
(12) STANDARD PATENT APPLICATION (11) Application No. AU 2004200729 Al
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Type Bridges

(51)7 International Patent Classification(s)
G06F 009/45

(21) Application No: 2004200729 (22) Date of Filing: 2004.02.24

Priority Data

(31) Number (32) Date (33) Country
10401244 2003.03.26 US

(43) Publication Date: 2004.10.14
(43) Publication Journal Date: 2004.10.14

(71) Applicant(s)
Microsoft Corporation

(72) Inventor(s)
Jethanandani, Natasha H; Srinivasan, Sowmy K; Pharies, Stefan H; Purdy, Douglas M;
Kharitidi, Elena A; Christensen, Yann Erik

(74) Agent Attorney
Davies Collison Cave, Level 15 1 Nicholson Street, MELBOURNE, VIC, 3000



ABSTRACT OF THE DISCLOSURE

Methods, systems, and computer program products for converting an object of

one type to an object of another type that allow for the runtime operation of the

conversion process to be altered or customized. The conversion may occur within an

s extensible serialization engine that serializes, deserializes, and transforms objects of

various types. The runtime operation of the serialization engine is altered by one or

more extension routines that implement the desired customizations or extensions,

without requiring replacement of other existing routines. Based on type information,

identified for an initial object, the object is converted to an intermediate

representation which permits runtime modification, including modification of object

names, object types, and object data. The intermediate representation of the initial

object is modified in accordance with extension routines that alter the runtime

operation of the serialization engine, and the intermediate representation is converted

to a final object and type.



Object 
Instance

11 .0

XML
Object

160

Reflection
Module(s).--- 

I 120

I
I I I I
I I I I
I I I I
I I I I

Conversion

I 130 I
I I
I I I I

I I I I
I I I I
I I

I I

Generation
Module(s) 

140

XML
Object

150

Object
Instance

170

Serialization Module 100

Fig. 1



AUSTRALIA

PATENTS ACT 1990

COMPLETE SPECIFICATION

NAME OF APPLICANT(S)::

Microsoft Corporation

ADDRESS FOR SERVICE:

DAVIES COLLISON CAVE
Patent Attorneys
1 Nicholson Street, Melbourne, 3000, Australia

INVENTION TITLE:

Type bridges

The following statement is a full description of this invention, including the best method of performing it
known to me/us:-

5102



la

I. The Field of the Invention

The present invention relates to object serialization. More particularly, the

present invention relates to methods, systems, and computer program products for

transforming objects of one type to objects of another type through extension routines

that alter the runtime operation of a serialization engine, without having to replace

other existing routines within the serialization engine.

2. Background and Related Art

In a general sense, serialization is the conversion of single or graph of (nested)

in-memory objects into a linear sequence of bytes suitable for transmission to a

remote location, persistence on disk, etc. Conversely, deserialization takes the linear

sequence of bytes and creates the corresponding single or graph of in-memory

objects. Together, serialization and deserialization typically result in the creation of

an exact clone of the original object.

Traditionally serialization code has been written as a monolithic

implementation, with no provision for customization, short of replacing the entire

implementation. A lack of customization or extensibility imposes an inflexible

serialization mechanism on the marketplace, including developers and other interested

parties. With a monolithic implementation, incremental improvements or

customizations to address a particular problem directly often are not possible, and

may require awkward workarounds or simply preclude certain desired operations.

Should customization be undertaken in any event, standard routines implementing

desirable operation typically are not accessible to the developer, and therefore need to

be re-implemented, substantially (and often prohibitively) increasing the effort

required to develop the desired customization. As a result, new features typically may

be added to the serialization code only by the serialization code developers,

precluding end users from developing their own enhancements or improving upon

existing features.

Although an exact copy of an object often is the goal of serialization and

deserialization, runtime transformations of object types, names, and data may be

desirable in some circumstances. As indicated above, for example, serialization and



deserialization may be used in transmitting an object to a remote location. The

remote location may expect certain object types, object data, and object names that

differ from the source object. Traditional serialization code may be written to

perform object transformations, but the transformation cannot be added at runtime and

is the same for all users, which ignores the likelihood that different users may have

different needs. While a given transform may be extremely important for a particular

user at a particular time, the overall relevance of the transform may be insignificant to

the user base as a whole, and therefore never developed.

Traditional serialization code also tends to offer little flexibility in terms of

identifying objects to transform, or basing transforms on data contained within an

object. Accordingly, methods, systems, and computer program products for

transforming objects from one type into objects of another type, based on customized

routines for altering serialization and deserialization at runtime, without having to

re-implement standard routines are desired.

BRIEF SUMMARY OF THE INVENTION

The present invention relates to methods, systems, and computer program

products for converting an object of an initial type to an object of a final type, and

allows for the runtime operation of the conversion process to be altered or

customized. In accordance with example embodiments of the present invention which

are described more fully below, an extensible serialization engine serializes,

deserializes, and transforms objects of various types. The runtime operation of the

serialization engine is altered by one or more extension routines that implement the

desired customizations or extensions. These extension routines alter the runtime

operation of the serialization engine, without requiring replacement of other existing

routines.

In one example embodiment, type information is identified for an initial object

received by the serialization engine for processing. Based on the type information,

the initial object is converted to an intermediate representation which permits runtime

modification, including modification of object names, object types, and object data.

The intermediate representation of the initial object is modified in accordance with

one or more extension routines which alter the runtime operation of the serialization



engine, and the intermediate representation is converted to a final object of a final

type.

The intermediate representation of the initial object may include an object

name, an object type, and object data, each of which may be modified by the

extension routines. The intermediate representation also may be modified by one or

more standard routines within the serialization engine. Modification of the

intermediate representation may be based on a particular pattern within the type

information, object data within the initial object, metadata, or combinations of the

foregoing.

Where the initial object is an in-memory object, the serialization engine

serializes the initial object to generate the final object. The final object may be

formatted in eXtensible Markup Language (XML) or in some other format suitable

for representing a serialized object. Similarly, where the final object is an in-memory

object, the serialization engine deserializes the initial object to generate the final

object. The final object may be instantiated and populated as part of the

deserialization process. In some circumstances, both the initial object and final object

may be in-memory objects, or both may be serialized objects, such as when the

serialization engine performs an object transform. To reduce buffer requirements,

modification of the intermediate representation may be deferred until the intermediate

representation is converted to the final object.

Additional features and advantages of the invention will be set forth in the

description which follows, and in part will be obvious from the description, or may be

learned by the practice of the invention. The features and advantages of the invention

may be realized and obtained by means of the instruments and combinations

particularly pointed out in the appended claims. These and other features of the

present invention will become more fully apparent from the following description and

appended claims, or may be learned by the practice of the invention as set forth

hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

In order to describe the manner in which the above-recited and other

advantages and features of the invention can be obtained, a more particular



description of the invention briefly described above will be rendered by reference to

specific embodiments thereof which are illustrated in the appended drawings.

Understanding that these drawings depict only typical embodiments of the invention

and are not therefore to be considered as limiting its scope, the invention will be

described and explained with additional specificity and detail through the use of the

accompanying drawings in which:

Figure 1 illustrates an example serialization module and serialization

infrastructure in accordance the present invention;

Figures 2-4 show object conversions in the context of example serialization,

deserialization, and type transformation pipelines;

Figures 5A-5B show example acts and steps for methods of serializing,

deserializing, and transforming objects in accordance with the present invention; and

Figure 6 illustrates an exemplary system that provides a suitable operating

environment for the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention extends to methods, systems, and computer program

products for converting objects of an initial type to objects of a final type that, and

allows for the runtime operation of the conversion process to be altered or

customized. The embodiments of the present invention may comprise one or more

special purpose and/or one or more general purpose computers including various

computer hardware, as discussed in greater detail below with respect to Figure 6.

Figure 1 illustrates an example serialization module and serialization

infrastructure 100 (also known as a serialization engine) in accordance the present

invention. For an object instance 110, serialization module 100 produces a

corresponding serialized eXtensible Markup Language (XML) object 150. Similarly,

for an XML object 160, serialization module 100 produces a corresponding

deserialized object instance 170. It should be noted that throughout this application,

serialization often is used as a generic term for serialization converting a single

or graph of in-memory objects into a linear sequence of bytes suitable for

transmission to a remote location, persistence on disk, etc.), deserialization (from the

linear sequence of bytes, creating the corresponding single or graph of in-memory



objects), transformation (converting one object to another), etc. Such is the case here,

for example, where serialization module 100 serializes, deserializes, and transforms

objects of varying types.

Serialization module 100 includes one or more reflection modules 120, one or

more conversion modules 130, and one or more generation modules 140. In this

example embodiment, serialization module 100 converts a received in-memory object

instance 110 to an XML object 150 suitable for transmission to a remote location, and

converts a received XML object instance 160 to an in-memory object instance 170.

Of course, in-memory and XML are merely examples of object types that may be

created or received by serialization module 100. Each of the modules within

serialization module 100 (reflection modules 120, conversion modules 130, and

generation modules 140) may be replaced at runtime for customized serialization,

deserialization, or transformation.

Reflection modules 120 are responsible for identifying type information for

received object instance 110 and received XML object 160. The type information

may comprise stored or received metadata that is associated with managed types

within a manage code environment. Alternatively, the type information may be

supplied to reflection modules 120 from various sources, including automated

generation at compile time, manual generation, standard type information, etc.

Conversion modules 130 convert between objects of different types. Example

conversion processes are described in more detail below, with respect to Figures 2-4.

Conversion between different objects may be arbitrarily complex and include the

generation of intermediate objects. Part of this complexity may include conversion

based on data within an object and patterns of types associated with an object. For

example, which conversions are performed may depend on certain object types or

type names, the existence of a certain named or typed properties on a type, the

existence of a property with certain meta data attached, object names associated with

an object, etc. Conversion may be deferred until generation of the final object to

reduce or avoid buffer requirements that otherwise may be part of converting one

object to another.



Generation modules 140 are responsible for generating the final object

produced by serialization module 100. In the case of XML object 150, generation

module 140 creates the object-it generates the appropriate XML for the object-and

may write the object to a stream. In the case of object instance 170, generation

module 140 instantiates and populates the object.

As indicated above, serialization module 100 is also known as a serialization

engine. As shown in Figure 1, the serialization engine is composed of several ordered

sets of modules. Collectively, these modules are responsible for all operations. An

individual module is known as a type bridge because, as described in greater detail

below, modules convert from one type to another (or bridge between different types).

A type bridge allows for type and instance transformation at runtime and/or to track

information about an object being serialized, deserialized, or transformed. With

reference to Figures 2-4, an ordered set of type bridges is known as a type bridge

pipeline, and generally corresponds to an ordered set of conversion modules 130. For

each of the operations performed by the serialization engine, a separate type bridge

pipeline may exist. There is a pipeline for serialization Figure deserialization

Figure transformation Figure object copy, etc. Information

generally applicable to all three drawing is presented below, prior to an individual

discussion for each of Figures 2-4.

For the example pipelines shown in Figures 2-4, the code (one or more

modules) that is responsible for serialization, deserialization, and transformation of

objects is implemented as a number of predefined type bridges. These modules are

placed in the appropriate pipeline and used at runtime. (The dashed squares in Figure

1 are intended to represent available type bridge modules for use in various type

bridge pipelines.) A large portion of the public application programming interface

(API) for the example serialization engine shown in Figure 1 is simply a wrapper over

this predefined set of pipelines. This demonstrates how the serialization engine is

extensible-the serialization engine is a simple set of abstract pipelines. The actual

implementation of specific logic is found in pluggable modules that can be replaced at

any time.



For the example type bridge pipelines illustrated in Figures 2-4, a given type

bridge is capable of transforming one of three types of objects: an initial type object,

an intermediate type object, and a final type object. In Figure 4, the initial type object

is a managed code object and the final type object is an XML object based on the

World Wide Web Consortium (W3C) Infoset standard. The intermediate type object

or intermediate representation shown in all three Figures is a construct found within

the serialization engine and, as described in further detail below, represents an

extensibility point. The intermediate representation is a mutable object based on a

mutable type. As such, the mutable type serves to define behavior and typed data

storage, with the mutable object serving to store typed data and act on the stored data

through behavior defined on the type.

Figure 2 shows an example type bridge 200 for serializing in-memory initial

object 240 of initial type or format 210. (As used in the specification and claims, the

term type should be interpreted broadly to encompass any object type or format.)

Using standard routine 250, the initial object 240 is converted to intermediate

representation 260A having an intermediate type or format 220. As will be described

in greater detail below, this intermediate representation is mutable, allowing both

object types and object data to be changed. Nevertheless, intermediate format 220

and initial format 210 also may be the same, closely related, somewhat different,

completely different, etc.

Custom extension routine 260 converts intermediate representation 260A of

initial object 240 to intermediate representation 260B. This conversion may include

changing object types, object names, object data, and the like. Custom extension

routine 260 represents a runtime extension of the serialization engine in general, and

type bridge pipeline 200 in particular. Note that using custom extension routine 260

did not require re-implementing standard routine 250, as typically is the case with

conventional serialization implementations.

Standard routine 270 converts the intermediate representation 260B to final

object 280 of final type or format 230. Final object 280 is suitable for transmission to

a remote location, persistence, etc. Accordingly, the final format 230 of final object

280 includes a wide range of object types. Here, as in other portions of the



description, object type, format, and representation are a broad terms that encompass

the overall type and format of the object, and type, format, names, and data that may

be contained within an object.

Figure 3 shows an example type bridge 300 for deserializing object 340 of

initial type or format 330. Similar to Figure 2, above, standard routine 350 converts

initial object 340 to intermediate representation 360A with an intermediate type or

format 320. Custom extension routine 360 converts intermediate representation 360A

to intermediate representation 360B. Note that intermediate type 320 represents one

or more intermediate types. Accordingly, intermediate representation 360A and

intermediate representation 360B may be different types, but still appropriately

designated as an intermediate type, particularly relative to initial type 330 and final

type or format 310.

Standard routine 370 converts intermediate representation 360B to final object

380 of final type 310. Because type bridge pipeline 300 is for deserializing, final

object 380 is an in-memory object that is instantiated and populated. As will be

described in more detail below, the type bridge pipeline 300 is connected to code for

instantiating and populating object instances. This code may be referred to as an

instance factory or writer, or write factory, and corresponds generally to generation

modules 140 shown in Figure 1.

Figure 4 shows an example type bridge pipeline 400 for transforming an initial

object 440 to a final object 480. The individual type bridges available in Figure 4 are

capable of transforming one of three different object types or formats: a managed

code CLR formatted objects 410, an intermediate Flex formatted objects 420, and

an Infoset XML formatted objects 430. CLR stands for Common Language

Runtime and is a part of Microsoft's .NET@ managed execution environment.

Among other things, the benefits of CLR include cross-language integration,

cross-language exception handling, and the like. Language compilers emit metadata

to describe types, members, and references. The metadata is stored with the code in

the common language runtime portable execution file. Of course, CLR is merely one

example of a managed code type. As suggested in Figure 4, both objects may be

in-memory objects CLR formatted objects), or, alternatively, both objects may



be serialized objects, Infoset formatted objects). In other words, both the initial

and final object may be of the same type.

CLR objects 410 are instances of CLR types that contain a combination of

data and behavior, although only the data is relevant for serialization purposes. As

indicated above, an Infoset object or representation 430 is formatted according to a

W3C standard for a tree structure composed of a predefined set of data nodes with

certain semantics. A flex object 420 is a construct found within the serialization

engine and represents an extensibility point for the serializer.

A flex object is a mutable object that is based on a mutable type. The mutable

type is known as a flex type. In the example type bridge pipeline 400 shown in Figure

4, a flex type serves the same function as its corresponding CLR type: defining

behavior, and type data storage. Similarly, a flex object serves the same function as a

CLR object: storing typed data and acting on this data through behavior defined on

the type. The reason for using flex type and flex object is that CLR types are

immutable.

For the example type bridge pipeline shown in Figure 4, certain constraints are

placed on the types that can be serialized to foster simplicity and extensibility. These

constraints reduce the number of different patterns and permutations that the serializer

needs to recognize in order to serialize and deserialize a given type. To this end, the

serialization engine only understands how to serialize CLR objects whose types

follow what is known as the core model. Types that conform to the core model must

either expose their data as properties (or fields) or implement a particular interface

(which defines explicit read and write methods). In addition, these types need to

provide a public default constructor. Types that do not follow the core model cannot

be serialized.

Flex types and flex objects are used to change the shape (members, interfaces,

etc.) of a given CLR object to conform to the core model. For the given CLR object,

a flex type can be constructed that exposes a different set of member and type

information than the instance's CLR type. A flex object based on the flex type can be

instantiated that delegates certain invocations to the CLR object itself. The flex object

also can perform optional transformations of the data within the CLR object, either



prior to or following delegation. As a result, data within the CLR object may be

exposed in various ways, including one that conforms to the core model.

Accordingly, a type bridge may start with an object type that does not conform to the

core model and produce an object type that does.

A type bridge may transform CLR objects, flex objects, and Infoset

representations in a variety of ways. Any given type bridge has an input type which it

acts upon and an output type which it produces or generates. This output is passed to

the next type bridge in the pipeline. For the example type bridge pipeline 400, the

following transforms are permitted:

Input Type Output Type Description

CLR CLR Transforms a CLR object into a new CLR object

CLR Flex Transforms a CLR object into a flex object

CLR Infoset Transforms a CLR object into an Infoset object

Flex Flex Transforms a flex object into a new flex object

Flex CLR Transforms a flex object into a CLR object

Flex Infoset Transforms a flex object into an Infoset object

Infoset Infoset Transforms an Infoset object into a new Infoset

Infoset Flex Transforms an Infoset object into a flex object

Infoset CLR Transforms an Infoset object into a CLR object

The different classifications of type bridges are composed to provide the base

operation of the serialization engine. (Although Figures 2 and 3 reference generic

types, reference to these Figures is made below with the specific types illustrated in

Figure 4 to provide further context.)

1. Serialization transforms a CLR object into an Infoset object or

representation. In order to perform this operation, a type bridge

pipeline exists (such as the one shown in Figure 2) that includes a

CLR to flex type bridge standard routine 250), any number of

flex to flex bridges, and a flex to Infoset type bridge standard

routine 270).



2. Deserialization transforms an Infoset representation into a CLR

object. In order to perform this operation, a type bridge pipeline

exists (such as the one shown in Figure 3) that includes an Infoset to

flex type bridge standard routine 350), any number of flex to

flex bridges, and a flex to CLR type bridge standard routine

370).

3. Object Copy is used to create a deep copy of a CLR object. In order

to perform this operation, a type bridge pipeline exists that includes

a CLR to CLR type bridge.

4. Object Transformation (Figure 4) creates a deep copy (final object

480) of the CLR object or objects (initial object 440) while

performing optional transformations (standard or custom extension

routine 460) on the instance data (intermediate representations 460A

and 460B). In order to perform this operation, a type bridge

pipeline exists that includes a CLR to flex type bridge (standard or

custom routine 450), one or more optional flex to flex type bridges

(standard or custom extension routine 460) that performs the

transformations, and a flex to CLR type bridge (standard or custom

routine 470).

5. Infoset Transformation creates a copy of and optionally transforms an

Infoset object. Similar to object copy, in order to perform this

operation, a type bridge pipeline exists that includes an Infoset to

Infoset type bridge.

The last three options are noteworthy due to the manner in which they are

implemented. Whereas other implementations buffer object or Infoset data,

embodiments of the present invention may defer transformations to avoid or reduce

buffering requirements. As a result, performance and resource management may be

improved significantly.

In order to support the above operations, the serialization engine provides

stock or base type bridges that perform the appropriate transformations. In Figure 4,

any of the standard or custom routines 450, 460, and 470 may be stock type bridges or



custom replacements. Using an extensible configuration mechanism, the appropriate

type bridges are identified and loaded into pipelines at runtime. The serialization

engine uses these stock pipelines to perform the requested operation. The stock type

bridges, however, may be replaced at any time, as the engine uses a notion of abstract

type bridges, rather than specific stock implementations. In one example

embodiment, a pipeline simply comprises a list of type bridges for the pipeline-

changing the list changes the pipeline. For this example embodiment, once a

particular type bridge is called for an object, no other type bridges are called for that

object.

Note that in an example embodiment, CLR 410, flex 420, and Infoset 430

correspond to initial format 210, intermediate format 220, and final format 230 for

serialization as shown in Figure 2, and correspond to final type 310, intermediate type

320, and initial type 330 for deserialization as shown in Figure 3. Flex object is the

intermediate format between both CLR and Infoset. In this example embodiment, a

type bridge is not permitted to transform directly from CLR to Infoset or vice versa.

Among other things, this helps to simplify the example serialization engine. While

the base functionality or operation of the serialization engine is defined by stock type

bridges, there are many additional features (such as support for legacy programming

models) that developers may expect as well. The stock type bridges could have been

designed to implement these features, but instead, there are several stock flex to flex

type bridges that serve this purpose. This approach ensures that stock type bridges are

simple and extensible. As a result, various developers can make modifications to

standard features and provide new features of their own.

For this example embodiment, consider a serialization process for a CLR type

named Person with two properties, FirstName and LastName. In order to serialize

(see Figure 2) an instance of this type, a pipeline with stock CLR to flex and flex to

Infoset type bridges is needed. The serialization engine passes the Person instance to

the CLR to flex type bridge. This type bridge returns a new flex object instance based

on and delegating to the Person instance. The flex object is then passed to the flex to

Infoset type bridge.



The flex to Infoset type bridge is responsible for transforming or converting

the flex object into an Infoset representation. Prior to the conversion, the stock flex to

Infoset type bridge determines the manner in which to map the structure of the flex

object to Infoset. The stock implementation in this example uses a schema language

and defines mappings with the constructs defined in the language. Since type bridges

are replaceable, a new mapping mechanism, including support for a new schema

language, could be introduced, which represents another extensibility point within the

serialization engine. Once the mapping process is complete, the flex object is

transformed into an Infoset representation which is written to a stream.

As briefly mentioned above, the type bridges within the serialization engine

are connected to writer factories. Writer factories are responsible for creation of a

resource that is capable of writing data. Although the resource could write data to any

target, the most common destinations are data streams (following serialization for

transport) and CLR objects (following deserialization). The stock writer factory for

this example embodiment returns a resource that writes to a user-supplied data stream.

The resource produced by this factory can write to the stream in any format it desires.

As such, it is not pinned to the XML serialization format, which make the writer

factory replaceable and introduces yet another extensibility point within the

serialization engine.

Deserialization (see, for example, Figure 3) of the Infoset representation in

this example embodiment involves a pipeline that includes the stock Infoset to flex

and flex to CLR type bridges. The serialization engine passes a user-provided stream

representing the source Infoset as well as the CLR type (Person) that is being

deserialized to the first type bridge (Infoset to flex). This type bridge creates a new

flex object instance based on the Person type that delegates to the stream. The

resulting flex object is passed to the flex to CLR type bridge which populates an

instance of Person with data from the flex object (the flex object is actually in the

stream since the flex object is delegating). As with serialization, the deserialization

pipeline terminates in a writer factory. The stock write factory for the deserialization

pipeline is responsible for creating the instance of the CLR type being deserialized.



In addition to serialization and deserialization, it may be desirable to transform

the Person type. As indicated above, the shape of the Person type includes two

properties: FirstName and LastName. Suppose, for example, that one application

using this definition of Person interacts with another application using a different

Person definition a Person with one property-FulName). While one option

would be to have both applications use the same Person type, this might not always be

possible (both application may have already been written).

In accordance with the example embodiment being described, a type bridge

may be created that transforms the shape of a Person instance in one application to the

shape expected in the other. To make the transformation (see Figure a new flex to

flex type bridge custom extension routine 260) needs to be constructed and

placed in the serialization pipeline after the stock CLR to flex type bridge 

standard routine 250). During the serialization process, this type bridge is passed a

flex object that delegates to the Person instance. The type bridge constructs a new

flex type with the different shape (single FullName property). Based on this flex type,

a new flex object is created that concatenates the FirstName and LastName properties

found on the original flex object (which also delegates to the Person instance). This

flex object is passed to the stock flex to Infoset type bridge standard routine

270) which serializes one property rather than two. It is worth noting that the

concatenation may not actually be performed until the flex to Infoset type bridge

requests the value of the new FullName property. Accordingly, the transformation is

deferred until the creation of the Infoset or final object.

Accordingly, a serialization engine in accordance with the present invention

may offer an extensible architecture for transforming between systems and types,

including: support for pluggable type and data transformations; support for mutable

types and objects; support for pluggable schema type systems; support for pluggable

data formats, etc.

The present invention also may be described in terms of methods comprising

functional steps and/or non-functional acts. The following is a description of acts and

steps that may be performed in practicing the present invention. Usually, functional

steps describe the invention in terms of results that are accomplished, whereas



non-functional acts describe more specific actions for achieving a particular result.

Although the functional steps and non-functional acts may be described or claimed in

a particular order, the present invention is not necessarily limited to any particular

ordering or combination of acts and/or steps.

Figures 5A-5B show example acts and steps for methods of serializing and

deserializing objects in accordance with the present invention, which may include an

act of receiving (512) an initial object of an initial type for runtime processing by a

serialization engine. A step for identifying (520) type information for the initial

object may include an act of receiving (522) the type information. The type

information may be supplied as metadata associated with managed code. A step for

converting (530) the initial object to an intermediate representation based on the

initial type information may include acts of generating (not shown) the intermediate

representation based on the type information, and calling (532) one or more custom

extension routines and calling (534) one or more standard routines to modify the

intermediate representation. The one or more extension routines alter the runtime

operation of the serialization engine.

It should be noted that the intermediate representation may comprise an object

name, an object type, and/or object data. Although not shown, a step for modifying

(540) the intermediate representation also may include acts of calling (not shown) one

or more custom extension routines and calling (not shown) one or more standard

routines to modify the intermediate representation. A step for modifying (540) the

intermediate representation may further include an act of changing (540) an object's

name, type, and/or data. A step for deferring (550) modification may include an act

of specifying (552) how to modify the intermediate representation, without actually

modifying the intermediate representation. Deferring may help to reduce buffer and

processing requirements otherwise associated with modifying the intermediate

representation in place.

A step for converting (560) the intermediate representation of the initial object

to a final object of a final type or format may include the following acts. When

serializing (563), the step may include an act of creating or generating (565) the final

object. In one example embodiment as described above the final object is formatted



in XML for transport. Creating or generating (565) the final object, therefore, may

include generating the appropriate XML and writing the final object to a stream.

Alternatively, the final object may be formatted for persistence to disk or in any other

format suitable for representing the serialized initial object. When deserializing

(564), the step may include acts of instantiating (566) and populating (568) the final

object. During the step for converting (560), custom extension and standard routines

are invoked for any deferred modifications that indicated how a change should be

made, but did not actually make the change.

Embodiments within the scope of the present invention also include computer-

readable media for carrying or having computer-executable instructions or data

structures stored thereon. Such computer-readable media can be any available media

that can be accessed by a general purpose or special purpose computer. By way of

example, and not limitation, such computer-readable media can comprise RAM,

ROM, EEPROM, CD-ROM or other optical disc storage, magnetic disk storage or

other magnetic storage devices, or any other medium which can be used to carry or

store desired program code means in the form of computer-executable instructions or

data structures and which can be accessed by a general purpose or special purpose

computer. When information is transferred or provided over a network or another

communications connection (either hardwired, wireless, or a combination of

hardwired or wireless) to a computer, the computer properly views the connection as a

computer-readable medium. Thus, any such connection is properly termed a

computer-readable medium. Combinations of the above should also be included

within the scope of computer-readable media. Computer-executable instructions

comprise, for example, instructions and data which cause a general purpose computer,

special purpose computer, or special purpose processing device to perform a certain

function or group of functions.

Figure 6 and the following discussion are intended to provide a brief, general

description of a suitable computing environment in which the invention may be

implemented. Although not required, the invention will be described in the general

context of computer-executable instructions, such as program modules, being

executed by computers in network environments. Generally, program modules



include routines, programs, objects, components, data structures, etc. that perform

particular tasks or implement particular abstract data types. Computer-executable

instructions, associated data structures, and program modules represent examples of

the program code means for executing steps of the methods disclosed herein. The

particular sequence of such executable instructions or associated data structures

represents examples of corresponding acts for implementing the functions described

in such steps.

Those skilled in the art will appreciate that the invention may be practiced in

network computing environments with many types of computer system

configurations, including personal computers, hand-held devices, multi-processor

systems, microprocessor-based or programmable consumer electronics, network PCs,

minicomputers, mainframe computers, and the like. The invention may also be

practiced in distributed computing environments where tasks are performed by local

and remote processing devices that are linked (either by hardwired links, wireless

links, or by a combination of hardwired or wireless links) through a communications

network. In a distributed computing environment, program modules may be located

in both local and remote memory storage devices.

With reference to Figure 6, an example system for implementing the invention

includes a general purpose computing device in the form of a conventional computer

620, including a processing unit 621, a system memory 622, and a system bus 623

that couples various system components including the system memory 622 to the

processing unit 621. The system bus 623 may be any of several types of bus

structures including a memory bus or memory controller, a peripheral bus, and a local

bus using any of a variety of bus architectures. The system memory includes read

only memory (ROM) 624 and random access memory (RAM) 625. A basic

input/output system (BIOS) 626, containing the basic routines that help transfer

information between elements within the computer 620, such as during start-up, may

be stored in ROM 624.

The computer 620 may also include a magnetic hard disk drive 627 for

reading from and writing to a magnetic hard disk 639, a magnetic disk drive 628 for

reading from or writing to a removable magnetic disk 629, and an optical disc drive



630 for reading from or writing to removable optical disc 631 such as a CD-ROM or

other optical media. The magnetic hard disk drive 627, magnetic disk drive 628, and

optical disc drive 630 are connected to the system bus 623 by a hard disk drive

interface 632, a magnetic disk drive-interface 633, and an optical drive interface 634,

respectively. The drives and their associated computer-readable media provide

nonvolatile storage of computer-executable instructions, data structures, program

modules and other data for the computer 620. Although the exemplary environment

described herein employs a magnetic hard disk 639, a removable magnetic disk 629

and a removable optical disc 631, other types of computer readable media for storing

data can be used, including magnetic cassettes, flash memory cards, digital versatile

discs, Bernoulli cartridges, RAMs, ROMs, and the like.

Program code means comprising one or more program modules may be stored

on the hard disk 639, magnetic disk 629, optical disc 631, ROM 624 or RAM 625,

including an operating system 635, one or more application programs 636, other

program modules 637, and program data 638. A user may enter commands and

information into the computer 620 through keyboard 640, pointing device 642, or

other input devices (not shown), such as a microphone, joy stick, game pad, satellite

dish, scanner, or the like. These and other input devices are often connected to the

processing unit 621 through a serial port interface 646 coupled to system bus 623.

Alternatively, the input devices may be connected by other interfaces, such as a

parallel port, a game port or a universal serial bus (USB). A monitor 847 or another

display device is also connected to system bus 623 via an interface, such as video

adapter 648. In addition to the monitor, personal computers typically include other

peripheral output devices (not shown), such as speakers and printers.

The computer 620 may operate in a networked environment using logical

connections to one or more remote computers, such as remote computers 649a and

649b. Remote computers 649a and 649b may each be another personal computer, a

server, a router, a network PC, a peer device or other common network node, and

typically include many or all of the elements described above relative to the computer

620, although only memory storage devices 650a and 650b and their associated

application programs 636a and 636b have been illustrated in Figure 6. The logical



19

connections depicted in Figure 6 include a local area network (LAN) 651 and a wide

area network (WAN) 652 that are presented here by way of example and not

limitation. Such networking environments are commonplace in office-wide or

enterprise-wide computer networks, intranets and the Internet.

When used in a LAN networking environment, the computer 620 is connected

to the local network 651 through a network interface or adapter 653. When used in a

WAN networking environment, the computer 620 may include a modem 654, a

wireless link, or other means for establishing communications over the wide area

network 652, such as the Internet. The modem 654, which may be internal or

external, is connected to the system bus 623 via the serial port interface 646. In a

networked environment, program modules depicted relative to the computer 620, or

portions thereof, may be stored in the remote memory storage device. It will be

appreciated that the network connections shown are exemplary and other means of

establishing communications over wide area network 652 may be used.

The present invention may be embodied in other specific forms without

departing from its spirit or essential characteristics. The described embodiments are

to be considered in all respects only as illustrative and not restrictive. The scope of

the invention is, therefore, indicated by the appended claims rather than by the

foregoing description. All changes which come within the meaning and range of

equivalency of the claims are to be embraced within their scope.

Throughout this specification and the claims which follow, unless the context

requires otherwise, the word "comprise", and variations such as "comprises" or

"comprising", will be understood to imply the inclusion of a stated integer or step or

group of integers or steps but not the exclusion of any other integer or step or group of

integers or steps.

The reference to any prior art in this specification is not, and should not be

taken as, an acknowledgement or any form of suggestion that that prior art forms part

of the common general knowledge in Australia.



THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. In a computing system comprising an extensible serialization engine that is

capable of serializing and deserializing data objects of various types, a method of

transforming an initial object of an initial type to a final object of a final type, wherein

the method allows for runtime operation of the serialization engine to be altered by

one or more extension routines, without having to replace a monolithic

implementation of the serialization engine, the method comprising acts of:

receiving an initial object of an initial type for runtime processing by

the serialization engine;

receiving type information for the initial type of the initial object;

based on the type. information, generating an intermediate

representation of the initial object that is suitable for runtime modification;

calling one or more custom extension routines to change the

intermediate representation of the initial object, thereby altering the runtime

operation of the serialization engine; and

from the modified intermediate representation of the initial object,

generating a final object of a final type.

2. A method as recited in claim 1, wherein the intermediate representation

comprises an overall type for the initial object and, for one or more objects contained

within the initial object, an object name, an object type, and object data.

3. A method as recited in claim 2, further comprising an act of changing at

least one of the overall object type, and, for the one or more objects contained within

the initial object, the object name, the object type, and the object data.

4. A method as recited in claim 1, further comprising an act of calling one or

more standard routines to modify the intermediate representation of the initial object.

A method as recited in claim 1, wherein modification of the intermediate

representation of the initial object is based on a particular pattern within the type

information.

6. A method as recited in claim 1, wherein modification of the intermediate

representation of the initial object is based on object data within the initial object.



4.

21

7. A method as recited in claim 1, wherein the serialization engine is part of a

messaging system for a distributed application that sends and receives one or more

messages, and wherein the initial object and the final object represent at least a

portion of a message.

8. A method as recited in claim 1, wherein the initial object comprises an

in-memory object, and wherein the serialization engine operates to serialize the initial

object to generate the final object.

9. A method as recited in claim 1, wherein the final object comprises an

in-memory object to be instantiated and populated based on the initial object, and

wherein the serialization engine operates to deserialize the initial object to generate

the final object.

A method as recited in claim 1, wherein the one or more custom extension

routines called to change the intermediate representation specify how to change the

intermediate representation, without actually changing the intermediate

representation, such that changing the intermediate representation is deferred until

generating the final object, in order to reduce buffering requirements.

11. For a computing system comprising an extensible serialization engine that

is capable of serializing and deserializing data objects of various types, a computer

program product comprising one or ore computer readable media carrying computer

executable instructions that implement a method of transforming an initial object of

an initial type to a final object of a final type, wherein the method allows for runtime

operation of the serialization engine to be altered by one or more extension routines,

without having to replace a monolithic implementation of the serialization engine, the

method comprising acts of:

receiving an initial object of an initial type for runtime processing by

the serialization engine;

receiving type information for the initial type of the initial object;

based on the type information, generating an intermediate

representation of the initial object that is suitable for runtime modification;



22

calling one or more custom extension routines to change the

intermediate representation of the initial object, thereby altering the runtime

operation of the serialization engine; and

from the modified intermediate representation of the initial object,

generating a final object of a final type.

12. A computer program product as recited in claim 11, wherein the

intermediate representation comprises an overall type for the initial object and, for

one or more objects contained within the initial object, an object name, an object type,

and object data.

13. A computer program product as recited in claim 12, the method further

comprising an act of changing at least one of the overall object type, and, for the one

or more objects contained within the initial object, the object name, the object type,

and the object data.

14. A computer program product as recited in claim 11, the method further

comprising an act of calling one or more replaceable standard routines to modify the

intermediate representation of the initial object.

A computer program product as recited in claim 11, wherein modification

of the intermediate representation of the initial object is based on at least one of a

particular pattern within the type information, metadata, and object data within the

initial object.

16. A computer program product as recited in claim 11, wherein if the initial

object comprises an in-memory object, the serialization engine operates to serialize

the initial object to generate the final object, and if the final object comprises an

in-memory object to be instantiated and populated based on the initial object, the

serialization engine operates to deserialize the initial object to generate the final

object.

17. A computer program product as recited in claim 11, wherein both the

initial object and the final object are in-memory objects.



18. A computer program product as recited in claim 11, wherein the one or

more custom extension routines called to change the intermediate representation

specify how to change the intermediate representation, without actually changing the

intermediate representation, such that changing the intermediate representation is

deferred until generating the final object, in order to reduce buffering requirements.

19. In a computing system comprising an extensible serialization engine that

serializes and deserializes data objects of various types, a method of converting an

initial object of an initial type to a final object of a final type, wherein the method

allows for operation of the serialization engine to be altered at runtime by one or more

extension routines, without having to replace one or more other existing routines of

the serialization engine, the method comprising steps for:

identifying type information for an initial object of an initial type

received for runtime processing by the serialization engine;

based on the type information, converting the initial object to an

intermediate representation of the initial object that is suitable for runtime

modification;

modifying the intermediate representation of the initial object in

accordance with one or more extension routines, thereby altering the runtime

operation of the serialization engine; and

converting the intermediate representation of the initial object to a final

object of a final type.

A method as recited in claim 19, wherein the intermediate representation

of the initial object comprises at least one of an object name, an object type, and

object data.

21. A method as recited in claim 20, wherein the step for modifying the

intermediate representation of the initial object in accordance with one or more

extension routines, comprises modifying at least one of the object name, the object

type, and the object data.

22. A method as recited in claim 19, further comprising a step for modifying

the intermediate representation of the initial object in accordance with one or more

standard routines within the serialization engine.



24

23. A method as recited in claim 19, wherein modification of the intermediate

representation of the initial object is based on either a particular pattern within the

type information, object data within the initial object, or both.

24. A method as recited in claim 19, wherein the initial object comprises an

in-memory object and the serialization engine serializes the initial object to generate

the final object.

A method as recited in claim 19, wherein both the initial object and the

final object are in-memory objects.

26. A method as recited in claim 19, further comprising a step for deferring

modification of the intermediate representation until the intermediate representation is

converted to the final object in order to avoid buffering modification of the

intermediate representation.

27. For a computing system comprising an extensible serialization engine that

serializes and deserializes data objects of various types, a computer program product

comprising one or more computer readable media carrying computer executable

instructions that implement a method of converting an initial object of an initial type

to a final object of a final type, wherein the method allows for operation of the

serialization engine to be altered at runtime by one or more extension routines,

without having to replace one or more other existing routines of the serialization

engine, the method comprising steps for:

identifying type information for an initial object of an initial type

received for runtime processing by the serialization engine;

based on the type information, converting the initial object to an

intermediate representation of the initial object that is suitable for runtime

modification;

modifying the intermediate representation of the initial object in

accordance with one or more extension routines, thereby altering the runtime

operation of the serialization engine; and

converting the intermediate representation of the initial object to a final

object of a final type.



28. A computer program product as recited in claim 27, wherein the

intermediate representation of the initial object comprises at least one of an object

name, an object type, and object data.

29. A computer program product as recited in claim 27, wherein the step for

modifying the intermediate representation of the initial object in accordance with one

or more extension routines, comprises modifying at least one of the object name, the

object type, and the object data.

A computer program product as recited in claim 27, the method further

comprising a step for modifying the intermediate representation of the initial object in

accordance with one or more standard routines.

31. A computer program product as recited in claim 27, wherein modification

of the intermediate representation of the initial object is based on either a particular

pattemrn within the type information, object data within the initial object, or both.

32. A computer program product as recited in claim 27, wherein the final

object comprises an in-memory object to be instantiated and populated based on the

initial object, and wherein the serialization engine deserializes the initial object to

generate the final object.

33. A computer program product as recited in claim 27, wherein both the

initial object and the final object are in-memory objects.

34. A computer program product as recited in claim 27, the method further

comprising a step for deferring modification of the intermediate representation until

converting the intermediate representation to the final object.

A computer program product implementing an extensible serialization

engine for transforming one or more initial objects of one or more initial types to one

or more final objects of one or more final types, wherein runtime operation of the

serialization engine may be altered, without having to re-implement existing portions

of the serialization engine, the computer program product comprising one or more

computer readable media carrying computer executable instructions in the form of

program modules, the program modules comprising:



26

a runtime replaceable reflection module for identifying type

information for an initial object of an initial type received for runtime

processing by the serialization engine;

one or more runtime replaceable conversion modules for generating

and modifying an intermediate representation of the initial object based on the

identified type information, wherein the one or more runtime replaceable

conversion modules comprise one or more extension routines that alter the

runtime operation of the serialization engine; and

a runtime replaceable generation module for creating a final object of a

final type from the intermediate representation generated by the conversion

module.

36. A computer program product as recited in claim 35, wherein the

intermediate representation comprises an object name, an object type, and object data

for the initial object and any objects contained within the initial object.

37. A computer program product as recited in claim 35, wherein the one or

more runtime replaceable conversion modules are capable of changing at least one of

an object name, an object type, and object data for the initial object and any objects

contained within the initial object.

38. A computer program product as recited in claim 37, wherein the one or

more runtime replaceable conversion modules are capable of tracking information

about the initial object, without modifying the intermediate representation.

39. A computer program product as recited in claim 35, wherein the one or

more runtime replaceable conversion modules comprise one or more standard routines

to modify the intermediate representation.

40. A computer program product as recited in claim 35, wherein the one or

more runtime replaceable conversion modules are capable of modifying the

intermediate representation of the initial object based on either a particular pattern

within the type information, object data within the initial object, or both.

41. A computer program product as recited in claim 35, wherein the runtime

replaceable generation module is capable of creating the final object in eXtensible

Markup Language (XML) format.



42. A computer program product as recited in claim 35, wherein the runtime

replaceable generation module is capable of instantiating and populating the final

object based on the intermediate representation.

43. A computer program product as recited in claim 35, wherein the one or

more runtime replaceable conversion modules are capable of deferring one or more

modifications to the intermediate representation of the initial object until the

intermediate representation is converted to the final object so as to avoid buffer

requirements associated with making the one or more modifications to the

intermediate representation.

44. A computer program product substantially as hereinbefore described with

reference to the drawings.

A method substantially as hereinbefore described with reference to the

drawings.

46. The steps, features, compositions and compounds disclosed herein or

referred to or indicated in the specification and/or claims of this application,

individually or collectively, and any and all combinations of any two or more of said

steps or features.

DATED this TWENTY FOURTH day of FEBRUARY 2004

Microsoft Corporation

by DAVIES COLLISON CAVE

Patent Attorneys for the applicant(s)



Object 
Instance

11 .0

XML
Object

160

Reflection
Module(s).--- 

I 120

I
I I I I
I I I I
I I I I
I I I I

Conversion

I 130 I
I I
I I I I

I I I I
I I I I
I I

I I

Generation
Module(s) 

140

XML
Object

150

Object
Instance

170

Serialization Module 100

Fig. 1



Type Bridge Pipeline 200
(Serialize)

Initial Initial
Format

210 Object
240

Standard
Routine

250
Intermediate 5IntFrmedate 20 Intermediate Intermediate

220 Representation Representation
260A 260B StandardT- Routine

Custom 270
Extension

Fil Routine
Final 260F

Format 260 Final

230 Object

Fig. 2



Type Bridge Pipeline 300
(Deserialize)

Final
Type 
310

Intermediate
Type
320

Initial
Type 
330

Standard
Routine

370
Intermediate

Representation
360A

Intermediate

Representation
360BStandard

Routine
350 Custom

Extension
Routine

360

Fig. 3



Type Bridge Pipeline 400
(Transform)

Managed
Code CLR

410

Intermediate Flex
420

Infoset XML
430

Standard Standard
or Custom or Custom

Standard or Custom
Extension
Routine

460

Fig. 4



5/7

4 

Receive Type Information f~522i

IIdentify Type Information

1

Call Custom Extension Routine(s) 532

Call Standar di Routine(s) 534

Convert to Intermediate
Representation 530

II F

Change Object iI Specify How To Change
Name/Type/Data Intermediate Representation

542) Modify Intermediate 552"- ee
Representation 50 Modification 

L- 1- 

To Fig. 

Fig. 



6/7

From Fig. 

4-
Generate Final Object 562

I 63-l 1,564

Serialize JDeserialize j
1,566

Create Object jInstatiate I
___-568

Populate j
Convert Intermediate

Representation To Final
Object 56

Fig. 



System Memory 620
622 620

(ROM) 624 647

Bios 626
Processing

(RAM) 625 Unit Video Monitor

Operating 621 Adapter 648
System 635

Aplication i ,-623
rograms System Bus Fig. 6

Other Program
Modules 637 632 1633 634 646

Hard Disk Magnetic Disk ptical Serial I Local Area Network
Drive Drive rive Port Network

Program Interface Interface Interface Interface Interface

Data 638 627 62863 I 6 6

628 _I WideArea 663
"11- -z A A, Wide Areaf V A A 

636a


	Abstract
	Description
	Claims
	Drawings

