(12) STANDARD PATENT APPLICATION
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2004200729 A1

(54) Title
Type Bridges

(51)’ International Patent Classification(s)

GO6F 009/45
(21) Application No: 2004200729 (22) Date of Filing: 2004.02.24
(30) Priority Data
(31) Number (32) Date (33) Country
10401244 2003.03.26 us
(43) Publication Date: 2004.10.14
(43) Publication Journal Date: 2004.10.14

(71) Applicant(s)
Microsoft Corporation

(72) Inventor(s)

Jethanandani, Natasha H; Srinivasan, Sowmy K; Pharies, Stefan H; Purdy, Douglas M;
Kharitidi, Elena A; Christensen, Yann Erik

(74) Agent / Attorney

Davies Collison Cave, Level 15 1 Nicholson Street, MELBOURNE, VIC, 3000

10

15

20

ABSTRACT OF THE DISCLOSURE

Methods, systems, and computer program products for converting an object of
one type to an object of another type that allow for the runtime operation of the
conversion process to be altered or customized. The conversion may occur within an
extensible serialization engine that serializes, deserializes, and transforms objects of
various types. The runtime operation of the serialization engine is altered by one or
more extension routines that implement the desired customizations or extensions,
without requiring replacement of other existing routines. Based on type information,
identified for an initial object, the object is converted to an intermediate
representation which permits runtime modification, including modification of object
names, object types, and object data. The intermediate representation of the initial
object is modified in accordance with extension routines that alter the runtime
operation of the serialization engine, and the intermediate representation is converted

to a final object and type.

1/7

)
o w mo
-
235 £S5
> % - o .
\ﬁ A
T T T
! |]
[} |
- g
||||| | nfndeieief et iy AN
I | |
“ [} I m
- [}
L §w B
..... rE2a3o, 7777 2
I w2 o =
| o T < 1
I Qg v c
..... [K - S . 8
-
QO = l]
I | 1 N
.....] E
| 1 | 4
| | 1 (72}
| I t
]] 1
T L T
I t [}
| I t
[} I [}
)] |
ket Fe===-r==---r----
|] |
| | |
(I — iy |
I Lo w L ___ |
i PO
1D I ™
I > 9O v
||||| =1 I
r o = T
i (&) |
' |]
t I t
] |]
iututuind shaladetef ntuhaiaded nintabute
|] 1
[} 1 i
[}] [}
! ! 1
T L T
I] I
I |]
]]]
| !]
F-—-- F===-r----r----
] |]
RS
L Sw I
it ===
[T TR
o2
g 3N
b g2 © Y |
| o |
.~ rQ -F-—--
), = i
] i 1
| | 1
| [I
r r r=-
| I |
| }]
] i |
L) L
5 8 B
=) =8
Cesmy (F W = =0
8% - < o
(@) p= o

Fig. 1

" i
.

 AUSTRALIA
PATENTS ACT 1990
COMPLETE SPECIFICATION

NAME OF APPLICANT(S)::

Microsoft Corporation

ADDRESS FOR SERVICE:

DAYVIES COLLISON CAVE
Patent Attorneys
1 Nicholson Street, Melbourne, 3000, Australia

INVENTION TITLE:

Type bridges

The following statement is a full description of this invention, including the best method of performing it
known to me/us:-

5102

10

20

25

30

la

1. The Field of the Invention

The present invention relates to object serialization. More particularly, the
present invention relates to methods, systems, and computer program products for
transforming objects of one type to objects of another type through extension routines
that alter the runtime operation of a senalization engine, without having to replace
other existing routines within the serialization engine.

2. Background and Related Art

In a general sense, serialization is the conversion of single or graph of (nested)
in-memory objects into a linear sequence of bytes suitable for transmission to a
remote location, persistence on disk, etc. Conversely, deserialization takes the linear
sequence of bytes and creates the corresponding single or graph of in-memory
objects. Together, serialization and deserialization typically result in the creation of
an exact clone of the original object.

Traditionally serialization code has been written as a monolithic
implementation,.with no provision for customization, short of replacing the entire
implementation. A lack of customization or extensibility imposes an inflexible
senalization mechanism on the marketplace, including developers and other interested
parties. With a monolithic implementation, incremental improvements or
customizations to address a particular problem directly often are not possible, and
may require awkward workarounds or simply preclude certain desired operations.
Should customization be undertaken in any event, standard routines implementing
desirable operation typically are not accessible to the developer, and therefore <ﬁ}eed to
be re-implemented, substantially (and often prohibitively) increasing the effort
required to develop the desired customization. As a result, new features typically may
be added to the serialization code only by the serialization code developers,
precluding end users from developing their own enhancements or improving upon
existing features.

Although an exact copy of an object often is the goal of serialization and
desenalization, runtime transformations of object types, names, and data may be

desirable in some circumstances. As indicated above, for example, serialization and

15

20

25

30

desenialization may be used in transmitting an object to a remote location. The
remote location may expect certain object types, object data, and object names that
differ from the source object. Traditional serialization code may be written to
perform object transformations, but the transformation cannot be added at runtime and
is the same for all users, which ignores the likelihood that different users may have
different needs. While a given transform may be extremely important for a particular
user at a particular time, the overall relevance of the transform may be insignificant to
the user base as a whole, and therefore never developed.

Traditional serialization code also tends to offer little flexibility in terms of
identifying objects to transform, or basing transforms on data contained within an
object. Accordingly, methods, systems, and computer program products for
transforming objects from one type into objects of another type, based on customized
routines for altering serialization and deserialization at runtime, without having to
re-implement standard routines are desired.

BRIEF SUMMARY OF THE INVENTION

The present invention relates to methods, systems, and computer program
products for converting an object of an initial type to an object of a final type, and
allows for the runtime operation of the conversion process to be altered or
customized. In accordance with example embodiments of the present invention which
are described more fully below, an extensible serialization engine serializes,
deserializes, and transforms objects of various types. The runtime operation of the
senialization engine is altered by one or more extension routines that implement the
desired customizations or extensions. These extension routines alter the runtime
operation of the serialization engine, without requiring replacement of other existing
routines.

In one example embodiment, type information is identified for an initial object
received by the serialization engine for processing. Based on the type information,
the initial object is converted to an intermediate representation which permits runtime
modification, including modification of object names, object types, and object data.
The intermediate representation of the initial object is modified in accordance with

one or more extension routines which alter the runtime operation of the serialization

10

15

20

25

30

engine, and the intermediate representation is converted to a final object of a final
type.

The intermediate representation of the initial object may include an object
name, an object type, and object data, each of which may be modified by the
extension routines. The intermediate representation also may be modified by one or
more standard routines within the serialization engine. Modification of the
intermediate representation may be based on a particular pattern within the type
information, object data within the initial object, metadata, or combinations of the
foregoing.

Where the initial object i1s an in-memory object, the serialization engine
serializes the initial object to generate the final object. The final object may be
formatted in eXtensible Markup Language (XML) or in some other format suitable
for representing a serialized object. Similarly, where the final object is an in-memory
object, the serialization engine deserializes the initial object to generate the final
object. The final object may be instantiated and populated as part of the
deserialization process. In some circumstances, both the initial object and final object
may be in-memory objects, or both may be serialized objects, such as when the
serialization engine performs an object transform. To reduce buffer requirements,
modification of the intermediate representation may be deferred until the intermediate
representation is converted to the final object.

Additional features and advantages of the invention will be set forth in the
description which follows, and in part will be obvious from the description, or may be
learned by the practice of the invention. The features and advantages of the invention
may be realized and obtained by means of the instruments and combinations
particularly pointed out in the appended claims. These and other features of the
present invention will become more fully apparent from the following description and
appended claims, or may be learned by the practice of the invention as set forth
hereinafter. v

BRIEF DESCRIPTION OF THE DRAWINGS
In order to describe the manner in which the above-recited and other

advantages and features of the invention can be obtained, a more particular -

15

20

25

30

description of the invention briefly described above will be rendered by reference to
specific embodiments thereof which are illustrated in the appended drawings.
Understanding that these drawings depict only typical embodiments of the invention
and are not therefore to be considered as limiting its scope, the invention will be
described and explained with additional specificity and detail through the use of the
accompanying drawings in which:

Figure 1 illustrates an example serialization module and serialization
infrastructure in accordance the present invention;

Figures 2-4 show object conversions in the context of example serialization,
deserialization, and type transformation pipelines;

Figures 5A-5B show example acts and steps for methods of serializing,
desenalizing, and transforming objects in accordance with the present invention; and

Figure 6 illustrates an exemplary system that provides a suitable operating
environment for the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention extends to methods, systems, and computer program
products for converting objects of an initial type to objects of a final type that, and
allows for the runtime operation of the conversion process to be altered or
customized. The embodiments of the present invention may comprise one or more
special purpose and/or one or more general purpose computers including various
computer hardware, as discussed in greater detail below with respect to Figure 6.

Figure 1 illustrates an example serialization module and serialization
infrastructure 100 (also known as a serialization engine) in accordance the present
invention. For an object instance 110, serialization module 100 produces a
corresponding serialized eXtensible Markup Language (XML) object 150. Similarly,
for an XML object 160, serialization module 100 produces a corresponding
deserialized object instance 170. It should be noted that throughout this application,
serialization often is used as a generic term for serialization (e.g., converting a single
or graph of in-memory objects into a linear sequence of bytes suitable for
transmission to a remote location, persistence on disk, etc.), deserialization (from the .

linear sequence of bytes, creating the corresponding sing]e or graph of in-memory

15

20

25

30

objects), transformation (converting one object to another), etc. Such is the case here,
for example, where serialization module 100 serializes, desenalizes, and transforms
objects of varying types.

. Senalization module 100 includes one or more reflection modules 120, one or
more conversion modules 130, and one or more generation modules 140. In this
example embodiment, serialization module 100 converts a received in-memory object
instance 110 to an XML object 150 suitable for transmission to a remote location, and
converts a received XML object instance 160 to an in-memory object instance 170.
Of course, in-memory and XML are merely examples of object types that may be
created or received by sernalization module 100. Each of the modules within
senialization module 100 (reflection modules 120, conversion modules 130, and
generation modules 140) may be replaced at runtime for customized serialization,
deserialization, or transformation.

Reflection modules 120 are responsible for identifying type information for
received object instance 110 and received XML object 160. The type information
may comprise stored or received metadata that is associated with managed types
within a manage code environment. Alternatively, the type information may be
supplied to reflection modules 120 from various sources, including automated
generation at compile time, manual generation, standard type information, etc.

Conversion modules 130 convert between objects of different types. Example
conversion processes are described in more detail below, with respect to Figures 2-4.
Conversion between different objects may be arbitrarily complex and include the
generation of intermediate objects. Part of this complexity may include conversion
based on data within an object and patterns of types associated with an object. For
example, which conversions are performed may depend on certain object types or
type names, the existence of a certain named or typed properties on a type, the
existence of a property with certain meta data attached, object names associated with
an object, etc. Conversion may be deferred until generation of the final object to
reduce or avoid buffer requirements that otherwise may be part of converting one

object to another.

20

25

30

Generation modules 140 are responsible for generating the final object
produced by serialization module 100. In the case of XML object 150, generation
module 140 creates the object—it generates the appropriate XML for the object—and
may write the object to a stream. In the case of object instance 170, generation
module 140 instantiates and populates the object.

As indicated above, senalization module 100 is also known as a serialization
engine. As shown in Figure 1, the senalization engine is composed of several ordered
sets of modules. Collectively, these modules are responsible for all operations. An
individual module is known as a type bridge because, as described in greater detail
below, modules convert from one type to another (or bridge between different types).
A type bridge allows for type and instance transformation at runtime and/or to track
information about an object being serialized, deserialized, or transformed. With
reference to Figures 2-4, an ordered set of type bridges is known as a type bridge
pipeline, and generally corresponds to an ordered set of conversion modules 130. For
each of the operations performed by the serialization engine, a separate type bridge
pipeline may exist. There is a pipeline for serialization (e.g., Figure 2), deserialization
(e.g., Figure 3), transformation (e.g., Figure 4), object copy, etc. Information
generally applicable to all three drawing is presented below, prior to an individual
discussion for each of Figures 2-4.

For the example pipelines shown in Figures 2-4, the code (one or more
modules) that is responsible for senalization, deserialization, and transformation of
objects is implemented as a number of predefined type bridges. These modules are
placed in the appropriate pipeline and used at runtime. (The dashed squares in Figure
1 are intended to represent available type bridge modules for use in various type
bridge pipelines.) A large portion of the public application programming interface
(API) for the example seralization engine shown in Figure 1 is simply a wrapper over
this predefined set of pipelines. This demonstrates how the serialization engine is
extensible—the serialization engine is a simple set of abstract pipelines. The actual
implementation of specific logic is found in pluggable modules that can be replaced at

any time.

15

20

25

30

For the example type bridge pipelines illustrated in Figures 2-4, a given type
bridge is capable of transforming one of three types of objects: an initial type object,
an intermediate type object, and a final type object. In Figure 4, the initial type object
is a managed code object and the final type object is an XML object based on the
World Wide Web Consortium (W3C) Infoset standard. The intermediate type object
or intermediate representation shown in all three Figures is a construct found within
the serialization engine and, as described in further detail below, represents an
extensibility point. The intermediate representation is a mutable object based on a
mutable type. As such, the mutable type serves to define behavior and typed data
storage, with the mutable object serving to store typed data and act on the stored data
through behavior defined on the type.

Figure 2 shows an example type bridge 200 for senalizing in-memory initial
object 240 of initial type or format 210. (A§ used in the specification and claims, the
term type should be interpreted broadly to encompass any object type or format.)
Using standard routine 250, the initial object 240 is converted to intermediate
representation 260A having an intermediate type or format 220. As will be described
in greater detail below, this intermediate representation is mutable, allowing both
object types and object data to be changed. Nevertheless, intermediate format 220
and tnitial format 210 also may be the same, closely related, somewhat different,
completely different, etc.

Custom extension routine 260 converts intermediate representation 260A of
initial object 240 to intermediate representation 260B. This conversion may include
changing object types, object names, object data, and the like. Custom extension
routine 260 represents a runtime extension of the serialization engine in general, and
type bridge pipeline 200 in particular. Note that using custom extension routine 260
did not require re-implementing standard routine 250, as typically is the case with
conventional serialization implementations.

Standard routine 270 converts the intermediate representation 260B to final
object 280 of final type or format 230. Final object 280 is suitable for transmission to
a remote location, persistence, etc. Accordingly, the final format 230 of final object

280 includes a wide range of object types. Here, as in other portions of the

10

15

20

25

30

description, object type, format, and representation are a broad terms that encompass
the overall type and format of the object, and type, format, names, and data that may
be contained within an object.

Figure 3 shows an example type bridge 300 for deserializing object 340 of
initial type or format 330. Similar to Figure 2, above, standard routine 350 converts
initial object 340 to intermediate representation 360A with an intermediate type or
format 320. Custom extension routine 360 converts intermediate representation 360A
to intermediate representation 360B. Note that intermediate type 320 represents one
or more intermediate types. Accordingly, intermediate representation 360A and
intermediate representation 360B may be different types, but still appropriately
designated as an intermediate type, particularly relative to initial type 330 and final
type or format 310.

Standard routine 370 converts intermediate representation 360B to final object
380 of final type 310. Because type bridge pipeline 300 is for deserializing, final
object 380 is an in-memory object that is instantiated and populated. As will be
described in more detail below, the type bridge pipeline 300 is connected to code for
instantiating and populating object instances. This code may be referred to as an
instance factory or writer, or write factory, and corresponds generally to generation
modules 140 shown in Figure 1.

Figure 4 shows an example type bridge pipeline 400 for transforming an initial
object 440 to a final object 480. The individual type bridges available in Figure 4 are
capable of transforming one of three different object types or formats: a managed
code / CLR formatted objects 410, an intermediate / Flex formatted objects 420, and
an Infoset / XML formatted objects 430. CLR stands for Common Language
Runtime and is a part of Microsoft’s .NET® managed execution environment.
Among other things, the benefits of CLR include cross-language integration,
cross-language exception handling, and the like. Language compilers emit metadata
to describe types, members, and references. The metadata is stored with the code in
the common language runtime portable execution file. Of course, CLR is merely one
example of a managed code type. As suggested in Figure 4, both objects may be

in-memory objects (e.g., CLR formatted objects), or, alternatively, both objects may

15

20

25

30

be serialized objects, (e.g., Infoset formatted objects). In other words, both the initial
and final object may be of the same type.

CLR objects 410 are instances of CLR types that contain a combination of
data and behavior, although only the data is relevant for serialization purposes. As
indicated above, an Infoset object or representation 430 is formatted according to a
W3C standard for a tree structure composed of a predefined set of data nodes with
certain semantics. A flex object 420 is a construct found within the serialization
engine and represents an extensibility point for the serializer.

A flex object is a mutable object that is based on a mutable type. The mutable
type 1s known as a flex type. In the example type bridge pipeline 400 shown in Figure
4, a flex type serves the same function as its corresponding CLR type: defining
behavior, and type data storage. Similarly, a flex object serves the same function as a
CLR object: storing typed data and acting on this data through behavior defined on
the type. The reason for using flex type and flex object is that CLR types are
immutable.

For the example type bridge pipeline shown in Figure 4, certain constraints are
placed on the types that can be serialized to foster simplicity and extensibility. These
constraints reduce the number of different patterns and permutations that the serializer
needs to recognize in order to serialize and deserialize a given type. To this end, the
serialization engine only understands how to serialize CLR objects whose types
follow what is known as the core model. Types that conform to the core model must
either expose their data as properties (or fields) or implement a particular interface
(which defines explicit read and write methods). In addition, these types need to
provide a public default constructor. Types that do not follow the core model cannot
be serialized.

Flex types and flex objects are used to change the shape (members, interfaces,
etc.) of a given CLR object to conform to the core model. For the given CLR object,
a flex type can be constructed that exposes a different set of member and type
information than the instance’s CLR type. A flex object based on the flex type can be
instantiated that delegates certain invocations to the CLR object itself. The flex object

also can perform optional transformations of the data within the CLR object, either

10

15

20

10

prior to or following delegation. As a result, data within the CLR object may be

exposed in various ways, including one that conforms to the core model.

Accordingly, a type bridge may start with an object type that does not conform to the

core model and produce an object type that does.

A type bridge may transform CLR objects, flex objects, and Infoset

representations in a variety of ways. Any given type bridge has an input type which it

acts upon and an output type which it produces or generates. This output is passed to

the next type bridge in the pipeline. For the example type bridge pipeline 400, the

following transforms are permitted:

Input Type

CLR
CLR
CLR
Flex
Flex
Flex
Infoset
Infoset

Infoset

Output Type Description

CLR Transforms a CLR object into a new CLR object
Flex Transforms a CLR object into a flex object

Infoset Transforms a CLR object into an Infoset object
Flex Transforms a flex object into a new flex object
CLR Transforms a flex object into a CLR object

Infoset Transforms a flex object into an Infoset object
Infoset Transforms an Infoset object into a new Infoset
Flex Transforms an Infoset object into a flex object
CLR Transforms an Infoset object into a CLR object

The different classifications of type bridges are composed to provide the base

operation of the serialization engine. (Although Figures 2 and 3 reference generic

types, reference to these Figures is made below with the specific types illustrated in

Figure 4 to provide further context.)

1.

Serialization transforms a CLR object into an Infoset object or
representation. In order to perform this operation, a type bridge
pipeline exists (such as the one shown in Figure 2) that includes a
CLR to flex type bridge (e.g., standard routine 250), any number of
flex to flex bridges, and a flex to Infoset type bridge (e.g., standard
routine 270).

10

15

20

25

30

11

2. Deserialization transforms an Infoset representation into a CLR
object. In order to perform this operation, a type bridge pipeline
exists (such as the one shown in Figure 3) that includes an Infoset to
flex type bridge (e.g., standard routine 350), any number of flex to
flex bridges, and a flex to CLR type bridge (e.g., standard routine

370).

3. Object Copy is used to create a deep copy of a CLR object. In order
to perform this operation, a type bridge pipeline exists that includes
a CLR to CLR type bridge.

4. | Object Transformation (Figure 4) creates a deep copy (final object

480) of the CLR object or objects (initial object 440) while
performing optional transformations (standard or custom extension
routine 460) on the instance data (intermediate representations 460A
and 460B). In order to perform this operation, a type bridge
pipeline exists that includes a CLR to flex type bridge (standard or
custom routine 450), one or more optional flex to flex type bridges
(standard or custom extension routine 460) that performs the
transformations, and a flex to CLR type bridge (standard or custom
routine 470).

5. Infoset Transformation creates a copy of and optionally transforms an
Infoset object. Similar to object copy, in order to perform this
operation, a type bridge pipeline exists that includes an Infoset to
Infoset type bridge.

The last three options are noteworthy due to the manner in which they are
implemented. Whereas other implementations buffer object or Infoset data,
embodiments of the present invention may defer transformations to avoid or reduce
buffering requirements. As a result, performance and resource management may be
improved significantly.

In order to support the above operations, the serialization engine provides

stock or base type bridges that perform the appropriate transformations. In Figure 4,

any of the standard or custom routines 450, 460, and 470 may be stock type bridges or

10

15

20

25

30

12

custom replacements. Using an extensible configuration mechanism, the appropriate
type bridges are identified and loaded into pipelines at runtime. The serialization
engine uses these stock pipelines to perform the requested operation. The stock type
bridges, however, may be replaced at any time, as the engine uses a notion of abstract
type bridges, rather than specific stock implementations. In one example
embodiment, a pipeline simply comprises a list of type bridges for the pipeline—
changing the list changes the pipeline. For this example embodiment, once a
particular type bridge is called for an object, no other type bridges are called for that
object.

Note that in an example embodimenf, CLR 410, flex 420, and Infoset 430
correspond to initital format 210, intermediate format 220, and final format 230 for
serialization as shown in Figure 2, and correspond to final type 310, intermediate type
320, and initial type 330 for deserialization as shown in Figure 3. Flex object is the
intermediate format between both CLR and Infoset. In this example embodiment, a
type bridge is not permitted to transform directly from CLR to Infoset or vice versa.
Among other things, this helps to simplify the example serialization engine. While
the base functionality or operation of the serialization engine is defined by stock type
bridges, there are many additional features (such as support for legacy programming
models) that developers may expect as well. The stock type bridges could have been
designed to implement these features, but instead, there are several stock flex to flex
type bridges that serve this purpose. This approach ensures that stock type bridges are
simple and extensible. As a result, various developers can make modifications to
standard features and provide new features of their own.

For this example embodiment, consider a serialization process for a CLR type
named Person with two properties, FirstName and LastName. In order to serialize
(see Figure 2) an instance of this type, a pipeline with stock CLR to flex and flex to
Infoset type bridges is needed. The serialization engine passes the Person instance to
the CLR to flex type bridge. This type bridge returns a new flex object instance based
on and delegating to the Person instance. The flex object is then passed to the flex to

Infoset type bridge.

10

15

20

25

30

13

The flex to Infoset type bridge is responsible for transforming or converting
the flex object into an Infoset representation. Prior to the conversion, the stock flex to
Infoset type bridge determines the manner in which to map the structure of the flex
object to Infoset. The stock implementation in this example uses a schema language
and defines mappings with the constructs defined in the language. Since type bridges
are replaceable, a new mapping mechanism, including support for a new schema
language, could be introduced, which represents another extensibility point within the
serialization engine. Once the mapping process is complete, the flex object is
transformed into an Infoset representation which is written to a stream.

As briefly mentioned above, the type bridges within the serialization engine
are connected to writer factories. Writer factories are responsible for creation of a
resource that is capable of writing data. Although the resource could write data to any
target, the most common destinations are data streams (following serialization for
transport) and CLR objects (following deserialization). The stock writer factory for
this example embodiment returns a resource that writes to a user-supplied data stream.
The resource produced by this factory can write to the stream in any format it desires.
As such, it 1s not pinned to the XML senalization format, which make the writer
factory replaceable and introduces yet another extensibility point within the
senalization engine.

Deserialization (see, for example, Figure 3) of the Infoset representation in
this example embodiment involves a pipeline that includes the stock Infoset to flex
and flex to CLR type bridges. The serialization engine passes a user-provided stream
representing the source Infoset as well as the CLR type (Person) that is being
deserialized to the first type bridge (Infoset to flex). This type bridge creates a new
flex object instance based on the Person type that delegates to the stream. The
resulting flex object is passed to the flex to CLR type bridge which populates an
instance of Person with data from the flex object (the flex object is actually in the
stream since the flex object is delegating). As with serialization, the deserialization
pipeline terminates in a writer factory. The stock write factory for the deserialization

pipeline is responsible for creating the instance of the CLR type being deserialized.

10

20

25

30

14

In addition to serialization and deserialization, it may be desirable to transform
the Person type. As indicated above, the shape of the Person type includes two
properties: FirstName and LastName. Suppose, for example, that one application
using this definition of Person interacts with another application using a different
Person definition (e.g., a Person with one property—FullName). While one option
would be to have both applications use the same Person type, this might not always be
possible (both application may have already been written).

In accordance with the example embodiment being described, a type bridge
may be created that transforms the shape of a Person instance in one application to the
shape expected in the other. To make the transformation (see Figure 2), a new flex to
flex iype bridge (e.g., custom extension routine 260) needs to be constructed and
placed in the senalization pipeline after the stock CLR to flex type bndge (e.g.,
standard routine 250). During the sernalization process, this type bridge is passed a
flex object that delegates to the Person instance. The type bridge constructs a new
flex type with the different shape (single FullName property). Based on this flex type,
a new flex object is created that concatenates the FirstName and LastName properties
found on the original flex object (which also delegates to the Person instance). This
flex object 1s passed to the stock flex to Infoset type bridge (e.g., standard routine
270) which senalizes one property rather than two. It 1s worth noting that the
concatenation may not actually be performed until the flex to Infoset type bridge
requests the value of the new FullName property. Accordingly, the transformation is
deferred until the creation of the Infoset or final object.

Accordingly, a serialization engine in accordance with the present invention
may offer an extensible architecture for transforming between systems and types,
including: support for pluggable type and data transformations; support for mutable
types and objects; support for pluggable schema type systems; support for pluggable
data formats, etc.

The present invention also may be described in terms of methods comprising
functional steps and/or non-functional acts. The following is a description of acts and
steps that may be performed in practicing the present invention. Usually, functional

steps describe the invention in terms of results that are accomplished, whereas

10

15

20

25

30

15

non-functional acts describe more specific actions for achieving a particular result.
Although the functional steps and non-functional acts may be described or claimed in
a particular order, the present invention is not necessarily limited to any particular
ordering or combination of acts and/or steps.

Figures 5A-5B show example acts and steps for methods of seralizing and
deserializing objects in accordance with the present invention, which may include an
act of receiving (512) an initial object of an initial type for runtime processing by a
serialization engine. A step for identifying (520) type information for the initial
object may include an act of receiving (522) the type information. The type
information may be supplied as metadata associated with managed code. A step for
converting (530) the initial object to an intermediate representation based on the
initial type information may include acts of generating (not shown) the intermediate
representation based on the type information, and calling (532) one or more custom
extension routines and calling (534) one or more standard routines to modify the
intermediate representation. The one or more extension routines alter the runtime
operation of the serialization engine.

It should be noted that the intermediate representation may comprise an object
name, an object type, and/or object data. Although not shown, a step for modifying
(540) the intermediate representation also may include acts of calling (not shown) one
or more custom extension routines and calling (not shown) one or more standard
routines to modify the intermediate representation. A step for modifying (540) the
intermediate representation may further include an act of changing (540) an object’s
name, type, and/or data. A step for deferring (550) modification may include an act
of specifying (552) how to modify the intermediate representation, without actually
modifying the intermediate representation. Deferring may help to reduce buffer and
processing requirements otherwise associated with modifying the intermediate
representation in place.

A step for converting (560) the intermediate representation of the initial object
to a final object of a final type or format may include the following acts. When
serializing (563), the step may include an act of creating or generating (565) the final

object. In one example embodiment as described above the final object is formatted

15

20

25

30

16

in XML for transport. Creating or generating (565) the final object, therefore, may
include generating the appropriate XML and writing the final object to a stream.
Alternatively, the final object may be formatted for persistence to disk or in any other
format suitable for representing the serialized initial object. When desenalizing
(564), the step may include acts of instantiating (566) and populating (568) the final
object. During the step for converting (560), custom extension and standard routines
are invoked for any deferred modifications that indicated how a change should be
made, but did not actually make the change.

Embodiments within the scope of the present invention also include computer-
readable media for carrying or having computer-executable instructions or data
structures stored thereon. Such computer-readable media can be any available media
that can be accessed by a general purpose or special purpose computer. By way of
example, and not limitation, such computer-readable media can comprise RAM,
ROM, EEPROM, CD-ROM or other optical disc storage, magnetic disk storage or
other magnetic storage devices, or any other medium which can be used to carry or
store desired program code means in the form of computer-executable instructions or
data structures and which can be accessed by a general purpose or special purpose
computer. When information is transferred or provided over a network or another
communications connection (either hardwired, wireless, or a combination of
hardwired or wireless) to a computer, the computer properly views the connection as a
computer-readable medium. Thus, any such connection is properly termed a
computer-readable medium. Combinations of the above should also be included
within the scope of computer-readable media. Computer-executable instructions
comprise, for example, instructions and data which cause a general purpose computer,
special purpose computer, or special purpose processing device to perform a certain
function or group of functions. -

Figure 6 and the following discussion are intended to provide a brief, general
description of a suitable computing environment in which the invention may be
implemented. Although not required, the invention will be described in the general
context of computer-executable instructions, such as program modules, being

executed by computers in network environments. Generally, program modules

10

15

20

25

30

17

include routines, programs, objects, components, data structures, etc. that perform
particular tasks or implement particular abstract data types. Computer-executable
instructions, associated data structures, and program modules represent examples of
the program code means for executing steps of the methods disclosed herein. The
particular sequence of such executable instructions or associated data structures
represents examples of corresponding acts for implementing the functions described
in such steps.

Those skilled in the art will appreciate that the invention may be practiced in
network ‘computing environments with many types of computer system
configurations, including personal computers, hand-held devices, multi-processor
systems, microprocessor-based or programmable consumer electronics, network PCs,
minicomputers, mainframe computers, and the like. The invention may also be
practiced in distributed computing environments where tasks are performed by local
and remote processing devices that are linked (either by hardwired links, wireless
links, or by a combination of hardwired or wireless links) through a communications
network. In a distributed computing environment, program modules may be located
in both local and remote memory storage devices.

With reference to Figure 6, an example system for implementing the invention
includes a general purpose computing device in the form of a conventional computer
620, including a processing unit 621, a system memory 622, and a system bus 623
that couples various system components including the system memory 622 to the
processing unit 621. The system bus 623 may be any of several types of bus
structures including a memory bus or memory controller, a peripheral bus, and a local
bus using any of a variety of bus architectures. The system memory includes read
only memory (ROM) 624 and random access memory (RAM) 625. A basic
input/output system (BIOS) 626, containing the basic routines that help transfer
information between elements within the computer 620, such as during start-up, may
be stored in ROM 624.

The computer 620 may also include a magnetic hard disk drive 627 for
reading from and writing to a magnetic hard disk 639, a magnetic disk drive 628 for

reading from or writing to a removable magnetic disk 629, and an optical disc drive

15

20

25

30

18

630 for reading from or writing to removable optical disc 631 such as a CD-ROM or
other optical media. The magnetic hard disk drive 627, magnetic disk drive 628, and
optical disc drive 630 are connected to the system bus 623 by a hard disk drive
interface 632, a magnetic disk drive-interface 633, and an optical drive interface 634,
respectively. The drives and their associated computer-readable media provide
nonvolatile storage of computer-executable instructions, data structures, program
modules and other data for the computer 620. Although the exemplary environment
described herein employs a magnetic hard disk 639, a removable magnetic disk 629
and a removable optical disc 631, other types of computer readable media for storing
data can be used, including magnetic cassettes, flash memory cards, digital versatile
discs, Bernoulli cartridges, RAMs, ROMs, and the like.

Program code means comprising one or more program modules may be stored
on the hard disk 639, magnetic disk 629, optical disc 631, ROM 624 or RAM 625,
including an operating system 635, one or more application programs 636, other
program modules 637, and program data 638. A user may enter commands and
information into the computer 620 through keyboard 640, pointing device 642, or
other input devices (not shown), such as a microphone, joy stick, game pad, satellite
dish, scanner, or the like. These and other input devices are often connected to the
processing unit 621 through a senal port interface 646 coupled to system bus 623.
Alternatively, the input devices may be connected by other interfaces, such as a
parallel port, a game port or a universal serial bus (USB). A monitor 847 or another

display device is also connected to system bus 623 via an interface, such as video

~ adapter 648. In addition to the monitor, personal computers typically include other

peripheral output devices (not shown), such as speakers and printers.

The computer 620 may operate in a networked environment using logical
connections to one or more remote computers, such as remote computers 649a and
649b. Remote computers 649a and 649b may each be another personal computer, a
server, a router, a network PC, a peer device or other common network node, and
typically include many or all of the elements described above relative to the computer
620, although pnly memory storage devices 6502 and 650b and their associated
application programs 636a and 63~6b have been illustrated in Figure 6. The logical

10

20

25

30

19

connections depicted in Figure 6 include a local area network (LAN) 651 and a wide
area network (WAN) 652 that are presented here by way of example and not
limitation. Such networking environments are commonplace in office-wide or
enterprise-wide computer networks, intranets and the Internet.

When used in a LAN networking environment, the computer 620 is connected
to the local network 651 through a network interface or adapter 653. When used in a
WAN networking environment, the computer 620 may include a modem 654, a
wireless link, or other means for establishing communications over the wide area
network 652, such as the Internet. The modem 654, which may be internal or
external, is connected to the system bus 623 via the serial port interface 646. In a
networked environment, program modules depicted relative to the computer 620, or
portions thereof, may be stored in the remote memory storage device. It will be
appreciated that the network connections shown are exemplary and other means of
establishing communications over wide area network 652 may be used.

The present invention may be embodied in other specific forms without
departing from its spirit or essential characteristics. The described embodiments are
to be considered in all respects only as illustrative and not restrictive. The scope of
the invention is, therefore, indicated by the appended claims rather than by the
foregoing description. All changes which come within the meaning and range of
equivalency of the claims are to be embraced within their scope.

Throughout this specification and the claims which follow, unless the context
requires otherwise, the word "comprise”, and variations such as "comprises” or
"comprising", will be understood to imply the inclusion of a stated integer or step or
group of integers or steps but not the exclusion of any other integer or step or group of
integers or steps.

The reference to any prior art in this specification is not, and should not be
taken as, an acknowledgement or any form of suggestion that that prior art forms part

of the common general knowledge in Australia.

\‘)

10

15

20

25

30

20

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. In a computing system comprising an extensible serialization engine that is
capable of serializing and deserializing data objects of various types, a method of
transforming an initial object of an initial type to a final object of a final type, wherein
the method allows for runtime operation of the serialization engine to be altered by
one or more extension routines, without having to replace a monolithic
implementation of the serialization engine, the method comprising acts of:

receiving an initial object of an initial type for runtime processing by
the serialization engine;

receiving type information for the initial type of the initial object;

based on the type. information, generating an intermediate
representation of the initial object that is suitable for runtime modification;

calling one or more custom extension routines to change the
intermediate representation of the initial object, thereby altering the runtime
operation of the serialization engine; and

from the modified intermediate representation of the initial object,
generating a final object of a final type.

2. A method as recited in claim 1, wherein the intermediate representation
comprises an overall type for the initial object and, for one or more objects contained
within the initial object, an object name, an object type, and object data.

3. A method as recited in claim 2, further comprising an act of changing at
least one of the overall object type, and, for the one or more objects contained within
the initial object, the object name, the object type, and the object data.

4. A method as recited in claim 1, further comprising ah act of calling one or
more standard routines to modify the intermediate representation of the initial object.

5. A method as recited in claim 1, wherein modification of the intermediate
representation of the initial object is based on a particular pattern within the type
information.

6. A method as recited in claim 1, wherein modification of the intermediate

representation of the initial object is based on object data within the initial object.

10

15

20

25

21

7. A method as recited in claim 1, wherein the serialization engine is part of a
messaging system for a distributed application that sends and receives one or more
messages, and wherein the initial object and the final object represent at least a
portion of a message.

8. A method as recited in claim 1, wherein the initial object comprises an
in-memory object, and wherein the serialization engine operates to serialize the initial
object to generate the final object.

9. A method as recited in claim 1, wherein the final object comprises an
in-memory object to be instantiated and populated based on the initial object, and
wherein the serialization engine operates to deserialize the initial object to generate
the final object.

10. A method as recited in claim 1, wherein the one or more custom extension
routines called to change the intermediate representation specify how to change the
intermediate representation, without actually changing the intermediate
representation, such that changing the intermediate representation is deferred until
generating the final object, in order to reduce buffering requirements.

11. For a computing system comprising an extensible serialization engine that
is capable of serializing and deserializing data objects of various types, a computer
program product comprising one or ore computer readable media carrying computer
executable instructions that implement a method of transforming an initial object of
an initial type to a final object of a final type, wherein the method allows for runtime
operation of the serialization engine to be altered by one or more extension routines,
without having to replace a monolithic implementation of the serialization engine, the
method comprising acts of:

receiving an initial object of an initial type for runtime processing by
the serialization engine;

receiving type information for the initial type of the initial object;

based on the type information, generating an intermediate

represéntation of the initial object that is suitable for runtime modification;

15

20

25

22

calling one or more custom extension routines to change the
intermediate representation of the initial object, thereby altering the runtime
operation of the serialization engine; and

from the modified intermediate representation of the initial object,
generating a final object of a final type.

12. A computer program product as recited in claim 11, wherein the
intermediate representation comprises an overall type for the initial object and, for
one or more objects contained within the initial object, an object name, an object type,
and object data. '

13. A computer program product as recited in claim 12, the method further
comprising an act of changing at least one of the overall object type, and, for the one
or more objects contained within the initial object, the object name, the object type,
and the object data.

14. A computer program product as recited in claim 11, the method further
comprising an act of calling one or more replaceable standard routines to modify the
intermediate representation of the initial object.

15. A computer program product as recited in claim 11, wherein modification
of the intermediate representation of the initial object is based on at least one of a
particular pattern within the type information, metadata, and object data within the
initial object.

16. A computer program product as recited in claim 11, wherein if the initial
object comprises an in-memory object, the serialization engine operates to serialize
the initial object to generate the final object, and if the final object comprises an
in-memory object to be instantiated and populated based on the initial object, the
serialization engine operates to deserialize the initial object to generate the final
object.

17. A computer program product as recited in claim 11, wherein both the

initial object and the final object are in-memory objects.

10

15

20

25

30

23

18. A computer program product as recited in claim 11, wherein the one or
more custom extension routines called to change the intermediate representation
specify how to change the intermediate representation, without actually changing the
intermediate representation, such that changing the intermediate representation is
deferred until generating the final object, in order to reduce buffering requirements.

19. In a computing system comprising an extensible serialization engine that
serializes and deserializes data objects of various types, a method of converting an
initial object of an initial type to a final object of a final type, wherein the method
allows for operation of the serialization engine to be altered at runtime by one or more
extension routines, without having to replace one or more other existing routines of
the serialization engine, the method comprising steps for:

identifying type information for an initial object of an initial type
received for runtime processing by the serialization engine;

based on the type information, converting the initial object to an
intermediate representation of the initial object that is suitable for runtime
modification;

modifying the intermediate representation of the initial object in
“accordance with one or more extension routines, thereby altering the runtime
operation of the serialization engine; and

converting the intermediate representation of the initial object to a final
object of a final type.

20. A method as recited in claim 19, wherein the intermediate representation
of the initial object comprises at least one of an object name, an object type, and
object data.

21. A method as recited in claim 20, wherein the step for modifying the
intermediate representation of the initial object in accordance with one or more
extension routines, comprises modifying at least one of the object name, the object
type, and the object data.

22. A method as recited in claim 19, further comprising a step for modifying
the intermediate representation of the initial object in accordance with one or more

standard routines within the serialization engine.

15

20

25

30

24

23. A method as recited in claim 19, wherein modification of the intermediate
representation of the initial object is based on either a particular pattern within the
type information, object data within the initial object, or both.

24. A method as recited in claim 19, wherein the initial dbject comprises an
in-memory object and the serialization engine serializes the initial object to generate
the final object.

25. A method as recited in claim 19, wherein both the initial object and the

final object are in-memory objects.

26. A method as recited in claim 19, further comprising a step for deferring

modification of the intermediate representation until the intermediate representation is

converted to the final object in order to avoid buffering modification of the
intermediate representation.

27. For a computing system comprising an extensible serialization engine that
serializes and deserializes data objects of various types, a computer program product
comprising one or more computer readable media carrying computer executable
instructions that implement a method of converting an initial object of an initial type
to a final object of a final type, wherein the method allows for operation of the
serialization engine to be altered at runtime by one or more extension routines,
without having to replace one or more other existing routines of the serialization
engine, the method comprising steps for:

identifying type information for an initial object of an initial type
received for runtime processing by the serialization engine;

based on the type information, converting the initial object to an
intermediate representation of the initial object that is suitable for runtime
modification,;

modifying the intermediate representation of the initial object in
accordance with one or more extension routines, thereby altering the runtime
operation of the serialization engine; and

converting the intermediate representation of the initial object to a final

object of a final type.

15

20

25

25

28. A computer program product as recited in claim 27, wherein the
intermediate representation of the initial object comprises at least one of an object
name, an object type, and object data.

29. A computer program product as recited in claim 27, wherein the step for
modifying the intermediate representation of the initial object in accordance with one
or more extension routines, comprises modifying at least one of the object name, the
object type, and the object data.

30. A computer program product as recited in claim 27, the method further
comprising a step for modifying the intermediate representation of the initial object in
accordance with one or more standard routines.

31. A computer program product as recited in claim 27, wherein modification
of the intermediate representation of the initial object is based on either a particular
pattern within the type information, object data within the initial object, or both.

32. A computer program product as recited in claim 27, wherein the final
object comprises an in-memory object to be instantiated and populated based on the
initial object, and wherein the serialization engine deserializes the initial object to
generate the final object.

33. A computer program product as recited in claim 27, wherein both the
initial object and the final object are in-memory objects.

34. A computer program product as recited in claim 27, the method further
comprising a step for deferring modification of the intermediate representation until
converting the intermediate representation to the final object.

35. A computer program product implementing an extensible serialization
engine for transforming one or more initial objects of one or more 1nitial types to one
or more final objects of one or more final types, wherein runtime operation of the
serialization engine may be altered, without having to re-implement existing portions
of the serialization engine, the computer program product comprising one or more
computer readable media carrying computer executable instructions in the form of

program modules, the program modules comprising:

15

20

25

30

26

a runtime replaceable reflection module for identifying type
information for an initial object of an initial type received for runtime
processing by the serialization engine;

one or more runtime replaceable conversion modules for generating
and modifying an intermediate representation of the initial object based on the
identified type information, wherein the one or more runtime replaceable
conversion modules comprise one or more extension routines that alter the
runtime operation of the serialization engine; and

a runtime replaceable generation module for creating a final object of a
final type from the intermediate representation generated by the conversion
module.

36. A computer program product as recited in claim 35, wherein the
intermediate representation comprises an object name, an object type, and object data
for the initial object and any objects contained within the initial object.

37. A computer program product as recited in claim 35, wherein the one or
more runtime replaceable conversion modules are capable of changing at least one of
an object name, an object type, and object data for the initial object and any objects
contained within the initial object.

38. A computer program product as recited in claim 37, wherein the one or
more runtime replaceable conversion modules are capable of tracking information
about the initial object, without modifying the intermediate representation.

39. A computer program product as recited in claim 35, wherein the one or
more runtime replaceable conversion modules comprise one or more standard routines
to modify the intermediate representation.

40. A computer program product as recited in claim 35, wherein the one or
more runtime replaceablé conversion modules are capable of modifying the
intermediate representation of the initial object based on either a particular pattern
within the type information, object data within the initial object, or both.

41. A computer program product as recited in claim 35, wherein the runtime
replaceable generation module is capable of creating the final object in eXtensible

Markup Language (XML) format.

WY

10

15

20

25

27

42. A computer program product as recited in claim 35, wherein the runtime
replaceable generation module is capable of instantiating and populating the final
object based on the intermediate representation.

43. A computer program product as recited in claim 35, wherein the one or
more runtime replaceable conversion modules are capable of deferring one or more
modifications to the intermediate representation of the initial object until the
intermediate representation is converted to the final object so as to avoid buffer
requirements associated with making the one or more modifications to the

intermediate representation.

44. A computer program product substantially as hereinbefore described with
reference to the drawings.

45. A method substantially as hereinbefore described with reference to the
drawings.

46. The steps, features, compositions and compounds disclosed herein or
referred to or indicated in the specification and/or claims of this application,
individually or collectively, and any and all combinations of any two or more of said

steps or features.

DATED this TWENTY FOURTH day of FEBRUARY 2004

Microsoft Corporation

by DAVIES COLLISON CAVE
Patent Attorneys for the applicant(s)

1/7

)
o w mo
-
235 £S5
> % - o .
\ﬁ A
T T T
! |]
[} |
- g
||||| | nfndeieief et iy AN
I | |
“ [} I m
- [}
L §w B
..... rE2a3o, 7777 2
I w2 o =
| o T < 1
I Qg v c
..... [K - S . 8
-
QO = l]
I | 1 N
.....] E
| 1 | 4
| | 1 (72}
| I t
]] 1
T L T
I t [}
| I t
[} I [}
)] |
ket Fe===-r==---r----
|] |
| | |
(I — iy |
I Lo w L ___ |
i PO
1D I ™
I > 9O v
||||| =1 I
r o = T
i (&) |
' |]
t I t
] |]
iututuind shaladetef ntuhaiaded nintabute
|] 1
[} 1 i
[}] [}
! ! 1
T L T
I] I
I |]
]]]
| !]
F-—-- F===-r----r----
] |]
RS
L Sw I
it ===
[T TR
o2
g 3N
b g2 © Y |
| o |
.~ rQ -F-—--
), = i
] i 1
| | 1
| [I
r r r=-
| I |
| }]
] i |
L) L
5 8 B
=) =8
Cesmy (F W = =0
8% - < o
(@) p= o

Fig. 1

Type Bridge Pipeline 200

/2

(Serialize)

g"ir:if;t Initial

0 .

210 Object

240
Standard>\
Routine
) 250
Intermediate Intermediate Intermediate

Format . .

220 Representation Representation

- 260A 2608 Standard

Routine
Custom 270
Extension
_ Routine

Final 260 Final
Format .

230 Object

280

Fig. 2

Final

Type Bridge Pipeline 300
(Deserialize)

Final

Type
310

Intermediate

Type
320

Initial

Standard
Routine

350>/‘

Type
330

Initial

Intermediate
Representation

Intermediate
Representation
3608

Object
380

z

Standard
Routine
370

360A T

Custom
Extension
Routine
360

Object
340

Fig. 3

L/E

Managed

Code /CLR
410

Intermediate / Flex

Initial

Type Bridge Pipeline 400
(Transform)

Object
440

Standard
or Custom
Routine
450

420

Infoset | XML
430

Intermediate
Representation
460A

Intermediate
Representation
4608

Final
Object
480

z

Standard
or Custom

Routine
470

Standard or Custom

Extension
Routine
460

Fig.

4

L/Y

S/7

Receive Initial Object 4512

Receive Type Information +—522

Identify Type Information
520

- —— ————— - ———— —— —— ———— - ——— —— — —— ——

Call Custom Extension Routine(s) -L 532

Call Standard Routine(s) +— 534

Convert to Intermediate

!
l |
' |
' |
' |
' |
' |
i y i
' |
: |
. :
' |
: !
| Representation 530 |

v —— - ——— v a2 e ————— —— ———— o — e = —— s —— b —— - ——————

Specify How To Change
Intermediate Representation

Change Object
Name/Type/Data

Defer
Modification 550

542/ Modify Intermediate
Representation 540

To Fig. 5B

Fig. 5A

6/7

From Fig. 5A

Generate Final Object +— 562
563~ | v 564
Serialize Deserialize
565 ~ ! ! /566
Create Object Instatiate
< 568
Populate

Convert Intermediate

Representation To Final

Object 560

—

|
System Memory 622 620 :
(ROM) 624 e : 647
Bios 626 :
F-m oo = Processing I)
(RAM) 625 Unit Video | Monitor
) 621 Adapter 648 |
Operating — |
ystem 635 T \r £ T i
|
Application | 623 [. ,
rograms 36 <‘L 7 ‘System Bus 7 7 : F 1g. 6
|
Other Program : |
Modules 637 ﬂ /632 u /633 l/ /634 /646 :
Hard Disk Magnetic Disk Optical Serial Network 1 ! Local Area Network
Drive Drive five Port Interface [N\ L
Pr. 8 gram Interface Interface Interface Interface : L 661
ata 38 627 t
= o °) 628—*‘% (i] |
T 630 | WideArea
———————————— tr ﬁf'—————- Network
I\
631 64 662 {l 7
- R 849~ Remote | 5490 Remote
. Computer Computer
yid 642 Keyboard
Operating Application | Other Program Program 6362 — Application %G%‘b Avolication 660 _
ystem 635 rogramsggg| Modules 537 Data 635 a rograms L rggrams n

L/1

	Abstract
	Description
	Claims
	Drawings

