A light emitting device for optic fiber decoration, comprising a flash control IC, a plurality of different colored LED’s, a variable resistor and a light-sensitive resistor, driven by 4.5 V DC voltage to control the flash control IC, with output from the flash control IC controlling each LED to produce alternated and gradually changing flashing lights. Each LED projects lights into the optic fiber, producing romantic light changes to the optic fiber decoration. The invention can be used to replace the light-emitting device, including light bulbs, a motor, color discs and such sophisticated structures in a conventional optic fiber decoration, for the effects of safer use, more energy saving and higher efficiency than conventional types.
Fig. 1
LIGHT-EMITTING DEVICE FOR OPTIC FIBER DECORATION

BACKGROUND OF THE INVENTION

(a) Field of the invention

A light-emitting device for optic fiber decoration, particularly a decoration (such as an angle, a Christmas tree, etc.) made mainly of optic fibers, projecting light into the optic fibers and out of the end openings of the optic fibers. The invention comprises a flash control IC, a plurality of LED’s, a variable resistor, and a light-sensitive resistor, driven by a 4.5 DC battery unit. The low 4.5V DC voltage activates the flash control IC. The output from the flash control IC drives each LED to produce gradually changing and flashing lights of different colors alternately flashing on and off through optic fibers in various configurations (such as the wings of an angel, the outline of a Christmas tree, etc.), designed to replace conventional light-emitting mechanism with such features as safe use, energy saving and enhanced efficiency.

(b) Description of the Prior Art

The light-emitting device of conventional optic fiber decoration consists of a motor, transmission gear set, color discs, and light bulbs; the motor driven by a battery unit (or a voltage converter) to transmit the gear set in reduced speed and rotate the color discs slowly, so that the lights from the light bulbs are projected through the color discs (the discs made of transparent materials, on the discs are distributed with color sectors in different colors and patterns) and into the optic fibers. The lights then come out of the end openings of the optic fibers to display colorful lights and color tones in gradual changing phases. Such optic fiber decorative products are suitable for festivals or special occasions (such as a Christmas tree, an angel, an animal, a landscape scale, etc.) because of their beautiful color changes and alternatively flashing lights to enrich the atmosphere. The conventional light-emitting device, however, consists of numerous components including a motor, a transmission gear set, color discs and light bulbs, which involve difficulties in assembling process. Furthermore, mechanical transmission consumes much power energy. In case it is battery-driven, the user would often have to pay additional cost for replacing the battery. Moreover, mechanical transmission involves high wear and tear, high trouble rate, high heat generated by the motor and light bulbs which may burn out or even burn the decoration (many decorative articles contain combustible materials, such as Styrofoam, paper or fabrics) or burn the user. There is much room for improvement.

SUMMARY OF THE INVENTION

In view of the shortcomings in conventional light-emitting device in optic fiber decorations, the inventor has dedicated in the research for possible improvement, and based on many years experience in the research and development, and production, has come up with the present invention of “light-emitting device for optic fiber decoration” to replace the conventional type of mechanical construction with such characteristics as power saving, safe use, high performance and better variation effects.

For better understanding of the characteristics and technical contents of the present invention, please refer to the following description and drawings.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a wiring diagram of the present invention.
FIG. 2 is a schematic view of the invention.
FIG. 3 is an embodiment view of the invention installed inside an optical fiber decoration with an angle figure.
FIG. 4 is an embodiment view of the invention installed in an optical fiber decoration with an angel figure with flashing light effects.

BRIEF DESCRIPTION OF NUMERALS

10	flash control IC
20	LED
30	variable resistor
40	light-sensitive resistor
50	circuit board
60	circuit
70	battery unit
80	optic fiber

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Please refer to FIGS. 1 and 2, the invention comprises a flash control IC 10, a plurality of different colored LED 20, a variable resistor 30 and a light sensitive resistor 40, driven by 4.5V DC voltage. The whole structure is installed on a circuit board 50. The circuit board 50 is connected by a wire 60 with a battery unit 70. A 4.5V battery contained inside the battery unit 70 activates the flash control IC 10. Output of the flash control IC 10 controls each LED 20 to produce step-by-step and alternative flashing on and off. Using varied resistances of the variable resistor 30, the invention is capable of changing the output effect of the flash control IC 10, giving respective LED’s 20 their variable and beautiful light effects and much fun. Optionally, a light-sensitive resistor 40 is installed to detect changes of ambient light sources and activate or deactivate the flash control IC 10. For instance, this invention installed in a decoration will not function in a well-lit environment (or at daytime). On the other hand, when this invention is placed in a dim or dark environment (or turning from daylight to nighttime), the light-sensitive resistor 40 detects the change of light and automatically activates the flash control IC 10, switching on the LED 20 in the invention.

The present invention can be installed inside an optic fiber decoration. As shown in FIG. 3, the invention is installed inside an optic fiber decoration with an angel figure. All LED’s 20 of the invention are installed at the bottom of a bundle of optic fibers 80. The flashing light produced from each LED 20 travels into each optic fiber 80 and out of the end opening of the optic fiber 80. As shown in the embodiment, the optic fibers make up the wings of the angel, so many gradually changing and flashing lights of different colors produce an excellent psychedelic atmosphere, as shown in FIG. 4.

The entire unit of the invention is an electronic structure, without any mechanical drive or transmission.
mechanism, characterized in such features as: simplified structural design, compact size, easy assembling (for automated production), no wear and tear after extended use, low trouble rate, energy saving, durable and generating no heat, which are all important factors to ensure economic efficiency and safe use.

[0015] Summing up, the present invention is a delicately designed electronic structure, with effective improvement on shortcomings of conventional optic fiber decoration devices, such as simplified structural design, compact size, easy assembling (for automated production), no wear and tear after extended use, low trouble rate, energy saving, durable, generating no heat, economical and safe, which are all superior and more advanced than similar products. With its inventive step, improvement and applicability that have not yet been disclosed in public, this application is filed. Your favorable consideration will be appreciated.

What is claimed is:
1. A light-emitting device for optic fiber decoration, comprising a flash control IC, a plurality of different colored LED's, a variable resistor and a light-sensitive resistor, driven by 4.5V DC voltage to control the flash control IC, with output from the flash control IC controlling each LED to produce alternated and gradually changing flashing lights.

* * * * *