wo 2011/071624 A2 || 0K 00O RO O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

Co o
1 rld Intellectual Property Organization /) -sady
(19) World Intellectual Property Organization /gy 1IN I VAN U 00 0N V00O OO 1
International Bureau S,/)
3\ 10) International Publication Number
(43) International Publication Date \'{:/_?___/ (10)
16 June 2011 (16.06.2011) PCT WO 2011/071624 A2
(51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every
HO04L 12/26 (2006.01) kind of national protection available): AE, AG, AL, AM,
. o AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
(21) International Application Number: CA. CH. CL. CN. CO. CR. CU. CZ. DE. DK. DM. DO
PCT/US2010/055739 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
5 November 2010 (05.11.2010) KR, KZ, ILA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
- . ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
(25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
(26) Publication Language: English SE, 8G, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(30) Priority Data: . o
12/636,712 12 December 2009 (12.12.2009) Us (84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
(71) Applicant (for all designated States except US): MI- GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
CROSOFT CORPORATION [US/US]; One Microsoft ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
Way, Redmond, Washington 98052-6399 (US). TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
(72) Inventors: WHEELER, Bradley; c/o Microsoft Corpo- EE, ES, FI, FR, GB, GR, HR, HU, I, IS, IT, LT, LU,

ration, LCA - International Patents, One Microsott Way, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SL SK,

Redmond, Washington 98052-6399 (US). GRIFFIN, 21;/{; 11:/}[{]3’ 1(\)/[?{1){\1(]]33 FS’I\]? JZFSFZFE?’ CL CM, GA, GN, GQ,
Bryan; c¢/o Microsoft Corporation, LCA - International ’ ’ T e ’

Patents, One Microsoft Way, Redmond, Washington Declarations under Rule 4.17:

98052-6399 (US).

as to applicant's entitlement to apply for and be granted
a patent (Rule 4.17(i1))

[Continued on next page]

(54) Title: CLOUD COMPUTING MONITORING AND MANAGEMENT SYSTEM

(57) Abstract: A cloud computing monitoring system has an alert captur-
ing system and a message transfer system that provides performance track-
ing and alert management to a local monitoring system. The alert capturing
system may operate as part of a managed code framework and may capture
and route alerts that may be transmitted to an operating system, as well as
application exceptions and debugging information. A message queuing
system may transmit the alerts to a local monitoring system, which may
have a connector that subscribes to the cloud system's message queuing
system.

L INSTANCES
1 148
b~

)
162

VIESSAGE ! EVENTS)] I
QUEUING

170 172
APPLICATIONS J—{INSTRUMENTATION
e o [
ili [OPERATING SYSTEM| -
CLOUD LAYER ABSTRACTION] _, FRAMEWORK]

HARDWARE FABRIC 166

144
CLOUD COMPUTING
ENVIRONMENT
136 132
INSTRUMENTATIONH APPLICATIONS
138 a0l
DPERATING
134 SYSTEM

EVENT MANAGER

VIRTUAL
MACHINES 176"
164

RUNTIME ENVIRONMENT

128 HARDWARE PLATFORM

126
DEVICES

MONITORING
APPLICATION

DATABASE
118 OPERATING USER 123
SYSTEM INTERFACE

CONNECTORS

HISTORY

Y

1
MONITORING SYSTEM FOR
CLOUD APPLICATIONS

WO 2011/071624 A2 I 0000)00 A0 AU A

— as fto the applicant's entitlement to claim the priority of Published:
the earlier application (Rule 4.17(iii)) — without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

10

15

20

25

30

WO 2011/071624 PCT/US2010/055739

CLOUD COMPUTING MONITORING AND MANAGEMENT SYSTEM
Background

[0001] Cloud computing is a computing paradigm that abstracts many aspects of a
conventional computer. In a cloud environment, the hardware components may be
abstracted into a hardware fabric. The hardware fabric may be many server computers
located in one or more datacenters, and the datacenters may be geographically dispersed.
[0002] In many cloud environments, the conventional notion of an operating system may
also be abstracted so that applications may operate in a runtime environment, but with
limited access to operating system functions.
[0003] The cloud environment may execute applications in a manner that is highly
scalable. A developer may provide an application to execute, and a management system
may determine how much computing resources to allocate, the geographic location of
those resources, and may determine which hardware platforms on which to execute the
application. In some cases, an administrator may be able to determine some upper and
lower limits to the computing resources, but the cloud management system may handle
allocating the specific resources and managing the execution of the application.
[0004] Cloud environments may allow applications to scale up and down with load, as the
cloud management system may allocate resources during high load periods and free up
resources during low loads.

Summary
[0005] A cloud computing monitoring system has an event capturing system and a
message transfer system that provides performance tracking and alert management to a
local monitoring system. The event capturing system may operate as part of a managed
code framework and may capture and route alerts that may be transmitted to a monitoring
system, as well as application exceptions and debugging information. A message queuing
system may transmit the events to a local monitoring system, which may have a connector
that subscribes to the cloud system’s message queuing system. The monitoring system
may be a framework or executable code library that can be linked to and called by the
application.
[0006] This Summary is provided to introduce a selection of concepts in a simplified form
that are further described below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the claimed subject matter, nor is

it intended to be used to limit the scope of the claimed subject matter.

10

15

20

25

30

WO 2011/071624 PCT/US2010/055739

Brief Description of the Drawings
[0007] In the drawings,
[0008] FIGURE 1 is a diagram illustration of an embodiment showing a network
environment in which a monitoring system may operate with a cloud computing
environment.
[0009] FIGURE 2 is a timeline illustration of an embodiment showing a method of
capturing, transmitting, and using monitored events.
[0010] FIGURE 3 is a diagram illustration of an embodiment showing a cloud computing
environment with a monitoring framework.

Detailed Description

[0011] A cloud computing runtime environment may have a monitoring framework that
includes executable routines for capturing and reporting errors, debugging information,
performance information, status, and other information that may be transferred to a
centralized monitoring application. The centralized monitoring application may collect
information from multiple executing applications to provide alerting and management
functions to administrators. In some embodiments, the monitoring application may be
used in a network operations center for real time network and applications monitoring.
[0012] The monitoring framework may include functions for capturing information from
an application and communicating that information to a monitoring application. The
monitoring framework may receive the information to transmit, prepare messages from the
information, and transmit those messages to the monitoring system in a format that the
monitoring system may consume. In some embodiments, a message queuing system may
be used to transmit the messages to a monitoring system that has a connector or other
mechanism by which the monitoring system may subscribe to the message queue.
[0013] The monitoring framework may be included in a runtime environment for a cloud
computing environment in some embodiments. The runtime environment may be a
managed code environment that may include real time linking, garbage collection, and
other services. In some embodiments, the monitoring framework may be included in a
software development kit or other predefined set of executables against which an
application may be developed, tested, and deployed in a cloud environment.
[0014] Throughout this specification, like reference numbers signify the same elements
throughout the description of the figures.
[0015] When elements are referred to as being “connected” or “coupled,” the elements can

be directly connected or coupled together or one or more intervening elements may also be

2

10

15

20

25

30

WO 2011/071624 PCT/US2010/055739

present. In contrast, when elements are referred to as being “directly connected” or
“directly coupled,” there are no intervening elements present.

[0016] The subject matter may be embodied as devices, systems, methods, and/or
computer program products. Accordingly, some or all of the subject matter may be
embodied in hardware and/or in software (including firmware, resident software, micro-
code, state machines, gate arrays, etc.) Furthermore, the subject matter may take the form
of a computer program product on a computer-usable or computer-readable storage
medium having computer-usable or computer-readable program code embodied in the
medium for use by or in connection with an instruction execution system. In the context
of this document, a computer-usable or computer-readable medium may be any medium
that can contain, store, communicate, propagate, or transport the program for use by or in
connection with the instruction execution system, apparatus, or device.

[0017] The computer-usable or computer-readable medium may be for example, but not
limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, device, or propagation medium. By way of example, and not
limitation, computer-readable media may comprise computer storage media and
communication media.

[0018] Computer storage media includes volatile and nonvolatile, removable and non-
removable media implemented in any method or technology for storage of information
such as computer-readable instructions, data structures, program modules, or other data.
Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash
memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other
optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic
storage devices, or any other medium which can be used to store the desired information
and may be accessed by an instruction execution system. Note that the computer-usable or
computer-readable medium can be paper or other suitable medium upon which the
program is printed, as the program can be electronically captured via, for instance, optical
scanning of the paper or other suitable medium, then compiled, interpreted, of otherwise
processed in a suitable manner, if necessary, and then stored in a computer memory.
[0019] Communication media typically embodies computer-readable instructions, data
structures, program modules or other data in a modulated data signal such as a carrier
wave or other transport mechanism and includes any information delivery media. The
term “modulated data signal” can be defined as a signal that has one or more of its

characteristics set or changed in such a manner as to encode information in the signal. By

10

15

20

25

30

WO 2011/071624 PCT/US2010/055739

way of example, and not limitation, communication media includes wired media such as a
wired network or direct-wired connection, and wireless media such as acoustic, RF,
infrared and other wireless media. Combinations of any of the above-mentioned should
also be included within the scope of computer-readable media.

[0020] When the subject matter is embodied in the general context of computer-executable
instructions, the embodiment may comprise program modules, executed by one or more
systems, computers, or other devices. Generally, program modules include routines,
programs, objects, components, data structures, and the like, that perform particular tasks
or implement particular abstract data types. Typically, the functionality of the program
modules may be combined or distributed as desired in various embodiments.

[0021] Figure 1 is a diagram of an embodiment 100, showing a cloud environment with a
monitoring system. Embodiment 100 is a simplified example of a device with a
monitoring system that may work in conjunction with applications in a cloud computing
environment, where the cloud applications may use a monitoring framework to capture
and transmit messages consumed by the monitoring application.

[0022] The diagram of Figure 1 illustrates functional components of a system. In some
cases, the component may be a hardware component, a software component, or a
combination of hardware and software. Some of the components may be application level
software, while other components may be operating system level components. In some
cases, the connection of one component to another may be a close connection where two
or more components are operating on a single hardware platform. In other cases, the
connections may be made over network connections spanning long distances. Each
embodiment may use different hardware, software, and interconnection architectures to
achieve the described functions.

[0023] Embodiment 100 is an example of a monitoring system that may monitor cloud
applications. The monitoring system may monitor many different devices, applications,
and other components, then consolidate the status of the components into a user interface.
The monitoring system may be used to monitor the health and status of an enterprise’s
information technology infrastructure in a centralized manner.

[0024] The information infrastructure may include many different servers, services,
applications, and other components. Some of the components may be local or on premise
components, such as applications executing on the monitoring device as well as
applications executing on devices within a local area network. Other components may be

remote components, such as cloud applications.

10

15

20

25

30

WO 2011/071624 PCT/US2010/055739

[0025] Cloud computing environments have different variations. In one type of cloud
computing environment, a virtual machine may be created and executed on a remote
hardware fabric. The virtual machine may have an operating system or other function that
may be configured and instrumented to interface with a monitoring system.

[0026] In another type of cloud computing environment, a hardware fabric may have
multiple server devices that each have an operating system, and each may also have a
cloud layer operating on top of the operating systems. The cloud layer may abstract the
operating system from the application, and provide many automated management
functions. The cloud layer may provide load balancing, redundancy, replication in
different geographic areas, resource management, and other functions. In many
implementations, the cloud layer may automatically manage the resources used to execute
a cloud application.

[0027] Many cloud computing environments may implement a monitoring framework. A
monitoring framework may be a set of functions that can be called by an application to
capture information and transmit the information to a monitoring system. The monitoring
framework may create messages that encapsulate the information to be transmitted, where
the messages are compatible with a monitoring system both in format and delivery.

[0028] A device 102 may be used to monitor various components, including applications
executed in a cloud environment. The device 102 may have a hardware platform 104 and
various software components 106. The device 102 is illustrated as a standalone device on
which a monitoring application may operate.

[0029] The hardware platform 104 may by a typical computing platform, such as a server
or desktop computer. The hardware platform 104 may include a processor 108, random
access memory 110, and nonvolatile storage 112. The hardware platform 104 may also
include a network interface 114 as well as a user interface 116.

[0030] In many embodiments, the hardware platform 104 may be a server computer, but in
other embodiments, the hardware platform 104 may be any type of computing device. For
example, the hardware platform 104 may be a server computer, desktop computer, laptop
computer, netbook computer, or other device. In some cases, the hardware platform 104
may be a mobile device, such as a personal digital assistant, portable computer, mobile
telephone, or other mobile device.

[0031] The software components 106 may include an operating system 118 on which a

monitoring application 120 may execute. The monitoring application 120 may have

10

15

20

25

30

WO 2011/071624 PCT/US2010/055739

several connectors 122 that may gather information from specific devices, applications, or
other monitored components.

[0032] The monitoring application 120 may gather information from other components
and aggregate the information into a user interface. In one use scenario, the monitoring
application 120 may be used to monitor the performance, configuration, and use of
hardware and software components within a company or other enterprise. The monitoring
application 120 may alert an administrator when problems may come up on any of the
monitored components, as well as give a status of the components. In many embodiments,
the monitoring application 120 may provide real time or near-real time updates and status
of the monitored components.

[0033] In some embodiments, the monitoring application 120 may have a user interface
123 in which the status of the monitored components and any alerts may be presented.
The monitoring application 120 may use a messaging system to transmit alerts or other
messages to various recipients using email, voicemail, or other mechanisms. The alerts
may be emergency messages, for example, that may be transmitted when an urgent event
may be detected.

[0034] The monitoring application 120 may have several connectors 122. The connectors
122 may connect with various information sources to collect and gather information about
monitored components. The information sources may be any application, function,
device, or other component that may generate alerts, events, performance data, or other
information that may be consumed by a monitoring application 120. The connectors 122
may be active functions that may request information from a source as well as passive
functions that may receive information on a periodic basis or when the information is
available.

[0035] An active connector 122 may periodically initiate data collection. In some
embodiments, a connector 122 may transmit a request for information to a service that
may return the information requested. In another embodiment, a connector 122 may
contact a remote data storage device and download or retrieve data stored on the storage
device.

[0036] A passive connector 122 may receive a transmission that may be initiated by
another device or service. The other device or service may transmit messages or other
forms of information to the connector 122 on a periodic basis or when there is information

to transmit.

10

15

20

25

30

WO 2011/071624 PCT/US2010/055739

[0037] Some connectors 122 may subscribe to a message queue to receive information
updates. A connector 122 may initiate a subscription by contacting a queuing system or
other messaging system using a Uniform Resource Identifier (URI) or other identifier or
address. In some embodiments, such a connector 122 may present credentials to the
messaging system to be able to receive messages.

[0038] Some messaging systems may create several subscriptions to which one or more
monitoring systems may subscribe. For example, a cloud application may have several
subscriptions available, such as one for high priority alerts, another one for operational
status, and another one for debugging information. In some cases, the monitoring
application 120 may subscribe to one or more of the available subscriptions.

[0039] The monitoring application 120 may gather many different types of information
from a monitored component. The information may include general status information,
performance information, alerts and emergency status, debugging information, and other
information. Some embodiments may have different mechanisms for handling different
types of information, including different manners for gathering, storing, processing, and
presenting the information.

[0040] Status information may indicate the current operational state of a component. The
status information may be updated when a component may be started, paused, stopped, or
have other state changes. In many cases, the status information may be provided on a real
time or near-real time basis. The status information may be used to present high level
overview of the various monitored components. For example, a dashboard view of a set of
monitored applications may be presented with green icons for operational status and red
icons for stopped or paused status. A single user interface may provide a current status for
many different monitored components in an easy to scan user interface.

[0041] Performance information may include various summary or detailed statistics about
the operation of a component. For a monitored hardware component, performance
information may include processor usage, disk capacity, network activity, memory usage,
and other information. For a monitored software application, performance information
may include number of requests processed, amount of data transmitted, or other
performance metrics. The type of performance information may differ with different types
of applications. Some performance information may be real time information that may be
transmitted and displayed in a time sensitive manner. Other performance information may
be historical information that may be transmitted to the monitoring application 120 on a

delayed basis.

10

15

20

25

30

WO 2011/071624 PCT/US2010/055739

[0042] The performance information may be summary statistics as well as detailed
information used to generate the summary statistics. Some embodiments may transmit
summary statistics in different manner than the detailed information. For example, the
summary statistics may be updated frequently using a message notification system that
pushes the summary statistics to the monitoring application 120 while the detailed
information may be stored in a remote database and pulled by the monitoring application
120 when the information may be requested.

[0043] In some embodiments, the summary statistics may be generated by a monitoring
framework from the detailed performance information. In other embodiments, the detailed
performance information may be transmitted to the monitoring application 120 and the
summary statistics may be generated by the monitoring application 120.

[0044] Alert and emergency information may include high priority messages that may be
used to identify actions that may be taken. For example, an alert may be generated when
the available storage space has decreased to a very low limit, or when a terminal error has
occurred with an application. In some embodiments, alerts may be processed by the
monitoring application 120 and transmitted to an administrator using email, voicemail, or
other mechanism.

[0045] Debugging information may be information that may be used by a developer to
track down and solve problems. Debugging information may be very detailed and very
voluminous. For example, debugging information may include indicators when a function
is called along with parameters that are passed into or out of the function.

[0046] In some embodiments, the information transmitted to the monitoring system 120
may be defined by both policies and configuration settings. A policy may be a high level
definition of the information that may be collected and transmitted. Some embodiments
may have hierarchical policies where child policies inherit properties from parent policies.
Configuration settings may include specific parameters, algorithms, or conditions that may
be adjusted to determine which information to collect and transmit. Some embodiments
may have other mechanisms for defining the information that may be collected and
transmitted.

[0047] The monitoring application 120 may store the collected information in a history
database 121. The history database 121 may contain information that was collected over a
period of time. In some embodiments, the history database 121 may be used to generate
summary statistics that may be displayed on the user interface 123, as well as detailed data

that a user may display by drilling down into the information.

10

15

20

25

30

WO 2011/071624 PCT/US2010/055739

[0048] The monitoring application 120 may collect information from many different
sources. The device 102 may be connected to a local area network 124 and to several
devices 126 connected to the local area network 124. The devices 126 may have sources
for information collected, managed, and displayed by the monitoring application 120.
[0049] The devices 126 may have a hardware platform 128, as well as an operating system
130 and various applications 132. The hardware platform 128 may be similar to the
hardware platform 104 of device 102, and the devices 126 may be server computers,
desktop computers, laptop computer, personal digital assistants, cellular telephones,
network appliance, or any other computing device.

[0050] The applications 132 may have instrumentation 136 that may identify information
to collect and cause the information to be stored in an event manager 134. The event
manager 134 may be an application or operating system level function that collects various
events that occur in the operating system 130 or applications 132 for administrative or
other uses. A connector 138 may communicate with the connectors 122 to communicate
information collected by the event manager 134 and transmit the information to the
monitoring application 120.

[0051] The instrumentation 136 may be functions that are added to or called by the
applications 132 to collect information. The instrumentation 136 may be routines that
gather debugging information, performance information, status information, or other
information. In some cases, the instrumentation 136 may monitor an application or
operating system function to gather status, performance, and other information without
being called directly by the application or operating system function.

[0052] A cloud computing environment 144 may also be monitored by the monitoring
application. The device 102 may be connected to a local area network 124 to a gateway
140 to a wide area network 142. The wide area network 142 may be the Internet, for
example. The cloud computing environment 144 may be connected to the Internet or wide
area network 142.

[0053] The cloud computing environment 144 may have a hardware fabric 146 that is
abstracted from a user, developer, or administrator. In many cases, a hardware fabric 146
may be a large datacenter or a group of large datacenters that may contain many hundreds,
thousands, or even hundreds of thousands of computing devices. Many datacenters have
redundant power sources, redundant network connections, and many failover mechanisms

so that very high availability and very high uptimes are achieved.

10

15

20

25

30

WO 2011/071624 PCT/US2010/055739

[0054] The cloud computing environment 144 may include internal management systems
that perform load balancing, clustering, and other functions that allow capacity to be
allocated or de-allocated to certain processes or functions. In many cases, a cloud
computing environment 144 may move certain processes or functions to specific
geographical regions, transfer processes from one data center to another, move processes
from one hardware platform to another, or perform other allocation processes without
interaction with end users, developers, or administrators.

[0055] Some cloud computing environments may be shared environments, where a
datacenter operator may offer cloud computing infrastructure for executing applications
from many different customers. Each customer may have an application that is executed
for that customer and is managed by the customer. Even though the application is
managed by the customer, the underlying datacenter operations may be managed by the
datacenter operator. The customer may use a monitoring framework to gather
performance, status, debugging, and other information about their application separately
from the monitoring and management operations that may be performed by the datacenter
operator.

[0056] The cloud computing environment 144 may have a cloud layer abstraction 147 that
may abstract instances 148 having a runtime environment 154. The cloud layer
abstraction 147 may be a software layer that joins multiple hardware devices into a system
where applications may be executed without the conventional notion of an operating
system.

[0057] The runtime environment 154 may execute applications 158 using a runtime
executor 156. The runtime executor 156 may perform linking and execution control of the
applications 158, and the runtime environment 154 may provide additional management
functions such as garbage collection, compilation, and other functions.

[0058] A monitoring framework 160 may be linked into and called by the applications
158. The monitoring framework 160 may be a set of functions that collect, process, and
transmit information from the applications to a monitoring application 120.

[0059] In some embodiments, the monitoring framework 160 may use a message queuing
system 162 to transmit information to the monitoring application 120. A message queuing
system 162 may collect messages from various sources and make the messages available
to a subscriber. In some aspects, the message queuing system 162 may operate like an
email or other message system where the messages may be gathered together in a queue

that can be accessed when the recipient is ready to receive the messages.

10

10

15

20

25

30

WO 2011/071624 PCT/US2010/055739

[0060] The message queuing system 162 may have a subscription service by which a
recipient may receive messages. An intended recipient may contact the message queuing
system 162 to receive messages, and the messages may be pushed to the recipient or
pulled by the recipient. In the case of the monitoring application 120, a connector 122
may be configured to subscribe to a message queue and communicate with the message
queuing system 162 to receive information.

[0061] Some message queuing systems may allow one and only one subscriber to a
particular message queue. Other message queuing systems may permit multiple
subscribers to a single queue.

[0062] In many embodiments, a cloud computing environment may have multiple
instances 148 operating on many different physical machines and sometimes in many
different datacenters that may be geographically dispersed around the globe. In such
embodiments, a message queuing system 162 may act as a central repository for any
messages created by the various instances and allow a monitoring application 120 to
monitor all of the various instances of the application 158 as a single group or unit.

[0063] In some embodiments, a subscriber may present credentials or may otherwise be
authenticated to the message queuing system 162. The authentication may be performed
in many different manners. In some cases, a connector 122 may obtain an authenticated
token from an authentication mechanism 178 and present the authenticated token to the
message queuing system 162 to subscribe.

[0064] Some cloud computing environments 144 may use a virtual machine paradigm.
Virtual machines 164 may have a virtual device 166 that may execute an operating system
167. Various applications 170 may execute within the operating system 167.

[0065] The virtual machine paradigm illustrated by the virtual machines 164 is different
from the cloud layer abstraction of the instances 148 in that the operating system 167 may
be exposed to, selectable by, and managed by the developer or administrator of the various
applications. In the case of the instances 148, the operating system may not be accessed
by the developer or administrator of the applications 158, but in the case of the virtual
machines 164, the operating system 167 may be accessed by the developers or
administrators of the applications 170.

[0066] The applications 170 may have instrumentation 172 and may access the monitoring
framework 173. In some embodiments, the monitoring framework 173 may be the same

as monitoring framework 160.

11

10

15

20

25

30

WO 2011/071624 PCT/US2010/055739

[0067] The monitoring framework 173 is illustrated as outputting information to a storage
174 in which various events 176 may be stored. The storage 174 may store information
that may be pulled by a connector 122. The connector 122 may access the storage 174 to
download the events 176 that may contain the information generated by the monitoring
framework 173.

[0068] The storage 174 may illustrate a different transmission mechanism than the
message queuing system 162. The message queuing system 162 may illustrate a
mechanism by which information may be transmitted to a connector 122 using messages.
In many such systems, a message queuing system 162 may have many features that may
facilitate communication and security. These may include authentication, encryption,
message storage, and other features. The transmission mechanisms of the message
queuing system 162 may be a push type transmission where the message queuing system
162 may transmit messages to the connector 122 when the messages are available. Some
message queuing systems may allow the connector 122 to request messages and may act
as a pull type transmission. The storage 174 may be pull type transmission where a
connector 122 may contact the storage 174 to retrieve the events 176.

[0069] In some embodiments, a monitoring framework may use both a message queuing
system and a storage mechanism for transmitting information. In some such
embodiments, certain classifications or types of data may be transmitted using one
mechanism while other types of data may be transmitted using the other. For example, a
monitoring framework may transmit alerts and emergency messages using a message
queuing system but may transmit debugging information using a storage mechanism.
[0070] Figure 2 is a timeline illustration of an embodiment 200 showing a method for
generating, transmitting, and using information produced by an application. Embodiment
200 illustrates the operations that may be performed by an application 202 in the left hand
column, a monitoring framework 204 in the center column, and a monitoring application
206 in the right hand column. Embodiment 200 may illustrate some of the functions
performed by applications 158 or 170, the monitoring frameworks 160 or 173, and the
monitoring application 120 of embodiment 100.

[0071] Other embodiments may use different sequencing, additional or fewer steps, and
different nomenclature or terminology to accomplish similar functions. In some
embodiments, various operations or set of operations may be performed in parallel with
other operations, either in a synchronous or asynchronous manner. The steps selected here

were chosen to illustrate some principles of operations in a simplified form.

12

10

15

20

25

30

WO 2011/071624 PCT/US2010/055739

[0072] The application 202 may generate information in many different manners. For
example, the application 202 may throw an exception in block 208, start or stop a process
in block 210, or generate performance data in block 212. Other examples may include
generating debugging information, capturing a data value, or encountering a predefined
condition. The information generated by an application 202 may be created within the
application itself or as part of an instrumentation framework that may be linked to and
called from the application executable.

[0073] Any of the information generated in blocks 208-212 may be used to generate an
event in block 214. The event of block 214 may be the information that may be
transmitted by the application 202 and may be consumed by the monitoring application
206. The event may be transmitted by the application 202 and received by the monitoring
framework 204 in block 216.

[0074] The monitoring framework 204 may perform some processing to the event prior to
transmitting the event to the monitoring application 206. The processing may include
filtering the event in block 218 as well as aggregating the event.

[0075] The filtering in block 218 may classify the event and determine how the event may
be handled based on the classification. For example, some events may be identified as
high priority events and may be expedited to the monitoring application 206, while other
events may be ignored based on a policy or configuration setting and not transferred at all.
[0076] Ifthe event is not to be transmitted in block 220, the event may be stored in block
222. In some embodiments, the event may be stored in a data storage system so that the
monitoring application 206 may pull the information from the data storage system at a
later time. In some situations, the event may be discarded.

[0077] If the event is to be transmitted in block 220 and not aggregated in block 224, a
message may be formatted in block 227 and the event may be transmitted in block 228.
[0078] Ifthe vent is to be aggregated in block 224, the event may be stored with other
events for an aggregated transmission in block 226. An aggregated transmission may be
performed in several manners. In one case, a set of events may be consolidated into a
single message for transmission. Such events may be repeated instances of the same event
or may be a group of similar or even unrelated events. In another case, an event that
recurs multiple times may be consolidated into a single event that includes a count of the
number of times the even occurred. For example, a known error event may be aggregated
so that a single message may be transmitted after 100 occurrences of the event have been

received.

13

10

15

20

25

30

WO 2011/071624 PCT/US2010/055739

[0079] The monitoring application 206 may receive the event in block 230. Various
mechanisms may be used to transmit the event in block 228 and receive the event in block
230. Such mechanisms include mechanisms that push events from the monitoring
framework 204 to the monitoring application 206, as well as mechanisms that pull events
from the monitoring framework 204 to the monitoring application 206. The mechanisms
may include message queuing systems, data storage systems, and other communication
mechanisms.

[0080] After receiving the event in block 230, the event may be stored in block 232, The
event may be classified in block 234 and if the event is a high importance event in block
236, an alert may be sent in block 238. If the event is not a high importance event in block
236, the event may be displayed in block 240.

[0081] Figure 3 is a diagram of an embodiment 300, showing a cloud environment with a
monitoring system. Embodiment 300 is a simplified example of a runtime instance that
may execute applications with a monitoring framework.

[0082] The diagram of Figure 3 illustrates functional components of a system. In some
cases, the component may be a hardware component, a software component, or a
combination of hardware and software. Some of the components may be application level
software, while other components may be operating system level components. In some
cases, the connection of one component to another may be a close connection where two
or more components are operating on a single hardware platform. In other cases, the
connections may be made over network connections spanning long distances. Each
embodiment may use different hardware, software, and interconnection architectures to
achieve the described functions.

[0083] Embodiment 300 is an example of a system that may operate as a cloud computing
environment. A hardware fabric 302 may operate a software fabric 304 that provides an
abstracted cloud computing layer. The cloud computing layer may include a runtime
environment 306 that may have multiple instances, such as the instances 148 illustrated in
embodiment 100.

[0084] The runtime environment 306 may include an execution engine 310 that may
execute the application 312 as managed code. In some embodiments, a compiler 314 may
compile the application 312 from source code or intermediate code into executable code.
A linker 316 may link various frameworks, dynamic linked libraries, or other code
elements to the application 312. Some embodiments may have the application 312

defined in an interpreted language.

14

10

15

20

25

30

WO 2011/071624 PCT/US2010/055739

[0085] The runtime environment 306 may include various managed code capabilities, such
as dynamic linking, garbage collection 318, memory management, resource management,
error capturing, and other features.

[0086] The application 312 may include instrumentation 320 that may identify and capture
certain conditions, data, errors, performance metrics, or other events or information. The
instrumentation 320 may call a monitoring framework 322 that may contain several
functions. The monitoring framework 322 may process the information received from the
application 312 and prepare the information to be transmitted to a monitoring system.
[0087] The monitoring framework 322 may have a receiving function 324 that may
receive information from the application 312. The receiving function 324 may perform
initial processing of the information, such as placing the received information into a
format that may be used by the monitoring framework 322 for other functions as well as a
format that may be used by a monitoring application. In some embodiments, the receiving
function 324 may perform some handshaking with the application 312.

[0088] The receiving function 324 may gather other information in addition to the
information received from the application 312. For example, the receiving function 324
may receive an error condition from the application 312. The receiving function 324 may
gather other data, such as a timestamp, the values of some configuration settings, values of
certain variables, or other information. The receiving function 324 may aggregate and
organize the information into a format that may be used by other functions in the
monitoring framework 322.

[0089] In some embodiments, the configuration settings 340 may indicate that the
application 312 is operated in a debugging mode. A debugging mode may define a high
level of debugging information that may be captured by the monitoring framework 322.

In some cases, the debugging mode may be a setting used by the monitoring framework
322 to capture a higher level of detail. In other cases, the application 312 may be executed
in a debugging mode so that the application 312 generates a larger quantity of events or
with a higher level of detail than a normal operation.

[0090] A classification function 326 may be part of the monitoring framework 322 and
may operate to classify the event. The classification may be used in conjunction with
policies 338 and configuration settings 340 to determine how the event may be handled.
Some events may be transmitted with high priority, while other events may be aggregated

or even discarded.

15

10

15

20

25

WO 2011/071624 PCT/US2010/055739

[0091] A message generation function 328 may format the event and other information
into a message that may be transported using a message queuing system 334 or stored in a
data storage system 336.

[0092] A message aggregation function 330 may consolidate messages together into a
single message. In some cases, multiple instances of a single message may be
consolidated into a single message. In other cases, different messages may be grouped
together into a single message.

[0093] A message transport function 332 may cause the message to be transported from
the monitoring framework 322 to a monitoring application. The message transport
function 332 may use the message queuing system 334, data storage system 336, or other
mechanism to transport the message.

[0094] In some embodiments, the monitoring framework 322 may be the same or similar
to a monitoring framework that may be used for application development. When used for
application development, the monitoring framework 322 may be incorporated into a local
application development platform and compiled and linked with the application. The
application may be executed on a local device in debug or development mode so that a
developer may test and refine the application. Once the application is ready to be
deployed on the cloud, the application may be uploaded to the cloud and compiled and
linked with the monitoring framework in the cloud.

[0095] The foregoing description of the subject matter has been presented for purposes of
illustration and description. It is not intended to be exhaustive or to limit the subject
matter to the precise form disclosed, and other modifications and variations may be
possible in light of the above teachings. The embodiment was chosen and described in
order to best explain the principles of the invention and its practical application to thereby
enable others skilled in the art to best utilize the invention in various embodiments and
various modifications as are suited to the particular use contemplated. It is intended that
the appended claims be construed to include other alternative embodiments except insofar

as limited by the prior art.

16

WO 2011/071624 PCT/US2010/055739

Claims
1. A cloud computing environment comprising:

a hardware fabric;

a runtime management system configured to execute an application;

a monitoring framework being a linkable library comprising:

a message configuration function configured to receive information from

said application and create a message in a predefined format consumable by a

monitoring application; and

a message transmission function configured to transmit said message to
said monitoring application.
2. The cloud computing environment of claim 1 further comprising:

a message queuing system being called by said message transmission function,
said message queuing system configured to receive messages from said monitoring
framework and transmit said messages to said monitoring application.

3. The cloud computing environment of claim 2, said message queuing system
comprising a message queue configured to store said messages until transmitting said
messages to said monitoring application.

4. The cloud computing environment of claim 3, said message queuing system having
a subscription mechanism for a plurality of message queues.

5. The cloud computing environment of claim 4, said monitoring application
requesting a subscription to said message queue.

6. The cloud computing environment of claim 5, said message queuing system
authenticating said monitoring application for said subscription.

7. The cloud computing environment of claim 1, said runtime management system
comprising a managed code environment.

8. The cloud computing environment of claim 7, said monitoring framework being
dynamically linked to said application.

9. The cloud computing environment of claim 8, said monitoring framework
comprising a runtime version and a development version, said development version being
executable in a conventional computing environment.

10. The cloud computing environment of claim 1, said information comprising
exceptions thrown by said application and captured by said application.

11. The cloud computing environment of claim 1, said information comprising

performance information generated by said application.

17

WO 2011/071624 PCT/US2010/055739

12. The cloud computing environment of claim 1, said information comprising
debugging information generated by said application.
13. The cloud computing environment of claim 12, said debugging information being
generated when said application is operated in a debugging mode.
14. A method performed by a cloud based runtime environment, said method
comprising:

linking to a cloud application executing in a cloud environment;

receiving information to transmit to a monitoring application, said monitoring
application being located on a remote device;

evaluating said information to determine an information type;

creating a message comprising at least a portion of said information, said message
having a predefined format; and

transmitting said message to said monitoring application.
15. The method of claim 14, said cloud based runtime environment not having an

operating system directly accessible by said cloud application.

18

MS 328212.02

WO 2011/071624

1

13

PCT/US2010/055739

[CLOUD LAYER ABSTRACTION |
146
| HARDWARE FABRIC |

L INSTANCES ¢
158" APPLICATIONS|‘|.| 148
. 162 VIRTUAL STORAGE
156~ 160 ESSAGE MACHINES 176 ~{EVENTS
RUNTIME MONITORING Ll QUEUING
EXECUTOR | |FRAMEWORK
154~ 170~ 172 [H
| RUNTIME ENVIRONMENT | | APPLICATIONS |'h—|INSTRUMENTATION|
" 167 __| MONIT|OFgl:l1(§3
147
~, |OPERATING SYSTEM| |ERAMEWORK

166" VIRTUAL DEVICE |

144
CLOUD COMPUTING
ENVIRONMENT
136—\ /-1 321
[INSTRUMENTATION[H APPLICATIONS h]
: WIDE AREA
138~
130 GATEWAY NETWORK
[CONNECTOR | OPERATING 142
134~ | SYSTEM
[EVENT MANAGER r_/\ 128
LOCAL AREA
AUTHENTICATION
128" ~—{ HARDWARE PLATFORM | NET1V;/‘?RK MECHANISM
| 124
126 —---T-TTTTT-T-TTTT-TTTTTTTTTTTTTTTTTTT
DEVICES 0 |
32
MONITORING
APPLICATION _|,CONNECTORS|'|-| :
L
|
\ i
OPERATING USER |~qp3 !
SYSTEM INTERFACE :
L e e - J
:F 12 :
! SOFTWARE _ 114 |
| COMPONENTS D el
|
: | \STORAGE J | INTERFACE | !
|
: HARDWARE | 108 !
| PLATFORM | :
| 104 | |PROCESSOR !
| ~—~ 116 |
I ' 110 \ o~ |
: : A USER |
! [vemory INTERFACE | |
| |
| |

100

MONITORING SYSTEM FOR

CLOUD APPLICATIONS

—_—— e e e e o — — . ——— —— —

MS 328212.02

WO 2011/071624 PCT/US2010/055739
MONITORING MONITORING
APPLICATION FRAMEWORK APPLICATION
THROW
EXCEPTION [= 208
A
START/STOP
PROCESS [~ 210
A
GENERATE
PERFORMANCEL_~212
DATA
214
A o/
GENERATE [RECEIVE
EVENT EVENT [216
A
APPLY FILTER f_""218
STORE EVENT (" 222
FORMAT
MESSAGE [— 227 230
‘L 228
a4
TRANSMIT [RECEIVE
SAVE FOR EVENT EVENT
226" _| AGGREGATED 1
TRANSMITTAL
232 STORE EVENT
\ 4
~_] CLASSIFY
234 EVENT
7
| SEND ALERT |
200 240

METHOD FOR COLLECTING
AND USING INFORMATION
FROM APPLICATION

FIG. 2

»DISPLAY EVENT|

MS 328212.02

PCT/US2010/055739

WO 2011/071624

3/3

ONIYOLINOW
HLIM LNIJANOHIANS
ONILNJWOD dNOT10
008 OIHaYd FIVMAUVH [~~_20€
N Ol¥aVd TUVMLAOS [~ _¥0E
LNIWNOYIANT
JNILNNY 90t
ONININD A_EDNT
JOVSSIN NOILOI 110D 3NIONS ole
e JOVaHVO NOILNO3X3
~~ N SERIElLek]
gie ole
JOVdOlS yle
vivd LHOdSNVHL L zee
/ 30VSSIN [NOLLVINIWNELSNI N_02€
9ce NOILYOIHOOV LI~ gec NOILYOI1ddV
FOVSSIN ,
NOILYHNOIINOD e
NOILV¥INTD |1 oze
JOVSSIN
ove \ [NOILYOIJISSYTO H~_ 92¢
$30INod IENNERENT i 4>
NN\
e 443
MHOMINYSS
ONIYOLINOW

! 80¢

! JDNVLSNI

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - claims
	Page 20 - claims
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings

