

8. The apparatus of claim 5, wherein the apparatus is pro 
grammed to: 

run the instrumented code on the target system with at least 
one test scenario during runtime; 

receive executed send signatures from the target system to 
the host system during runtime; and 

analyze the received stream of executed send signatures 
during runtime by comparing the stream of executed 
send signatures with the signature tree and collecting 
coverage statistics. 

9. A system including a computer program product for 
conducting test coverage analysis, the computer program pro 
duce including instructions stored in non-transitory machine 
readable media and executable by at least one processor to: 

generate an enhanced source code instrumentation, 
wherein an instrumented code and a signature tree are 
generated during a compile time, the instrumented code 
including send signatures and the signature tree includ 
ing a database of syntactically correct software paths; 
and 

process the send signatures during a runtime, wherein a 
target application including the instrumented code 
executes and sends the processed send signatures to a 
host system where the processed send signatures are 

10 

15 

25 

6 
used in connection with the signature tree to analyze 
code coverage in a control flow graph. 

10. The system of claim 9, wherein generating the 
enhanced source code includes assigning all basic blocks and 
language constructions with send signatures during the com 
pile time and creating an original signature tree during the 
compile time which describes a database of syntactically 
correct software paths. 

11. The system of claim 10, wherein said sending and 
processing of send signatures is programmed to: 

run the instrumented code on the target system with at least 
one test scenario during the runtime; 

receive executed send signatures from the target system to 
the host system during the runtime; and 

analyze a stream of executed send signatures during runt 
ime by comparing the stream of executed send signa 
tures with the original signature tree and collecting cov 
erage statistics. 

12. The system of claim 9, wherein said sending and pro 
cessing of send signatures is programmed to: 

run the instrumented code on the target system with at least 
one test scenario during the runtime; 

receive executed send signatures from the target system to 
the host system during the runtime; and 

analyze a stream of executed send signatures during runt 
ime by comparing the stream of executed send signa 
tures with the signature tree and collecting coverage 
statistics. 


