

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
16 August 2007 (16.08.2007)

PCT

(10) International Publication Number
WO 2007/090773 A1(51) International Patent Classification:
C08G 61/00 (2006.01)

(74) Common Representative: CIBA SPECIALTY CHEMICALS HOLDING INC.; Patent Department, Klybeckstrasse 141, CH-4057 Basel (CH).

(21) International Application Number:

PCT/EP2007/050934

(22) International Filing Date: 31 January 2007 (31.01.2007)

(25) Filing Language: English

(26) Publication Language: English

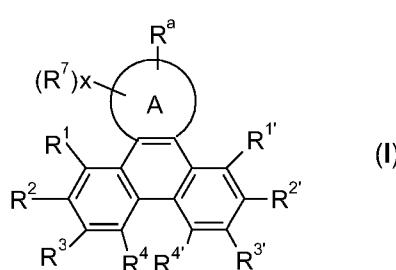
(30) Priority Data:
06101542.6 10 February 2006 (10.02.2006) EP
06120616.5 14 September 2006 (14.09.2006) EP

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(71) Applicant (for all designated States except US): CIBA SPECIALTY CHEMICALS HOLDING INC. [CH/CH]; Klybeckstrasse 141, CH-4057 Basel (CH).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(72) Inventors; and

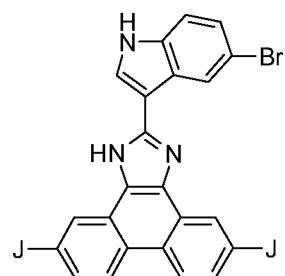

(75) Inventors/Applicants (for US only): CHEBOTAREVA, Natalia [RU/FR]; 8b Rue Du 20 Novembre, F-68220 Hésingue (FR). PRÉTÔT, Roger [CH/CH]; General Guisan-Strasse 72, CH-4054 Basel (CH). VAN DER SCHAAF, Paul Adriaan [NL/FR]; 1, Rue Du Muguet, F-68220 Hagenthal-le-Haut (FR). SCHÄFER, Thomas [DE/CH]; Weidweg 15 D, CH-4410 Liestal (CH). SCHMIDHALTER, Beat [CH/CH]; Dahlienstrasse 25, CH-4416 Bubendorf (CH). MURER, Peter [CH/CH]; Hohestrasse 166, CH-4104 Oberwil (CH).

Published:

— with international search report

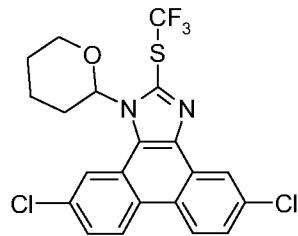
For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: NOVEL POLYMERS

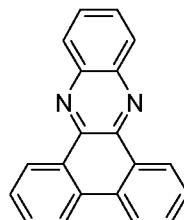

(57) Abstract: The present invention relates to novel polymers comprising a repeating unit of the formula (I) and their use in electronic devices. The polymers according to the invention have excellent solubility in organic solvents and excellent film-forming properties. In addition, high charge carrier mobilities and high stability of the emission color can be observed, if the polymers according to the invention are used in organic light emitting diodes (OLEDs).

Novel Polymers

The present invention relates to novel polymers comprising a repeating unit of the formula (I) and their use in electronic devices. The polymers according to the invention may have 5 excellent solubility in organic solvents and excellent film-forming properties. In addition, high charge carrier mobilities and high stability of the emission color can be observed, if the polymers according to the invention are used in organic light emitting diodes (OLEDs).

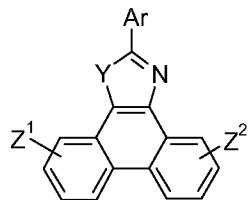

JP05273618 discloses phenanthroimidazole compounds which were used as

10 antiinflammants. WO04016086 relates to the preparation of 2,4,5-trisubstituted imidazoles and their use as antibacterial and/or antifungal agents. Among others the following

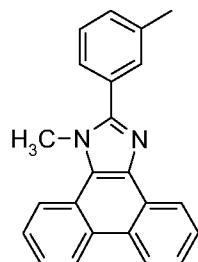


compound is explicitly mentioned in WO04016086:

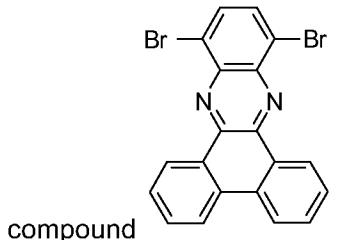
US-B-4,215,135 relates to 2-substituted-1H-phenanthro[9,10-d]-imidazoles, which are useful as antiinflammatory agents. Among others the following compound is explicitly mentioned in


15 US-B-4,215,135: . US 3 635 544 relates to a photochromic polymer

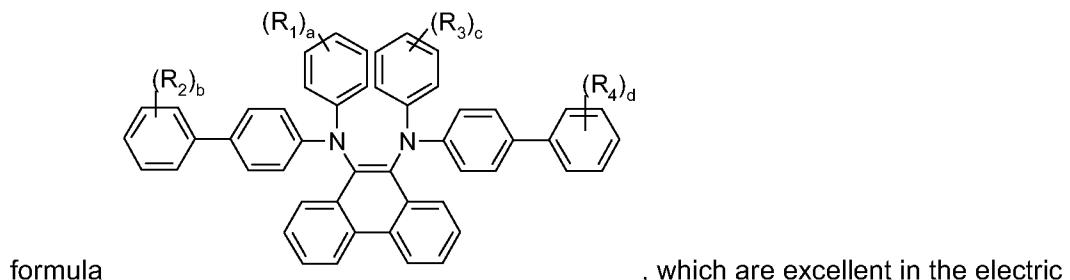
matrix, comprising the following compound as light absorbing compound.


JP09188874, JP09013025, JP07026255, JP06207169, US2004076853, WO2004043937, US6713781, WO2004006352, WO2003058667 and WO2004006355 disclose phenanthrene-fused or phenathroline-fused phenazines and their use in EL devices.

US2004209117 relates to an EL device, comprising an azole compound of the formula



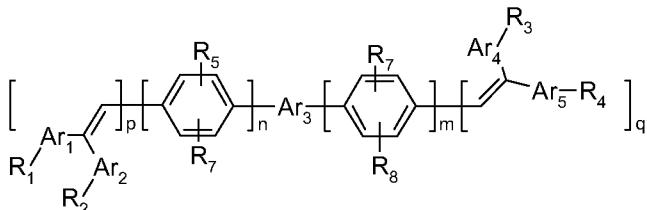
(I), wherein Y is an atom or a group selected from the group consisting of O, S, and -N(R)-, wherein R is a hydrocarbyl group of from 1 to about 30 carbons; Z¹ and Z² are each a substituent selected from the group consisting of hydrogen, an alkyl group of from 1 to about 25 carbon atoms, an aryl group of about 6 to about 30 carbon atoms, an alkoxy group of from 1 to about 25 carbon atoms, a halogen, and a cyano group; and Ar is an aromatic component. JP2004161892, JP2002050473 and JP2001023777 disclose phenanthroimidazol compounds and their use in EL devices.


10 WO04/030029 relates to a photovoltaic EL cell, comprising polymers containing groups:

WO03/020790 relates to conjugated polymers comprising spirobifluorene units. The polymers can comprise repeating units derived from the following

15 EP0757035A1 relates to phenanthrylenediamine derivatives represented by the general

charge transferring capability, the compatibility with a binding resin and the stability, thereby providing a photosensitive material which is highly sensitive and excellent in the durability.

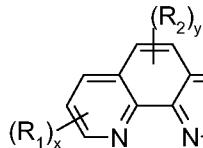

US2001008711 relates to an organic light-emitting device comprising a light-emitting layer or 5 a plurality of organic compound thin layers including a light-emitting layer formed between a pair of electrodes, wherein at least one layer comprises at least one kind of compound represented by the following formula $NR_{11}R_{12}R_{13}$: wherein R_{11} , R_{12} and R_{13} each represents a group having a cyclocondensed polycyclic hydrocarbon structure in which three or more rings are cyclocondensed; and a novel cyclocondensed polycyclic hydrocarbon compound.

10

US2004/0028944 relates to organic electroluminescent devices comprising a triarylamine derivative represented by the general formula $N(Ar_1)(Ar_2)(Ar_3)$, wherein Ar_1 to Ar_3 are substituted or unsubstituted aryl groups and at least one of Ar_1 to Ar_3 is a 9-phenanthryl group.

15

EP1440959A1 relates to a novel soluble compound of formula

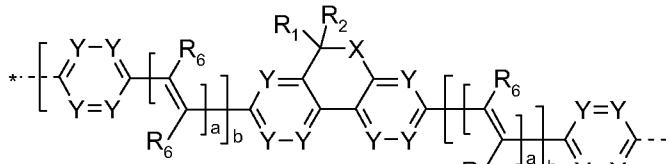

, wherein Ar_3 represents a substituted

or unsubstituted anthracendiyl group, or a substituted or unsubstituted fluorendiyl group and to its use in an electroluminescent device.

20

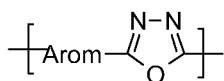
WO03/064373 relates to triarylamine derivatives and the use thereof as hole transport material in organic electroluminescent and electrophotographic devices.

WO04/005288 relates to charge transport compositions comprising a phenanthroline

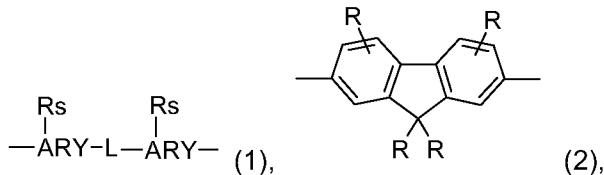


25

derivative having formula $[R_1-x-N-C_6H_2-C(=O)-N(R_1)_x]_y$, wherein: R_1 and R_2 are the same or different at each occurrence and are selected from H, F, Cl, Br, alkyl, heteroalkyl, alkenyl, alkynyl, aryl, heteroaryl, $C_nH_aF_b$, $OC_nH_aF_b$, $C_6H_cF_d$, and $OC_6H_cF_d$; a, b, c, and d are 0 or an integer such that $a + b = 2n + 1$, and $c + d = 5$, n is an integer; x is 0 or an integer from 1

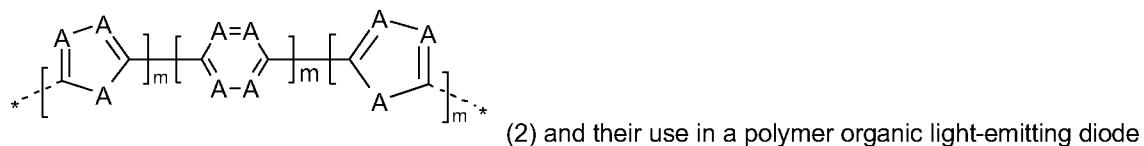
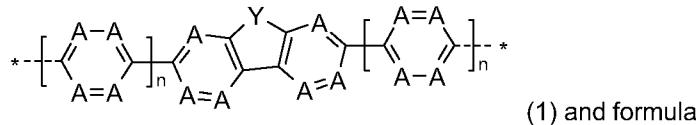

through 3; y is 0, 1 or 2; with the proviso that there is at least one substituent on an aromatic group selected from F, C_nH_aF_b, OC_nH_aF_b, C₉H_cF_d, and OC₆H_cF_d.

WO05/014689 relates to conjugated polymers containing dihydronaphthalene units of



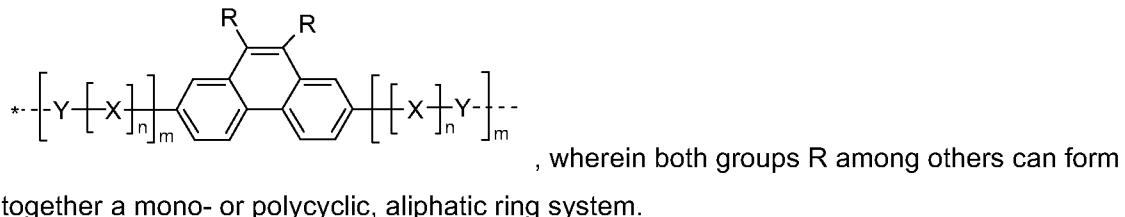
5 formula and their use in polymer
organic light emitting diodes.

US2005/0156516 relates to soluble poly(aryl-oxadiazole) conjugated polymers comprising at least about 20 repeat units, which may independently be the same or different, the repeat

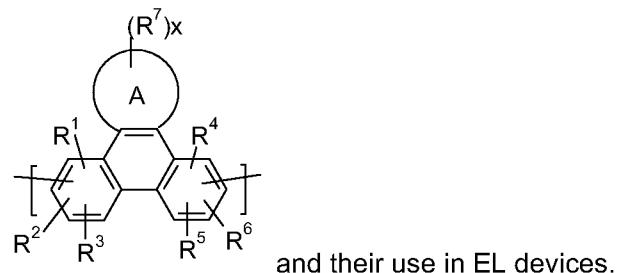


10 units represented by formula: , wherein Arom is a moiety selected from
Formulae (1) and (2):

wherein each ARY, which may independently be the same or different, is selected from an aromatic hydrocarbon ring and a C₂₊ aromatic heterocyclic ring, wherein the aromatic

15 hydrocarbon ring is selected from fluorenyl, terphenyl, tetraphenyl, pyrenyl, and phenanthryl, and the C₂₊ heterocyclic ring is selected from pyrrolyl, furanyl, imidazolyl, triazolyl, isoxazolyl, oxadiazolyl, furazanyl, pyridazinyl, pyrimidyl, pyrazinyl, triazinyl, tetrazinyl, benzofuranyl, benzothiophenyl, indolyl, isoindazolyl, benzimidazolyl, benzotriazolyl, benzoxazolyl, quinolyl, isoquinolyl, cinnolyl, quinazolyl, naphthyridyl, phthalazyl, phentriazyl, benzotetrazyl,
20 carbazolyl, dibenzofuranyl, dibenzothiophenyl, acridyl, and phenazyl; wherein L is selected from an ethynyl group and a substituted or unsubstituted ethenyl group; wherein each R, which may independently be the same or different and which may be unsubstituted or substituted by a substituent selected from cyano, nitro, and halogen, is selected from the group consisting of hydrogen, aryl, alkylaryl, arylalkyl, and alkyl, wherein none or one or
25 more -CH₂- units of the alkyl are replaced by a moiety selected from --O-, -S-, C₂₋₁₄aryl, and -NR'- wherein each R', which may independently be the same or different, comprises a C₁₋₁₀₀ saturated acyclic hydrocarbyl group; and wherein each x is the number of hydrogen atoms of Ary capable of substitution by R.


WO2005030828 relates to conjugated polymers containing structural units according to formula

5 (PLED).


US20050106418 relates to cyclopentaphenanthrene-based compounds and their use in organoelectroluminescent devices.

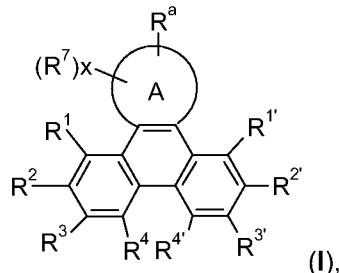
10 WO05/104264 relates to polymers comprising structural units of formula

WO2006/097419, which enjoys an earlier priority date than the present invention, but has

15 been published after the priority date of the present invention, relates to polymers comprising a repeating unit(s) of the formula

There are a number of challenges faced with the introduction of organic EL displays when

20 their performance is compared with existing technologies. Obtaining the exact color coordinates required by specific guidelines (i.e. NTSC) has been problematic. The operational lifetime of the EL device is still lower when contrasted to the existing inorganic technology for cathode ray tubes (CRTs) and liquid crystal displays (LCDs). In addition,


producing a device with a pure blue, green, red color and a long lifetime is one of the greatest problems for this industry.

Accordingly, it is the object of the present invention to provide novel materials, which, when incorporated in electro-optical devices, cause significant advantages in color purity, device efficiency and/or operational lifetime.

Said object is solved by the polymers of the present invention comprising repeating units of formula I. Organic light emitting devices (OLEDs) based on the polymers of the present

invention, can show significant advantages in color purity, device efficiency and/or operational lifetime. In addition, the polymers can have good solubility characteristics and relatively high glass transition temperatures, which facilitates their fabrication into coatings and thin films, that are thermally and mechanically stable and relatively free of defects.

15 Hence, the present invention relates to polymers comprising repeating unit(s) of the formula

wherein A is a 5-, 6-, or 7-membered heteroaromatic ring, containing at least one heteroatom selected from nitrogen, oxygen and sulfur, especially one nitrogen atom and at least one further heteroatom selected from nitrogen, substituted nitrogen, oxygen and sulfur.

20 $R^a, R^1, R^2, R^3, R^4, R^{1'}, R^{2'}, R^{3'} \text{ and } R^{4'}$ are independently of each other hydrogen, halogen, especially fluorine, or an organic substituent, or $R^a, R^1, R^2, R^3, R^4, R^{1'}, R^{2'}, R^{3'} \text{ and } R^{4'}$, if possible, together form an aromatic, or heteroaromatic ring, or ring system, which can optionally be substituted,

R⁷ is halogen, especially fluorine, or an organic substituent, wherein two or more substituents

25 R⁷ in the same molecule may have different meanings, or can form together an aromatic, or heteroaromatic ring, or ring system, wherein

at least one of R^a , R^1 , R^2 , R^3 , R^4 , $R^{1'}$, $R^{2'}$, $R^{3'}$ and $R^{4'}$ is a group R^{10} , wherein

R^{10} is a group $-(Sp)_{x1} \cdot [PG'] \leq$, wherein

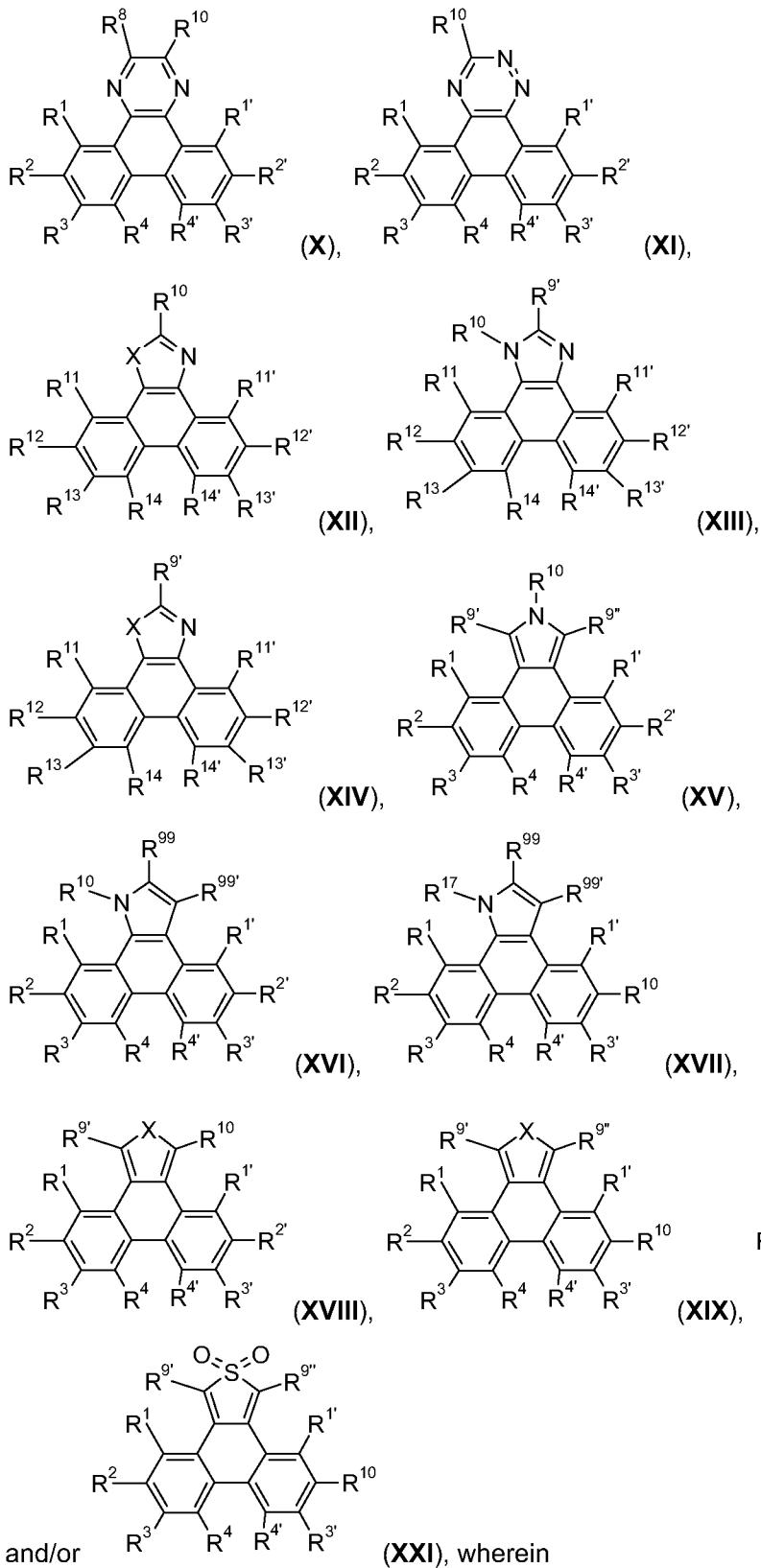
Sp is a spacer unit.


30 PG' is a group derived from a polymerisable group,

x1 is 0, or 1, and

x is 0, or an integer of 1 to 4.

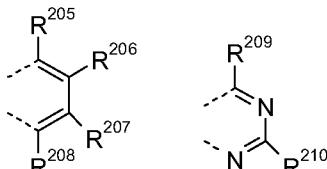
A is a 5-, 6-, or 7-membered heteroaromatic ring, containing at least one heteroatom selected from nitrogen, oxygen and sulphur, which can be substituted and/or can be part of a


5 fused aromatic or heteroaromatic ring system. Non-limiting examples of A are:

Preferably, A is one of the above 5-, 6-, or 7-membered heteroaromatic rings, containing one nitrogen atom and at least one further heteroatom selected from nitrogen, oxygen and sulphur. If the heteroatom is nitrogen, it can be a group =N-, or –NR-, especially -N-R¹⁷, or –NR¹⁰-, wherein R is an organic substituent, R¹⁷ and R¹⁰ are as defined below, p' is 0, 1, or 2 and the dotted line --- indicates the bonding to the benzene ring.

The polymers of the present invention should have a glass transition temperature above 100°C.

Preferably, the polymers of the present invention comprise a repeating unit(s) of the formula


R^1 and $R^{1'}$ are independently of each other hydrogen, halogen, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_1 - C_{18} perfluoroalkyl, C_2 - C_{18} alkenyl, C_2 - C_{18} alkynyl, C_1 - C_{18} alkoxy, C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D, CN, or $-CO-R^{28}$,

5 R^2 , R^3 , R^4 , $R^{2'}$, R^3 and $R^{4'}$ are independently of each other H, halogen, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_1 - C_{18} perfluoroalkyl, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by G, C_2 - C_{20} heteroaryl, C_2 - C_{20} heteroaryl which is substituted by G, C_2 - C_{18} alkenyl, C_2 - C_{18} alkynyl, C_1 - C_{18} alkoxy, C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D, C_7 - C_{25} aralkyl, CN, or $-CO-R^{28}$,

R^8 is H, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_1 - C_{18} perfluoroalkyl, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by G, C_2 - C_{20} heteroaryl, C_2 - C_{20} heteroaryl which is substituted by G, C_2 - C_{18} alkenyl, C_2 - C_{18} alkynyl, C_1 - C_{18} alkoxy, C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D, C_7 - C_{25} aralkyl, CN, or $-CO-R^{28}$,

10 $R^{9'}$, $R^{9''}$, R^{99} and $R^{99'}$ is H, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_1 - C_{18} perfluoroalkyl, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by G, C_2 - C_{20} heteroaryl, C_2 - C_{20} heteroaryl which is substituted by G, C_2 - C_{18} alkenyl, C_2 - C_{18} alkynyl, C_1 - C_{18} alkoxy, C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D, C_7 - C_{25} aralkyl, CN, or $-CO-R^{28}$,

15 R^{10} is a group $-(Sp)_{x1}-[PG']<$, wherein Sp is a spacer unit, PG' is a group derived from a polymerisable group, and $x1$ is 0, or 1, or

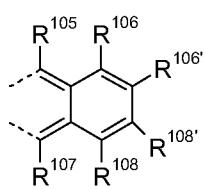
R^8 and R^{10} together form a group

20 R^{205} , R^{206} , R^{207} and R^{208} , and one of the substituents R^{208} and R^{210} is a group R^{10} and the other substituents are independently of each other H, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_1 - C_{18} alkoxy, or C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D,

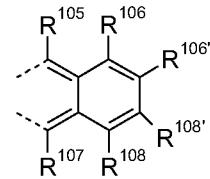
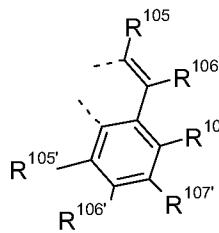
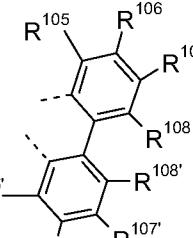
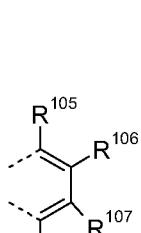
R^{11} and $R^{11'}$ are independently of each other hydrogen, halogen, especially fluorine, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_1 - C_{18} perfluoroalkyl,

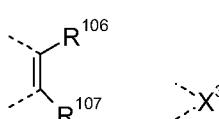
25 C_2 - C_{18} alkenyl, C_2 - C_{18} alkynyl, C_1 - C_{18} alkoxy, C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D, CN, or $-CO-R^{28}$,

R^{12} , R^{13} , R^{14} , $R^{12'}$, $R^{13'}$ and $R^{14'}$ are independently of each other H, halogen, especially fluorine, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_1 - C_{18} perfluoroalkyl, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by G, C_2 - C_{20} heteroaryl, C_2 - C_{20} heteroaryl which is substituted by G, C_2 - C_{18} alkenyl, C_2 - C_{18} alkynyl, C_1 - C_{18} alkoxy, C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D, C_7 - C_{25} aralkyl, CN or $-CO-R^{28}$,


30 C_2 - C_{20} heteroaryl, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by G, C_2 - C_{18} alkenyl, C_2 - C_{18} alkynyl, C_1 - C_{18} alkoxy, C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D, C_7 - C_{25} aralkyl, CN or $-CO-R^{28}$,

X is O, S, or NR¹⁷, wherein R¹⁷ is C₁-C₁₈alkyl, C₁-C₁₈alkyl which is substituted by E and/or interrupted by D, C₁-C₁₈perfluoroalkyl, C₆-C₂₄aryl, C₆-C₂₄aryl which is substituted by G, C₂-C₂₀heteroaryl, C₂-C₂₀heteroaryl which is substituted by G, C₂-C₁₈alkenyl, C₂-C₁₈alkynyl, C₇-C₂₅aralkyl, or -CO-R²⁸;





5 or two substituents R¹, R², R³ and R⁴; R^{1'}, R^{2'}, R^{3'} and R^{4'}; R¹¹, R¹², R¹³ and R¹⁴; R^{11'}, R^{12'}, R^{13'}


and R^{14'}, which are adjacent to each other, together form a group , or

, or two substituents R⁹⁹ and R^{99'}, which are adjacent to each other, together

form a group , , , or , or two substituents R⁴ and R^{4'}, and/or R¹⁴ and R^{14'}, which are adjacent to each other, together

10 form a group , or , wherein X³ is O, S, C(R¹¹⁹)(R¹²⁰), or NR¹⁷, wherein R¹⁷ is as defined above, R¹⁰⁵, R¹⁰⁶, R¹⁰⁷, R¹⁰⁸, R^{105'}, R^{106'}, R^{107'} and R^{108'} are independently of each other H, C₁-C₁₈alkyl, C₁-C₁₈alkyl which is substituted by E and/or interrupted by D, C₁-C₁₈alkoxy, or C₁-C₁₈alkoxy which is substituted by E and/or interrupted by D,

R¹¹⁹ and R¹²⁰ are independently of each other H, C₁-C₁₈alkyl, C₁-C₁₈alkyl which is substituted by E and/or interrupted by D, C₆-C₂₄aryl, C₆-C₂₄aryl which is substituted by G, C₂-

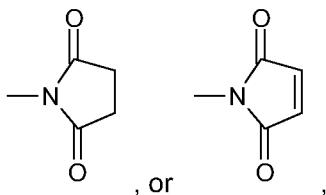
15 C₂₀heteroaryl, C₂-C₂₀heteroaryl which is substituted by G, C₂-C₁₈alkenyl, C₂-C₁₈alkynyl, C₁-C₁₈alkoxy, C₁-C₁₈alkoxy which is substituted by E and/or interrupted by D, or C₇-C₂₅aralkyl, or

R¹¹⁹ and R¹²⁰ together form a five or six membered ring, which optionally can be substituted by C₁-C₁₈alkyl, C₁-C₁₈alkyl which is substituted by E and/or interrupted by D, C₆-C₂₄aryl, C₆-

20 C₂₄aryl which is substituted by G, C₂-C₂₀heteroaryl, C₂-C₂₀heteroaryl which is substituted by G, C₂-C₁₈alkenyl, C₂-C₁₈alkynyl, C₁-C₁₈alkoxy, C₁-C₁₈alkoxy which is substituted by E and/or interrupted by D, C₇-C₂₅aralkyl, or -C(=O)-R¹²⁷, or


R^{119} and R^{120} together form a group of formula $=CR^{121}R^{122}$, wherein

R^{121} and R^{122} are independently of each other H, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by G, or C_2 - C_{20} heteroaryl, or C_2 - C_{20} heteroaryl which is substituted by G,


5 R^{127} is H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, or C_1 - C_{18} alkoxy; C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by $-O-$,
D is $-CO-$; $-COO-$; $-S-$; $-SO-$; $-SO_2-$; $-O-$; $-NR^{25}-$; $-SiR^{30}R^{31}-$; $-POR^{32}-$; $-CR^{23}=CR^{24}-$; or $-C\equiv C-$; and
E is $-OR^{29}$; $-SR^{29}$; $-NR^{25}R^{26}$; $-COR^{28}$; $-COOR^{27}$; $-CONR^{25}R^{26}$; $-CN$; or halogen; G is E, C_1 -

10 C_18 alkyl, C_1 - C_{18} alkyl which is interrupted by D, C_1 - C_{18} perfluoroalkyl, or C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D, wherein

R^{23} , R^{24} , R^{25} and R^{26} are independently of each other H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, or C_1 - C_{18} alkoxy; C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by $-O-$; or

15 R^{25} and R^{26} together form a five or six membered ring, in particular

, or

R^{27} and R^{28} are independently of each other H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, or C_1 - C_{18} alkoxy; C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by $-O-$,

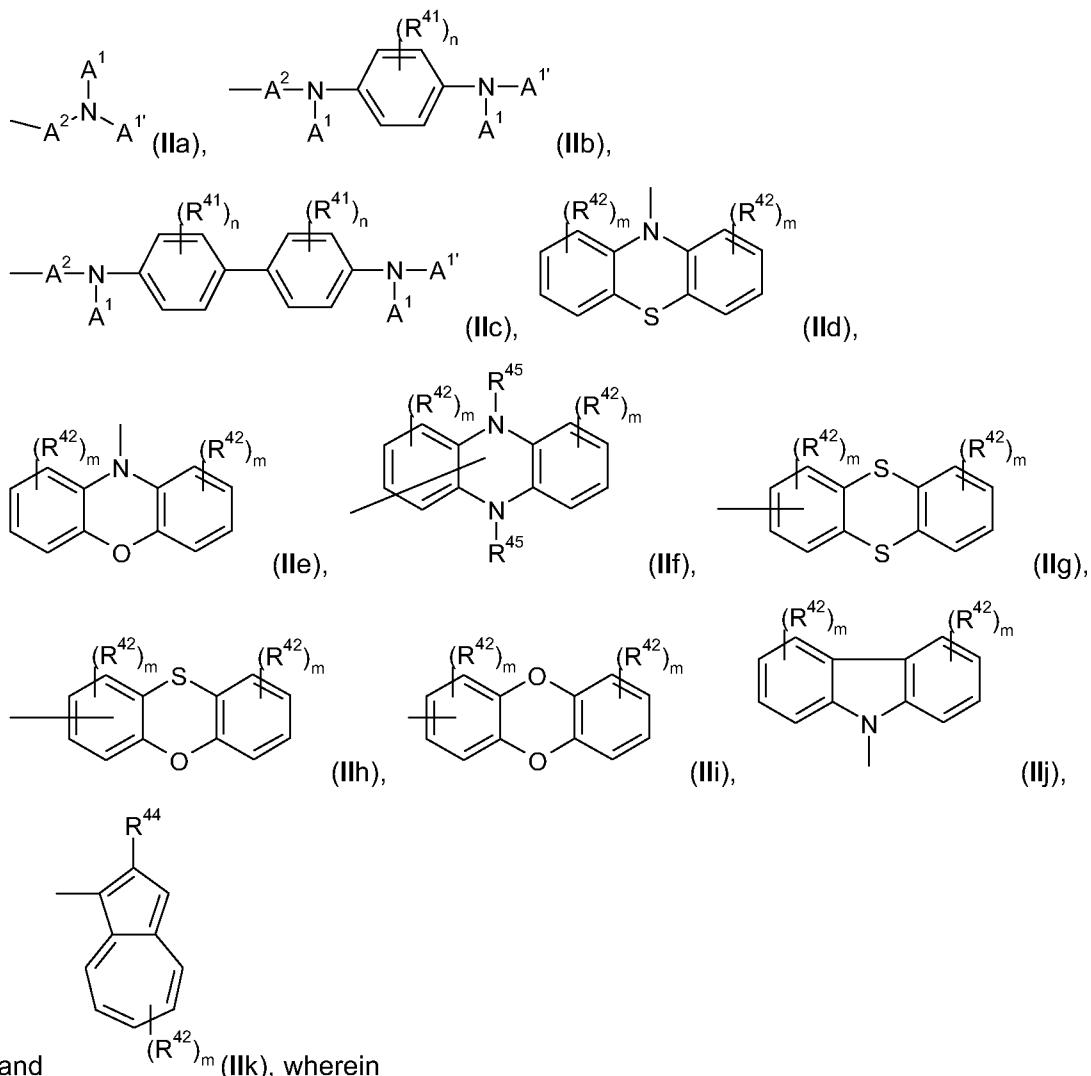
R^{29} is H; C_6 - C_{18} aryl; C_6 - C_{18} aryl, which is substituted by C_1 - C_{18} alkyl, or C_1 - C_{18} alkoxy; C_1 -

20 C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by $-O-$,

R^{30} and R^{31} are independently of each other C_1 - C_{18} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, which is substituted by C_1 - C_{18} alkyl, and

R^{32} is C_1 - C_{18} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, which is substituted by C_1 - C_{18} alkyl, or

$R^{9'}$, $R^{12'}$, $R^{13'}$, $R^{14'}$, $R^{12'}$, $R^{13'}$ and $R^{14'}$ are a group $-(Sp)_{x1}-HEI$, wherein


25 Sp is a spacer unit,

HEI is a group (HEI^I) , which increases the hole-injection or hole-transport properties of the polymers; or a group (HEI^{II}) , which increases the electron-injection or electron-transport properties of the polymers,

x1 is 0, or 1, with the proviso that in case of the compound of the formula **XIV** at least one of the substituents R¹², R¹³, R^{12'} and R^{13'} is a group R¹⁰.

5 R^{9'}, R¹², R¹³, R¹⁴, R^{12'}, R^{13'} and R^{14'} can be a group -(Sp)_{x1}-HEI, wherein Sp, HEI and x1 are as defined above.

Preferred HEI¹, which increase the hole-injection or hole-transport properties of the polymers, are:

and (IIIk), wherein

15 R⁴¹ can be the same or different at each occurrence and is Cl, F, CN, N(R⁴⁵)₂, a C₁-C₂₅alkyl group, a C₄-C₁₈cycloalkyl group, a C₁-C₂₅alkoxy group, in which one or more carbon atoms which are not in neighbourhood to each other could be replaced by -NR⁴⁵-, -O-, -S-, -C(=O)-O-, or -O-C(=O)-O-, and/or wherein one or more hydrogen atoms can be replaced by F, a C₆-

$C_{24}aryl$ group, or a C_6 - $C_{24}aryloxy$ group, wherein one or more carbon atoms can be replaced by O, S, or N, and/or which can be substituted by one or more non-aromatic groups R^{41} , or two or more groups R^{41} form a ring system;

R^{42} can be the same or different at each occurrence and is CN, a C_1 - $C_{25}alkyl$ group, a C_4 -

5 $C_{18}cycloalkyl$ group, a C_1 - $C_{25}alkoxy$ group, in which one or more carbon atoms which are not in neighbourhood to each other could be replaced by $-NR^{45}-$, $-O-$, $-S-$, $-C(=O)-O-$, or $-O-C(=O)-O-$, and/or wherein one or more hydrogen atoms can be replaced by F, a C_6 - $C_{24}aryl$ group, or a C_6 - $C_{24}aryloxy$ group, wherein one or more carbon atoms can be replaced by O, S, or N, and/or which can be substituted by one or more non-aromatic groups R^{41} , or

10 two or more groups R^{41} form a ring system;

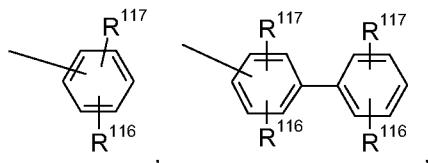
R^{44} can be the same or different at each occurrence and are a hydrogen atom, a C_1 - $C_{25}alkyl$ group, a C_4 - $C_{18}cycloalkyl$ group, a C_1 - $C_{25}alkoxy$ group, in which one or more carbon atoms which are not in neighbourhood to each other could be replaced by $-NR^{45}-$, $-O-$, $-S-$, $-C(=O)-O-$, or, $-O-C(=O)-O-$, and/or wherein one or more hydrogen atoms can be replaced by F, a

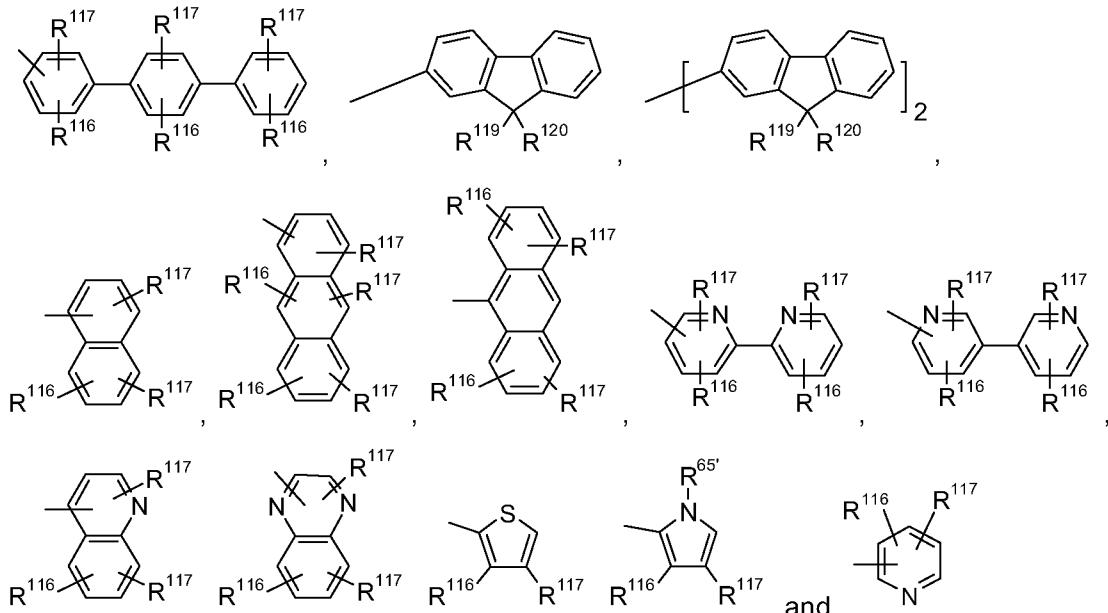
15 C_6 - $C_{24}aryl$ group, or a C_6 - $C_{24}aryloxy$ group, wherein one or more carbon atoms can be replaced by O, S, or N, and/or which can be substituted by one or more non-aromatic groups R^{41} , or CN, or

two or more groups R^{44} , which are in neighbourhood to each other, form a ring;

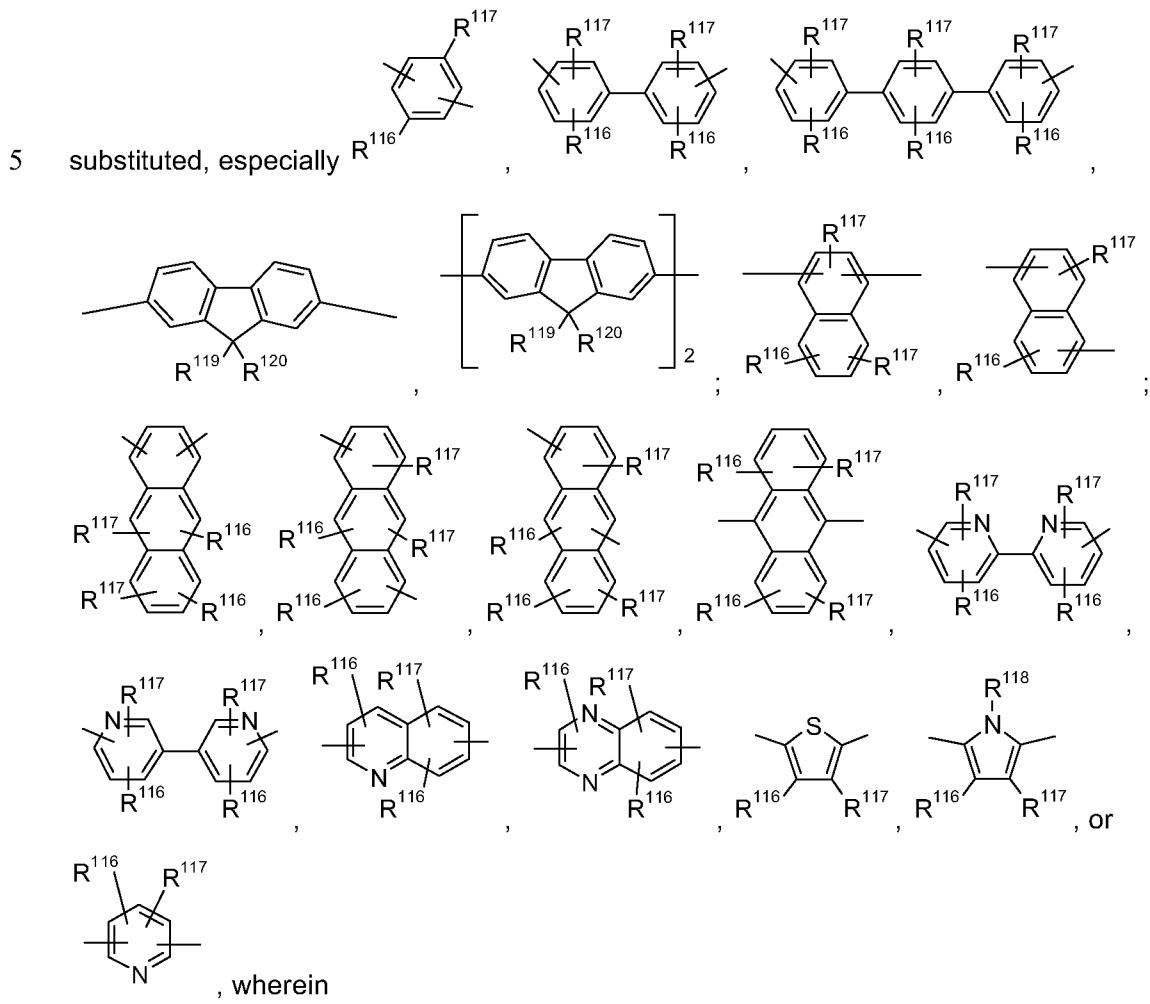
R^{45} is H, a C_1 - $C_{25}alkyl$ group, a C_4 - $C_{18}cycloalkyl$ group, a C_1 - $C_{25}alkoxy$ group, in which one or

20 more carbon atoms which are not in neighbourhood to each other could be replaced by $-NR^{45}-$, $-O-$, $-S-$, $-C(=O)-O-$, or, $-O-C(=O)-O-$, and/or wherein one or more hydrogen atoms can be replaced by F, a C_6 - $C_{24}aryl$ group, or a C_6 - $C_{24}aryloxy$ group, wherein one or more carbon atoms can be replaced by O, S, or N, and/or which can be substituted by one or more non-aromatic groups R^{41} ;


25 m can be the same or different at each occurrence and is 0, 1, 2, or 3, especially 0, 1, or 2, very especially 0 or 1;


n can be the same or different at each occurrence and is 0, 1, 2, or 3, especially 0, 1, or 2, very especially 0 or 1;

A^1 and $A^{1'}$ are independently of each other a C_6 - $C_{24}aryl$ group, a C_2 - $C_{30}heteroaryl$ group,


30 which can be substituted by one or more non-aromatic groups R^{41} , or NO_2 , especially phenyl, naphthyl, anthryl, biphenylyl, 2-fluorenyl, phenanthryl, or perylenyl, which can be substituted

by one or more non-aromatic groups R^{41} , such as

A^2 is a C_6 - C_{30} arylene group, or a C_2 - C_{24} heteroarylene group, which can optionally be

R^{116} and R^{117} are independently of each other H, halogen, -CN, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by G, C_2 - C_{20} heteroaryl, C_2 - C_{20} heteroaryl which is substituted by G, C_2 - C_{18} alkenyl, C_2 - C_{18} alkynyl, C_1 - C_{18} alkoxy, C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D, C_7 - C_{25} aralkyl, -

5 $C(=O)R^{127}$, $-C(=O)OR^{127}$, or $-C(=O)NR^{127}R^{126}$,

R^{119} and R^{120} are independently of each other H, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by G, C_2 -

C_{20} heteroaryl, C_2 - C_{20} heteroaryl which is substituted by G, C_2 - C_{18} alkenyl, C_2 - C_{18} alkynyl, C_1 - C_{18} alkoxy, C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D, or C_7 - C_{25} aralkyl, or

10 R^{119} and R^{120} together form a group of formula $=CR^{121}R^{122}$, wherein

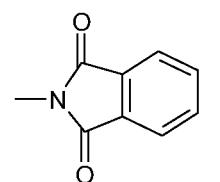
R^{121} and R^{122} are independently of each other H, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by G, or C_2 -

C_{20} heteroaryl, or C_2 - C_{20} heteroaryl which is substituted by G, or

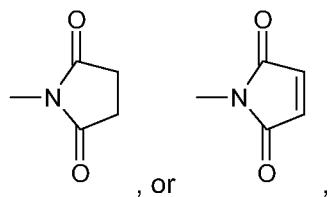
R^{119} and R^{120} together form a five or six membered ring, which optionally can be substituted

15 by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by G, C_2 - C_{20} heteroaryl, C_2 - C_{20} heteroaryl which is substituted by G, C_2 - C_{18} alkenyl, C_2 - C_{18} alkynyl, C_1 - C_{18} alkoxy, C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D, C_7 - C_{25} aralkyl, or $-C(=O)R^{127}$, and

R^{126} and R^{127} are independently of each other H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted


20 by C_1 - C_{18} alkyl, or C_1 - C_{18} alkoxy; C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by $-O-$,

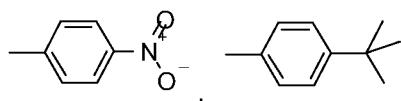
D is $-CO-$, $-COO-$, $-S-$, $-SO-$, $-SO_2-$, $-O-$, $-NR^{65}-$, $-SiR^{70}R^{71}-$, $-POR^{72}-$, $-CR^{63}=CR^{64}-$, or $-C\equiv C-$, and


E is $-OR^{69}$, $-SR^{69}$, $-NR^{65}R^{66}$, $-COR^{68}$, $-COOR^{67}$, $-CONR^{65}R^{66}$, $-CN$, or halogen,

G is E, or C_1 - C_{18} alkyl,

25 R^{63} , R^{64} , R^{65} and R^{66} are independently of each other H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkoxy; C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by $-O-$; or

R^{65} and R^{66} together form a five or six membered ring, in particular


R^{67} and R^{68} are independently of each other H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, or C_1 - C_{18} alkoxy; C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by $-O-$,

R^{69} is H; C_6 - C_{18} aryl; C_6 - C_{18} aryl, which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkoxy; C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by $-O-$,

5 R^{70} and R^{71} are independently of each other C_1 - C_{18} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, which is substituted by C_1 - C_{18} alkyl, and

R^{72} is C_1 - C_{18} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, which is substituted by C_1 - C_{18} alkyl.

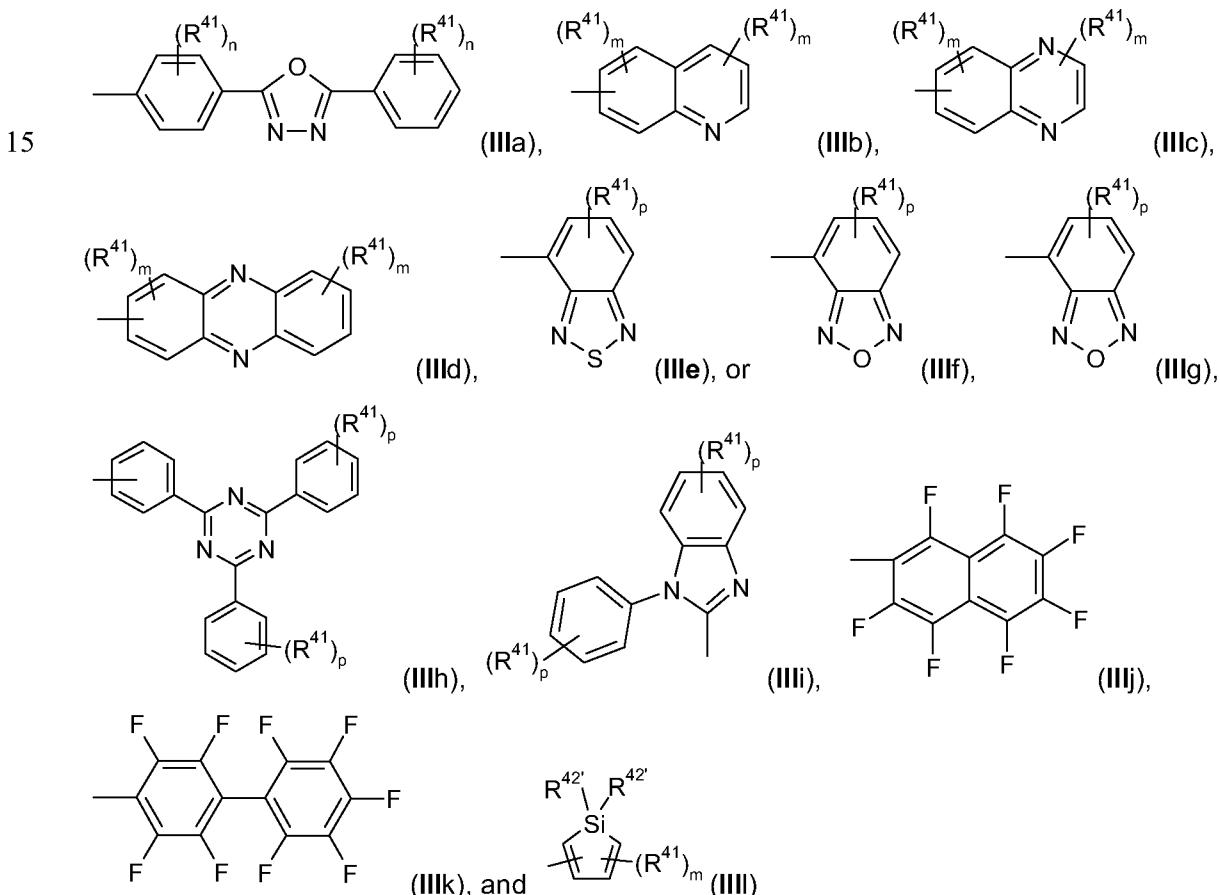
A^1 is preferably a phenyl group, which is substituted by C_1 - C_4 alkyl, or NO_2 , in particular

, or an anthryl group, in particular an anthr-2-yl group.

Preferably, R^{116} and R^{117} are independently of each other H, C_1 - C_{12} alkyl, such as methyl, ethyl, n-propyl, iso-propyl, n-butyl, isobutyl, sec-butyl, t-butyl, 2-methylbutyl, n-pentyl, isopentyl, n-hexyl, 2-ethylhexyl, or n-heptyl, C_1 - C_{12} alkyl which is substituted by E and/or

15 interrupted by D, such as $-CH_2OCH_3$, $-CH_2OCH_2CH_3$, $-CH_2OCH_2CH_2OCH_3$, or $-CH_2OCH_2CH_2OCH_2CH_3$, C_6 - C_{14} aryl, such as phenyl, naphthyl, or biphenylyl, C_5 - C_{12} cycloalkyl, such as cyclohexyl, C_6 - C_{14} aryl which is substituted by G, such as $-C_6H_4OCH_3$, $-C_6H_4OCH_2CH_3$, $-C_6H_3(OCH_3)_2$, or $-C_6H_3(OCH_2CH_3)_2$, $-C_6H_4CH_3$, $-C_6H_3(CH_3)_2$, $-C_6H_2(CH_3)_3$, or $-C_6H_4tBu$.

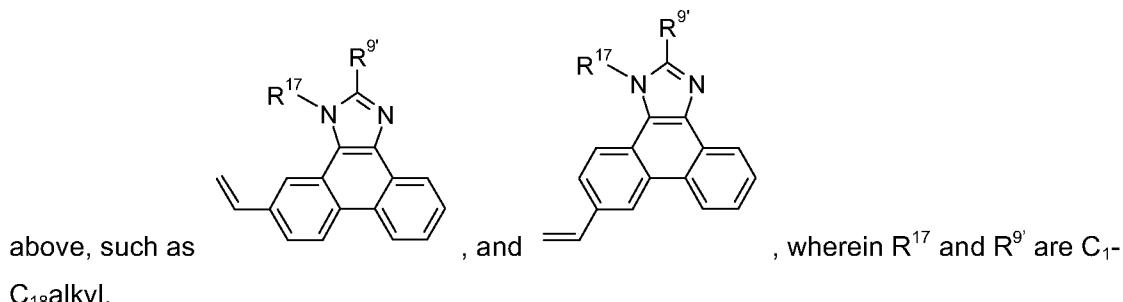
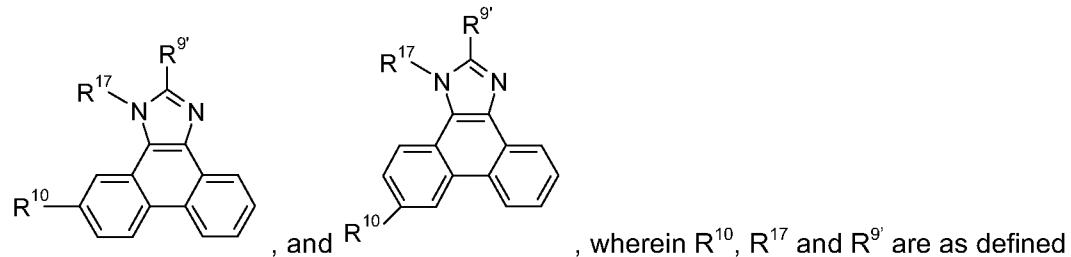
20 R^{65} is preferably H, C_1 - C_{12} alkyl, such as methyl, ethyl, n-propyl, iso-propyl, n-butyl, isobutyl, sec-butyl, t-butyl, 2-methylbutyl, n-pentyl, isopentyl, n-hexyl, 2-ethylhexyl, n-heptyl, or C_6 - C_{14} aryl, such as phenyl, naphthyl, or biphenylyl, which can optionally be substituted.


25 Preferably, R^{119} and R^{120} are independently of each other H, C_1 - C_{12} alkyl, such as methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, hexyl, octyl, or 2-ethyl-hexyl, C_1 - C_{12} alkyl which is substituted by E and/or interrupted by D, such as $-CH_2(OCH_2CH_2)_wOCH_3$, $w = 1, 2, 3$, or 4, C_6 - C_{14} aryl, such as phenyl, naphthyl, or biphenylyl, C_6 - C_{14} aryl which is substituted by G, such as $-C_6H_4OCH_3$, $-C_6H_4OCH_2CH_3$, $-C_6H_3(OCH_3)_2$, $-C_6H_3(OCH_2CH_3)_2$, $-C_6H_4CH_3$, $-C_6H_3(CH_3)_2$, $-C_6H_2(CH_3)_3$, or $-C_6H_4tBu$, or R^9 and R^{10} together form a 4 to 8 membered ring, especially a 5 or 6 membered ring, such as cyclohexyl, or cyclopentyl, which can optionally be substituted by C_1 - C_8 alkyl.

D is preferably -CO-, -COO-, -S-, -SO-, -SO₂-, -O-, -NR⁶⁵-, wherein R⁶⁵ is C₁-C₁₂alkyl, such as methyl, ethyl, n-propyl, iso-propyl, n-butyl, isobutyl, or sec-butyl, or C₆-C₁₄aryl, such as phenyl, naphthyl, or biphenyl.

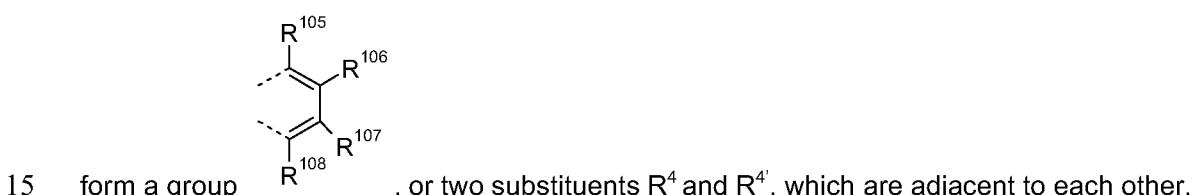
5 E is preferably -OR⁶⁹; -SR⁶⁹; -NR⁶⁵R⁶⁵; -COR⁶⁸; -COOR⁶⁷; -CONR⁶⁵R⁶⁵; or -CN; wherein R⁶⁵, R⁶⁷, R⁶⁸ and R⁶⁹ are independently of each other C₁-C₁₂alkyl, such as methyl, ethyl, n-propyl, iso-propyl, n-butyl, isobutyl, sec-butyl, hexyl, octyl, or 2-ethyl-hexyl, or C₆-C₁₄ aryl, such as phenyl, naphthyl, or biphenyl.

10 G has the same preferences as E, or is C₁-C₁₈alkyl, especially C₁-C₁₂alkyl, such as methyl, ethyl, n-propyl, iso-propyl, n-butyl, isobutyl, sec-butyl, hexyl, octyl, or 2-ethyl-hexyl.



Preferred units of group HEI^{II}, which increase the electron-injection or electron-transport properties of the polymers, are:

wherein R⁴¹ and m and n are as defined above and p is 0, 1, or 2, especially 0 or 1, R⁴² is H,

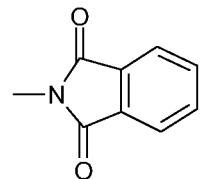
20 or R⁴². Among the above units of group III the units of formula IIIa, IIIi, IIIj, and IIIk are more preferred.


Examples of the compound of formula **XIV** are:

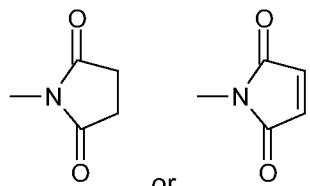
In one embodiment of the present invention polymers are preferred, comprising a repeating unit of the formula **X**, or **XI**, wherein R¹ and R^{1'} are hydrogen,

R², R³, R⁴, R^{2'}, R^{3'} and R^{4'} are independently of each other H, C₁-C₁₈alkyl, C₁-C₁₈alkyl which is interrupted by D, C₁-C₁₈perfluoroalkyl, C₁-C₁₈alkoxy, C₁-C₁₈alkoxy which is interrupted by D, or C₇-C₂₅aralkyl,

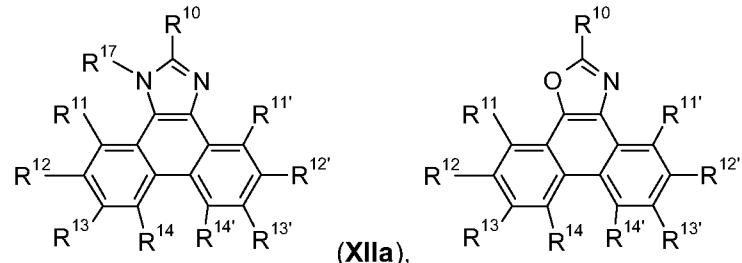
R⁸ is H, C₁-C₁₈alkyl, C₁-C₁₈alkyl which is interrupted by D, C₁-C₁₈perfluoroalkyl, C₁-C₁₈alkoxy, or C₁-C₁₈alkoxy which is interrupted by D, or two substituents R¹, R², R³, R⁴, R^{1'}, R^{2'}, R^{3'} and R^{4'}, which are adjacent to each other, together

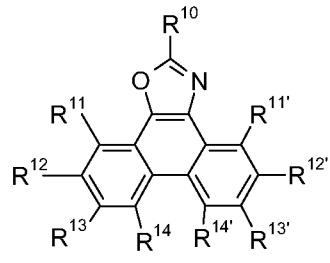


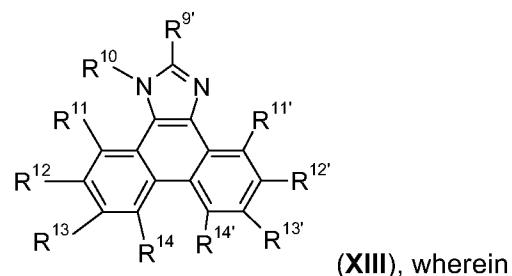
together form a group , wherein R¹⁰⁵, R¹⁰⁶, R¹⁰⁷ and -R¹⁰⁸ are independently of each other H, or C₁-C₈alkyl,


R¹⁰ is a group -(Sp)_{x1}-[PG']<, wherein Sp is a spacer unit, PG' is a group derived from a polymerisable group, and x1 is 0, or 1,

20 D is -CO-; -COO-; -S-; -SO-; -SO₂-; -O-; -NR²⁵-; -CR²³=CR²⁴-; or -C≡C-; wherein


R^{23} , R^{24} , R^{25} and R^{26} are independently of each other H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_8 alkyl, or C_1 - C_8 alkoxy; C_1 - C_8 alkyl; or C_1 - C_8 alkyl which is interrupted by –


O -, or R^{25} and R^{26} together form a five or six membered ring, in particular

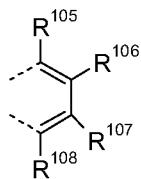

5 or polymers are preferred, comprising a repeating unit of the formula

(XIIa),

(XIIb), and/or

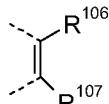
(XIII), wherein

$R^{9'}$ is H, C_6 - C_{18} aryl, which can be substituted by G, C_2 - C_{18} heteroaryl, which can be substituted by G, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is interrupted by D, C_1 - C_{18} perfluoroalkyl, C_1 -


10 C_{18} alkoxy, or C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D,

R^{11} and $R^{11'}$ are hydrogen,

R^{12} , R^{13} , R^{14} , $R^{12'}$, $R^{13'}$ and $R^{14'}$ are hydrogen,


R^{17} is C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, or C_1 - C_{18} alkoxy; C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by $-O-$; or

15 two substituents R^{11} , R^{12} , R^{13} , R^{14} , $R^{11'}$, $R^{12'}$, $R^{13'}$ and $R^{14'}$, which are adjacent to each other,

together form a group , or two substituents R^{14} and $R^{14'}$, which are adjacent to

20

each other, together form a group

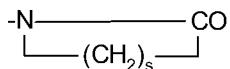
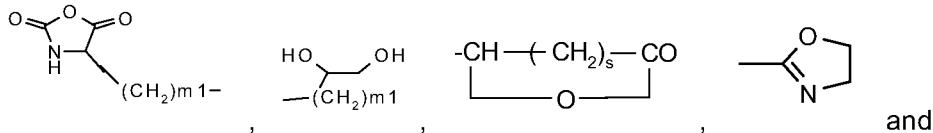
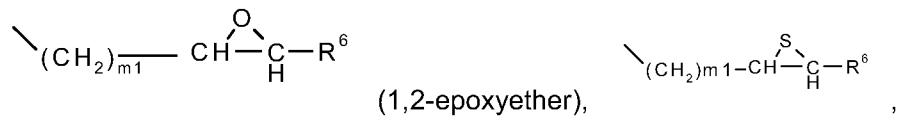
In addition, R¹², R¹³, R¹⁴, R^{12'}, R^{13'} and R^{14'} can be selected from groups HEI^I and HEI^{II}.

5

Sp is selected from -Ar-, -ArY-, -YAr-, -YAr(CR⁴⁷R⁴⁸)_n-, -(CR⁴⁷R⁴⁸)_n-, -(YCR⁴⁷R⁴⁸)_n-, or -(CR⁴⁷R⁴⁸Y)_n-, wherein

Y is NR⁵, O, S, C=O, C(=O)O, wherein R⁵ is H; C₆-C₁₈aryl; C₆-C₁₈aryl which is substituted by C₁-C₁₈alkyl, or C₁-C₁₈alkoxy; C₁-C₁₈alkyl; or C₁-C₁₈alkyl which is interrupted by -O-;

10 R⁴⁷ and R⁴⁸ are independently of each other hydrogen, fluorine, or C₁-C₂₀alkyl,




n is an integer of 1 to 20,

Ar is alkylen, cycloalkylen, arylen, aralkylene, or heteroarylen, which can optionally be substituted.

PG' is a group derived from a polymerisable group and is preferably selected from

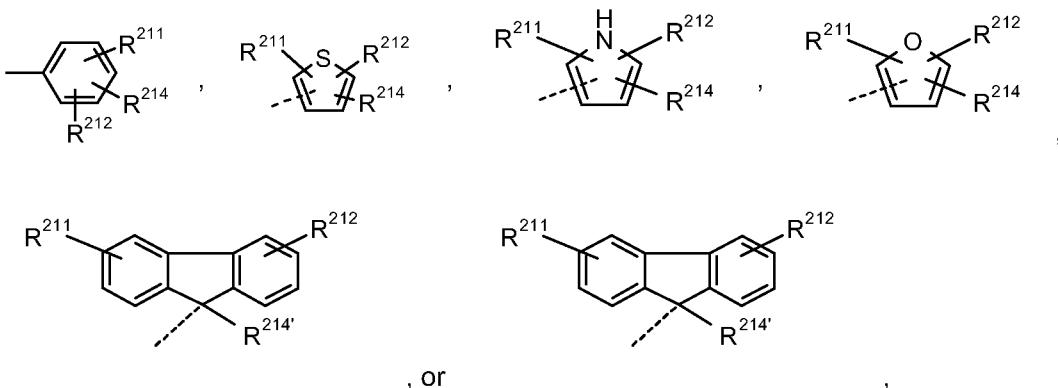
15 -C(R⁴⁴)=CH₂, -NHC(O)-C(R⁴⁵)=CH₂, -OCH₂CH₂OC(O)-C(R⁴⁵)=CH₂, -OC(O)-C(R⁴⁵)=CH₂,

-C(O)-C(R⁴⁶)=CH₂, -C≡C-, -N≡C, -O-CH(CH₂CH₂CH=CH₂)₂; C₅-C₈cycloalkenyl, bicycloalkenyl (a substituted or unsubstituted bicycloalkenyl group having 5 to 30 carbon atoms),

20 , wherein

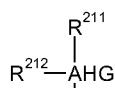
s is an integer from 1 to 6, m1 is an integer from 1 to 6,

R⁶ is hydrogen, or C₁-C₂₀alkyl,


R⁴⁴ is hydrogen, or C₁-C₄alkyl, or halogen,

R⁴⁵ is hydrogen, C₁-C₄alkyl, or halogen, and

25 R⁴⁶ is hydrogen, C₁-C₄alkyl, or C₆-C₁₂aryl, or


PG' is a group derived from a polymerisable group , wherein

AHG is an aromatic, or heteroaromatic residue, which can optionally be substituted, such as

R²¹¹ and R²¹² are independently of each other halogen, -C≡CH, boronic acid, or boronic

5 esters, -Mg-Hal, -Zn-Hal, -Sn (R²¹³)₃, wherein Hal is halogen, and R²¹³ is C₁-C₁₈alkyl, R²¹⁴ and R^{214'} are independently of each other H, C₁-C₁₈alkyl, C₁-C₁₈alkyl which is interrupted by D, C₁-C₁₈perfluoroalkyl, C₁-C₁₈alkoxy, C₁-C₁₈alkoxy which is interrupted by D, or C₇-C₂₅aralkyl.

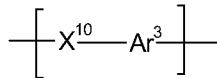
If PG' is a group derived from a polymerisable group

, the following processes can

10 be used for the production of polymers:

Polymerization processes involving only dihalo-functional reactants may be carried out using nickel coupling reactions. One such coupling reaction was described by Colon et al. in J. Pol. Sci., Part A, Polymer Chemistry Edition 28 (1990) 367, and by Colon et al. in J. Org. Chem.

15 51 (1986) 2627. The reaction is typically conducted in a polar aprotic solvent (e.g., dimethylacetamide) with a catalytic amount of nickel salt, a substantial amount of triphenylphosphine and a large excess of zinc dust. A variant of this process is described by Ioyda et al. in Bull. Chem. Soc. Jpn, 63 (1990) 80 wherein an organo-soluble iodide was used as an accelerator.

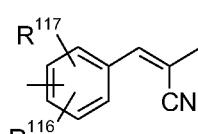
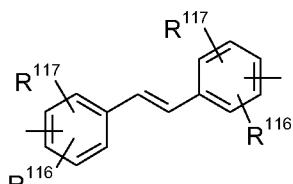
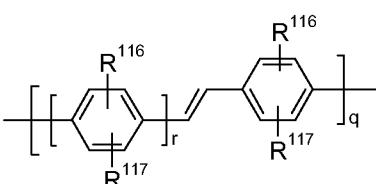
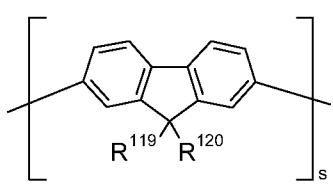
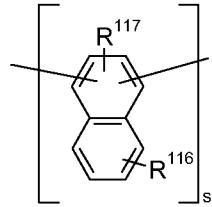
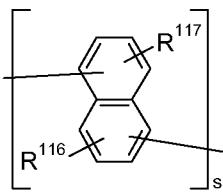
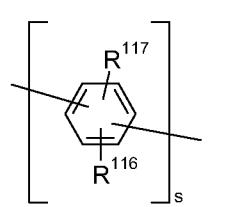

20

Another nickel-coupling reaction was disclosed by Yamamoto in Progress in Polymer Science 17 (1992) 1153 wherein a mixture of dihaloaromatic compounds was treated with an excess amount of nickel (1,5-cyclooctadiene) complex in an inert solvent. All nickel-coupling reactions when applied to reactant mixtures of two or more aromatic dihalides yield 25 essentially random copolymers. Such polymerization reactions may be terminated by the addition of small amounts of water to the polymerization reaction mixture, which will replace the terminal halogen groups with hydrogen groups. Alternatively, a monofunctional aryl

halide may be used as a chain-terminator in such reactions, which will result in the formation of a terminal aryl group.

Nickel-coupling polymerizations yield essentially homopolymers or random copolymers

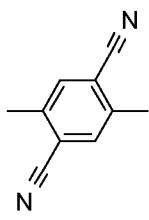
5 comprising units of formula I and units derived from other co-monomers.

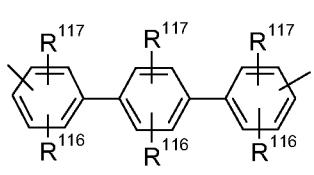







Homopolymers of formula

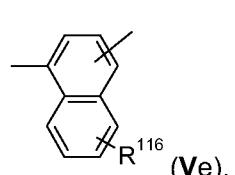
(VII) can be obtained, for example, by the

Suzuki reaction, wherein X^{10} is a repeating unit of formula **I**, especially **X**, **XI**, **XIII** and **XIV**; Ar^3 is selected from the following groups:

group II: units, which increase the hole-in-


- group **III**: units, which increase the electron-injection or electron-transport properties of the polymers;
- group **IV**: units, which are combinations of units of group **II** and **III**;
- group **V**:

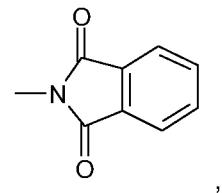

, especially R^{18} (Va),


(Vb),

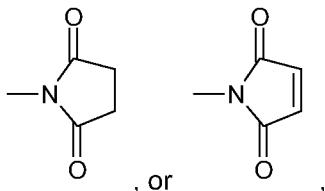
(V_C), or

(Vd).

5 r is an integer from 1 to 10, especially 1, 2 or 3,
 q is an integer from 1 to 10, especially 1, 2 or 3,
 s is an integer from 1 to 10, especially 1, 2 or 3,
 R¹¹⁶ and R¹¹⁷ are independently of each other H, halogen, -CN, C₁-C₁₈alkyl, C₁-C₁₈alkyl which is substituted by E and/or interrupted by D, C₆-C₂₄aryl, C₆-C₂₄aryl which is substituted by G,
 10 C₂-C₂₀heteroaryl, C₂-C₂₀heteroaryl which is substituted by G, C₂-C₁₈alkenyl, C₂-C₁₈alkynyl, C₁-C₁₈alkoxy, C₁-C₁₈alkoxy which is substituted by E and/or interrupted by D, C₇-C₂₅aralkyl, -C(=O)-R¹²⁷, -C(=O)OR¹²⁷, or -C(=O)NR¹²⁷R¹²⁶,
 R¹¹⁹ and R¹²⁰ are independently of each other H, C₁-C₁₈alkyl, C₁-C₁₈alkyl which is substituted by E and/or interrupted by D, C₆-C₂₄aryl, C₆-C₂₄aryl which is substituted by G, C₂-C₂₀heteroaryl, C₂-C₂₀heteroaryl which is substituted by G, C₂-C₁₈alkenyl, C₂-C₁₈alkynyl, C₁-C₁₈alkoxy, C₁-C₁₈alkoxy which is substituted by E and/or interrupted by D, or C₇-C₂₅aralkyl, or R¹¹⁹ and R¹²⁰ together form a group of formula =CR¹²¹R¹²², wherein
 15 R¹²¹ and R¹²² are independently of each other H, C₁-C₁₈alkyl, C₁-C₁₈alkyl which is substituted by E and/or interrupted by D, C₆-C₂₄aryl, C₆-C₂₄aryl which is substituted by G, or C₂-C₂₀heteroaryl, or C₂-C₂₀heteroaryl which is substituted by G, or


R^{119} and R^{120} together form a five or six membered ring, which optionally can be substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by G, C_2 - C_{20} heteroaryl, C_2 - C_{20} heteroaryl which is substituted by G, C_2 - C_{18} alkenyl, C_2 - C_{18} alkynyl, C_1 - C_{18} alkoxy, C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D, C_7 - C_{25} aralkyl, or $-C(=O)-R^{127}$, and

5 R^{126} and R^{127} are independently of each other H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, or C_1 - C_{18} alkoxy; C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by $-O-$, D is $-CO-$, $-COO-$, $-S-$, $-SO-$, $-SO_2-$, $-O-$, $-NR^{65}-$, $-SiR^{70}R^{71}-$, $-POR^{72}-$, $-CR^{63}=CR^{64}-$, or $-C\equiv C-$, and


10 E is $-OR^{69}$, $-SR^{69}$, $-NR^{65}R^{66}$, $-COR^{68}$, $-COOR^{67}$, $-CONR^{65}R^{66}$, $-CN$, or halogen,

G is E, or C_1 - C_{18} alkyl,

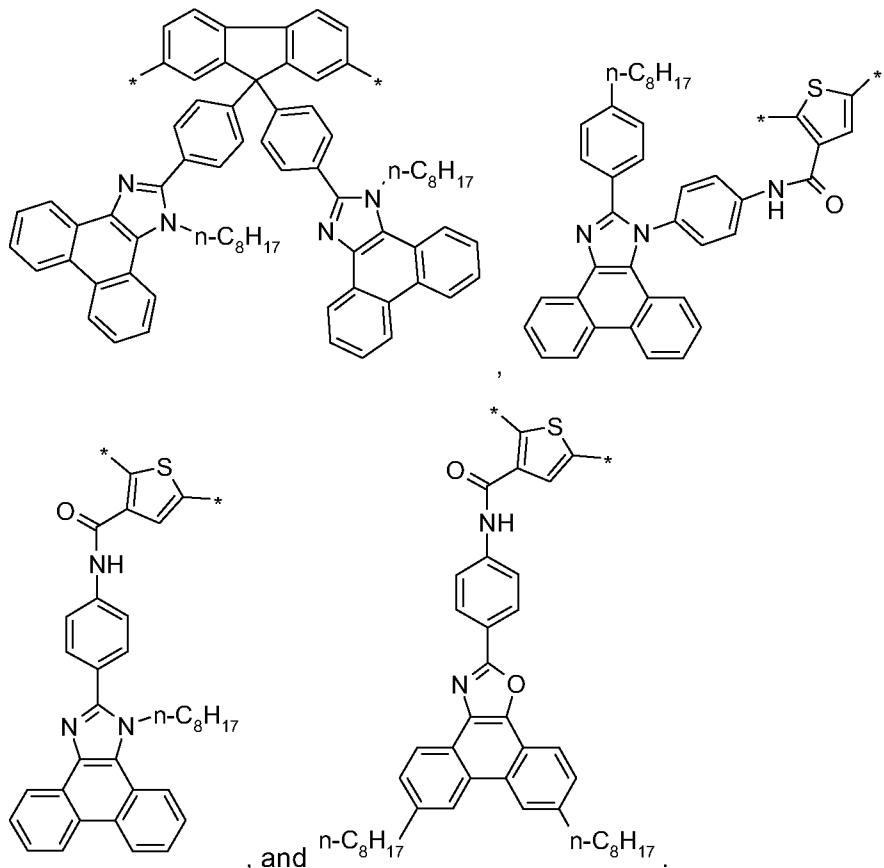
R^{63} , R^{64} , R^{65} and R^{66} are independently of each other H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkoxy; C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by $-O-$; or

15 R^{65} and R^{66} together form a five or six membered ring, in particular

, or

R^{67} and R^{68} are independently of each other H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, or C_1 - C_{18} alkoxy; C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by $-O-$,

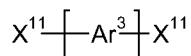
R^{69} is H; C_6 - C_{18} aryl; C_6 - C_{18} aryl, which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkoxy; C_1 - C_{18} alkyl;

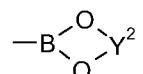

20 or C_1 - C_{18} alkyl which is interrupted by $-O-$,

R^{70} and R^{71} are independently of each other C_1 - C_{18} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, which is substituted by C_1 - C_{18} alkyl, and

R^{72} is C_1 - C_{18} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, which is substituted by C_1 - C_{18} alkyl.

25 Examples of units of groups **II**, **III** and **IV** are contained in WO2005/049695, page 11, line 13 to page 22, line 9.


In a preferred embodiment of the present invention the polymer comprises repeating units of formula


The condensation reaction of an aromatic boronate and a halogenide, especially a bromide,

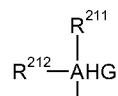
5 commonly referred to as the "Suzuki reaction", is tolerant of the presence of a variety of organic functional groups as reported by N. Miyaura and A. Suzuki in Chemical Reviews, Vol. 95, pp. 457-2483 (1995). This reaction can be applied to preparing high molecular weight polymers and copolymers.

10 To prepare polymers corresponding to formula **VII**, a dihalogenide, such as a dibromide or dichloride, especially a dibromide corresponding to formula $\text{Br}-\text{X}^{10}-\text{Br}$ is reacted with an

equimolar amount of a diboronic acid or diborionate corresponding to formula

wherein X^{11} is independently in each occurrence $-\text{B}(\text{OH})_2$, $-\text{B}(\text{OY}^1)_2$ or

15 Y^1 is independently in each occurrence a $\text{C}_1\text{-C}_{10}$ alkyl group and Y^2 is independently in each occurrence a $\text{C}_2\text{-C}_{10}$ alkylene group, such as $-\text{CY}^3\text{Y}^4-\text{CY}^5\text{Y}^6-$, or $-\text{CY}^7\text{Y}^8-\text{CY}^9\text{Y}^{10}-\text{CY}^{11}\text{Y}^{12}-$, wherein Y^3 , Y^4 , Y^5 , Y^6 , Y^7 , Y^8 , Y^9 , Y^{10} , Y^{11} and Y^{12} are independently of each other hydrogen, or a $\text{C}_1\text{-C}_{10}$ alkyl group, especially $-\text{C}(\text{CH}_3)_2\text{C}(\text{CH}_3)_2-$, or $-\text{C}(\text{CH}_3)_2\text{CH}_2\text{C}(\text{CH}_3)_2-$, under the

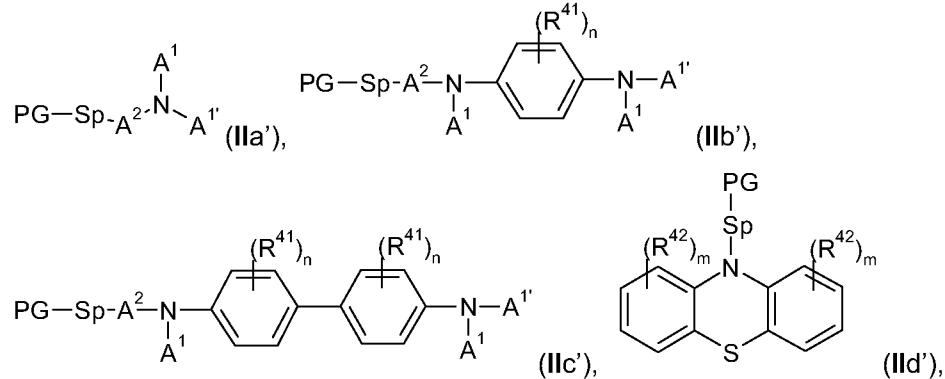

catalytic action of Pd and triphenylphosphine. The reaction is typically conducted at about 70 °C to 180 °C in an aromatic hydrocarbon solvent such as toluene. Other solvents such as dimethylformamide and tetrahydrofuran can also be used alone, or in mixtures with an

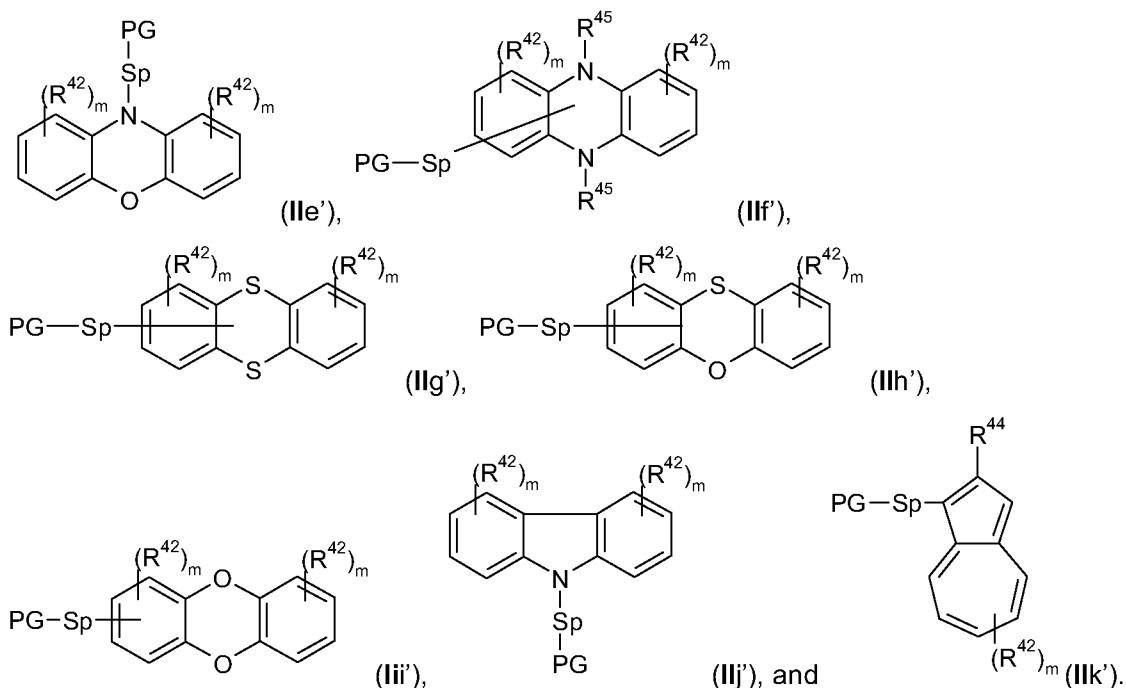
5 used as the HBr scavenger. Depending on the reactivities of the reactants, a polymerization reaction may take 2 to 100 hours. Organic bases, such as, for example, tetraalkylammonium hydroxide, and phase transfer catalysts, such as, for example TBAB, can promote the activity of the boron (see, for example, Leadbeater & Marco; *Angew. Chem. Int. Ed. Eng.* 42 (2003) 1407 and references cited therein). Other variations of reaction conditions are given by T. I.
10 Wall and B. M. Novak in *J. Org. Chem.* 59 (1994) 5034-5037; and M. Remmers, M. Schulze, and G. Wegner in *Macromol. Rapid Commun.* 17 (1996) 239-252.

If desired, a monofunctional aryl halide or aryl boronate may be used as a chain-terminator in such reactions, which will result in the formation of a terminal aryl group.

15

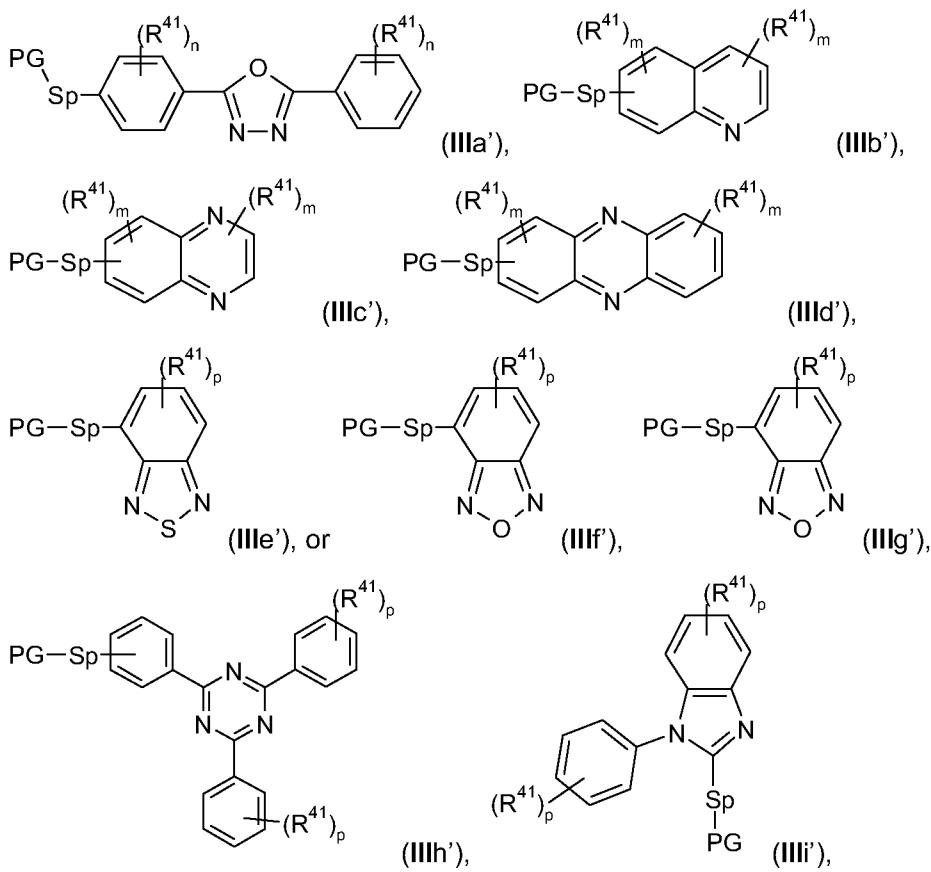
It is possible to control the sequencing of the monomeric units in the resulting copolymer by controlling the order and composition of monomer feeds in the Suzuki reaction.

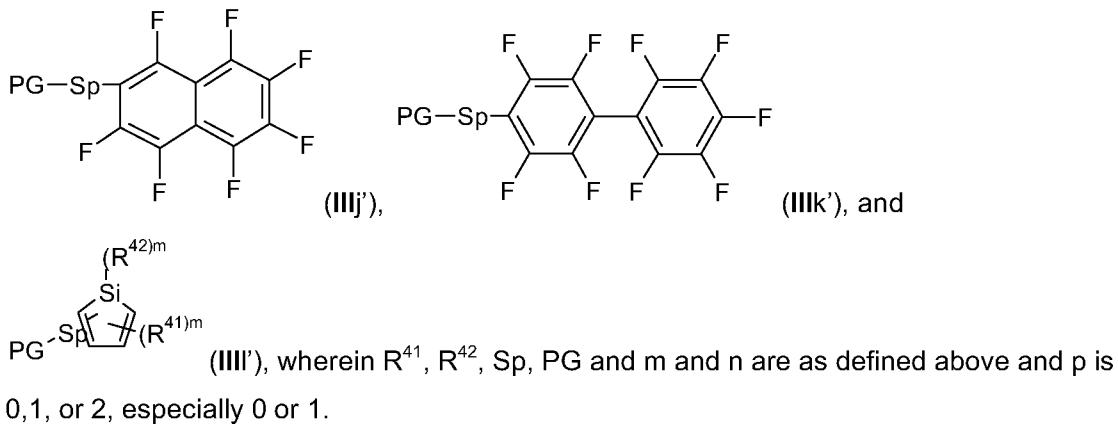

If PG' is different from a polymerisable group, the polymers can contain in addition


20 to the repeating units of formula **X - XXI** one or more repeating units RG^I and/or RG^{II} :

RG^I: units, which increase the hole-injection or hole-transport properties of the polymers;
 RG^{II}: units, which increase the electron-injection or electron-transport properties of the polymers.

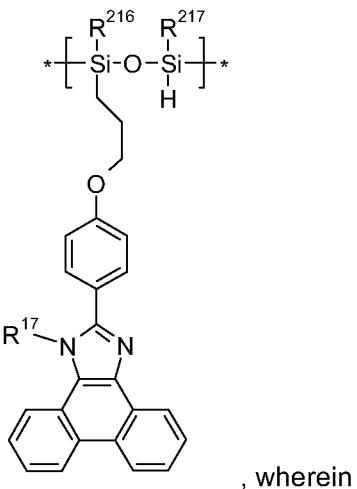
Preferred units of RG¹, which increase the hole-injection or hole-transport properties of the


25 polymers, are:



R^{41} , R^{42} , R^{44} , R^{45} , A^1 , $A^{1'}$, A^2 , m , n , PG, and Sp are as defined above.

5 Preferred units of RG^{II} , which increase the electron-injection or electron-transport properties of the polymers, are:



5 According to the present invention homopolymers A-1, A-2, A-3, A-4, A-5, A-6, A-7, A-8, A-9, A-10, A-11, A-12, A-13, A-14, A-15, A-16, A-17, A-18, A-19, A-20, A-21, A-22, A-23, A-24, A-25, A-26, A-27, A-28, A-29, A-30, A-31, A-32, A-33, A-34, A-35, A-36, A-37, A-38, A-39, A-40, A-41, A-42, A-43, A-44, A-45, A-46, A-47, A-48, A-49, A-50, A-51, A-52, A-53, A-54, A-55, A-56, A-57, A-58, A-59, A-60, A-61, A-62, A-63, A-64, A-65, A-66, A-67, A-68, A-69, A-70, A-71, A-72, A-73, A-74, A-75, A-76, A-77, A-78, A-79, B-1, B-2, B-3, B-4, B-5, B-6, B-7, B-8, B-9, B-10, B-11, B-12, B-13, B-14, B-15, B-16, B-17, B-18, B-19, B-20, B-21, B-22, B-23, B-24, B-25, B-26, B-27, B-28, B-29, B-30, B-31, B-32, B-33, B-34, B-35, B-36, B-37, B-38, B-39, C-1, C-2, C-3, C-4, C-5, C-6, C-7, C-8, C-9, C-10, C-11, C-12, C-13, C-14, C-15, C-16, C-17, C-18, C-19, C-20, C-21, C-22, C-23, C-24, C-25, C-26, C-27, C-28, C-29, C-30, C-31, C-32, C-33, C-34, C-35, C-36, C-37, C-38, C-39, C-40, C-41, C-42, C-43, C-44, C-45, C-46, C-47, C-48, C-49, C-50, C-51, C-52, C-53, C-54, C-55, C-56, C-57, C-58, C-59, C-60, C-61, C-62, C-63, C-64, C-65, C-66, C-67, C-68, C-69, C-70, C-71, C-72, C-73, C-74, C-75, C-76, C-77, C-78, D-1, D-2, D-3, D-4, D-5, D-6, D-7, D-8, D-9, D-10, D-11, D-12, D-13, D-14, D-15, D-16, D-17, D-18, D-19, D-20, D-21, D-22, D-23, D-24, D-25, D-26, D-27, D-28, D-29, D-30, D-31, D-32, D-33, D-34, D-35, D-36, D-37, D-38, D-39, D-40, D-41, D-42, D-43, D-44, D-45, D-46, D-47, D-48, D-49, D-50, D-51, D-52, E-1, E-2, E-3, E-4, E-5, E-6, E-7, E-8, E-9, E-10, E-11, E-12, E-13, E-14, E-15, E-16, E-17, E-18, E-19, E-20, E-21, E-22, E-23, E-24, E-25, E-26, E-27, E-28, E-29, E-30, E-31, E-32, E-33, E-34, E-35, E-36, E-37, E-38, E-39, E-40, E-41, E-42, E-43, E-44, E-45, E-46, E-47, E-48, E-49, E-50, E-51, and E-52, F-1 to F-36, G-1 to G-37, H-1 to H-42, I-1 to I-8, J-1 to J-31, and K-1 to K-34 are especially preferred.

Reference is made to claim 5.

In one embodiment, the polymer comprise repeating units of formula

29

, wherein

R^{216} and R^{217} are independently of each other C_1 - C_{18} alkyl, or C_6 - C_8 aryl, which can optionally be substituted by one, or more C_1 - C_{18} alkyl groups, and R^{17} is C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, or C_1 - C_{18} alkoxy; C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by

5 -O-.

In one embodiment, the polymers according to the invention consist only of one or more type of repeating units of formula I. In a preferred embodiment, the polymers according to the invention consist of precisely one type of repeating unit of formula I (homopolymers).

10

According to the present invention the term "polymer" comprises polymers as well as oligomers, wherein a polymer is a molecule of high relative molecular mass, the structure of which essentially comprises the repetition of units derived, actually or conceptually, from molecules of low relative molecular mass and an oligomer is a molecule of intermediate 15 molecular mass, the structure of which essentially comprises a small plurality of units derived, actually or conceptually, from molecules of lower relative molecular mass. A molecule is regarded as having a high relative molecular mass if it has properties which do not vary significantly with the removal of one or a few of the units. A molecule is regarded as having an intermediate molecular mass if it has properties which do vary significantly with the 20 removal of one or a few of the units.

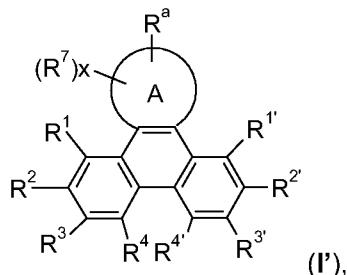
According to the present invention a homopolymer is a polymer derived from one species of (real, implicit, or hypothetical) monomer. Many polymers are made by the mutual reaction of complementary monomers. These monomers can readily be visualized as reacting to give an 25 "implicit monomer", the homopolymerisation of which would give the actual product, which can be regarded as a homopolymer. Some polymers are obtained by chemical modification of other polymers, such that the structure of the macromolecules that constitute the resulting

polymer can be thought of having been formed by the homopolymerisation of a hypothetical monomer.

Accordingly a copolymer is a polymer derived from more than one species of monomer, e.g.

5 bipolymer, terpolymer, quaterpolymer, etc.

The oligomers of this invention have a weight average molecular weight of < 2,000 Daltons.

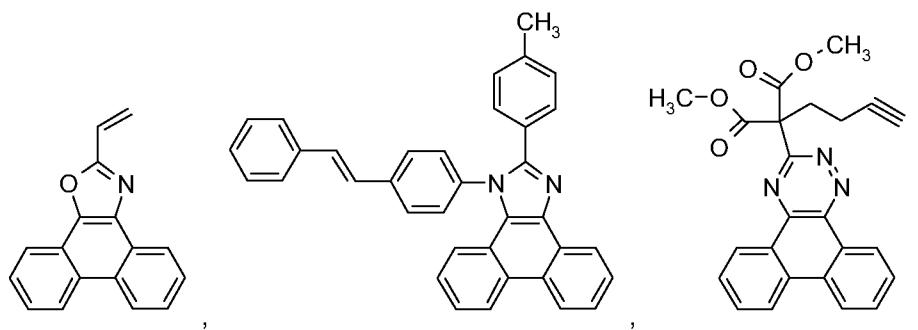

The polymers of this invention preferably have a weight average molecular weight of 2,000

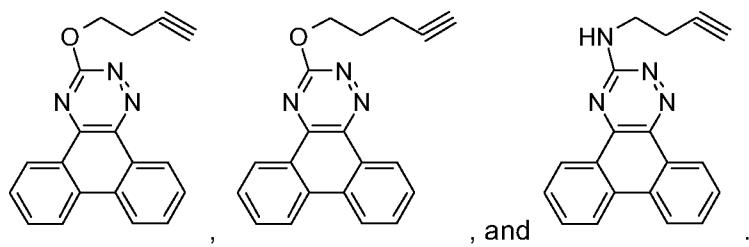
Daltons or greater, especially 2,000 to 250,000 Daltons, more preferably 10,000 to 250,000

10 and most preferably 20,000 to 200,000 Daltons. Molecular weights are determined according to gel permeation chromatography using polystyrene standards and/or light scattering detectors.

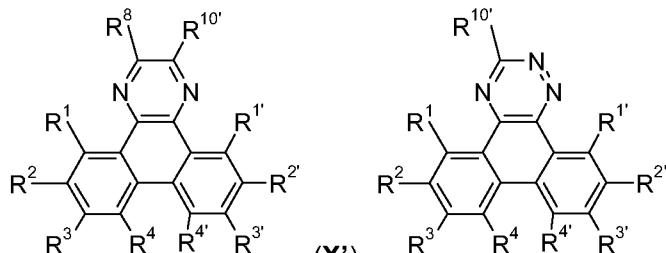
A further embodiment of the present invention is represented by the compounds (monomers)

15 of the formula

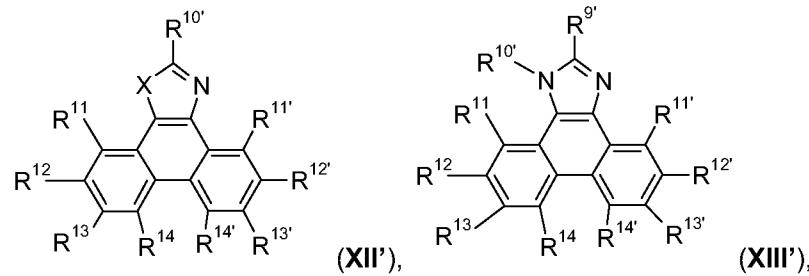

wherein x, A, R^a, R¹, R², R³, R⁴, R^{1'}, R^{2'}, R^{3'}, R^{4'} and R⁷ are as defined above, at least one of R^a, R¹, R², R³, R⁴, R^{1'}, R^{2'}, R^{3'} and R^{4'} is a group R^{10'}, wherein R^{10'} is a group -(Sp)_{x1}-[PG]<, wherein


20 Sp is a spacer unit,

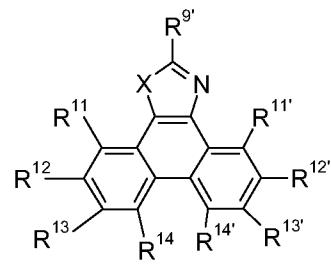
PG is a polymerisable group,


x1 is 0, or 1, and

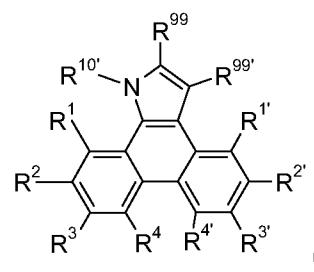
x is 0, or an integer of 1 to 5, with the proviso that the following compounds are excluded:



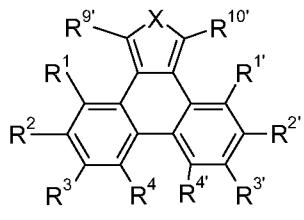
, and .


Compounds of the formula

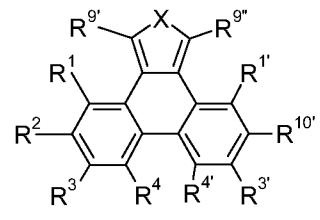
(X'), (XI'),


(XII'),

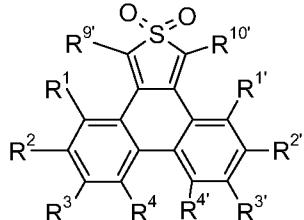
(XIII'),

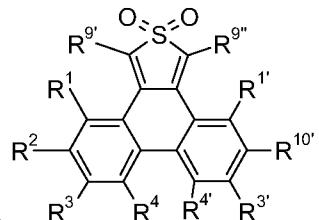

(XIV'),

(XV'),

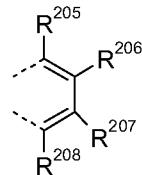


(XVI'),

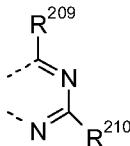

(XVII'),


(XVIII'),

(XIX'),



(XX') and/or



(XXI'), wherein

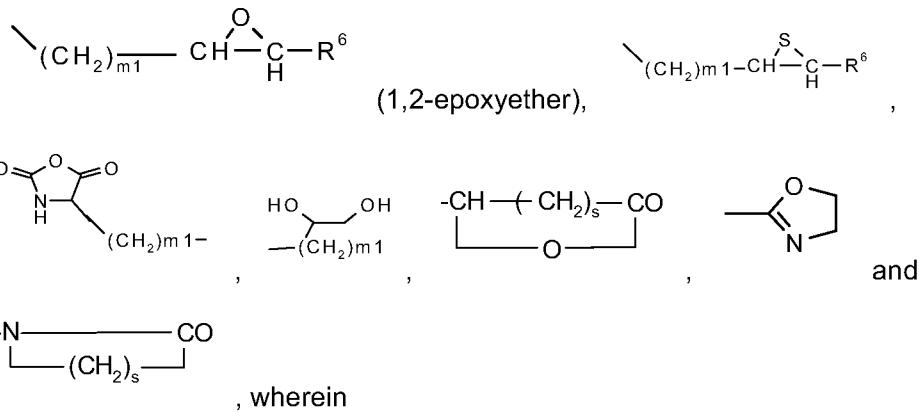
X, R¹, R^{1'}, R², R³, R⁴, R^{2'}, R^{3'}, R^{4'}, R⁸, R^{9'}, R^{9''}, R⁹⁹, R^{99'}, R¹⁷, R¹¹, R^{11'}, R¹², R¹³, R¹⁴, R^{12'}, R^{13'} and R^{14'} are as defined above, R^{10'} is a group -(Sp)_{x1}-[PG], wherein Sp is a spacer unit, PG is a

5 polymerisable group, and x1 is 0, or 1, or R⁸ and R^{10''} together form a group

10 , wherein one of the substituents R²⁰⁵, R²⁰⁶, R²⁰⁷ and R²⁰⁸, and one of the substituents R²⁰⁸ and R²¹⁰ is a group R^{10'} and the other substituents are independently of each other H, C₁-C₁₈alkyl, C₁-C₁₈alkyl which is substituted by E and/or interrupted by D, C₁-C₁₈alkoxy, or C₁-C₁₈alkoxy which is substituted by E and/or interrupted by D, with the proviso that in case of the compound of the formula XIV at least one of the substituents R¹²,

15 R¹³, R^{12'} and R^{13'} is a group R^{10'}.

Sp is preferably selected from -Ar-, -ArY-, -YAr-, -YAr(CR⁴⁷R⁴⁸)_n-, -ArY(CR⁴⁷R⁴⁸)_nAr-, -ArY(CR⁴⁷R⁴⁸)_n-, -(CR⁴⁷R⁴⁸)_n-, -(YCR⁴⁷R⁴⁸)_n-, or -(CR⁴⁷R⁴⁸Y)_n-, wherein


15 Y is NR⁵, O, S, C=O, C(=O)O, wherein R⁵ is H; C₆-C₁₈aryl; C₆-C₁₈aryl which is substituted by C₁-C₁₈alkyl, or C₁-C₁₈alkoxy; C₁-C₁₈alkyl; or C₁-C₁₈alkyl which is interrupted by -O-;

R⁴⁷ and R⁴⁸ are independently of each other hydrogen, fluorine, or C₁-C₂₀alkyl, n is an integer of 1 to 20,

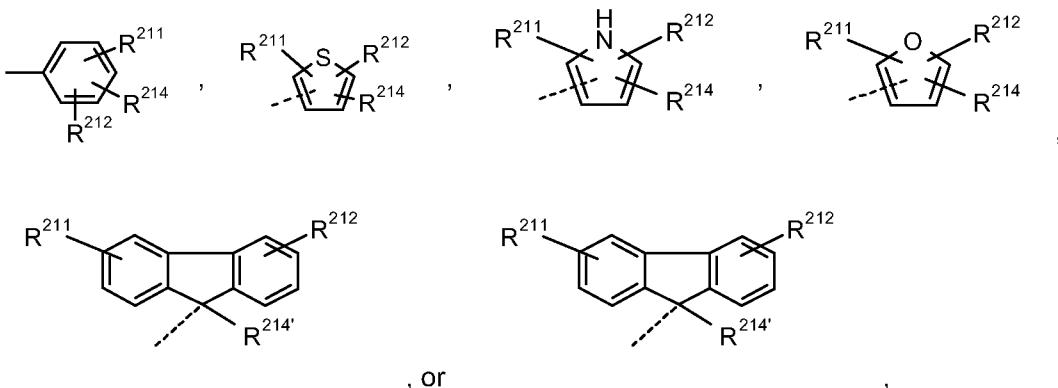
Ar is alkylen, cycloalkylen, arylen, aralkylene, or heteroarylen, which can optionally be substituted.

PG is a polymerisable group and is preferably selected from -C(R⁴⁴)=CH₂, -NHC(O)-C(R⁴⁵)=CH₂, -OCH₂CH₂OC(O)-C(R⁴⁵)=CH₂, -OC(O)-C(R⁴⁵)=CH₂, -C(O)-C(R⁴⁶)=CH₂, -C≡C-, -

$\text{N}\equiv\text{C}$, $-\text{O}-\text{CH}(\text{CH}_2\text{CH}_2\text{CH}=\text{CH}_2)_2$; $\text{C}_5\text{-C}_8$ cycloalkenyl, bicycloalkenyl (a substituted or unsubstituted bicycloalkenyl group having 5 to 30 carbon atoms),

5 s is an integer from 1 to 6, $m1$ is an integer from 1 to 6,

R^6 is hydrogen, or $\text{C}_1\text{-C}_{20}$ alkyl,


R^{44} is hydrogen, or $\text{C}_1\text{-C}_4$ alkyl, or halogen,

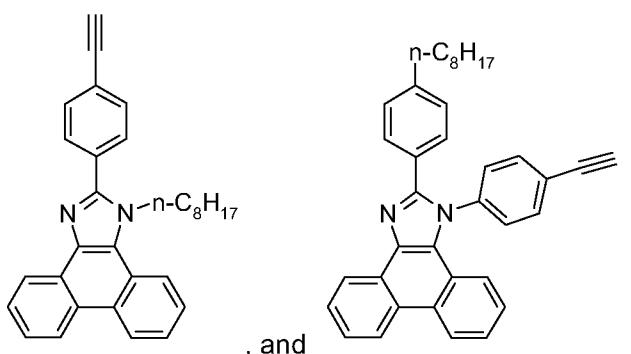
R^{45} is hydrogen, $\text{C}_1\text{-C}_4$ alkyl, or halogen, and

10 R^{46} is hydrogen, $\text{C}_1\text{-C}_4$ alkyl, or $\text{C}_6\text{-C}_{12}$ aryl, or

PG is a polymerisable group $\begin{array}{c} \text{R}^{211} \\ | \\ \text{R}^{212}-\text{AHG} \end{array}$, wherein

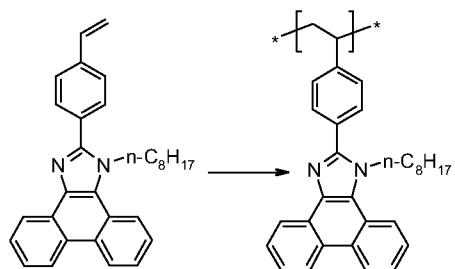
AHG is an aromatic, or heteroaromatic residue, which can optionally be substituted, such as

15 R^{211} and R^{212} are independently of each other halogen, $-\text{C}\equiv\text{CH}$, boronic acid, or boronic esters, $-\text{Mg-Hal}$, $-\text{Zn-Hal}$, $-\text{Sn}(\text{R}^{213})_3$, wherein Hal is halogen, and R^{213} is $\text{C}_1\text{-C}_{18}$ alkyl,
 R^{214} and $\text{R}^{214'}$ are independently of each other H, $\text{C}_1\text{-C}_{18}$ alkyl, $\text{C}_1\text{-C}_{18}$ alkyl which is interrupted by D, $\text{C}_1\text{-C}_{18}$ perfluoroalkyl, $\text{C}_1\text{-C}_{18}$ alkoxy, $\text{C}_1\text{-C}_{18}$ alkoxy which is interrupted by D, or $\text{C}_7\text{-C}_{25}$ aralkyl.


Monomers are preferred, wherein at least one of the substituents R^3 , $R^{3'}$, R^{13} , $R^{13'}$, R^8 and/or $R^{9'}$ and R^{10} are different from a hydrogen atom and are in particular a solubilizing substituent which is especially selected from C_6 - C_{18} aryl, which can be substituted by G, C_2 - C_{18} heteroaryl, which can be substituted by G, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is interrupted by D, C_1 - C_{18} perfluoroalkyl, C_1 - C_{18} alkoxy, or C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D.

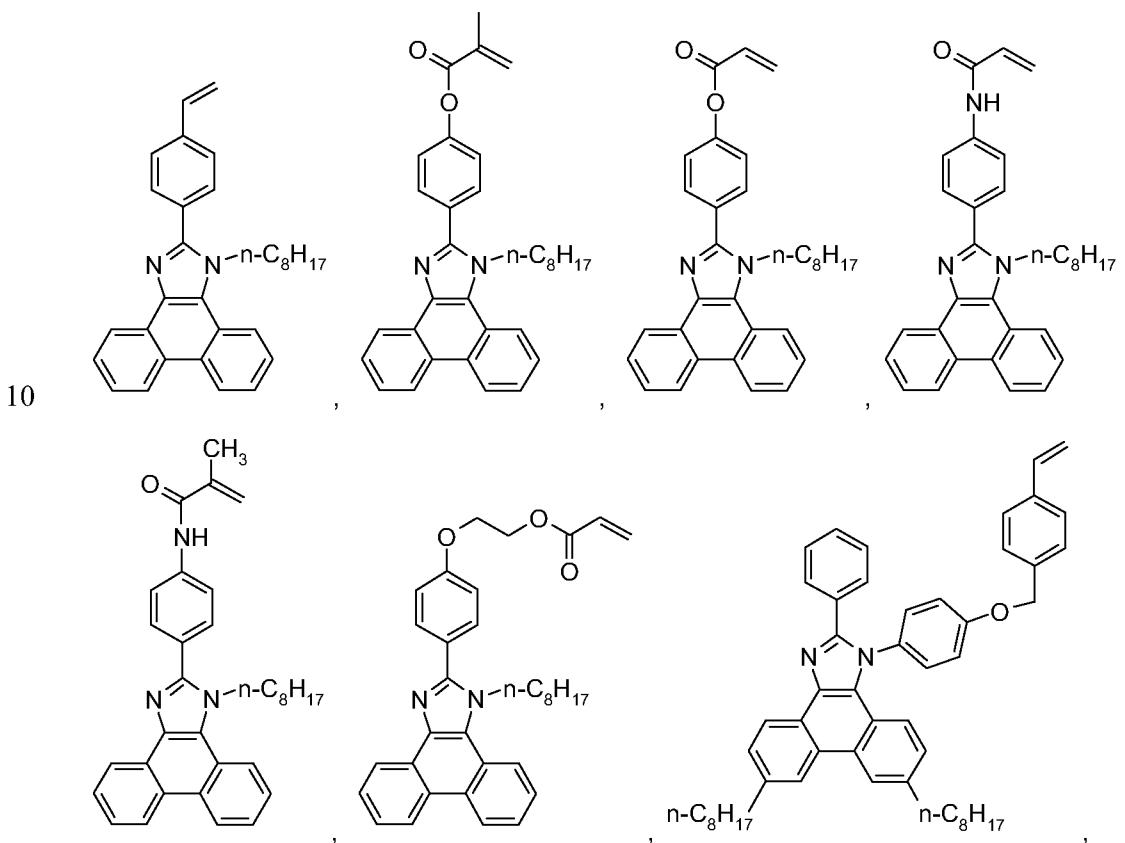
R^{17} is preferably different from a hydrogen atom and is very especially C_1 - C_{18} alkyl, or C_1 - C_{18} alkyl which is interrupted by D.

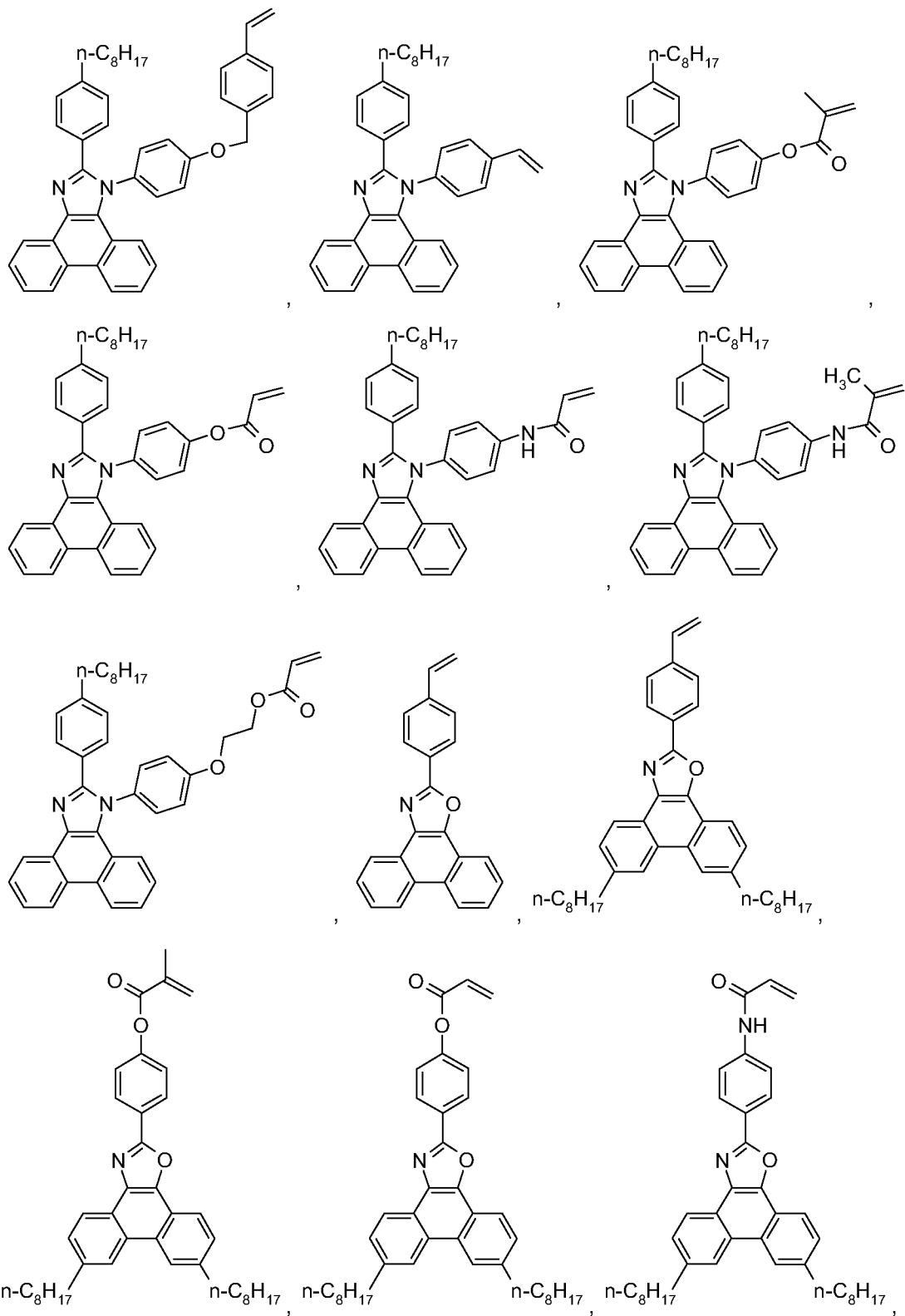
10 In particular R^8 , $R^{9'}$ and/or R^{17} are a solubilizing substituent and are in particular selected from C_6 - C_{18} aryl, which can be substituted by G, C_2 - C_{18} heteroaryl, which can be substituted by G, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is interrupted by D, C_1 - C_{18} perfluoroalkyl, C_1 - C_{18} alkoxy, or C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D.

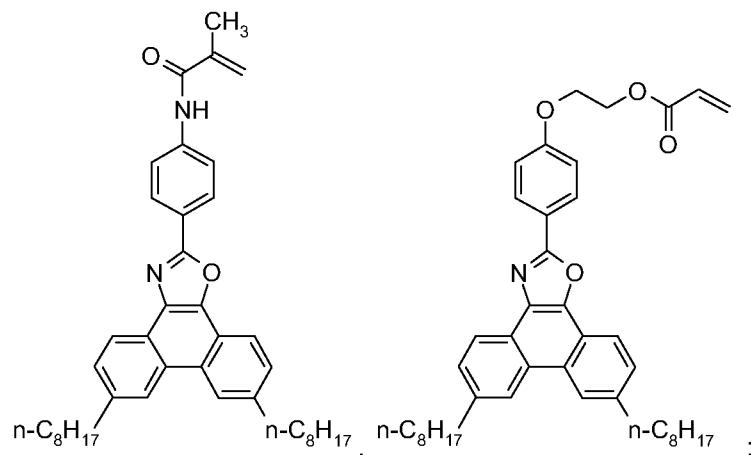

15 Halogen is fluorine, chlorine, bromine and iodine.

Conjugated polymers can be obtained by using monomers having groups, such as

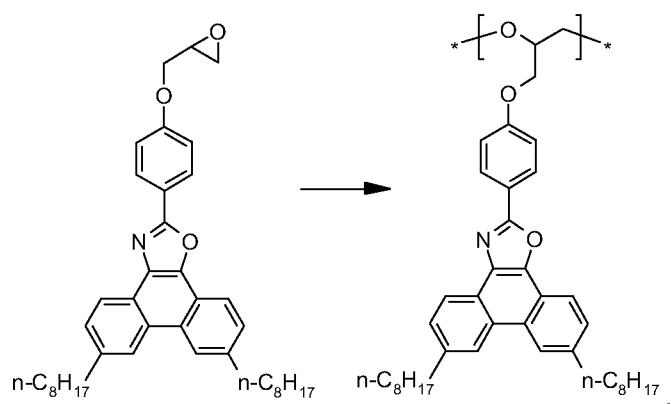
20 The actual preparation of polymers is known from the state of the art (described, inter alia, in Houben-Weyl "Methoden der Organischen Chemie", "Makromolekulare Stoffe", Vol. E20, parts 1-3 (1986, 1987)).

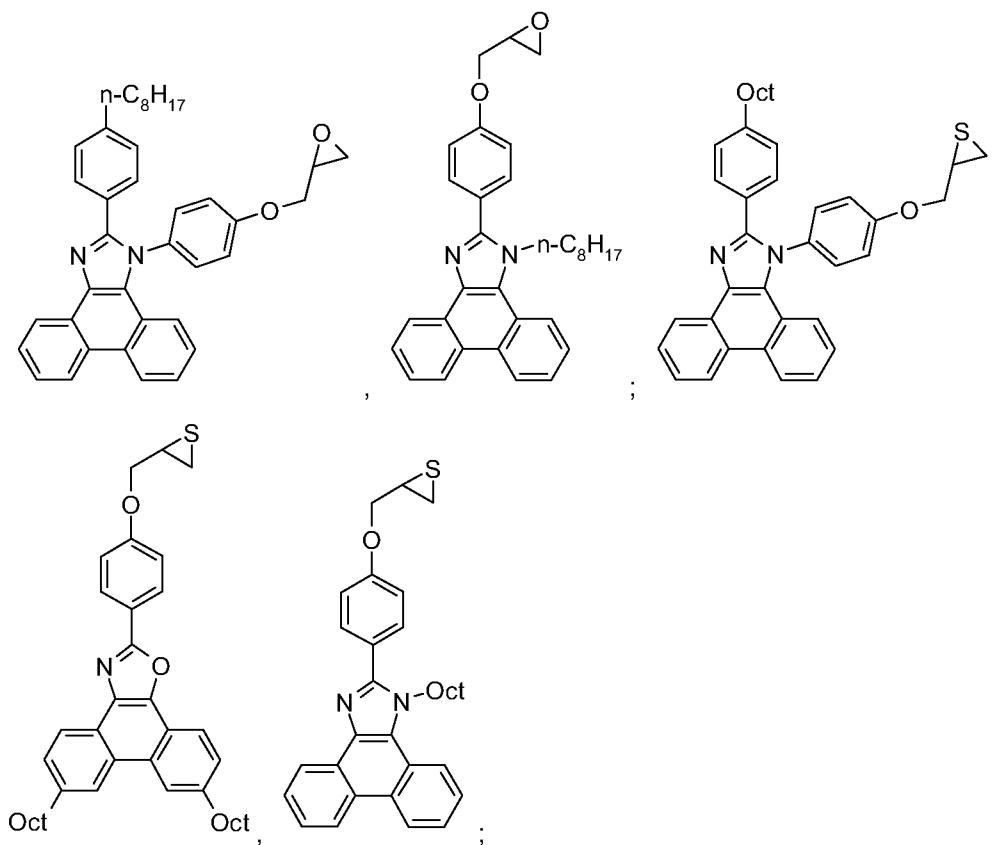

25 Possible polymerisation methods and suitable compounds therefore are listed below:
a) Radical polymerisation:

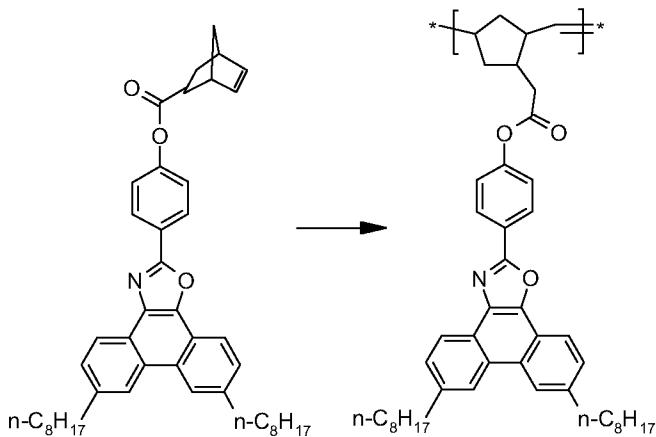


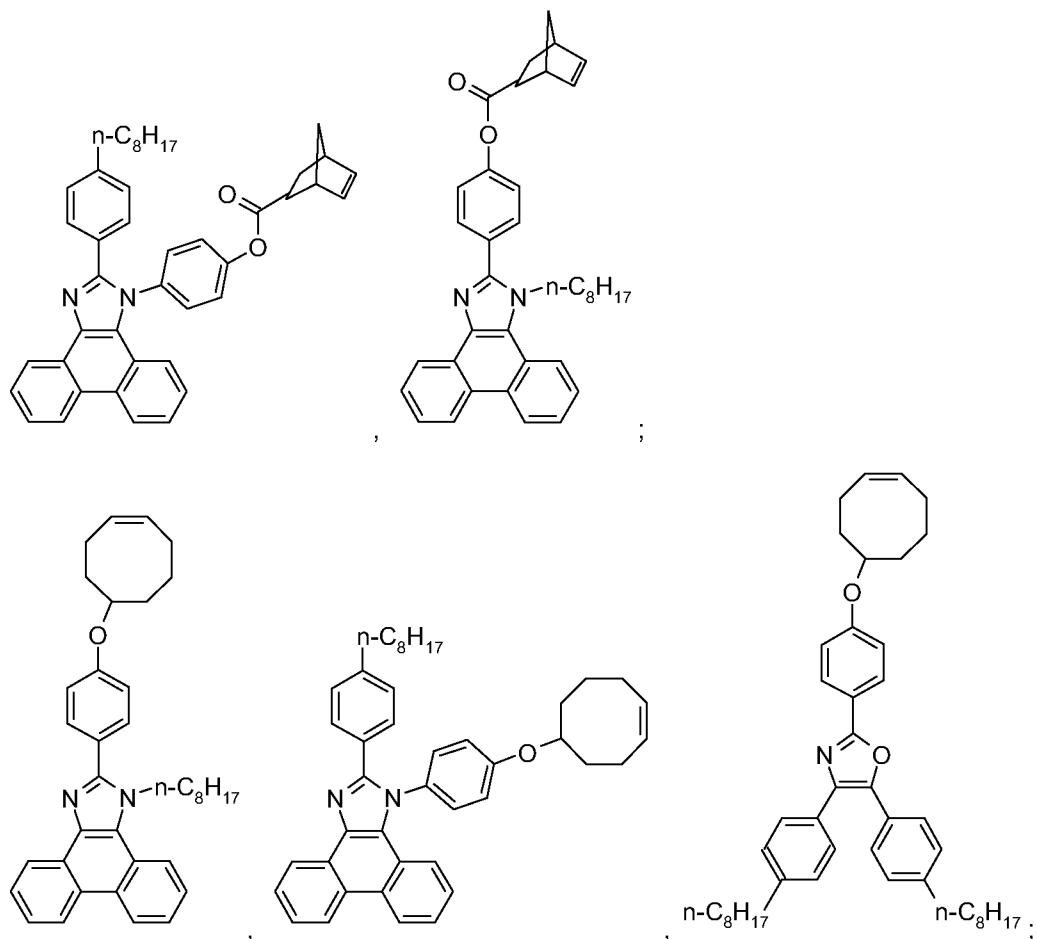

If the monomers of formula I' contain $-\text{CH}=\text{CH}_2-$, acrylate or methacrylate groups, the polymerisation can be carried out e.g. photochemically, one of the customary photoinitiators (see e.g. "Chemistry & Technology of UV & EB Formulations for Coatings, Inks and Paints,

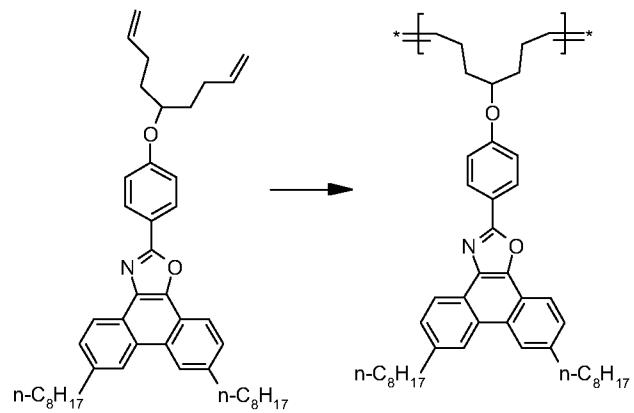
5 Vol. 3: Photoinitiators for Free Radical and Cationic Polymerization" 1991, p. 1115-325) usually being added to the reaction mixture in an amount in the range from typically 0.5 to 5 % by weight, based on the sum of all monomers used.

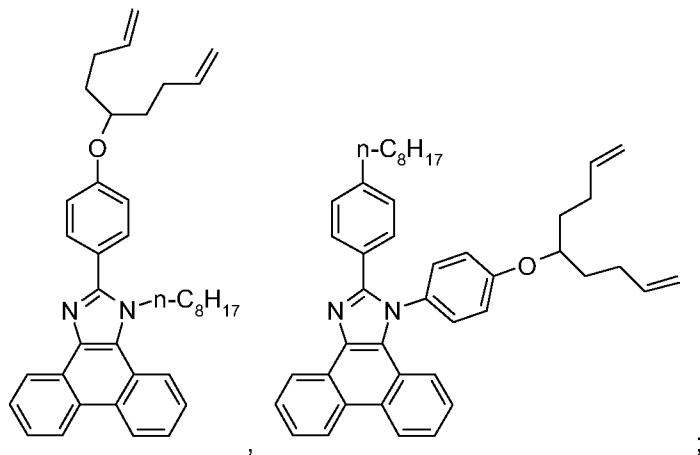

Examples of additional particularly suitable monomers are shown below:




b) Epoxy polymerisation:

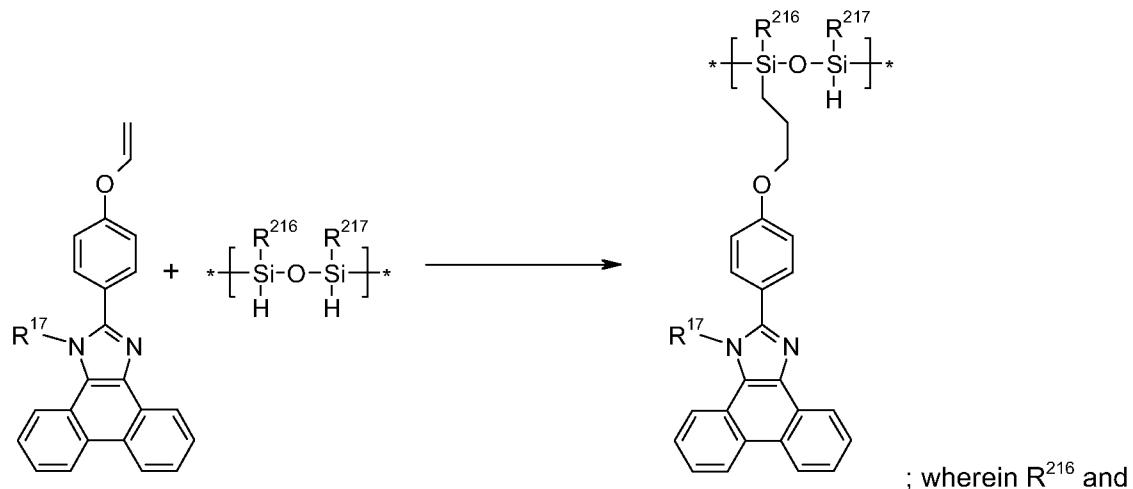

Examples of additional particularly suitable monomers are shown below:


c) Various metathesis reactions are described in Ivin, K. J. and Mol, J. C., Olefin Metathesis and Metathesis Polymerization (Academic Press 1997).
 5 - ROMP (Ring Opening Metathesis Polymerisation):


Examples of additional particularly suitable monomers are shown below:

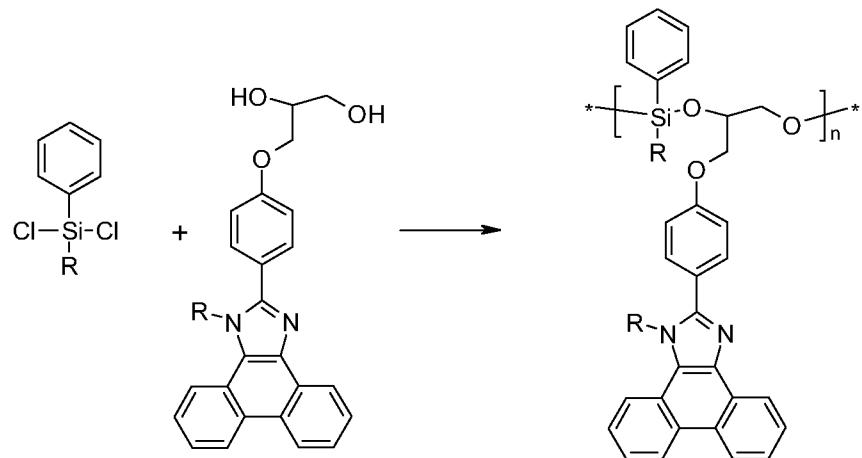
- ADMET (Acyclic Diene Olefin Metathesis):

5 Examples of additional particularly suitable monomers are shown below:

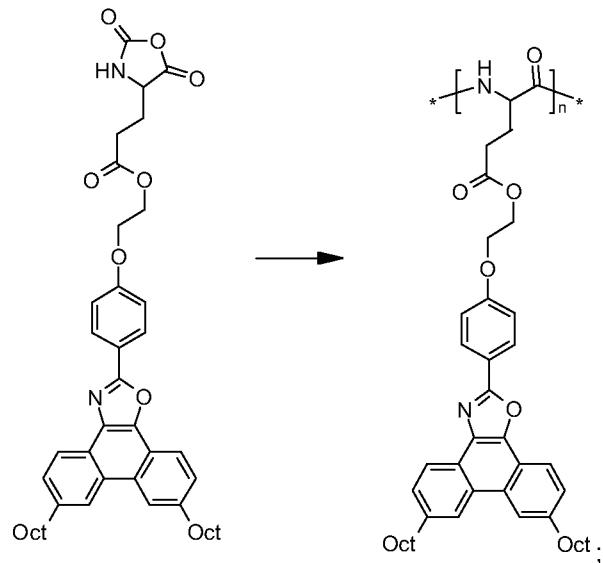


d) Hydrosilylation:

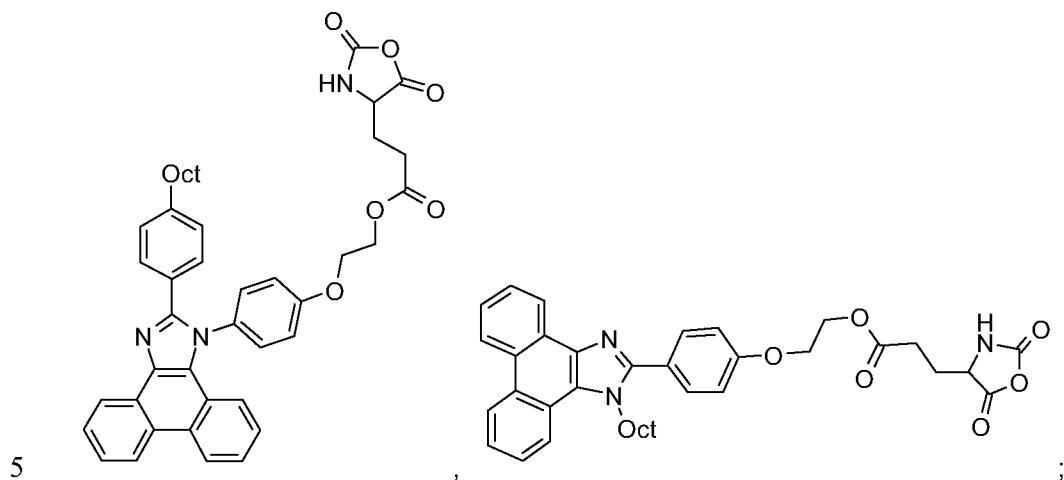
The hydrosilylation can be initiated by UV radiation and can be catalysed by radical

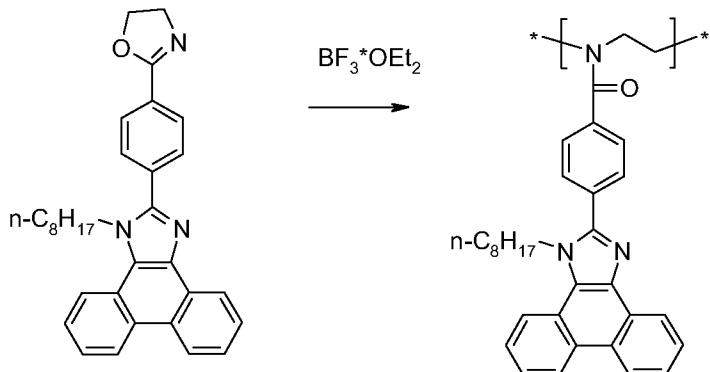

formers, transition metal complexes, or Lewis bases. Examples of hydrosilylation

5 catalysts are H_2PtCl_6 , $\text{RhCl}(\text{PPh}_3)_3$ or $\text{trans-IrCl}(\text{CO})(\text{PPh}_3)_2$.



R^{217} are independently of each other a $\text{C}_1\text{-}\text{C}_8$ alkyl group, a $\text{C}_6\text{-}\text{C}_{24}$ aryl group or a $\text{C}_7\text{-}\text{C}_{12}$ aralkylgroup.


- Progress in Polymer Science 28 (2003) 1297-1353:


- Journal of Polymer Science: Part A, vol. 41 (2003) 1167-1187:

Examples of additional particularly suitable monomers are shown below:

42

C₁-C₂₅alkyl is typically linear or branched, where possible. Examples are methyl, ethyl, n-propyl, isopropyl, n-butyl, sec.-butyl, isobutyl, tert.-butyl, n-pentyl, 2-pentyl, 3-pentyl, 2,2-dimethylpropyl, 1,1,3,3-tetramethylpentyl, n-hexyl, 1-methylhexyl, 1,1,3,3,5,5-hexamethylhexyl, n-heptyl, isoheptyl, 1,1,3,3-tetramethylbutyl, 1-methylheptyl, 3-methylheptyl, n-octyl, 1,1,3,3-tetramethylbutyl and 2-ethylhexyl, n-nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, eicosyl, heneicosyl, docosyl, tetracosyl or pentacosyl. C₁-C₈alkyl is typically methyl, ethyl, n-propyl, isopropyl, n-butyl, sec.-butyl, isobutyl, tert.-butyl, n-pentyl, 2-pentyl, 3-pentyl, 2,2-dimethyl-propyl, n-hexyl, n-heptyl, n-octyl, 1,1,3,3-tetramethylbutyl and 2-ethylhexyl. C₁-C₄alkyl is typically methyl, ethyl, n-propyl, isopropyl, n-butyl, sec.-butyl, isobutyl, tert.-butyl.

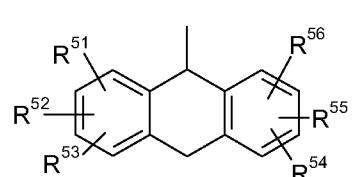
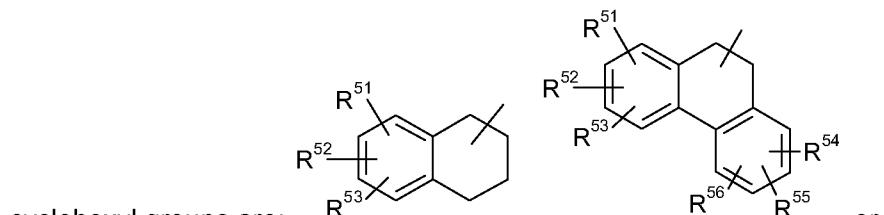
5 C₁-C₂₅alkoxy groups are straight-chain or branched alkoxy groups, e.g. methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, sec-butoxy, tert-butoxy, amyloxy, isoamyloxy or tert-amyloxy, heptyloxy, octyloxy, isoctyloxy, nonyloxy, decyloxy, undecyloxy, dodecyloxy, tetradecyloxy, pentadecyloxy, hexadecyloxy, heptadecyloxy and octadecyloxy. Examples of C₁-C₈alkoxy are methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, sec.-butoxy, isobutoxy, tert.-butoxy, n-pentyloxy, 2-pentyloxy, 3-pentyloxy, 2,2-dimethylpropoxy, n-hexyloxy, n-heptyloxy, n-octyloxy, 1,1,3,3-tetramethylbutoxy and 2-ethylhexyloxy, preferably C₁-C₄alkoxy such as 10 typically methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, sec.-butoxy, isobutoxy, tert.-butoxy. The term "alkylthio group" means the same groups as the alkoxy groups, except that the oxygen atom of the ether linkage is replaced by a sulfur atom.

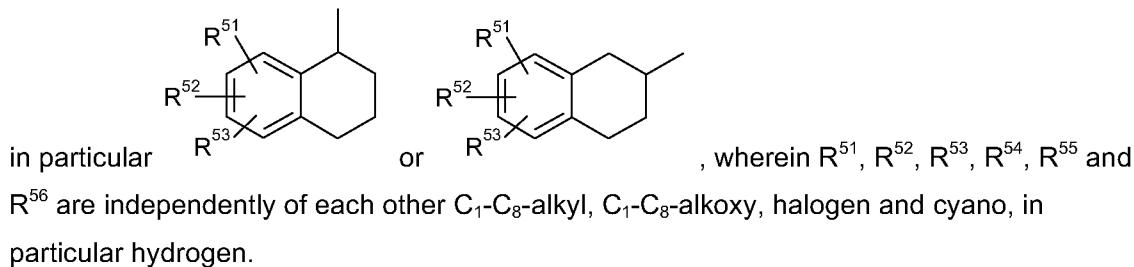
15 C₂-C₂₅alkenyl groups are straight-chain or branched alkenyl groups, such as e.g. vinyl, allyl, methallyl, isopropenyl, 2-butenyl, 3-butenyl, isobutenyl, n-penta-2,4-dienyl, 3-methyl-but-2-enyl, n-oct-2-enyl, n-dodec-2-enyl, isododecenyl, n-dodec-2-enyl or n-octadec-4-enyl. 20 C₂-C₂₄alkynyl is straight-chain or branched and preferably C₂-C₈alkynyl, which may be unsubstituted or substituted, such as, for example, ethynyl, 1-propyn-3-yl, 1-butyn-4-yl,

25

C₂-C₂₄alkynyl is straight-chain or branched and preferably C₂-C₈alkynyl, which may be unsubstituted or substituted, such as, for example, ethynyl, 1-propyn-3-yl, 1-butyn-4-yl,

1-pentyn-5-yl, 2-methyl-3-butyn-2-yl, 1,4-pentadiyn-3-yl, 1,3-pentadiyn-5-yl, 1-hexyn-6-yl, cis-3-methyl-2-penten-4-yn-1-yl, trans-3-methyl-2-penten-4-yn-1-yl, 1,3-hexadiyn-5-yl, 1-octyn-8-yl, 1-nonyn-9-yl, 1-decyn-10-yl, or 1-tetracosyn-24-yl.



5 C₁-C₁₈perfluoroalkyl, especially C₁-C₄perfluoroalkyl, is a branched or unbranched radical such as for example -CF₃, -CF₂CF₃, -CF₂CF₂CF₃, -CF(CF₃)₂, -(CF₂)₃CF₃, and -C(CF₃)₃.


The terms "haloalkyl, haloalkenyl and haloalkynyl" mean groups given by partially or wholly substituting the above-mentioned alkyl group, alkenyl group and alkynyl group with halogen,

10 such as trifluoromethyl etc. The "aldehyde group, ketone group, ester group, carbamoyl group and amino group" include those substituted by an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group or a heterocyclic group, wherein the alkyl group, the cycloalkyl group, the aryl group, the aralkyl group and the heterocyclic group may be unsubstituted or substituted. The term "silyl group" means a group of formula -SiR⁶²R⁶³R⁶⁴, wherein R⁶², R⁶³

15 and R⁶⁴ are independently of each other a C₁-C₈alkyl group, in particular a C₁-C₄ alkyl group, a C₆-C₂₄aryl group or a C₇-C₁₂aralkylgroup, such as a trimethylsilyl group. The term "siloxanyl group" means a group of formula -O-SiR⁶²R⁶³R⁶⁴, wherein R⁶², R⁶³ and R⁶⁴ are as defined above, such as a trimethylsiloxanyl group.

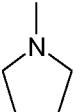
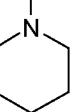
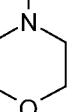
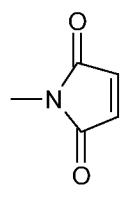
20 The term "cycloalkyl group" is typically C₅-C₁₂cycloalkyl, such as cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, cycloundecyl, cyclododecyl, preferably cyclopentyl, cyclohexyl, cycloheptyl, or cyclooctyl, which may be unsubstituted or substituted. The term "cycloalkenyl group" means an unsaturated alicyclic hydrocarbon group containing one or more double bonds, such as cyclopentenyl, cyclopentadienyl, cyclohexenyl and the like, which may be unsubstituted or substituted. The cycloalkyl group, in particular a cyclohexyl group, can be condensed one or two times by phenyl which can be substituted one to three times with C₁-C₄-alkyl, halogen and cyano. Examples of such condensed

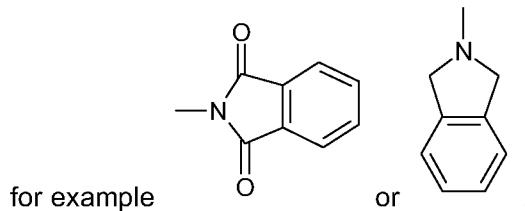
5 Aryl is usually C₆-C₃₀aryl, preferably C₆-C₂₄aryl, which optionally can be substituted, such as, for example, phenyl, 4-methylphenyl, 4-methoxyphenyl, naphthyl, especially 1-naphthyl, or 2-naphthyl, biphenyl, terphenyl, pyrenyl, 2- or 9-fluorenyl, phenanthryl, anthryl, tetracyl, pentacyl, hexacyl, or quaderphenyl, which may be unsubstituted or substituted.

10 The term "aralkyl group" is typically C₇-C₂₄aralkyl, such as benzyl, 2-benzyl-2-propyl, β -phenyl-ethyl, α, α -dimethylbenzyl, ω -phenyl-butyl, ω, ω -dimethyl- ω -phenyl-butyl, ω -phenyl-dodecyl, ω -phenyl-octadecyl, ω -phenyl-eicosyl or ω -phenyl-docosyl, preferably C₇-C₁₈aralkyl such as benzyl, 2-benzyl-2-propyl, β -phenyl-ethyl, α, α -dimethylbenzyl, ω -phenyl-butyl, ω, ω -dimethyl- ω -phenyl-butyl, ω -phenyl-dodecyl or ω -phenyl-octadecyl, and particularly preferred C₇-C₁₂aralkyl such as benzyl, 2-benzyl-2-propyl, β -phenyl-ethyl, α, α -dimethylbenzyl, ω -phenyl-butyl, or ω, ω -dimethyl- ω -phenyl-butyl, in which both the aliphatic hydrocarbon group and aromatic hydrocarbon group may be unsubstituted or substituted.

15 The term "aryl ether group" is typically a C₆₋₂₄aryloxy group, that is to say O-C₆₋₂₄aryl, such as, for example, phenoxy or 4-methoxyphenyl. The term "aryl thioether group" is typically a C₆₋₂₄arylthio group, that is to say S-C₆₋₂₄aryl, such as, for example, phenylthio or 4-methoxyphenylthio. The term "carbamoyl group" is typically a C₁₋₁₈carbamoyl radical, preferably C₁₋₈carbamoyl radical, which may be unsubstituted or substituted, such as, for example, carbamoyl, methylcarbamoyl, ethylcarbamoyl, n-butylcarbamoyl, tert-butylcarbamoyl, dimethylcarbamoyloxy, morpholinocarbamoyl or pyrrolidinocarbamoyl.

20 The terms "aryl" and "alkyl" in alkylamino groups, dialkylamino groups, alkylarylamino groups, arylamino groups and diarylgroups are typically C₁-C₂₅alkyl and C₆-C₂₄aryl, respectively.





25 The terms "aryl" and "alkyl" in alkylamino groups, dialkylamino groups, alkylarylamino groups, arylamino groups and diarylgroups are typically C₁-C₂₅alkyl and C₆-C₂₄aryl,


30 respectively.

Alkylaryl refers to alkyl-substituted aryl radicals, especially C₇-C₁₂alkylaryl. Examples are toyl, such as 3-methyl-, or 4-methylphenyl, or xylyl, such as 3,4-dimethylphenyl, or 3,5-dimethylphenyl.

5 Heteroaryl is typically C₂-C₂₆heteroaryl, i.e. a ring with five to seven ring atoms or a condensed ring system, wherein nitrogen, oxygen or sulfur are the possible hetero atoms, and is typically an unsaturated heterocyclic group with five to 30 atoms having at least six conjugated π -electrons such as thienyl, benzo[b]thienyl, dibenzo[b,d]thienyl, thianthrenyl, furyl, furfuryl, 2H-pyranyl, benzofuranyl, isobenzofuranyl, dibenzofuranyl, phenoxythienyl, 10 pyrrolyl, imidazolyl, pyrazolyl, pyridyl, bipyridyl, triazinyl, pyrimidinyl, pyrazinyl, pyridazinyl, indolizinyl, isoindolyl, indolyl, indazolyl, purinyl, quinolizinyl, chinolyl, isochinolyl, phthalazinyl, naphthyridinyl, chinoxalinyl, chinazolinyl, cinnolinyl, pteridinyl, carbazolyl, carbolinyl, benzotriazolyl, benzoxazolyl, phenanthridinyl, acridinyl, pyrimidinyl, phenanthrolinyl, phenazinyl, isothiazolyl, phenothiazinyl, isoxazolyl, furazanyl or phenoxazinyl, which can be 15 unsubstituted or substituted.

Examples of a five or six membered ring formed by, for example, R¹⁶ and R¹⁷, or R⁶⁵ and R⁶⁶, respectively are heterocycloalkanes or heterocycloalkenes having from 3 to 5 carbon atoms which can have one additional hetero atom selected from nitrogen, oxygen and sulfur, for

20 example , , , or , which can be part of a bicyclic system,

25 Possible substituents of the above-mentioned groups are C₁-C₈alkyl, a hydroxyl group, a mercapto group, C₁-C₈alkoxy, C₁-C₈alkylthio, halogen, halo-C₁-C₈alkyl, a cyano group, an aldehyde group, a ketone group, a carboxyl group, an ester group, a carbamoyl group, an amino group, a nitro group or a silyl group.

If a substituent, such as, for example R⁷ occurs more than one time in a group, it can be different in each occurrence.

The wording "substituted by G" means that one, or more, especially one to three substituents G might be present.

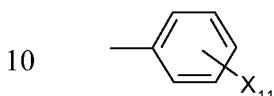
5 As described above, the aforementioned groups may be substituted by E and/or, if desired, interrupted by D. Interruptions are of course possible only in the case of groups containing at least 2 carbon atoms connected to one another by single bonds; C₆-C₁₈aryl is not interrupted; interrupted arylalkyl or alkylaryl contains the unit D in the alkyl moiety. C₁-C₁₈alkyl substituted by one or more E and/or interrupted by one or more units D is, for example, (CH₂CH₂O)₁₋₉R^X,

10 where R^X is H or C₁-C₁₀alkyl or C₂-C₁₀alkanoyl (e.g. CO-CH(C₂H₅)C₄H₉), CH₂-CH(OR^Y)-CH₂-O-R^Y, where R^Y is C₁-C₁₈alkyl, C₅-C₁₂cycloalkyl, phenyl, C₇-C₁₅phenylalkyl, and R^Y embraces the same definitions as R^Y or is H; C₁-C₈alkylene-COO-R^Z, e.g. CH₂COOR^Z, CH(CH₃)COOR^Z, C(CH₃)₂COOR^Z, where R^Z is H, C₁-C₁₈alkyl, (CH₂CH₂O)₁₋₉R^X, and R^X embraces the definitions indicated above;

15 CH₂CH₂-O-CO-CH=CH₂; CH₂CH(OH)CH₂-O-CO-C(CH₃)=CH₂.

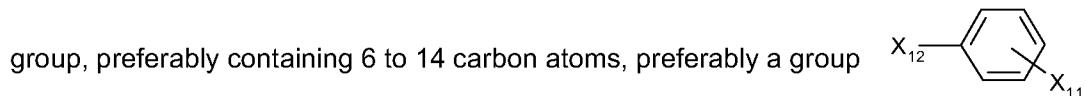
Preferred arylene radicals are 1,4-phenylene, 2,5-tolylene, 1,4-naphthylene, 1,9 antracylene, 2,7-phenantrylene and 2,7-dihydrophenantrylene.

20 Preferred heteroarylene radicals are 2,5-pyrazinylene, 3,6-pyridazinylene, 2,5-pyridinylene, 2,5-pyrimidinylene, 1,3,4-thiadiazol-2,5-ylene, 1,3-thiazol-2,4-ylene, 1,3-thiazol-2,5-ylene, 2,4-thiophenylene, 2,5-thiophenylene, 1,3-oxazol-2,4-ylene, 1,3-oxazol-2,5-ylene and 1,3,4-oxadiazol-2,5-ylene, 2,5-indenylene and 2,6-indenylene.

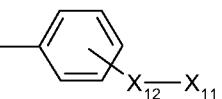

25 The term "alkylene (spacer)" is typically C₁-C₃₀alkylene, preferably C₁-C₁₈alkylene, and embraces the linear as well as the branched representatives and can be, for example, -CH₂- and C₂-C₃₀alkylene, such as -(CH₂)₂-, -CH(Me)-, -(CH₂)₃-, -CH₂-CH(Me)-, -C(Me)₂-, -(CH₂)₄-, -(CH₂)₅-, -(CH₂)₆-, -(CH₂)₇-, -(CH₂)₈-, -(CH₂)₉-, -(CH₂)₁₀-, -(CH₂)₁₁-, -(CH₂)₁₂-, -(CH₂)₁₃-, -(CH₂)₁₄-, -(CH₂)₁₅-, -(CH₂)₁₆-, -(CH₂)₁₇-, -(CH₂)₁₈-, -(CH₂)₁₉-, -(CH₂)₂₀-, -(CH₂)₂₁-, -(CH₂)₂₂-, -(CH₂)₂₃-, -(CH₂)₂₄-, -(CH₂)₂₅-, -(CH₂)₂₆-, -(CH₂)₂₇-, -(CH₂)₂₈-, -(CH₂)₂₉-, -(CH₂)₃₀-, preferably -CH₂-, -(CH₂)₂-, -(CH₂)₃-, -(CH₂)₄-, -(CH₂)₅-, -(CH₂)₆-, -(CH₂)₇-, -(CH₂)₈-, -(CH₂)₉-, -(CH₂)₁₀-, -(CH₂)₁₁-, -(CH₂)₁₂-, -(CH₂)₁₃-, -(CH₂)₁₄-, -(CH₂)₁₅-, -(CH₂)₁₆-, -(CH₂)₁₇-, -(CH₂)₁₈-, and also -CH(C₂-C₃₀alkylene)-. The "alkylene spacer" can optionally comprise one or more, in particular one or two groups selected from -O-, -S-, -NR⁴³-, -CO-, -CONH-, -CON⁴³-, or -

30 COO- as linking group. C₁-C₃₀alkylene can, for example, be interrupted several times by -O-, -S-, -NH- or -C(O)NH-, such as -(CH₂)₂-O-(CH₂)-, -(CH₂)₂-O-(CH₂)₂-, -(CH₂)₂-S-(CH₂)₂-, -

35

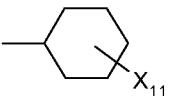

CH₂-CH-CH₂-O-(CH₂)_{p1}-CH₃, wherein p1 is an integer from 1 to 10; or -CHX₁₃CH₂-(X₁₄)_{n3}-OH, wherein X₁₃ is C₁-C₈alkyl, X₁₄ is an alkylene oxide monomer, preferably ethylene oxide or propylene oxide, or alkylene amino monomer, preferably amino ethylene or amino propylene, and n3 is an integer from 1 to 10, preferably 1 to 5; or -(CH₂)₂-NH-(CH₂)₂- or -(CH₂)₂-C(O)NH-(CH₂)₂-.

“Arylene (spacer)” is an unsubstituted or substituted carbocyclic or heterocyclic arylene group, preferably containing 6 to 14 carbon atoms, typically phenylene, naphthylene, anthracenylene, anthraquinonylene, pyridinylene, quinolinylene, preferably a group



wherein X₁₁ is a single bond in ortho-, meta- or para-position, or -O-, -S-, -NR⁴³-, -CO-, -CONH-, -CONR⁴³-, or -COO- in ortho-, meta- or para-position; para-phenylene and para-phenylenoxy are preferred, wherein R⁴³ has the meaning of R⁶⁵.

15 “Aralkylene (spacer)” is an unsubstituted or substituted carbocyclic or heterocyclic aralkylene group, preferably containing 6 to 14 carbon atoms, preferably a group



wherein X₁₁ is a single bond in ortho-, meta- or para-position, or -O-, -S-, -NR⁴³-, -CO-, -CONH-, -CONR⁴³-, or -COO- in ortho-, meta- or para-position, and X₁₂ is alkylene, or a

group , wherein X₁₂ is alkylene in ortho-, meta- or para-position and

20 X₁₁ is a single bond, -O-, -S-, -NR⁴³-, -CO-, -CONH-, -CONR⁴³-, or -COO-, wherein R⁴³ has the meaning of R⁶⁵.

“Cycloalkylene (spacer)” is an unsubstituted or substituted carbocyclic or heterocyclic cycloalkylene group, preferably containing 6 to 14 carbon atoms, typically cyclohexylene,

25 preferably a group

wherein X₁₁ is a single bond in 2-, 3- or 4-position, or -O-, -S-, -NR⁴³-, -CO-, -CONH-,

-CONR⁴³-, or -COO- in 2-, 3- or 4-position; 4-cyclohexylene and 4-cyclohexylenoxy are preferred, wherein R⁴³ has the meaning of R⁶⁵.

A further embodiment of the present invention is directed to an electronic device or a

5 component therefore, comprising a substrate and a polymer according to the present invention.

In such a device the polymers according to the present invention are used as electroluminescent material. For the purposes of the present invention, the term

10 "electroluminescent material" is taken to mean materials which can be used as or in an active layer in an electroluminescent device. The term "active layer" means that the layer is capable of emitting light (light-emitting layer) on application of an electric field and/or that it improves the injection and/or transport of the positive and/or negative charges (charge injection or charge transport layer). The invention therefore also relates to the use of the polymers

15 according to the invention as electroluminescent material. The invention furthermore relates to an electroluminescent material which comprises the polymers according to the invention.

Electroluminescent devices are used, for example, as self-illuminating display elements, such as control lamps, alphanumeric displays, signs and in opto-electronic couplers.

20 A device according to the present invention may be prepared in accordance with the disclosure of WO99/48160, the contents of which are incorporated by reference.

The EL device emits light in the visible electro-magnetic spectrum between 400 nm and 780 nm, preferably between 430 nm and 470 nm for a blue color, preferably between 520 nm and 25 560 nm for a green color, preferably between 600 nm and 650 nm for a red color.

It will be appreciated that the light emissive layer may be formed from a blend or mixture of materials including one or more polymers according to the present invention, and optionally further compounds. The non-conjugated polymers of the present invention are especially

30 used as host material for phosphorescent compounds (triplett emitter) in organic light emitting diodes (OLEDs).

An organic EL device typically consists of an organic film sandwiched between an anode and a cathode such that when a positive bias is applied to the device, holes are injected into the

35 organic film from the anode, and electrons are injected into the organic film from the cathode. The combination of a hole and an electron may give rise to an exciton, which may undergo

radiative decay to the ground state by liberating a photon. In practice the anode is commonly an mixed oxide of tin and indium for its conductivity and transparency. The mixed oxide (ITO) is deposited on a transparent substrate such as glass or plastic so that the light emitted by the organic film may be observed. The organic film may be the composite of several

5 individual layers each designed for a distinct function. Since holes are injected from the anode, the layer next to the anode needs to have the functionality of transporting holes. Similarly, the layer next to the cathode needs to have the functionality of transporting electrons. In many instances, the hole-(electron) transporting layer also acts as the emitting layer. In some instances one layer can perform the combined functions of hole and electron
10 transport and light emission. The individual layers of the organic film may be all polymeric in nature or combinations of films of polymers and films of small molecules deposited by thermal evaporation. It is preferred that the total thickness of the organic film be less than 1000 nanometers (nm). It is more preferred that the total thickness be less than 500 nm. It is most preferred that the total thickness be less than 300 nm. It is preferred that the thickness
15 of the active (light emitting) layer be less than 400 nanometers (nm). It is more preferred that the thickness is in the range of from 40 to 160 nm.

The ITO-glass, which serves as the substrate and the anode, may be used for coating after the usual cleaning with detergent, organic solvents and UV-ozone treatment. It may also be

20 first coated with a thin layer of a conducting substance to facilitate hole injection. Such substances include copper phthalocyanine, polyaniline (PANI) and poly(3,4-ethylenedioxy-thiophene) (PEDOT); the last two in their (doped) conductive forms, doped, for example, with FeCl₃ or Na₂S₂O₈. They contain poly(styrenesulfonic acid) (PSS) as counter-ion to ensure water solubility. It is preferred that the thickness of this layer be 200 nm or less; it is more
25 preferred that the thickness be 100 nm or less.

In the cases where a hole-transporting layer is used, the polymeric arylamines described in

U.S. Pat. No. 5,728,801, may be used. Other known hole-conducting polymers, such as

polyvinylcarbazole, may also be used. The resistance of this layer to erosion by the solution

30 of the copolymer film which is to be applied next is obviously critical to the successful fabrication of multi-layer devices. The thickness of this layer may be 500 nm or less, preferably 300 nm or less, most preferably 150 nm or less.

In the case where an electron-transporting layer is used, it may be applied either by thermal

35 evaporation of low molecular weight materials or by solution coating of a polymer with a solvent that would not cause significant damage to the underlying film.

Examples of low molecular weight materials include the metal complexes of 8-hydroxyquinoline (as described by Burrows et al. in Appl. Phys. Lett. 64 (1994) 2718-2720), metallic complexes of 10-hydroxybenzoquinoline (as described by Hamada et al. in Chem. Lett. (1993) 906-906), 1,3,4-oxadiazoles (as described by Hamada et al. in Optoelectronics-Devices and Technologies 7 (1992) 83-93), 1,3,4-triazoles (as described by Kido et al. in Chem. Lett. (1996) 47-48), and dicarboximides of perylene (as described by Yoshida et al. in Appl. Phys. Lett. 69 (1996) 734-736).

10 Polymeric electron-transporting materials are exemplified by 1,3,4-oxadiazole-containing polymers (as described by Li et al. in J. Chem. Soc. (1995) 2211-2212, by Yang and Pei in J. Appl. Phys. 77 (1995) 4807-4809), 1,3,4-triazole-containing polymers (as described by Strukelj et al. in Science 267 (1995) 1969-1972), quinoxaline-containing polymers (as described by Yamamoto et al. in Jpn. J. Appl. Phys. 33 (1994) L250-L253, O'Brien et al. in 15 Synth. Met. 76 (1996) 105-108), and cyano-PPV (as described by Weaver et al. in Thin Solid Films 273 (1996) 39-47). The thickness of this layer may be 500 nm or less, preferably 300 nm or less, most preferably 150 nm or less.

20 The cathode material may be deposited either by thermal evaporation or by sputtering. The thickness of the cathode may be from 1 nm to 10,000 nm, preferably 5 nm to 500 nm.

25 OLEDs made according to the present invention may include phosphorescent dopants dispersed in the device's emissive layer, capable of achieving internal quantum efficiencies approaching 100%. As used herein, the term "phosphorescence" refers to emission from a triplet excited state of an organic or metal-organic molecule. High efficiency organic light emitting devices using phosphorescent dopants have been demonstrated using several different conducting host materials (M. A. Baldo et al., Nature, Vol 395, 151 (1998), C. Adachi et al., Appl. Phys. Lett., Vol. 77, 904 (2000)). The non-conjugated polymers of the present invention are especially suitable as host material for such phosphorescent dopants 30 (triplett emitters).

The term "hole-transporting polymer film" as used herein refers to a layer of a film of a polymer which when disposed between two electrodes to which a field is applied and holes are injected from the anode, permits adequate transport of holes into the emitting polymer. 35 Hole-transporting polymers typically are comprised of triarylamine moieties. The term "anode material" as used herein refers to a semi-transparent, or transparent, conducting film with a

work function between 4.5 electron volts (eV) and 5.5 eV. Examples are gold, silver, copper, aluminum, indium, iron, zinc, tin, chromium, titanium, vanadium, cobalt, nickel, lead, manganese, tungsten and the like, metallic alloys such as magnesium/copper, magnesium/silver, magnesium/aluminum, aluminum/indium and the like, semiconductors

5 such as Si, Ge, GaAs and the like, metallic oxides such as indium-tin-oxide ("ITO"), ZnO and the like, metallic compounds such as Cul and the like, and furthermore, electroconducting polymers such polyacetylene, polyaniline, polythiophene, polypyrrole, polyphenylene and the like. Oxides and mixed oxides of indium and tin, and gold are preferred. Most preferred is ITO, especially ITO on glass, or on a plastics material, such as polyester, for
10 example polyethylene terephthalate (PET), as substrate.

The term "cathode material" as used herein refers to a conducting film with a work function between 2.0 eV and 4.5 eV. Examples are alkali metals, earth alkaline metals, group 13 elements, silver, and copper as well as alloys or mixtures thereof such as sodium, lithium,

15 potassium, calcium, lithium fluoride (LiF), sodium-potassium alloy, magnesium, magnesium-silver alloy, magnesium-copper alloy, magnesium-aluminum alloy, magnesium-indium alloy, aluminum, aluminum-aluminum oxide alloy, aluminum-lithium alloy, indium, calcium, and materials exemplified in EP-A 499,011, such as electroconducting polymers e.g. polypyrrole, polythiophene, polyaniline, polyacetylene etc. Preferably lithium, calcium, barium,

20 magnesium, indium, silver, aluminum, or blends and alloys of the above are used. In the case of using a metal or a metallic alloy as a material for an electrode, the electrode can be formed also by the vacuum deposition method. In the case of using a metal or a metallic alloy as a material forming an electrode, the electrode can be formed, furthermore, by the chemical plating method (see for example, Handbook of Electrochemistry, pp 383-387, 25 Mazuren, 1985). In the case of using an electroconducting polymer, an electrode can be made by forming it into a film by means of anodic oxidation polymerization method onto a substrate, which is previously provided with an electroconducting coating.

As methods for forming said thin films, there are, for example, the vacuum deposition

30 method, the spin-coating method, the casting method, the Langmuir-Blodgett ("LB") method, the ink jet printing method and the like. Among these methods, the vacuum deposition method, the spin-coating method, the ink jet printing method and the casting method are particularly preferred in view of ease of operation and cost.

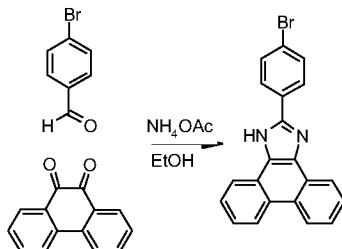
35 In the case of forming the layers by using the spin-coating method, the casting method and ink jet printing method, the coating can be carried out using a solution prepared by dissolving

the composition in a concentration of from 0.0001 to 90% by weight in an appropriate organic solvent such as benzene, toluene, xylene, tetrahydrofuran, methyltetrahydrofuran, N,N-dimethylformamide, acetone, acetonitrile, anisole, dichloromethane, dimethylsulfoxide and mixtures thereof.

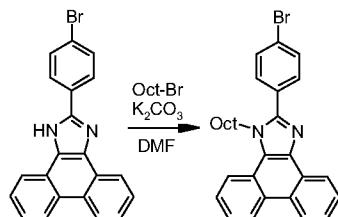
5

The organic EL device of the present invention is seen as a future replacement technology for a flat panel display of an on-wall television set, a flat light-emitting device, such as a wall paper, a light source for a copying machine or a printer, a light source for a liquid crystal display or counter, a display signboard and a signal light and perhaps even to replace

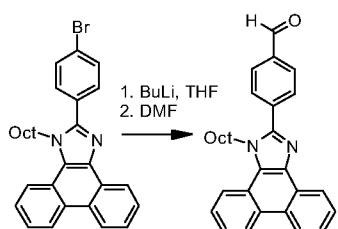
10 incandescent and fluorescent lamps. The polymers and compositions of the present invention can be used in the fields of an organic EL device, a photovoltaic device, an electrophotographic photoreceptor, a photoelectric converter, a solar cell, an image sensor, and the like.

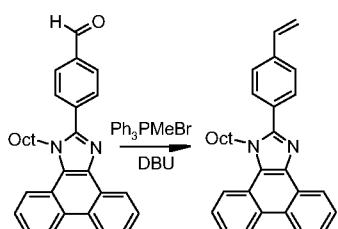

15 Accordingly, the present invention relates also to OLEDs, organic integrated circuits (O-ICs), organic field effect transistors (OFETs), organic thin film transistors (OTFTs), organic solar cells (O-SCs), thermoelectric devices, or organic laser diodes comprising one or more of the polymers according to the present invention.

20 The following examples are included for illustrative purposes only and do not limit the scope of the claims. Unless otherwise stated, all parts and percentages are by weight. (PD) = 3.095 Molecular weights and polydispersities are determined according to gel permeation chromatography using polystyrene standards and/or light scattering detectors.

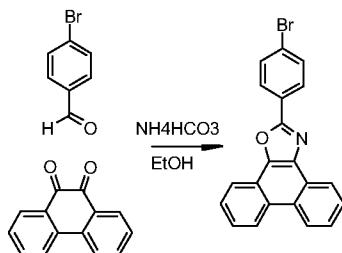

25

Examples

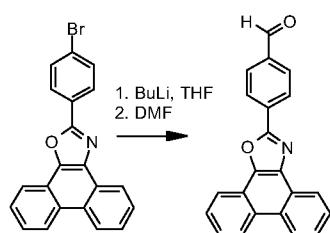

Example 1


30 a) To 5.00 g (24.0 mmol) of phenanthrene-9,10-dione in 125 ml ethanol (abs) 6.66 g (36.0 mmol) 4-bromobenzaldehyde and 12.96 g (0.168 mol) ammonium acetate are added. The reaction mixture is heated at reflux under nitrogen overnight, cooled to 25 °C, the product is filtered off and washed with ethanol (yield: 7.70 g (85.8%)).

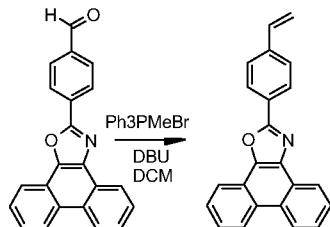
b) To 8 g (21.4 mmol) of the product of example **1a**, 8.28 g (42.8 mmol) n-octylbromide (Oct), 8.89 g (64.30 mmol) of potassium carbonate and 100 ml dimethylformamide (DMF) are added. The reaction mixture is stirred under nitrogen at 120 °C overnight, filtered, the DMF is evaporated and the product is purified by column chromatography on silica gel with dichloromethane as an eluent (yield: 7.3 g (70%)).



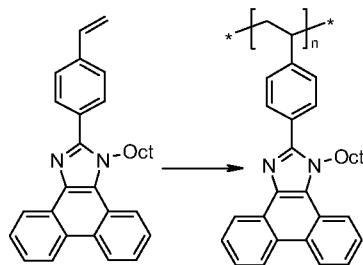
c) 3.07 ml of 2.5M BuLi in hexane are added to 4g (8.24 mmol) of the product of example **1b** dissolved in 50 ml dry THF at -78 °C. The reaction mixture is stirred for 1h and 3g (41.2 mmol) of dry DMF are added and allowed to warm to room temperature. The reaction is quenched with 0.5M HCl and the product is purified with column chromatography on silica gel with chloroform/MeOH (9.9:0.1) as an eluent (yield: 2.2g (61.5 %)).


15 d) 6.58 g (18.41 mmol) of methyltriphenylphosphine bromide, 2.8 g (18.41 mmol) 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) are refluxed in 60 ml dichloromethane for 45 minutes, 2 g (4.6 mmol) of the product of example **1c** in 20 ml dichloromethane are added and reflux is continued overnight. The dichloromethane solution is washed with water and purified by column chromatography with dichloromethane as an eluent (yield: 1.6g (80%)).

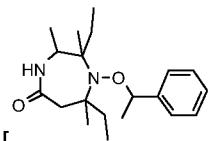
54


a) To 10.00 g (48.0 mmol) of phenanthrene-9,10-dione in 250 ml ethanol (abs) 13.33 g (72.0 mmol) 4-bromobenzaldehyde and 18.98 g (0.24 mol) ammonium hydrogencarbonate are added. The reaction mixture is heated at reflux under nitrogen overnight, cooled to 25 °C, the product is filtered off and washed with ethanol (yield: 12.70 g (70.7%)).

5

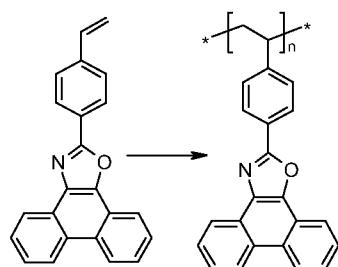

b) The product is prepared according example **1c** (yield: 77.0 %).

10

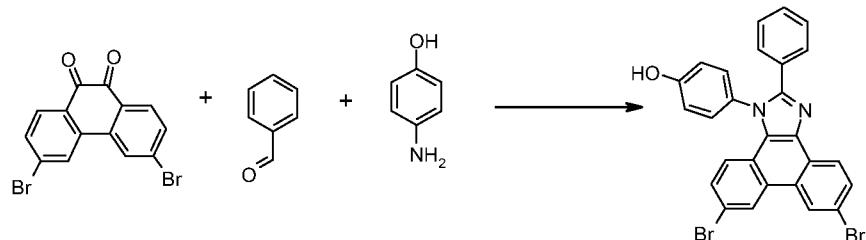

c) The product is prepared according example **1d** (yield: 80.0 %).

Example 3

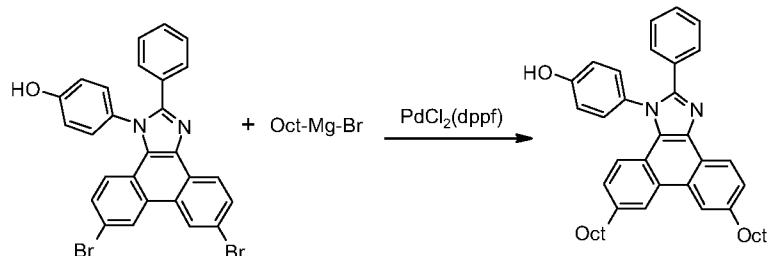
15


a) 1g of the product of example **1d** and 0.05g of 2,2'-azobisisobutyronitrile (AIBN) are dissolved in 7ml THF, degassed and stirred at 60 °C for 2 days. The polymer is purified by precipitation in methanol (yield: 0.9 g (90%); $M_w = 40\,000$, PDI = 2.35).

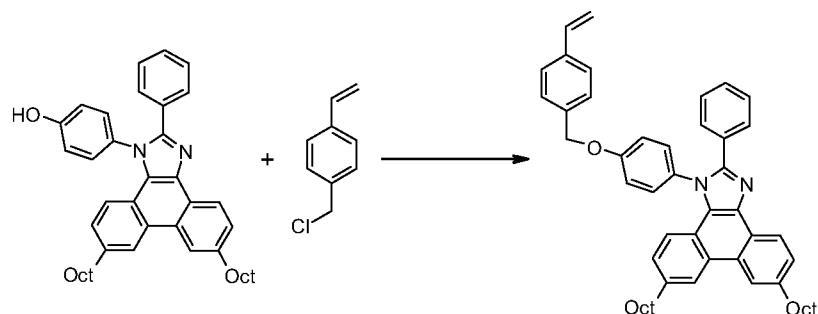
b) 0.6 g of example **1d** and 3.8 mg of alkoxyamine initiator [] are dissolved in 0.5 ml chlorobenzene, degassed and stirred at 120 °C for 20h. The obtained polymer is purified by precipitation in MeOH (yield: 0.4 g (66.6%)).


Mw = 120 000, PDI = 1.43.

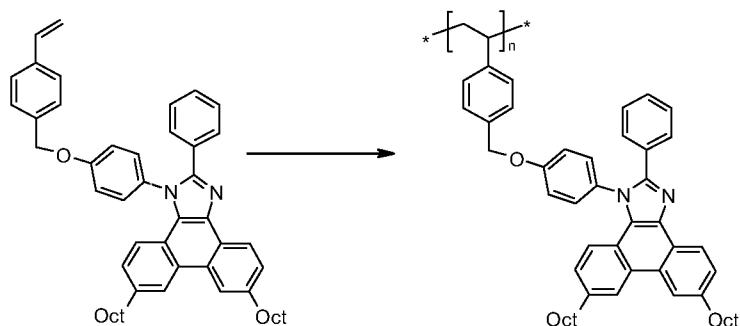
5 Example 4


The product is prepared according to example **3**, except that instead of the product of example **1d** the product of example **2c** is used (yield: 75.0 %; M_w = 8 000, PDI = 1.33).

10 Example 5


a) To 1.1 g (3.0 mmol) of 3,6-dibromo-phenanthrene-9,10-dione in 30 ml acetic acid (>98 %) 0.35 g (3.3 mmol) benzaldehyde, 0.36 g (3.3 mmol) 4-hydroxyaniline and 0.92 g (12.0 mmol) ammonium acetate are added. The reaction mixture is heated at reflux under nitrogen

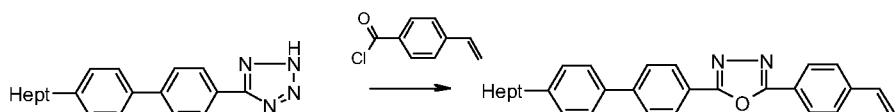
15 overnight and is cooled to 25 °C. The product is filtered off, washed with acetic acid, water, sodiumhydrogencarbonate solution and water (yield: 1.06 g (64.9 %)).


b) 20 ml of 1M octyl magnesium bromide in THF are added to 2g (3.67 mmol) of the product of example **5a** and 100 mg of Pd(dppf)Cl₂ in 10 ml THF. The reaction mixture is refluxed for

48h and quenched with 4M HCl. The product is extracted with chloroform and purified by column chromatography with chloroform as an eluent (yield: 1.23 g (54.8%)).

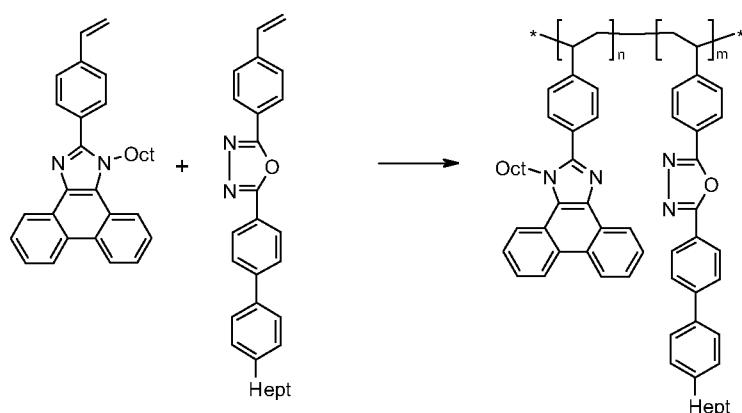
5 c) 1.23 g (2 mmol) of the product of example **5b**, 0.61 g (4 mmol) of 4-vinylbenzylchloride and 0.23 g (4 mmol) of KOH are stirred in 20 ml DMF overnight and quenched with water. The product is filtered and purified by column chromatography with dichloromethane as an eluent (yield: 1.26g (86.3%)).

10 Example 6

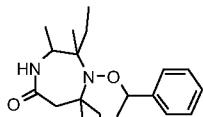

0.5 g of the product of example **5c** and 15 mg of AIBN are dissolved in 1 ml THF, degassed and stirred at 60 °C for 24h. The obtained polymer is purified by precipitation in MeOH (yield: 0.4 g (80%)).

15 Mw = 47 000, PDI = 1.91; Oct = n-octyl

Example 7

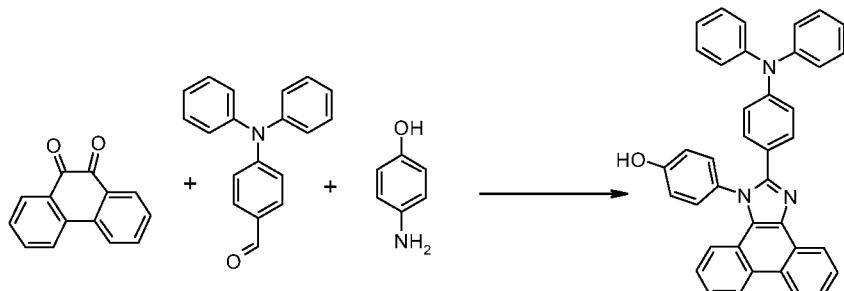


a) 5 g (18 mmol) of 4-cyano-4'-heptyl biphenyl, 1.76 g (27 mmol) of Na₃N, 1.45 g (27 mmol) of NH₄Cl are dissolved in 35 ml dry DMF and stirred overnight at 100 °C. The reaction mixture is poured in 300 ml H₂O, acidified with 4M HCl, filtered and dried in vacuum at 60 °C (yield: 5.7 (100%)).

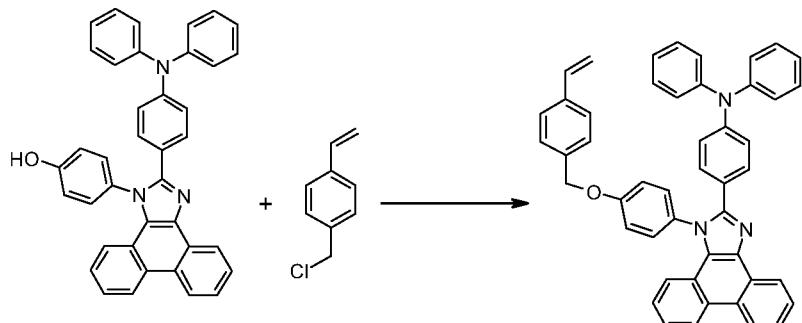


b) 4.76 g (27 mmol) of the product of example **7a**, 5.62 g (33.75 mmol) of p-vinylbenzoyl chloride and a little amount of hydroquinone are dissolved in 40 ml pyridine and reflux for 2 h.

5 The obtained product is poured on 300 ml of water, filtered and purified by column chromatography on silica gel with chloroform as an eluent (yield: 1.2 g (20 %)).



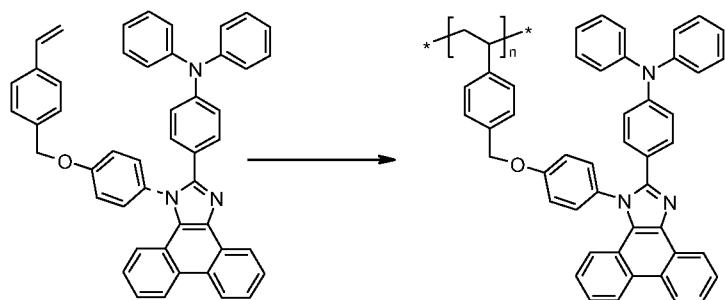
c) 0.7 g of the product of example **1d**, 0.3 g of the oxadiazole of example **7b** and 6.3 mg of


10 alkoxyamine initiator () are dissolved in 1 ml chlorobenzene with 0.1 ml acetanhydride, degassed and stirred at 120 °C for 48h. The obtained polymer is purified by precipitation in MeOH (yield: 0.93 g (93%)). Mw = 50 000, PDI = 1.75, n = 0.66, m = 0.34. Oct = n-octyl; Hept = n-heptyl.

15 Example 8

a) To 1.0 g (4.8 mmol) of phenanthrene-9,10-dione in 50 ml acetic acid (>98 %) 1.44 g (5.3 mmol) 4-(N,N-diphenylamino)benzaldehyde, 0.6 g (5.5 mmol) 4-hydroxyaniline and 1.48 g

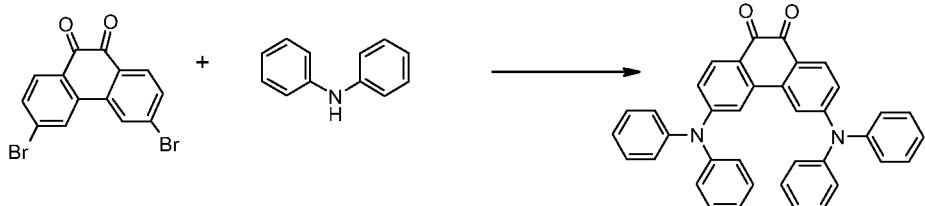
(19.2 mmol) ammonium acetate are added. The reaction mixture is heated at reflux under nitrogen overnight and cooled to 25 °C. The product is filtered off, washed with acetic acid, water, sodiumhydrogencarbonate solution and water and is further purified by column chromatography on silica gel with CHCl_3 as an eluent (yield: 0.74 g (30.0 %)).



5

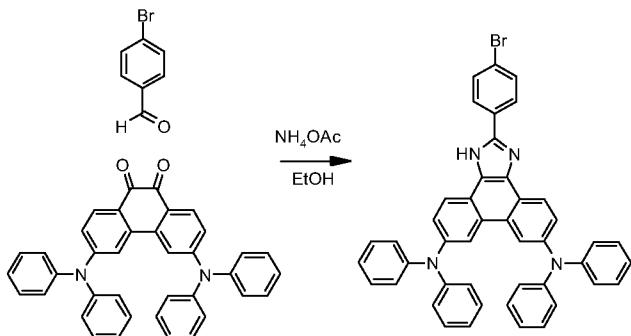
b) 1.0 g (1.8 mmol) of the product of example **8a**, 0.55 g (3.6 mmol) of 4-vinylbenzylchloride and 0.2 g (3.6 mmol) of KOH are stirred in 20 ml DMF overnight and quenched with water. The product is filtered, washed with hexane and purified by column chromatography with dichloromethane as an eluent (yield: 0.6 g (50%)).

10

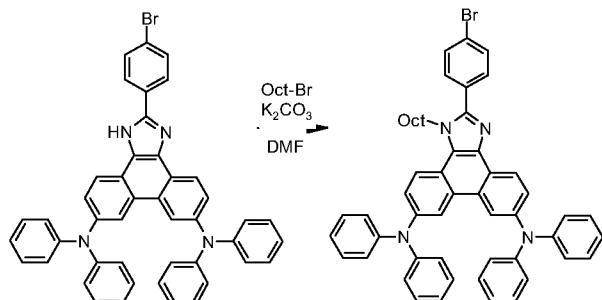

Example 9

0.5 g of the product of example **8b** and 15 mg of AIBN are dissolved in 1 ml THF, degassed and stirred at 60 °C for 24h. The obtained polymer is purified by precipitation in MeOH (yield:

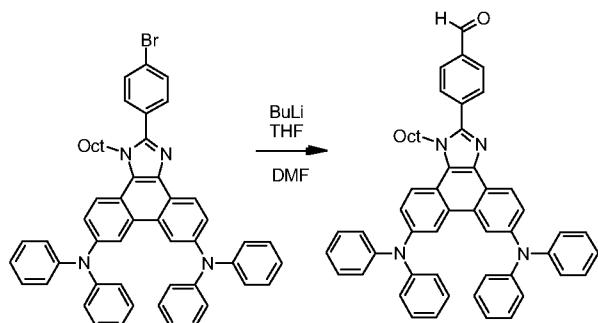
15 0.4 g (80%)). $M_w = 58\,000$, PDI = 2.0.


Example 10

a) To 5.0 g (13.6 mmol) of 3,6-dibromo-phenanthrene-9,10-dione in 200 ml o-xylene 10.8 g

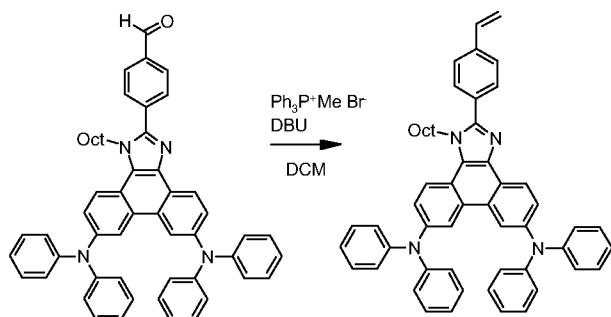

20 (54.6 mmol) diphenylamine and 5.25 g (54.6 mmol) sodium tert-butoxide are added. Nitrogen

is bubbled through the reaction mixture for 10 min. and 80 mg Pd(dba)₃ and tri-tert-butylphosphine are added. The reaction mixture is heated at 130 °C under nitrogen overnight and cooled to 25 °C. The solvent is evaporated and the product is purified by column chromatography on silica gel with CHCl₃ as an eluent followed by precipitation in hexane (yield: 4.85 g (65.4 %)).

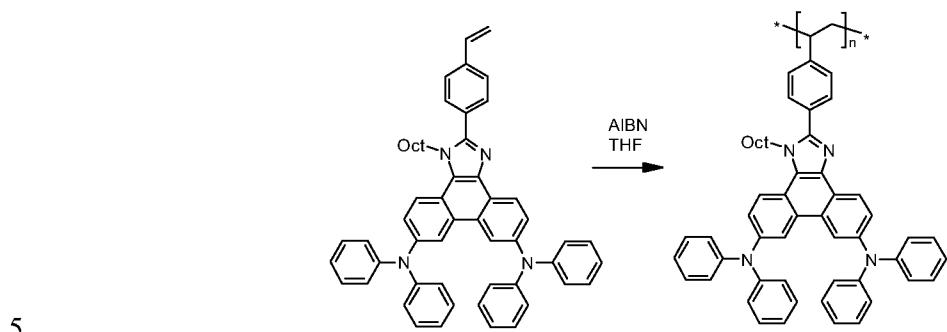


b) To 4.85 g (8.9 mmol) of the product of example **10a** in 120 ml ethanol (abs) 2.5 g (13.4 mmol) 4-bromobenzaldehyde and 3.4 g (44.7 mol) ammonium acetate are added. The reaction mixture is heated at reflux under nitrogen overnight and cooled to 25 °C. The

10 ethanol is evaporated and product is purified by column chromatography on silica gel with CHCl₃:MeOH (9.7:0.3) as an eluent followed by precipitation in hexane (yield: 4.0 g (63.5 %)).


c) The product is prepared according example **1b** (yield: 75.0 %). Oct = n-octyl

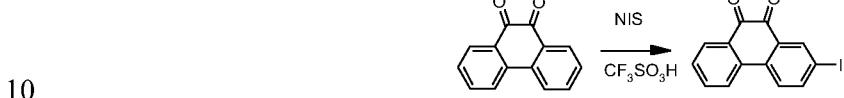
15


d) The product is prepared according example **1c** (yield: 55.0 %). Oct = n-octyl

60

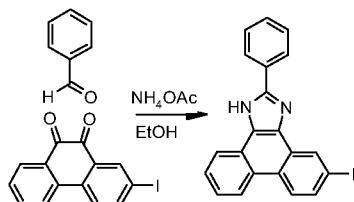
e) The product is prepared according example **1d** (yield: 60.0 %). Oct = n-octyl

Example 11



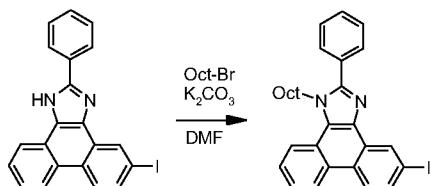
5

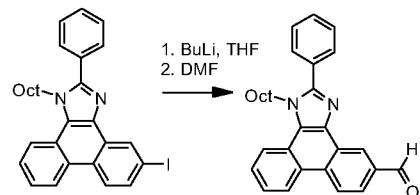
The product is prepared according example **9**. Yield: 0.3 g (60%).


Mw = 134 000, PDI = 2.38. Oct = n-octyl.

Example 12

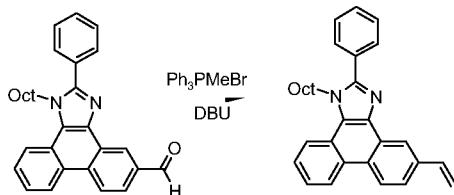
10


a) To 10.0 g (48.0 mmol) of phenanthrene-9,10-dione in 40 ml trifluoromethanesulfonic acid 10.8 g (48.0 mmol) N-iodosuccinimide is added at 0 °C. The reaction mixture is stirred overnight at room temperature and poured into ice, filtered and recrystallized from acetic acid. Yield 4.6 g (30%).

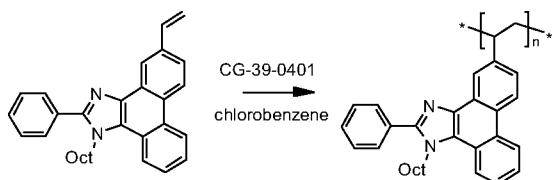

15

b) To 4.6 g (13.7 mmol) of 2-iodophenanthrene-9,10-dione in 120 ml ethanol (abs) 2.19 g (20.6 mmol) benzaldehyde and 5.3 g (68.6 mmol) ammonium acetate are added. The

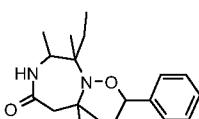
reaction mixture is heated at reflux under nitrogen overnight and cooled to 25 °C. The product is filtered off and washed with ethanol (yield: 3.9 g (67.9%)).



c) The product is prepared according example **1b** (yield: 4.25 g (83.0 %)). Oct = n-octyl

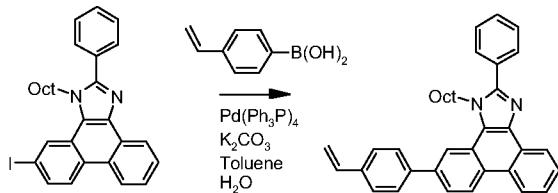

5

d) The product is prepared according to example **1c** (yield: 0.9g (41.6 %)). Oct = n-octyl.



e) The product is prepared according example **1d** (yield: 0.85 g (95.5 %)). Oct = n-octyl

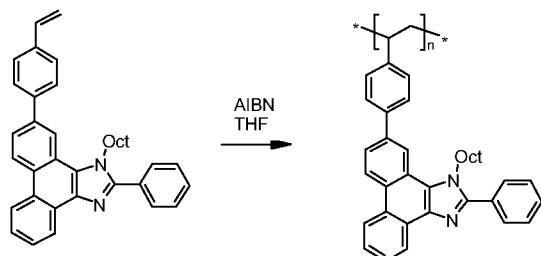
10 Example 13



0.5 g of the product of example **12e** and 3.1 mg of alkoxyamine initiator CG-39-0401

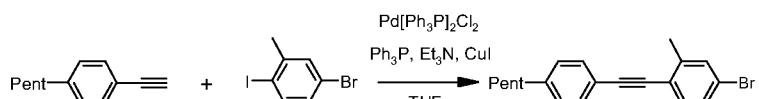
15 () are dissolved in 1 ml chlorobenzene with 0.1 ml acetanhydride, degassed and stirred at 120 °C for 48h. The obtained polymer is purified by precipitation in MeOH (yield: 0.3g (60%)). Mw = 215 000, PDI = 3.26. Oct = n-octyl.

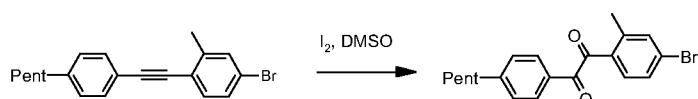
Example 14


62

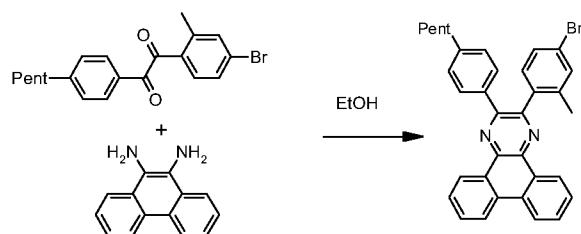
To 1.2 g (2.25 mmol) of the product of example **12c** in 100 ml toluene are added 50 ml of 1M K_2CO_3 aqueous solution. Nitrogen is bubbled through the reaction mixture for 10 min and 0.67 g (4.5 mmol) of 4-vinylphenylboronic acid and 0.52 g (0.45 mmol) $Pd[Ph_3P]_4$ are added.

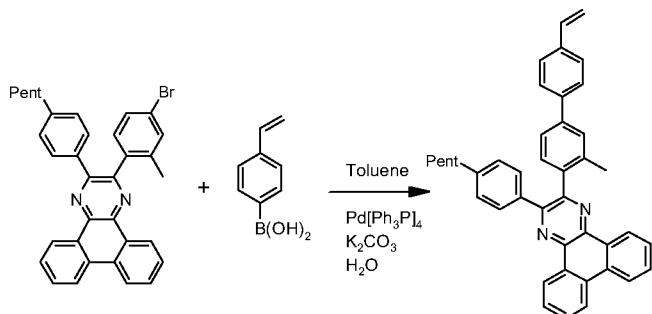
5 The reaction mixture is stirred at 80 °C for 2h and overnight at room temperature. The reaction mixture is washed with $Na_2S_2O_3$ aq., extracted with chloroform and precipitated in methanol. Yield 0.78 g (68.4 %). Oct = n-octyl.


Example 15

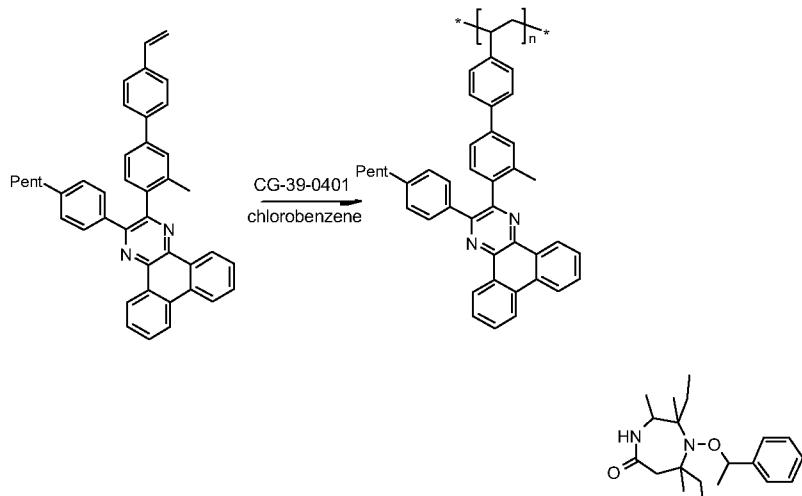

10

0.6 g of the product of example **14** and 15 mg of AIBN are dissolved in 2 ml THF, degassed and stirred at 60 °C for 24h. The obtained polymer is purified by precipitation in MeOH (yield: 0.5 g (83.3%)). $M_w = 286\,000$, PDI = 1.8. Oct = n-octyl.


15 Example 16

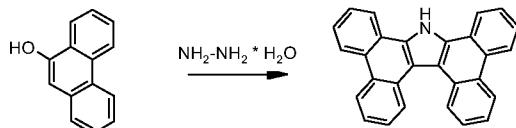

a) 5 g (29 mmol) of 4-n-pentylphenylacetylene, 11.2 g (37.7 mmol) of 5-bromo-2-iodotoluene, 0.55 g (2.9 mmol) CuI and 0.76 g (2.9 mmol) triphenylphosphine is dissolved in 100 mol dry THF under inert atmosphere. 29.3g (0.29 mol) triethylamine and 1.02 g (1.5 mmol) $Pd[Ph_3P]_2Cl_2$ are added and reaction mixture is stirred overnight at room temperature. 2M HCl is added to quench the reaction. The product is extracted with dichloromethane and purified by column chromatography on silica gel with petrol benzene as an eluent. Yield 6.7 g (68%). Pent = n-pentyl.

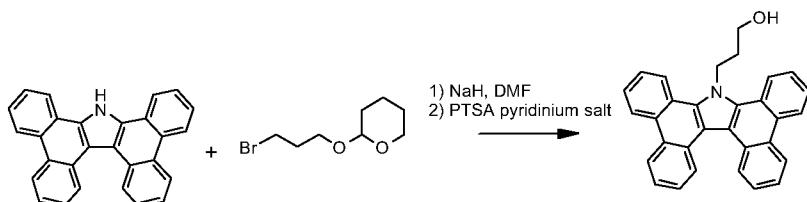
b) 6.7 g (19.6 mmol) of the product of example **16a** and 2.5 g (9.8 mmol) iodine is dissolved in 80 ml DMSO and heated at 155 °C overnight. Water is added to quench the reaction and the product is extracted with petrol benzene and purified by column chromatography on silica gel with petrol benzene : ethyl acetate (10:0.5) as an eluent. Yield 5.12 g (76.4 %). Pent = n-pentyl.


c) 1g (4.8 mmol) 9,10-diaminophanthrene and 1.7 g (4.56 mmol) of the product of example **16b** are dissolved in ethanol and refluxed for 48h. The reaction mixture is cooled down, filtered and reprecipitated from ethyl acetate to methanol. Yield 2 g (80.6 %). Pent = n-pentyl.

10

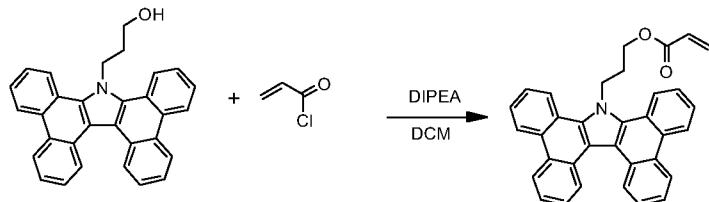
d) To 1.0 g (1.83 mmol) of the product of example **16c** in 50 ml toluene are added 25 ml of 1M K₂CO₃ aqueous solution. Nitrogen is bubbled through the reaction mixture for 10 min and 0.54 g (3.67 mmol) of 4-vinylphenylboronic acid and 0.42 g (0.37 mmol) Pd[Ph₃P]₄ are added. The reaction mixture is stirred at 80 °C for 2h and overnight at room temperature. The reaction mixture is washed with Na₂S₂O₃ aq., extracted with chloroform and purified by column chromatography on silica gel with hexane:ethyl acetate (9:1) as an eluent and further precipitated in methanol. Yield 0.84 g (80.7 %). Pent = n-pentyl.


Example 17


0.5 g of example **16d** and 2.9 mg of alkoxyamine initiator CG-39-0401 [] are dissolved in 0.5 ml chlorobenzene, degassed and stirred at 120 °C for 20h. The obtained polymer is purified by precipitation in MeOH (yield: 0.35 g (70%)).

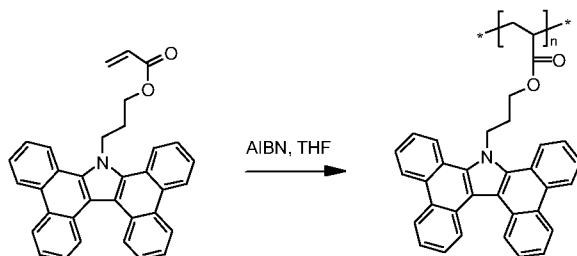
5 Mw = 29 000, PDI = 1.46.

Example 18



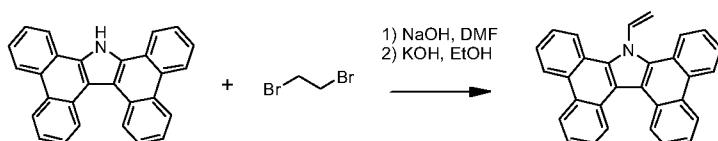
a) 3 g (15.44 mmol) 9-phenanthrol and 0.48 ml hydrazine monohydrate are sealed in 10 autoclave and heated to 180 °C overnight. The product is washed with hexane. Yield 2.5 g (80 %).

b) 1.8 g (4.9 mmol) of the product of example **18a** is dissolved in 27 ml dry DMF and a 15 suspension of 0.18 g (7.5 mmol) NaH in 11 ml DMF is added and the reaction mixture is stirred 20 min at room temperature. 1.64 g (7.3 mmol) 2-(3-bromopropoxy)tetrahydro-2h-pyran is added and the reaction mixture is stirred overnight at 120 °C. DMF is evaporated and the residue is redissolved in ethanol. 3 g (11.9 mmol) p-toluenesulfonic acid pyridine salt is added and stirred 3h at 70 °C. Water is added to quench the reaction and the product is


extracted with chloroform and further purified by column chromatography on silica gel with heptane : ethyl acetate (8 : 2) as an eluent. Yield 1.3 g (46.3 %).

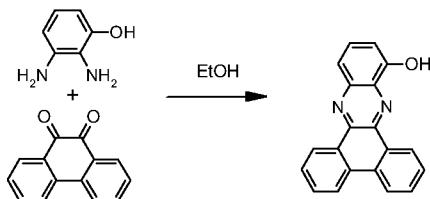
5

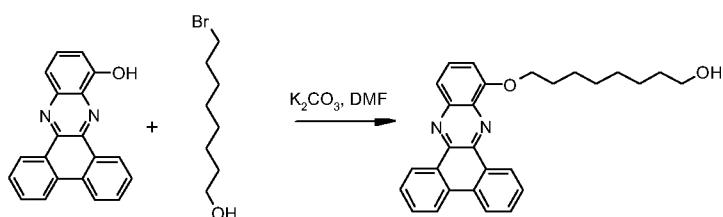
c) 1.2 g (2.8 mmol) of the product of example **18b** are dissolved in 15 ml dichloromethane with 1 ml diisopropylethylamine and cooled down to 0 °C. 0.4 g (4.32 mmol) acrylic acid chloride are added and the reaction mixture is stirred for 30 min at 0 °C. The product is purified by column chromatography on silica gel with heptane : ethyl acetate (1 : 1) as an eluent. Yield 1.05 g (77.7 %).


Example 19

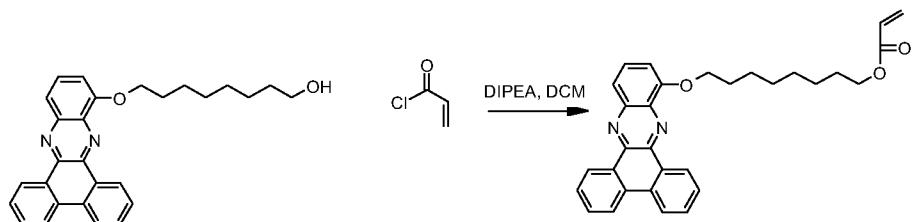
0.5 g of the product of example **18c** and 15 mg of AIBN are dissolved in 3 ml THF, degassed and stirred at 60 °C for 24h. The obtained polymer is purified by precipitation in MeOH (yield: 0.41 g (82.0%)).

Mw = 12 000, PDI = 1.82.

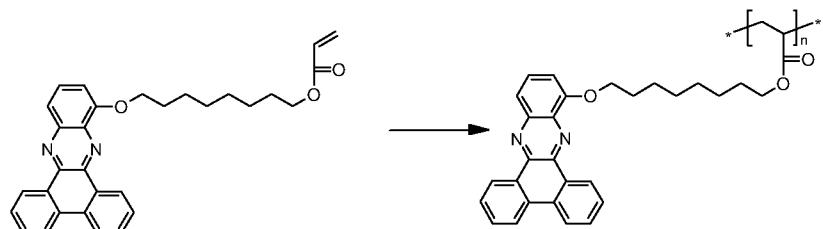

Example 20


20

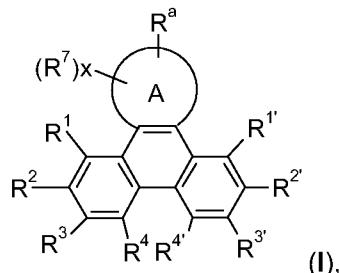
To 1.3 g (3.54 mmol) of the product of example **18a** and 4 g NaOH in 5 ml DMF 6.65 g (35.3 mmol) dibromoethane is added and stirred overnight at 120 °C. The solvent is changed to ethanol and an excess of KOH is added and the reaction mixture is refluxed for 3h. The product is purified by column chromatography on silica gel with heptane : toluene (8 : 2) as an eluent. Yield 1.0 g (71.9 %).


25

Example 21


a) 3 g (14.4 mmol) phenanthrene-9,10-dione and 2.15 g (17.36 mmol) 2,3-diaminophenol are dissolved in 120 ml ethanol and refluxed for 24h. The reaction mixture is cooled down, filtered and washed with ethanol. Yield 3.94 g (92.3 %).

b) To 2g (6.75 mmol) of the product of example 21a and 2.33 g (16.87 mmol) K_2CO_3 in 20 ml dry dimethylformamide (DMF) 2.82 g (13.5 mmol) 8-bromo-1-octanol are added and stirred overnight at 120 °C. The DMF is evaporated. The residue is redissolved in ethyl acetate and reprecipitated in heptane. Yield 0.89 g (31%).


c) The product is prepared according to example 18c (yield: 0.5g (29.7 %)).

15 Example 22

0.5 g of the product of example 21c and 15 mg of AIBN are dissolved in 5 ml chlorobenzene, degassed and stirred at 60 °C for 24h. The obtained polymer is purified by precipitation in MeOH (yield: 0.41 g (82.0%)).

Claims

1. A polymer comprising a repeating unit(s) of the formula

wherein A is a 5-, 6-, or 7-membered heteroaromatic ring, containing at least one heteroatom selected from nitrogen, oxygen and sulfur, especially one nitrogen atom and at least one further heteroatom selected from nitrogen, substituted nitrogen, oxygen and sulfur,

R^a, R¹, R², R³, R⁴, R^{1'}, R^{2'}, R^{3'} and R^{4'} are independently of each other hydrogen, halogen, especially fluorine, or an organic substituent, or

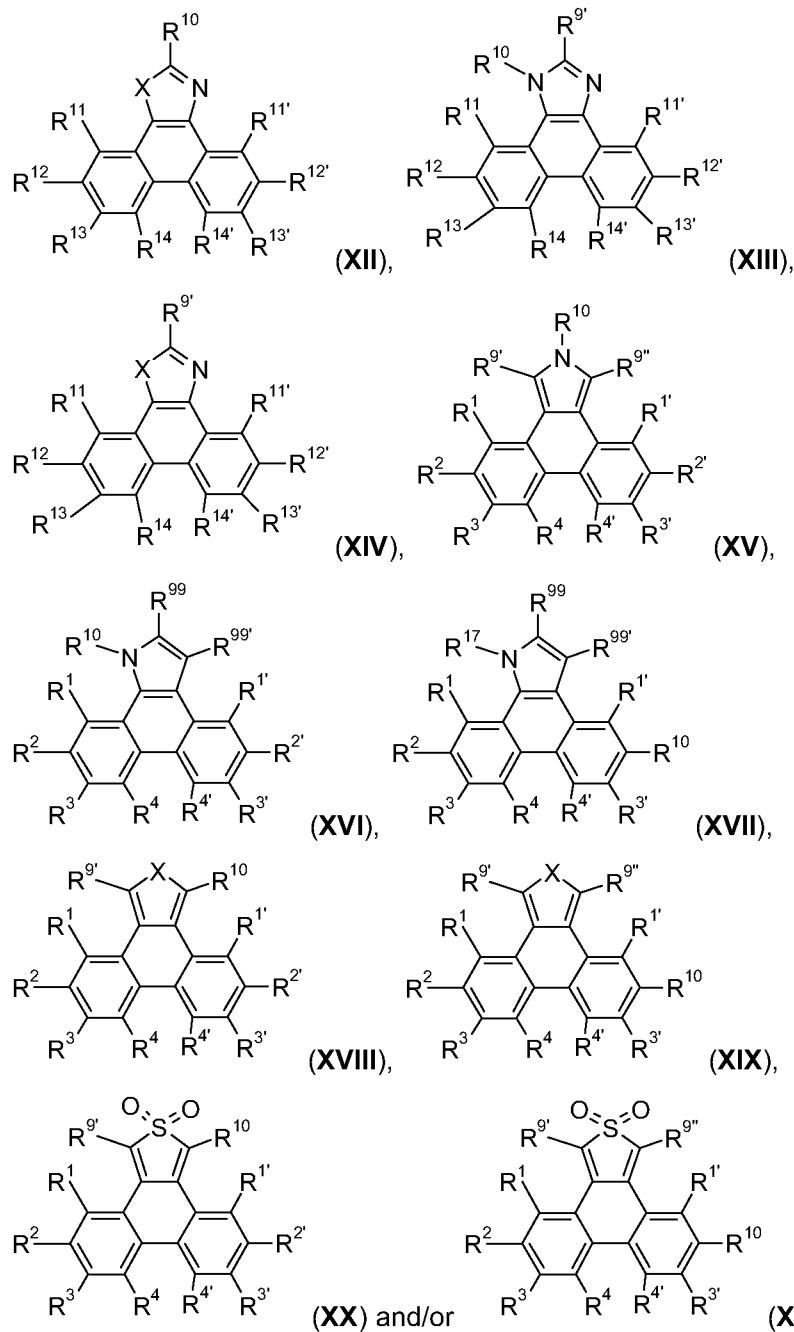
R^a, R¹, R², R³, R⁴, R^{1'}, R^{2'}, R^{3'} and R^{4'}, if possible, together form an aromatic, or heteroaromatic ring, or ring system, which can optionally be substituted,

R⁷ is halogen, especially fluorine, or an organic substituent, wherein two or more substituents R⁷ in the same molecule may have different meanings, or can form together an aromatic, or heteroaromatic ring, or ring system, wherein

at least one of R^a, R¹, R², R³, R⁴, R^{1'}, R^{2'}, R^{3'} and R^{4'} is a group R¹⁰, wherein

R¹⁰ is a group -(Sp)_{x1}-[PG']<, wherein

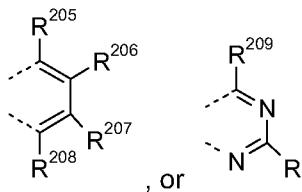
Sp is a spacer unit,


PG' is a group derived from a polymerisable group,

x1 is 0, or 1, and

x is 0, or an integer of 1 to 4.

2. A polymer according to claim 1, comprising a repeating unit(s) of the formula

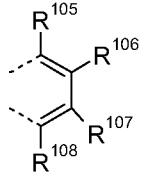

R^1 and $R^{1'}$ are independently of each other hydrogen, halogen, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_1 - C_{18} perfluoroalkyl, C_2 - C_{18} alkenyl, C_2 - C_{18} alkynyl, C_1 - C_{18} alkoxy, C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D, CN, or $-CO-R^{28}$,

R^2 , R^3 , R^4 , $R^{2'}$, R^3' and $R^{4'}$ are independently of each other H, halogen, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_1 - C_{18} perfluoroalkyl, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by G, C_2 - C_{20} heteroaryl, C_2 - C_{20} heteroaryl which

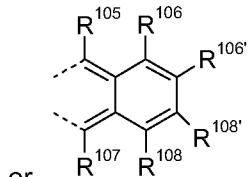
is substituted by G, C₂-C₁₈alkenyl, C₂-C₁₈alkynyl, C₁-C₁₈alkoxy, C₁-C₁₈alkoxy which is substituted by E and/or interrupted by D, C₇-C₂₅aralkyl, CN, or -CO-R²⁸, R⁸ is H, C₁-C₁₈alkyl, C₁-C₁₈alkyl which is substituted by E and/or interrupted by D, C₁-C₁₈perfluoroalkyl, C₆-C₂₄aryl, C₆-C₂₄aryl which is substituted by G, C₂-C₂₀heteroaryl, C₂-C₂₀heteroaryl which is substituted by G, C₂-C₁₈alkenyl, C₂-C₁₈alkynyl, C₁-C₁₈alkoxy, C₁-C₁₈alkoxy which is substituted by E and/or interrupted by D, C₇-C₂₅aralkyl, CN, or -CO-R²⁸,

R^{9'}, R^{9''}, R^{99'} and R^{99''} is H, C₁-C₁₈alkyl, C₁-C₁₈alkyl which is substituted by E and/or interrupted by D, C₁-C₁₈perfluoroalkyl, C₆-C₂₄aryl, C₆-C₂₄aryl which is substituted by G, C₂-C₂₀heteroaryl, C₂-C₂₀heteroaryl which is substituted by G, C₂-C₁₈alkenyl, C₂-C₁₈alkynyl, C₁-C₁₈alkoxy, C₁-C₁₈alkoxy which is substituted by E and/or interrupted by D, C₇-C₂₅aralkyl, or -CO-R²⁸,

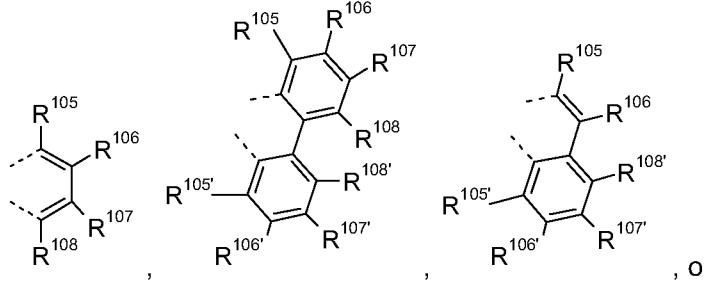
R¹⁰ is a group -(Sp)_{x1}-[PG']<, wherein Sp is a spacer unit, PG' is a group derived from a polymerisable group, and x1 is 0, or 1, or

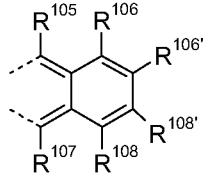

R⁸ and R¹⁰ together form a group , or , wherein one of the substituents R²⁰⁵, R²⁰⁶, R²⁰⁷ and R²⁰⁸, and one of the substituents R²⁰⁸ and R²¹⁰ is a group R¹⁰ and the other substituents are independently of each other H, C₁-C₁₈alkyl, C₁-C₁₈alkyl which is substituted by E and/or interrupted by D, C₁-C₁₈alkoxy, or C₁-C₁₈alkoxy which is substituted by E and/or interrupted by D,

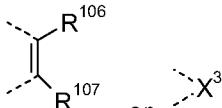
R¹¹ and R^{11'} are independently of each other hydrogen, halogen, especially fluorine, C₁-C₁₈alkyl, C₁-C₁₈alkyl which is substituted by E and/or interrupted by D, C₁-C₁₈perfluoroalkyl, C₂-C₁₈alkenyl, C₂-C₁₈alkynyl, C₁-C₁₈alkoxy, C₁-C₁₈alkoxy which is substituted by E and/or interrupted by D, CN, or -CO-R²⁸,


R¹², R¹³, R¹⁴, R^{12'}, R^{13'} and R^{14'} are independently of each other H, halogen, especially fluorine, C₁-C₁₈alkyl, C₁-C₁₈alkyl which is substituted by E and/or interrupted by D, C₁-C₁₈perfluoroalkyl, C₆-C₂₄aryl, C₆-C₂₄aryl which is substituted by G, C₂-C₂₀heteroaryl, C₂-C₂₀heteroaryl which is substituted by G, C₂-C₁₈alkenyl, C₂-C₁₈alkynyl, C₁-C₁₈alkoxy, C₁-C₁₈alkoxy which is substituted by E and/or interrupted by D, C₇-C₂₅aralkyl, CN or -CO-R²⁸,

X is O, S, or NR¹⁷, wherein R¹⁷ is C₁-C₁₈alkyl, C₁-C₁₈alkyl which is substituted by E and/or interrupted by D, C₁-C₁₈perfluoroalkyl, C₆-C₂₄aryl, C₆-C₂₄aryl which is substituted by G, C₂-C₂₀heteroaryl, C₂-C₂₀heteroaryl which is substituted by G, C₂-C₁₈alkenyl, C₂-C₁₈alkynyl, C₇-C₂₅aralkyl, or -CO-R²⁸,

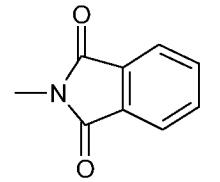

or two substituents R^1 , R^2 , R^3 and R^4 ; R^1 , $R^{2'}$, $R^{3'}$ and $R^{4'}$; R^{11} , R^{12} , R^{13} and R^{14} ; $R^{11'}$,


$R^{12'}$, $R^{13'}$ and $R^{14'}$, which are adjacent to each other, together form a group ,

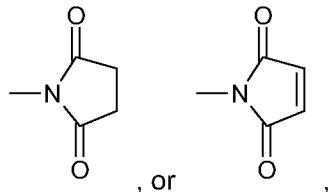

or , or two substituents R^{99} and $R^{99'}$, which are adjacent to each other,

together form a group , or , or

, or two substituents R^4 and $R^{4'}$, and/or R^{14} and $R^{14'}$, which are



adjacent to each other, together form a group , or , wherein X^3 is O, S, $C(R^{119})(R^{120})$, or NR^{17} , wherein R^{17} is as defined above, R^{105} , R^{106} , R^{107} , R^{108} , $R^{105'}$, $R^{106'}$, $R^{107'}$ and $R^{108'}$ are independently of each other H, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_1 - C_{18} alkoxy, or C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D,


R^{119} and R^{120} are independently of each other H, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by G, C_2 - C_{20} heteroaryl, C_2 - C_{20} heteroaryl which is substituted by G, C_2 - C_{18} alkenyl, C_2 - C_{18} alkynyl, C_1 - C_{18} alkoxy, C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D, or C_7 - C_{25} aralkyl, or

R^{119} and R^{120} together form a group of formula $=CR^{121}R^{122}$, wherein R^{121} and R^{122} are independently of each other H, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by G, or C_2 - C_{20} heteroaryl, or C_2 - C_{20} heteroaryl which is substituted by G, or

R^{119} and R^{120} together form a five or six membered ring, which optionally can be substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by G, C_2 - C_{20} heteroaryl, C_2 - C_{20} heteroaryl which is substituted by G, C_2 - C_{18} alkenyl, C_2 - C_{18} alkynyl, C_1 - C_{18} alkoxy, C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D, C_7 - C_{25} aralkyl, or $-C(=O)-R^{127}$, and R^{127} is H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, or C_1 - C_{18} alkoxy; C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by $-O-$, D is $-CO-$; $-COO-$; $-S-$; $-SO-$; $-SO_2-$; $-O-$; $-NR^{25}-$; $-SiR^{30}R^{31}-$; $-POR^{32}-$; $-CR^{23}=CR^{24}-$; or $-C\equiv C-$; and E is $-OR^{29}$; $-SR^{29}$; $-NR^{25}R^{26}$; $-COR^{28}$; $-COOR^{27}$; $-CONR^{25}R^{26}$; $-CN$; or halogen; G is E, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is interrupted by D, C_1 - C_{18} perfluoroalkyl, or C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D, wherein R^{23} , R^{24} , R^{25} and R^{26} are independently of each other H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, or C_1 - C_{18} alkoxy; C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by $-O-$; or

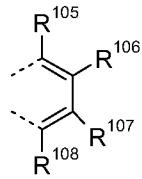
R^{25} and R^{26} together form a five or six membered ring, in particular

R^{27} and R^{28} are independently of each other H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, or C_1 - C_{18} alkoxy; C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by $-O-$,

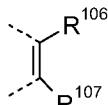
R^{29} is H; C_6 - C_{18} aryl; C_6 - C_{18} aryl, which is substituted by C_1 - C_{18} alkyl, or C_1 - C_{18} alkoxy; C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by $-O-$,

R^{30} and R^{31} are independently of each other C_1 - C_{18} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, which is substituted by C_1 - C_{18} alkyl, and

R^{32} is C_1 - C_{18} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, which is substituted by C_1 - C_{18} alkyl, or


$R^{9'}$, $R^{12'}$, $R^{13'}$, $R^{14'}$, $R^{12'}$, $R^{13'}$ and $R^{14'}$ are a group $-(Sp)_{x1}-HEI$, wherein

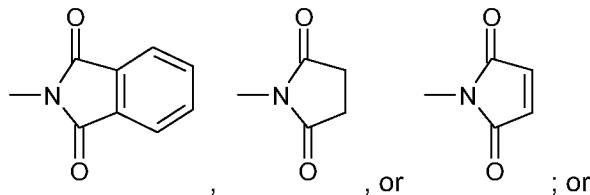
Sp is a spacer unit,

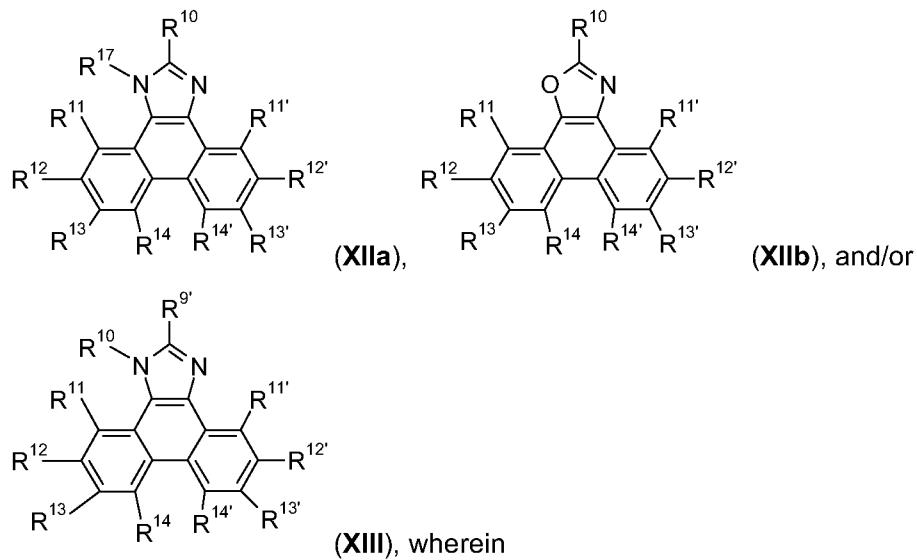

HEI is a group (HEI^I), which increases the hole-injection or hole-transport properties of the polymers; or a group (HEI^{II}), which increases the electron-injection or electron-transport properties of the polymers,

x1 is 0, or 1, with the proviso that in case of the compound of the formula **XIV** at least one of the substituents R¹², R¹³, R^{12'} and R^{13'} is a group R¹⁰.

3. A polymer according to claim 2, comprising a repeating unit of the formula **X**, or **XI**, wherein R¹ and R^{1'} are hydrogen, R², R³, R⁴, R^{2'}, R^{3'} and R^{4'} are independently of each other H, C₁-C₁₈alkyl, C₁-C₁₈alkyl which is interrupted by D, C₁-C₁₈perfluoroalkyl, C₁-C₁₈alkoxy, C₁-C₁₈alkoxy which is interrupted by D, or C₇-C₂₅aralkyl, R⁸ is H, C₁-C₁₈alkyl, C₁-C₁₈alkyl which is interrupted by D, C₁-C₁₈perfluoroalkyl, C₁-C₁₈alkoxy, or C₁-C₁₈alkoxy which is interrupted by D, two substituents R¹, R², R³, R⁴, R^{1'}, R^{2'}, R^{3'} and R^{4'}, which are adjacent to each other,

together form a group

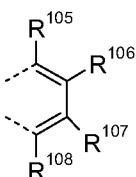

to each other, together form a group


wherein R¹⁰⁵, R¹⁰⁶, R¹⁰⁷ and -R¹⁰⁸ are independently of each other H, or C₁-C₈alkyl, R¹⁰ is a group -(Sp)_{x1}-[PG']<, wherein Sp is a spacer unit, PG' is a group derived from a polymerisable group, and x1 is 0, or 1,

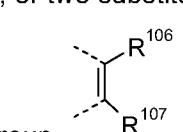
D is -CO-; -COO-; -S-; -SO-; -SO₂-; -O-; -NR²⁵-; -CR²³=CR²⁴-; or -C≡C-; wherein

R²³, R²⁴, R²⁵ and R²⁶ are independently of each other H; C₆-C₁₈aryl; C₆-C₁₈aryl which is substituted by C₁-C₈alkyl, or C₁-C₈alkoxy; C₁-C₈alkyl; or C₁-C₈alkyl which is interrupted by -O-, or R²⁵ and R²⁶ together form a five or six membered ring, in particular

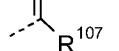
a polymer according to claim 2, comprising a repeating unit of the formula



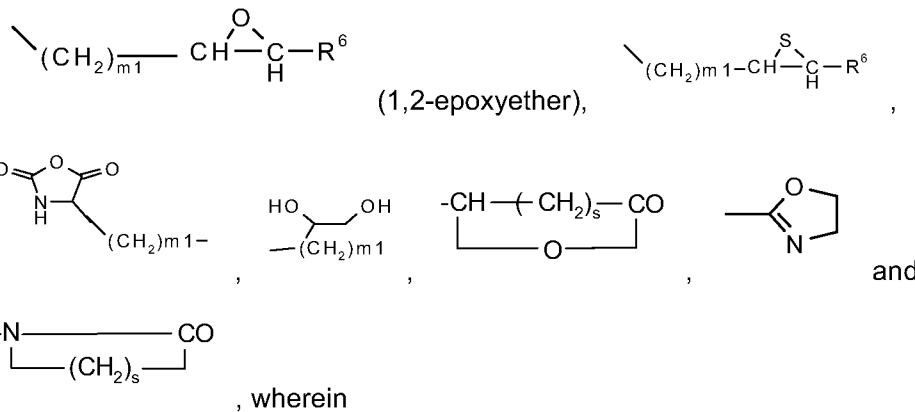
$R^{9'}$ is H, C_6 - C_{18} aryl, which can be substituted by G, C_2 - C_{18} heteroaryl, which can be substituted by G, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is interrupted by D, C_1 - C_{18} perfluoroalkyl, C_1 - C_{18} alkoxy, or C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D,


R^{11} and $R^{11'}$ are hydrogen,

R^{12} , R^{13} , R^{14} , $R^{12'}$, $R^{13'}$ and $R^{14'}$ are hydrogen,


R^{17} is C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, or C_1 - C_{18} alkoxy; C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by $-O-$; or two substituents R^{11} , R^{12} , R^{13} , R^{14} , $R^{11'}$, $R^{12'}$, $R^{13'}$ and $R^{14'}$, which are adjacent to each

other, together form a group


adjacent to each other, together form a group

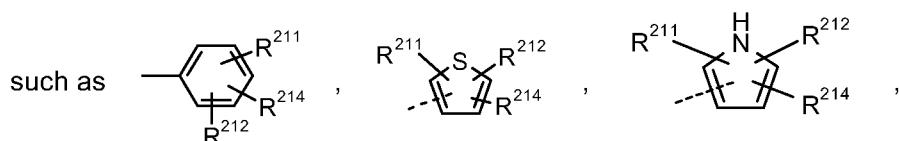
, wherein R^{105} , R^{106} , R^{107} , R^{108} , D, E, and R^{10} are as defined above.

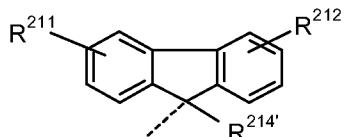
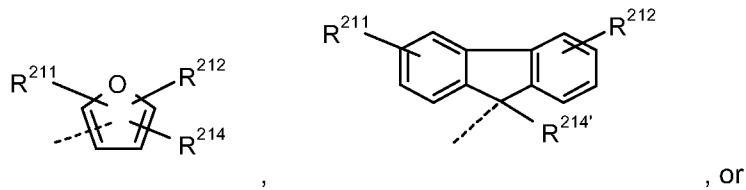
4. A polymer according to any of claims 1 to 3, wherein Sp is selected from $-Ar-$, $-ArY-$, $-YAr-$, $-YAr(CR^{47}R^{48})_n-$, $-ArY(CR^{47}R^{48})_nAr-$, $-ArY(CR^{47}R^{48})_n-$, $-(CR^{47}R^{48})_n-$, $-(YCR^{47}R^{48})_n-$, or $-(CR^{47}R^{48}Y)_n-$, wherein Y is NR^5 , O, S, $C=O$, $C(=O)O$, wherein R^5 is H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, or C_1 - C_{18} alkoxy; C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by $-O-$;

R^{47} and R^{48} are independently of each other hydrogen, fluorine, or C_1 - C_{20} alkyl,
 n is an integer of 1 to 20,
 Ar is alkylen, cycloalkylen, arylen, aralkylene, or heteroarylen, which can optionally be substituted,
 PG' is a group derived from a polymerisable group selected from $-C(R^{44})=CH_2$,
 $-NHC(O)-C(R^{45})=CH_2$, $-OCH_2CH_2OC(O)-C(R^{45})=CH_2$, $-OC(O)-C(R^{45})=CH_2$, $-C(O)-C(R^{46})=CH_2$, $-C\equiv C-$, $-N\equiv C$, $-O-CH(CH_2CH_2CH=CH_2)_2$; C_5 - C_8 cycloalkenyl, bicycloalkenyl (a substituted or unsubstituted bicycloalkenyl group having 5 to 30 carbon atoms),

s is an integer from 1 to 6, $m1$ is an integer from 1 to 6,

R^6 is hydrogen, or C_1 - C_{20} alkyl,

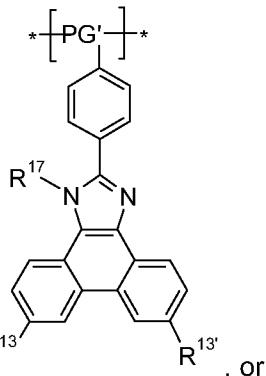

R^{44} is hydrogen, or C_1 - C_4 alkyl, or halogen,



R^{45} is hydrogen, C_1 - C_4 alkyl, or halogen, and

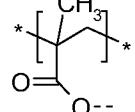
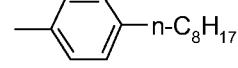
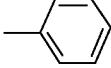
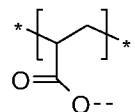
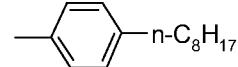
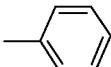
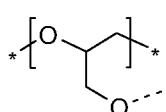
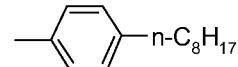
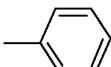
R^{46} is hydrogen, C_1 - C_4 alkyl, or C_6 - C_{12} aryl, or

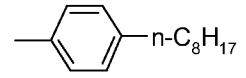
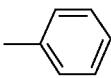
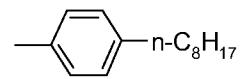
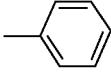
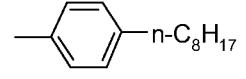
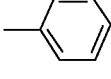
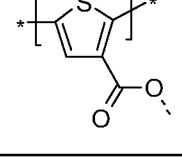
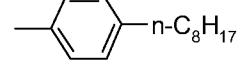
PG' is a group derived from a polymerisable group $\begin{array}{c} R^{211} \\ | \\ R^{212}-AHG \end{array}$, wherein

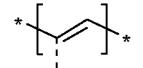
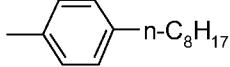
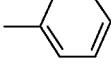
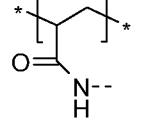
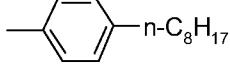
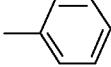
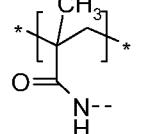
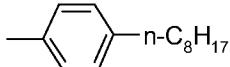
AHG is an aromatic, or heteroaromatic residue, which can optionally be substituted,

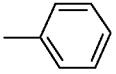
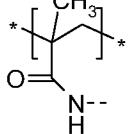
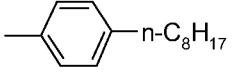
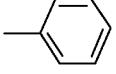
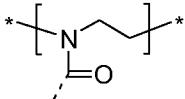
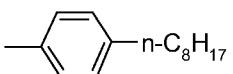
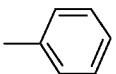


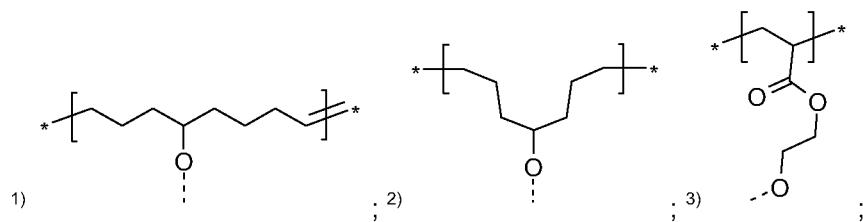
,

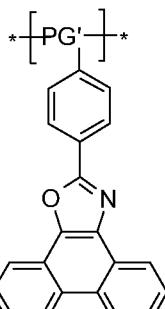









R^{211} and R^{212} are independently of each other halogen, $-C\equiv CH$, boronic acid, or boronic esters, $-Mg-Hal$, $-Zn-Hal$, $-Sn(R^{213})_3$, wherein Hal is halogen, and R^{213} is C_1-C_{18} alkyl, R^{214} and $R^{214'}$ are independently of each other H, C_1-C_{18} alkyl, C_1-C_{18} alkyl which is interrupted by D, C_1-C_{18} perfluoroalkyl, C_1-C_{18} alkoxy, C_1-C_{18} alkoxy which is interrupted by D, or C_7-C_{25} aralkyl.









5. The polymer according to any of claims 1 to 4, wherein the polymer is a








a homopolymer of formula $R^{13}-[PG']-R^{13'}$, or

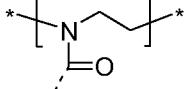

Cpd.	PG'	R^{13}	$R^{13'}$	R^{17}
A-1		H	H	H
A-2	ditto	H	H	$n-C_8H_{17}$
A-3	ditto	H	H	
A-4	ditto	$N(Ph)_2$	$N(Ph)_2$	$n-C_8H_{17}$
A-5				

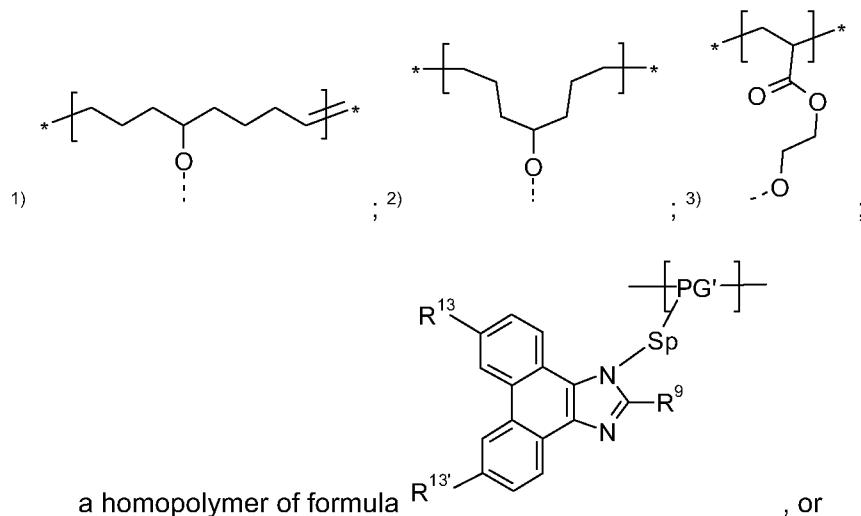

A-6	ditto	n-C ₈ H ₁₇	n-C ₈ H ₁₇	
A-7	ditto	n-C ₈ H ₁₇	n-C ₈ H ₁₇	n-C ₈ H ₁₇
A-8		H	H	H
A-9	ditto	H	H	n-C ₈ H ₁₇
A-10	ditto	H	H	
A-11	ditto	N(Ph) ₂	N(Ph) ₂	n-C ₈ H ₁₇
A-12	ditto	n-C ₈ H ₁₇	n-C ₈ H ₁₇	
A-13	ditto	n-C ₈ H ₁₇	n-C ₈ H ₁₇	n-C ₈ H ₁₇
A-14		H	H	H
A-15	ditto	H	H	n-C ₈ H ₁₇
A-16	ditto	H	H	
A-17	ditto	N(Ph) ₂	N(Ph) ₂	n-C ₈ H ₁₇
A-18	ditto	n-C ₈ H ₁₇	n-C ₈ H ₁₇	
A-19	ditto	n-C ₈ H ₁₇	n-C ₈ H ₁₇	n-C ₈ H ₁₇
A-20		H	H	H
A-21	ditto	H	H	n-C ₈ H ₁₇
A-22	ditto	H	H	
A-23	ditto	N(Ph) ₂	N(Ph) ₂	n-C ₈ H ₁₇
A-24	ditto	n-C ₈ H ₁₇	n-C ₈ H ₁₇	
A-25	ditto	n-C ₈ H ₁₇	n-C ₈ H ₁₇	n-C ₈ H ₁₇

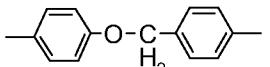
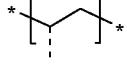
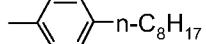
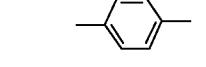
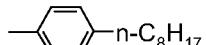
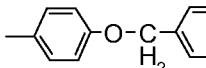
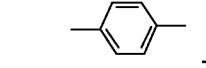
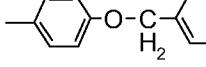
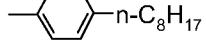
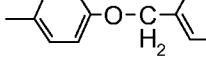
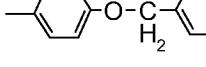
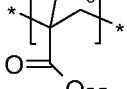
A-26		H	H	H
A-27	ditto	H	H	n-C ₈ H ₁₇
A-28	ditto	H	H	
A-29	ditto	N(Ph) ₂	N(Ph) ₂	n-C ₈ H ₁₇
A-30	ditto	n-C ₈ H ₁₇	n-C ₈ H ₁₇	
A-31	ditto	n-C ₈ H ₁₇	n-C ₈ H ₁₇	n-C ₈ H ₁₇
A-32	¹⁾	H	H	H
A-33	ditto	H	H	n-C ₈ H ₁₇
A-34	ditto	H	H	
A-35	ditto	N(Ph) ₂	N(Ph) ₂	n-C ₈ H ₁₇
A-36	ditto	n-C ₈ H ₁₇	n-C ₈ H ₁₇	
A-37	ditto	n-C ₈ H ₁₇	n-C ₈ H ₁₇	n-C ₈ H ₁₇
A-38	²⁾	H	H	H
A-39	ditto	H	H	n-C ₈ H ₁₇
A-40	ditto	H	H	
A-41	ditto	N(Ph) ₂	N(Ph) ₂	n-C ₈ H ₁₇
A-42	ditto	n-C ₈ H ₁₇	n-C ₈ H ₁₇	
A-43	ditto	n-C ₈ H ₁₇	n-C ₈ H ₁₇	n-C ₈ H ₁₇
A-44		H	H	H
A-45	ditto	H	H	n-C ₈ H ₁₇
A-46	ditto	H	H	

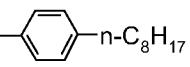
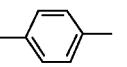
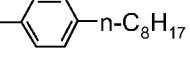
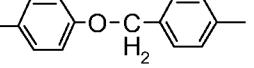
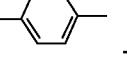
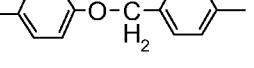
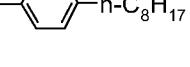
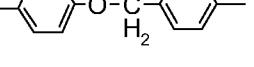
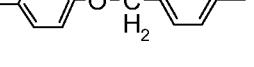
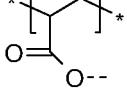
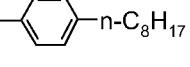
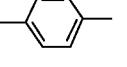
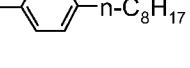
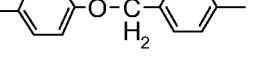
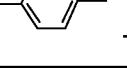
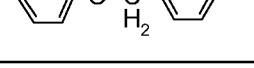
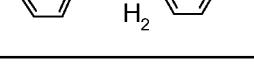
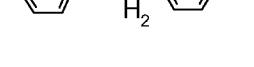
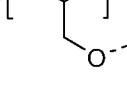
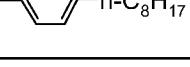
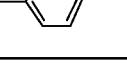
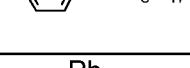
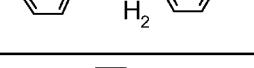
A-47	ditto	N(Ph) ₂	N(Ph) ₂	n-C ₈ H ₁₇
A-48	ditto	n-C ₈ H ₁₇	n-C ₈ H ₁₇	
A-49	ditto	n-C ₈ H ₁₇	n-C ₈ H ₁₇	n-C ₈ H ₁₇
A-50		H	H	H
A-51	ditto	H	H	n-C ₈ H ₁₇
A-52	ditto	H	H	
A-53	ditto	N(Ph) ₂	N(Ph) ₂	n-C ₈ H ₁₇
A-54	ditto	n-C ₈ H ₁₇	n-C ₈ H ₁₇	
A-55	ditto	n-C ₈ H ₁₇	n-C ₈ H ₁₇	n-C ₈ H ₁₇
A-56		H	H	H
A-57	ditto	H	H	n-C ₈ H ₁₇
A-58	ditto	H	H	
A-59	ditto	N(Ph) ₂	N(Ph) ₂	n-C ₈ H ₁₇
A-60	ditto	n-C ₈ H ₁₇	n-C ₈ H ₁₇	
A-61	ditto	n-C ₈ H ₁₇	n-C ₈ H ₁₇	n-C ₈ H ₁₇
A-62		H	H	H
A-63	ditto	H	H	n-C ₈ H ₁₇
A-64	ditto	H	H	
A-65	ditto	N(Ph) ₂	N(Ph) ₂	n-C ₈ H ₁₇

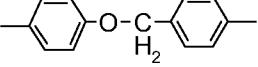
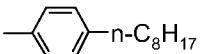
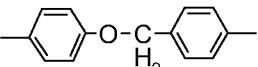
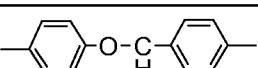
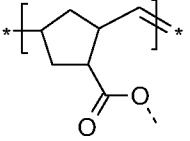
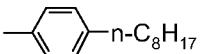
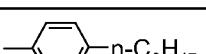
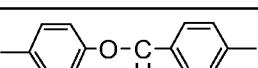
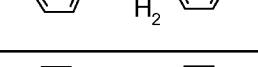
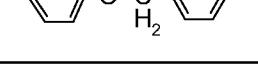
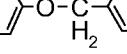
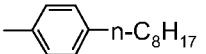
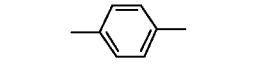
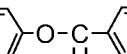
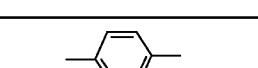
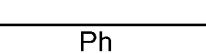
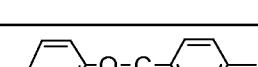
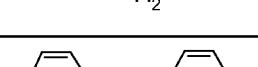
A-66	ditto	n-C ₈ H ₁₇	n-C ₈ H ₁₇	
A-67	ditto	n-C ₈ H ₁₇	n-C ₈ H ₁₇	n-C ₈ H ₁₇
A-68		H	H	H
A-69	ditto	H	H	n-C ₈ H ₁₇
A-70	ditto	H	H	
A-71	ditto	N(Ph) ₂	N(Ph) ₂	n-C ₈ H ₁₇
A-72	ditto	n-C ₈ H ₁₇	n-C ₈ H ₁₇	
A-73	ditto	n-C ₈ H ₁₇	n-C ₈ H ₁₇	n-C ₈ H ₁₇
A-74		H	H	H
A-75	ditto	H	H	n-C ₈ H ₁₇
A-76	ditto	H	H	
A-77	ditto	N(Ph) ₂	N(Ph) ₂	n-C ₈ H ₁₇
A-78	ditto	n-C ₈ H ₁₇	n-C ₈ H ₁₇	
A-79	ditto	n-C ₈ H ₁₇	n-C ₈ H ₁₇	n-C ₈ H ₁₇

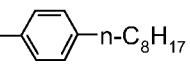
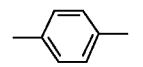
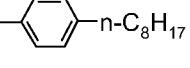
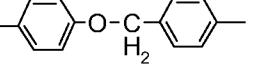
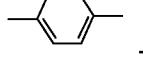
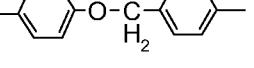
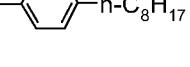
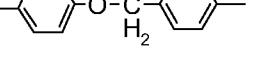
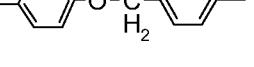
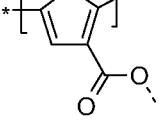
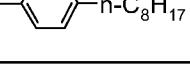
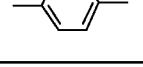
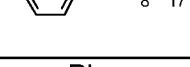
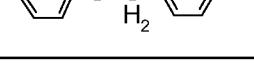
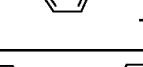
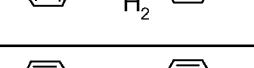
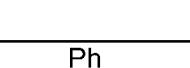
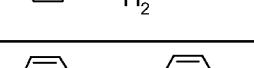
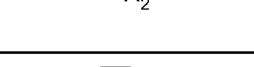


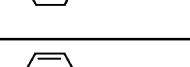
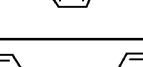
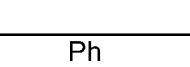
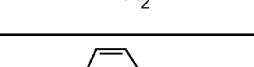
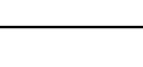


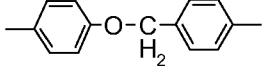
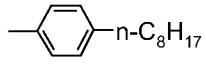
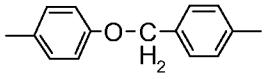
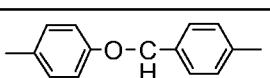
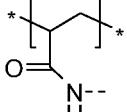
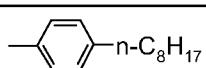
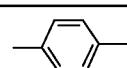
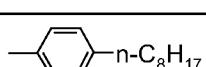
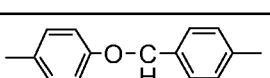
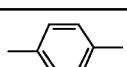
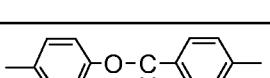
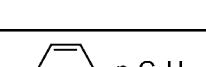
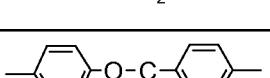
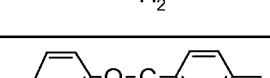
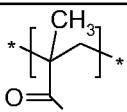
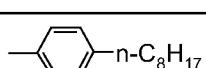
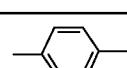
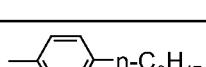
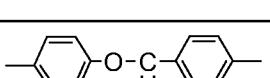
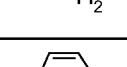
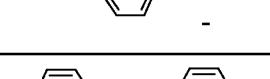
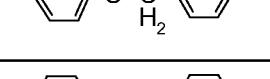












a homopolymer of formula $R^{13} - [PG'] - R^{13'}$, or
























Cpd.	PG'	R^{13}	$R^{13'}$
B-1		H	H
B-2	ditto	$N(Ph)_2$	$N(Ph)_2$
B-3	ditto	$n-C_8H_{17}$	$n-C_8H_{17}$
B-4		H	H
B-5	ditto	$N(Ph)_2$	$N(Ph)_2$
B-6	ditto	$n-C_8H_{17}$	$n-C_8H_{17}$
B-7		H	H
B-8	ditto	$N(Ph)_2$	$N(Ph)_2$
B-9	ditto	$n-C_8H_{17}$	$n-C_8H_{17}$
B-10		H	H
B-11	ditto	$N(Ph)_2$	$N(Ph)_2$
B-12	ditto	$n-C_8H_{17}$	$n-C_8H_{17}$
B-13		H	H
B-14	ditto	$N(Ph)_2$	$N(Ph)_2$
B-15	ditto	$n-C_8H_{17}$	$n-C_8H_{17}$

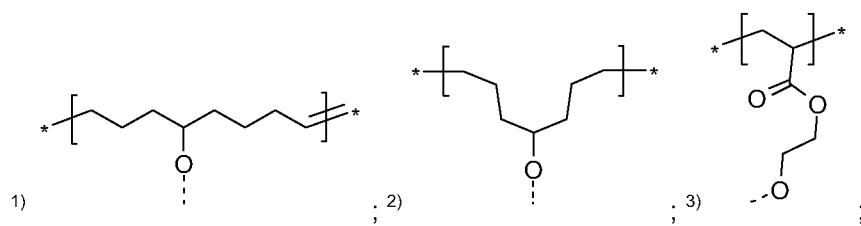


















B-16	¹⁾	H	H
B-17	ditto	N(Ph) ₂	N(Ph) ₂
B-18	ditto	n-C ₈ H ₁₇	n-C ₈ H ₁₇
B-19	²⁾	H	H
B-20	ditto	N(Ph) ₂	N(Ph) ₂
B-21	ditto	n-C ₈ H ₁₇	n-C ₈ H ₁₇
B-22		H	H
B-23	ditto	N(Ph) ₂	N(Ph) ₂
B-24	ditto	n-C ₈ H ₁₇	n-C ₈ H ₁₇
B-25		H	H
B-26	ditto	N(Ph) ₂	N(Ph) ₂
B-27	ditto	n-C ₈ H ₁₇	n-C ₈ H ₁₇
B-28		H	H
B-29	ditto	N(Ph) ₂	N(Ph) ₂
B-30	ditto	n-C ₈ H ₁₇	n-C ₈ H ₁₇
B-31		H	H
B-32	ditto	N(Ph) ₂	N(Ph) ₂
B-33	ditto	n-C ₈ H ₁₇	n-C ₈ H ₁₇
B-34		H	H
B-35	ditto	N(Ph) ₂	N(Ph) ₂
B-36	ditto	n-C ₈ H ₁₇	n-C ₈ H ₁₇

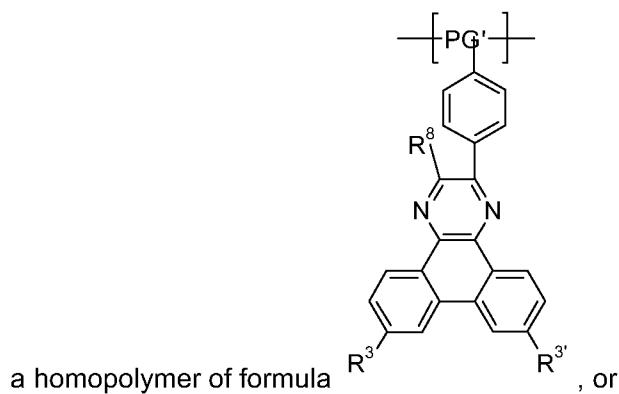

























B-37		H	H
B-38	ditto	N(Ph) ₂	N(Ph) ₂
B-39	ditto	n-C ₈ H ₁₇	n-C ₈ H ₁₇

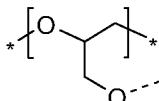
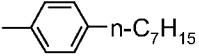
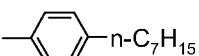
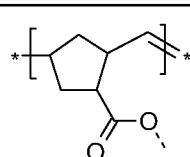
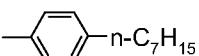
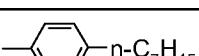
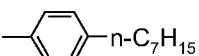
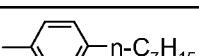
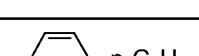
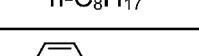
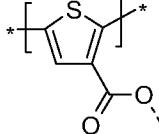
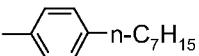























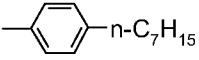
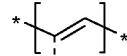
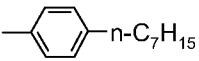
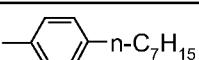
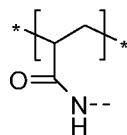
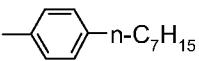
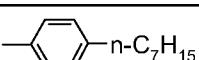
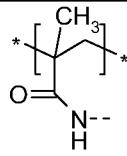
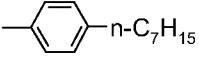
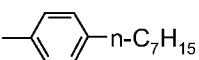
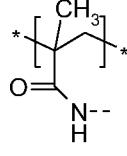
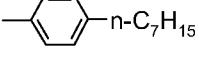
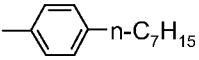
Cpd.	R^{13}	$R^{13'}$	R^9	Sp	PG'
C-1	H	H	Ph		
C-2	H	H			ditto
C-3	H	H			ditto
C-4	n-C ₈ H ₁₅	n-C ₈ H ₁₅	Ph		ditto
C-5	n-C ₈ H ₁₅	n-C ₈ H ₁₅	Ph		ditto
C-6	Br	Br			ditto
C-7	H	H	Ph		

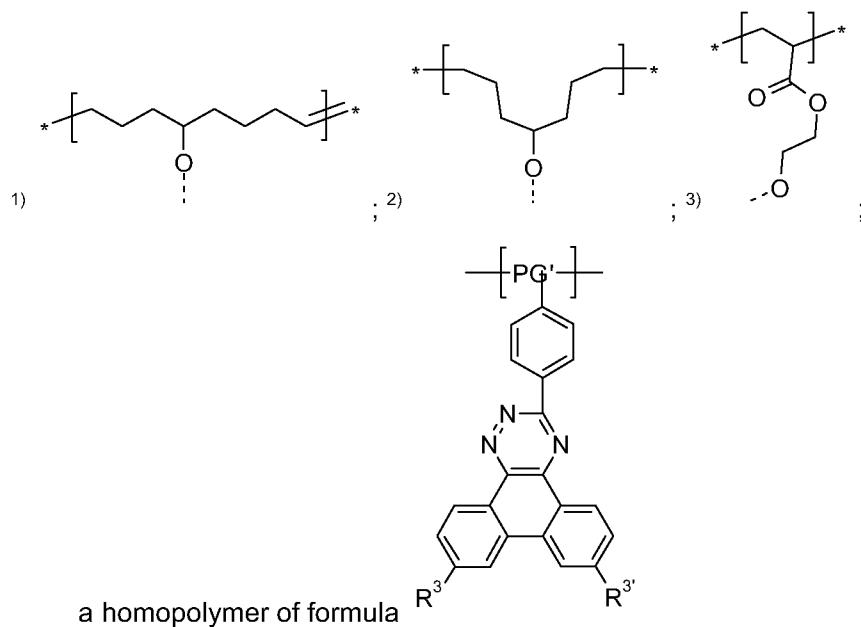

C-8	H	H			ditto
C-9	H	H			ditto
C-10	n-C ₈ H ₁₅	n-C ₈ H ₁₅	Ph		ditto
C-11	n-C ₈ H ₁₅	n-C ₈ H ₁₅	Ph		ditto
C-12	Br	Br			ditto
C-13	H	H	Ph		
C-14	H	H			ditto
C-15	H	H			ditto
C-16	n-C ₈ H ₁₅	n-C ₈ H ₁₅	Ph		ditto
C-17	n-C ₈ H ₁₅	n-C ₈ H ₁₅	Ph		ditto
C-18	Br	Br			ditto
C-19	H	H	Ph		
C-20	H	H			ditto
C-21	H	H			ditto
C-22	n-C ₈ H ₁₅	n-C ₈ H ₁₅	Ph		ditto


C-23	n-C ₈ H ₁₅	n-C ₈ H ₁₅	Ph		ditto
C-24	Br	Br			ditto
C-25	H	H	Ph		
C-26	H	H			ditto
C-27	H	H			ditto
C-28	n-C ₈ H ₁₅	n-C ₈ H ₁₅	Ph		ditto
C-29	n-C ₈ H ₁₅	n-C ₈ H ₁₅	Ph		ditto
C-30	Br	Br			ditto
C-31	H	H	Ph		¹⁾
C-32	H	H			ditto
C-33	H	H			ditto
C-34	n-C ₈ H ₁₅	n-C ₈ H ₁₅	Ph		ditto
C-35	n-C ₈ H ₁₅	n-C ₈ H ₁₅	Ph		ditto
C-36	Br	Br			ditto
C-37	H	H	Ph		²⁾

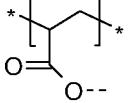
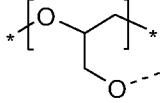
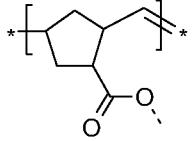
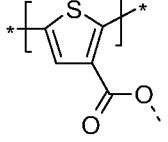
C-38	H	H			ditto
C-39	H	H			ditto
C-40	n-C ₈ H ₁₅	n-C ₈ H ₁₅	Ph		ditto
C-41	n-C ₈ H ₁₅	n-C ₈ H ₁₅	Ph		ditto
C-42	Br	Br			ditto
C-43	H	H	Ph		
C-44	H	H			ditto
C-45	H	H			ditto
C-46	n-C ₈ H ₁₅	n-C ₈ H ₁₅	Ph		ditto
C-47	n-C ₈ H ₁₅	n-C ₈ H ₁₅	Ph		ditto
C-48	Br	Br			ditto
C-49	H	H	Ph		
C-50	H	H			ditto
C-51	H	H			ditto
C-52	n-C ₈ H ₁₅	n-C ₈ H ₁₅	Ph		ditto













C-53	n-C ₈ H ₁₅	n-C ₈ H ₁₅	Ph		ditto
C-54	Br	Br			ditto
C-55	H	H	Ph		
C-56	H	H			ditto
C-57	H	H			ditto
C-58	n-C ₈ H ₁₅	n-C ₈ H ₁₅	Ph		ditto
C-59	n-C ₈ H ₁₅	n-C ₈ H ₁₅	Ph		ditto
C-60	Br	Br			ditto
C-61	H	H	Ph		
C-62	H	H			ditto
C-63	H	H			ditto
C-64	n-C ₈ H ₁₅	n-C ₈ H ₁₅	Ph		ditto
C-65	n-C ₈ H ₁₅	n-C ₈ H ₁₅	Ph		ditto
C-66	Br	Br			ditto

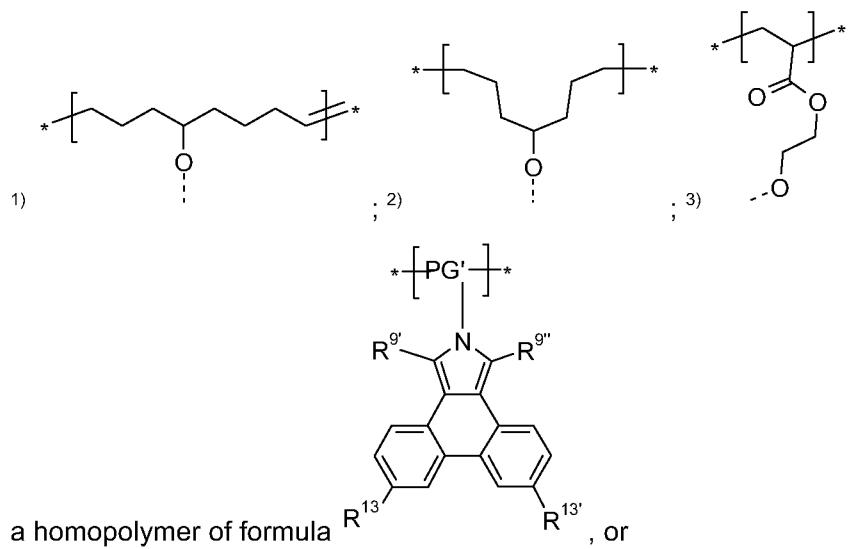













C-67	H	H	Ph		
C-68	H	H			ditto
C-69	H	H			ditto
C-70	n-C ₈ H ₁₅	n-C ₈ H ₁₅	Ph		ditto
C-71	n-C ₈ H ₁₅	n-C ₈ H ₁₅	Ph		ditto
C-72	Br	Br			ditto
C-73	H	H	Ph		
C-74	H	H			ditto
C-75	H	H			ditto
C-76	n-C ₈ H ₁₅	n-C ₈ H ₁₅	Ph		ditto
C-77	n-C ₈ H ₁₅	n-C ₈ H ₁₅	Ph		ditto
C-78	Br	Br			ditto

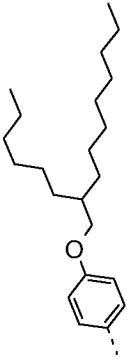
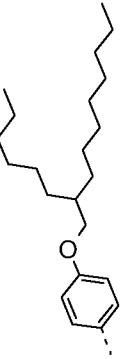
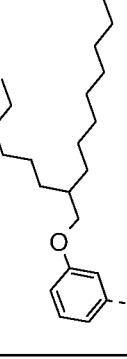
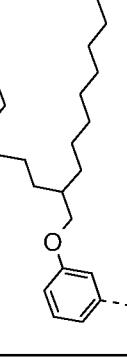
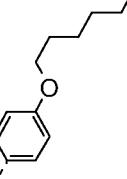
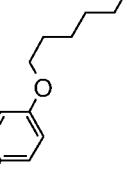
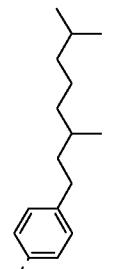
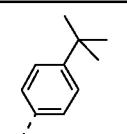
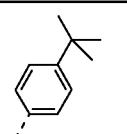


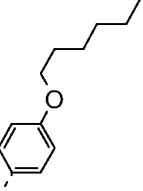
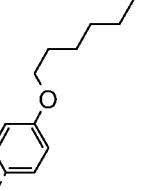
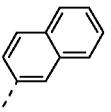
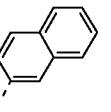
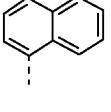
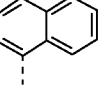
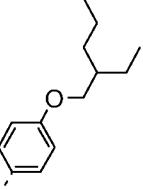
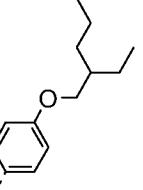
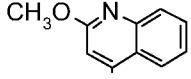
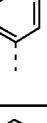
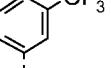
Cpd.	PG'	R^3	$\text{R}^{3'}$	R^8
D-1		H	H	Ph
D-2	ditto	H	H	
D-3	ditto	Br	Br	n-C ₈ H ₁₇
D-4	ditto	Br	Br	
D-5		H	H	Ph
D-6	ditto	H	H	
D-7	ditto	Br	Br	n-C ₈ H ₁₇
D-8	ditto	Br	Br	
D-9		H	H	Ph
D-10	ditto	H	H	
D-11	ditto	Br	Br	n-C ₈ H ₁₇
D-12	ditto	Br	Br	

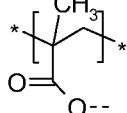
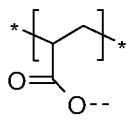
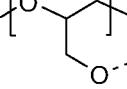
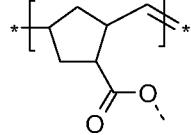
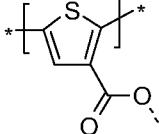
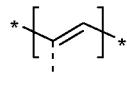
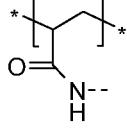
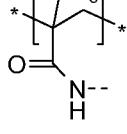




D-13		H	H	Ph
D-14	ditto	H	H	
D-15	ditto	Br	Br	n-C ₈ H ₁₇
D-16	ditto	Br	Br	
D-17		H	H	Ph
D-18	ditto	H	H	
D-19	ditto	Br	Br	n-C ₈ H ₁₇
D-20	ditto	Br	Br	
D-21	¹⁾	H	H	Ph
D-22	ditto	H	H	
D-23	ditto	Br	Br	n-C ₈ H ₁₇
D-24	ditto	Br	Br	
D-25	²⁾	H	H	Ph
D-26	ditto	H	H	
D-27	ditto	Br	Br	n-C ₈ H ₁₇
D-28	ditto	Br	Br	
D-29		H	H	Ph
D-30	ditto	H	H	
D-31	ditto	Br	Br	n-C ₈ H ₁₇

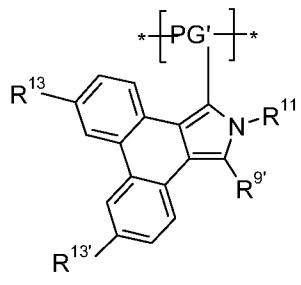
D-32	ditto	Br	Br	
D-33		H	H	Ph
D-34	ditto	H	H	
D-35	ditto	Br	Br	n-C ₈ H ₁₇
D-36	ditto	Br	Br	
D-37		H	H	Ph
D-38	ditto	H	H	
D-39	ditto	Br	Br	n-C ₈ H ₁₇
D-40	ditto	Br	Br	
D-41		H	H	Ph
D-42	ditto	H	H	
D-43	ditto	Br	Br	n-C ₈ H ₁₇
D-44	ditto	Br	Br	
D-45		H	H	Ph
D-46	ditto	H	H	
D-47	ditto	Br	Br	n-C ₈ H ₁₇
D-48	ditto	Br	Br	


D-49		H	H	Ph
D-50	ditto	H	H	
D-51	ditto	Br	Br	n-C8H17
D-52	ditto	Br	Br	

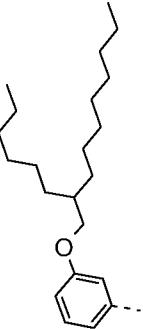
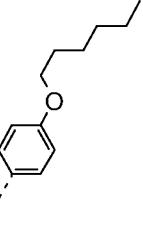
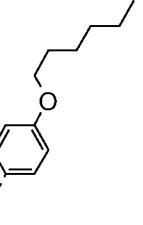
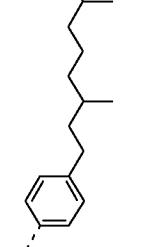
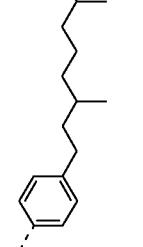
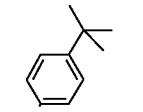
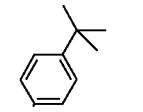
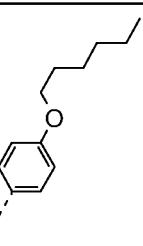
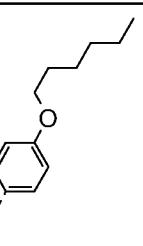
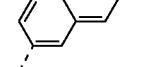
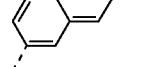
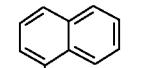
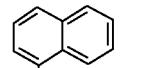









Cpd.	PG'	R ³	R ^{3'}
E-1		H	H
E-2	ditto	H	H
E-3	ditto		
E-4	ditto		
E-5		H	H
E-6	ditto	H	H
E-7	ditto		
E-8	ditto		

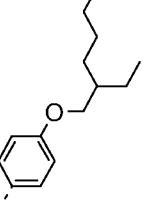
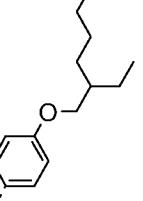
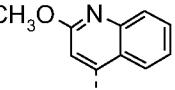
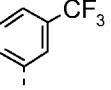
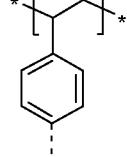
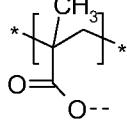











E-9		H	H
E-10	ditto	H	H
E-11	ditto		
E-12	ditto		
E-13		H	H
E-14	ditto	H	H
E-15	ditto		
E-16	ditto		
E-17		H	H
E-18	ditto	H	H
E-19	ditto		
E-20	ditto		
E-21	¹⁾	H	H
E-22	ditto	H	H
E-23	ditto		
E-24	ditto		
E-25	²⁾	H	H
E-26	ditto	H	H
E-27	ditto		
E-28	ditto		
E-29		H	H
E-30	ditto	H	H
E-31	ditto		
E-32	ditto		

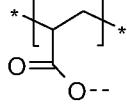
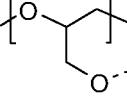
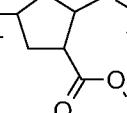
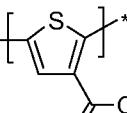
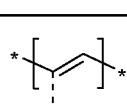
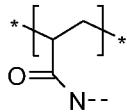
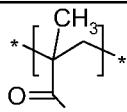
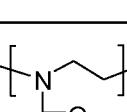
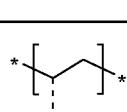








E-33		H	H
E-34	ditto	H	H
E-35	ditto		
E-36	ditto		
E-37		H	H
E-38	ditto	H	H
E-39	ditto		
E-40	ditto		
E-41		H	H
E-42	ditto	H	H
E-43	ditto		
E-44	ditto		
E-45		H	H
E-46	ditto	H	H
E-47	ditto		
E-48	ditto		
E-49		H	H
E-50	ditto	H	H
E-51	ditto		
E-52	ditto		

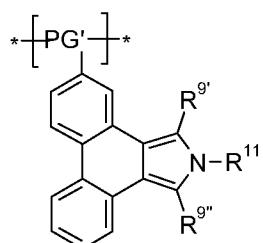

Cpd.	PG'	R^{13}	$R^{13'}$	$R^{9'}$	$R^{9''}$
F-1		H	H	H	H
F-2	ditto	H	H		
F-3	ditto	H	H		
F-4	ditto	H	H		
F-5	ditto	H	H	CN	CN
F-6	ditto	H	H		
F-7	ditto	H	H		

F-8	ditto	H	H		
F-9	ditto	H	H		
F-10	ditto	H	H		
F-11	ditto	H	H		
F-12	ditto	H	H		














F-13	ditto	H	H		
F-14	ditto	H	H		
F-15	ditto	H	H		
F-16	ditto	H	H		
F-17	ditto	H	H		
F-18	ditto	H	H	tBu	
F-19	ditto	H	H		
F-20	ditto	H	H		tBu
F-21	ditto	H	H		
F-22	ditto	H	H		
F-23	ditto	H	H		
F-24	ditto	H	H		

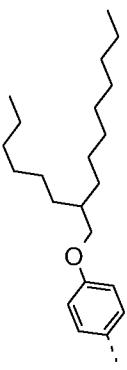
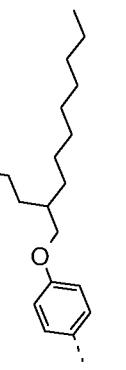
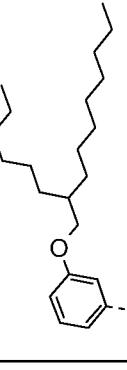
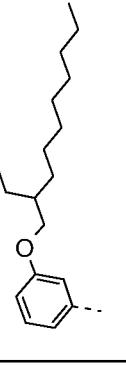
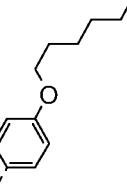
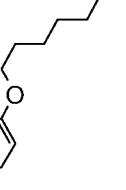
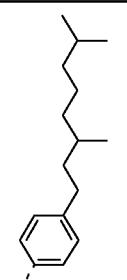
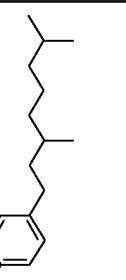
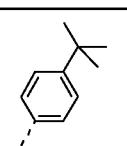
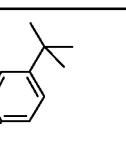






F-25	ditto	N(Ph) ₂	N(Ph) ₂	ditto	ditto
F-26	ditto	C ₈ H ₁₇	C ₈ H ₁₇	ditto	ditto
F-27		ditto	ditto	ditto	ditto
F-28		ditto	ditto	ditto	ditto
F-29		ditto	ditto	ditto	ditto
F-30		ditto	ditto	ditto	ditto
F-31		ditto	ditto	ditto	ditto
F-32		ditto	ditto	ditto	ditto
F-33		ditto	ditto	ditto	ditto
F-34		ditto	ditto	ditto	ditto
F-35		ditto	ditto	ditto	ditto

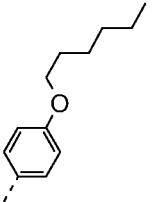
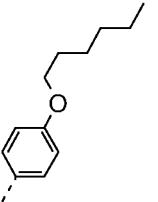
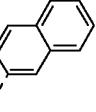
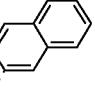
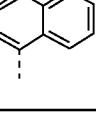
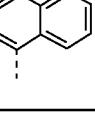
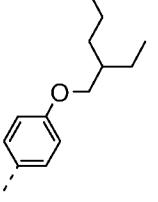
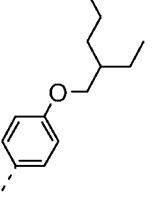









F-36		ditto	ditto	ditto	ditto
-------------	--	-------	-------	-------	-------

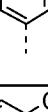
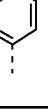
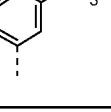
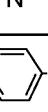
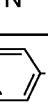
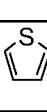


Cpd.	PG'	R ¹³	R ^{13'}	R ¹¹	R ^{9'}
G-1		H	H	H	H
G-2	ditto	H	H		H
G-3	ditto	H	H		
G-4	ditto	H	H		CN
G-5	ditto	H	H	n-C ₈ H ₁₇	CN
G-6	ditto	H	H	n-C ₈ H ₁₇	
G-7	ditto	H	H		
G-8	ditto	H	H		

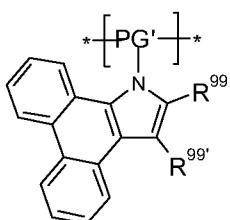
G-9	ditto	H	H		
G-10	ditto	H	H		
G-11	ditto	H	H		
G-12	ditto	H	H		
G-13	ditto	H	H		
G-14	ditto	H	H		
G-15	ditto	H	H		











G-16	ditto	H	H		
G-17	ditto	H	H		
G-18	ditto	H	H	tBu	
G-19	ditto	H	H		
G-20	ditto	H	H		tBu
G-21	ditto	H	H		
G-22	ditto	H	H		
G-23	ditto	H	H		
G-24	ditto	H	H		
G-25	ditto	N(Ph) ₂	N(Ph) ₂	ditto	ditto
G-26	ditto	C ₈ H ₁₇	C ₈ H ₁₇	ditto	ditto
G-27		ditto	ditto	ditto	ditto
G-28		ditto	ditto	ditto	ditto







G-29		ditto	ditto	ditto	ditto
G-30		ditto	ditto	ditto	ditto
G-31		ditto	ditto	ditto	ditto
G-32		ditto	ditto	ditto	ditto
G-33		ditto	ditto	ditto	ditto
G-34		ditto	ditto	ditto	ditto
G-35		ditto	ditto	ditto	ditto
G-36		ditto	ditto	ditto	ditto
G-37		H	H	n-C ₈ H ₁₇	H

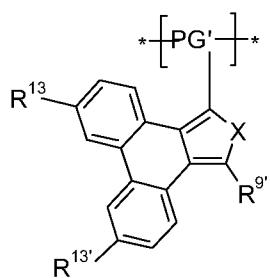
a homopolymer of formula


Cpd.	PG'	R ¹¹	R ^{9'}	R ^{9''}
H-1		H	H	H
H-2	ditto	H		
H-3	ditto	H		
H-4	ditto	H		
H-5	ditto	H	CN	CN
H-6	ditto	H		
H-7	ditto	H		

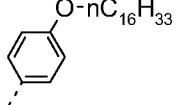
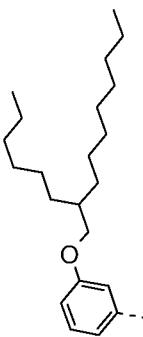
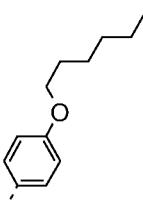
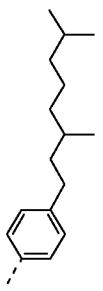
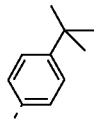
H-8	ditto	H		
H-9	ditto	H		
H-10	ditto	H		
H-11	ditto	H		
H-12	ditto	H		

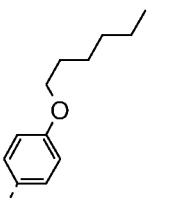
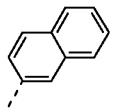
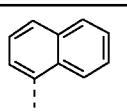
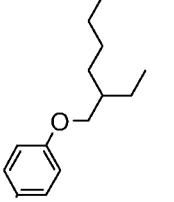
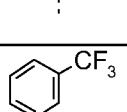
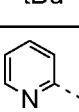
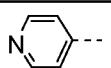
H-13	ditto	H		
H-14	ditto	H		
H-15	ditto	H		
H-16	ditto	H		
H-17	ditto	H		
H-18	ditto	H	tBu	
H-19	ditto	H		
H-20	ditto	H		tBu
H-21	ditto	H		
H-22	ditto	H		
H-23	ditto	H		
H-24	ditto	-CH ₃	ditto	ditto
H-25	ditto	-n-C ₈ H ₁₇	ditto	ditto

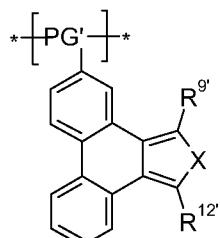
H-26	ditto		ditto	ditto
H-27	ditto		ditto	ditto
H-28	ditto		ditto	ditto
H-29	ditto		ditto	ditto
H-30	ditto		ditto	ditto
H-31	ditto		ditto	ditto
H-32	ditto		ditto	ditto
H-33		ditto	ditto	ditto
H-34		ditto	ditto	ditto
H-35		ditto	ditto	ditto
H-36		ditto	ditto	ditto
H-37		ditto	ditto	ditto


H-38		ditto	ditto	ditto
H-39		ditto	ditto	ditto
H-40		ditto	ditto	ditto
H-41		ditto	ditto	ditto
H-42		ditto	ditto	ditto

a homopolymer of formula

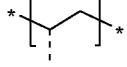
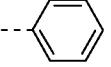
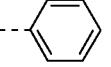





Cpd.	PG'	R⁹⁹	R^{99'}
I-1			
I-2	ditto		
I-3	ditto		

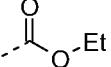
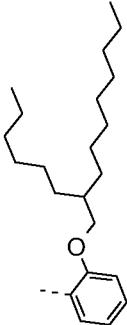
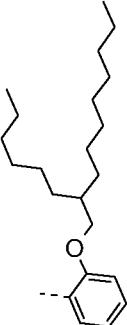
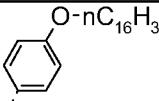
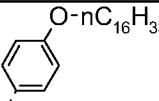
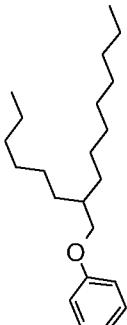
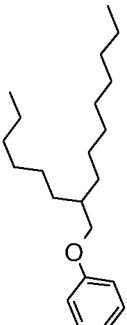
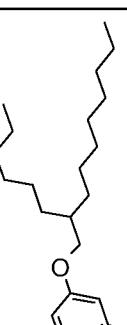
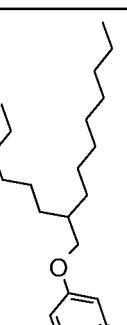







I-4	ditto		
I-5	ditto		
I-6		ditto	ditto
I-7		ditto	ditto
I-8		ditto	ditto

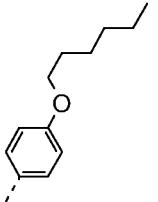
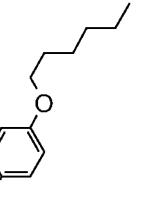
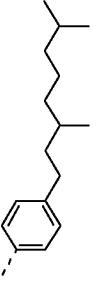
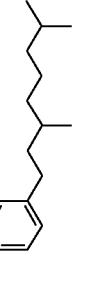
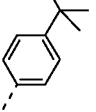
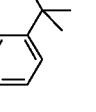
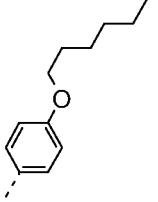
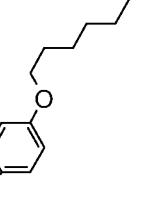
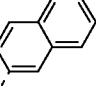
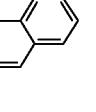
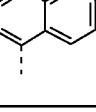
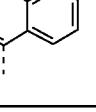
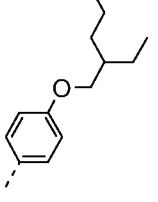
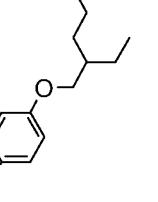
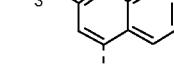

a homopolymer of formula

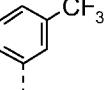
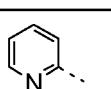
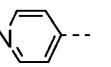
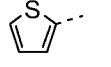
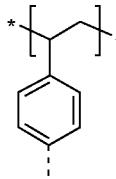
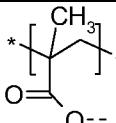
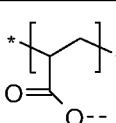
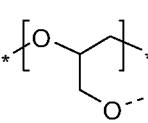
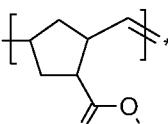
Cpd.	X	PG'	R ¹³	R ^{13'}	R ⁹
J-1	S		H	H	H
J-2	SO ₂		H	H	H
J-3	O		H	H	H
J-4	ditto	ditto	H	H	

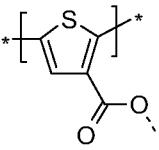
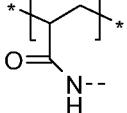
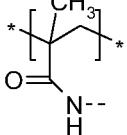
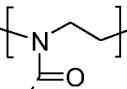
J-5	ditto	ditto	H	H	CN
J-6	ditto	ditto	H	H	
J-7	ditto	ditto	H	H	
J-8	ditto	ditto	H	H	
J-9	ditto	ditto	H	H	
J-10	ditto	ditto	H	H	
J-11	ditto	ditto	H	H	

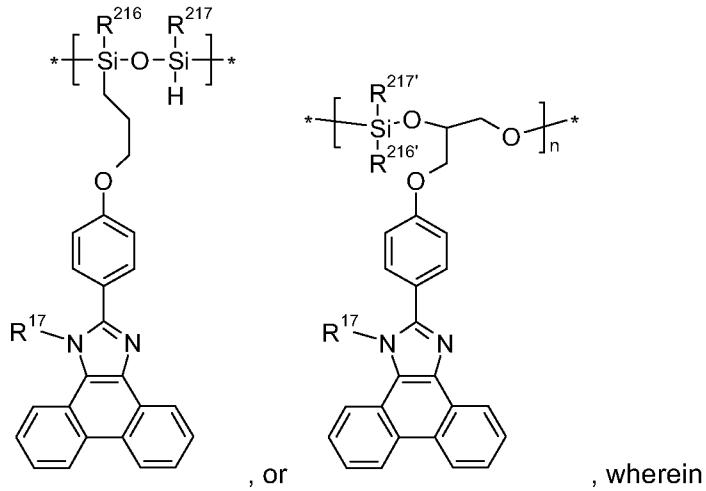









J-12	ditto	ditto	H	H	
J-13	ditto	ditto	H	H	
J-14	ditto	ditto	H	H	
J-15	ditto	ditto	H	H	
J-16	ditto	ditto	H	H	
J-17	ditto	ditto	H	H	
J-18	ditto	ditto	H	H	
J-19	ditto	ditto	H	H	tBu
J-20	ditto	ditto	H	H	
J-21	ditto	ditto	H	H	
J-22	ditto	ditto	H	H	
J-23	ditto	ditto	H	H	
J-24	ditto	ditto	N(Ph) ₂	N(Ph) ₂	ditto
J-25	ditto	ditto	C ₈ H ₁₇	C ₈ H ₁₇	ditto
















J-26			ditto	ditto	ditto
J-27			ditto	ditto	ditto
J-28			ditto	ditto	ditto
J-29			ditto	ditto	ditto
J-30			ditto	ditto	ditto
J-31			ditto	ditto	ditto

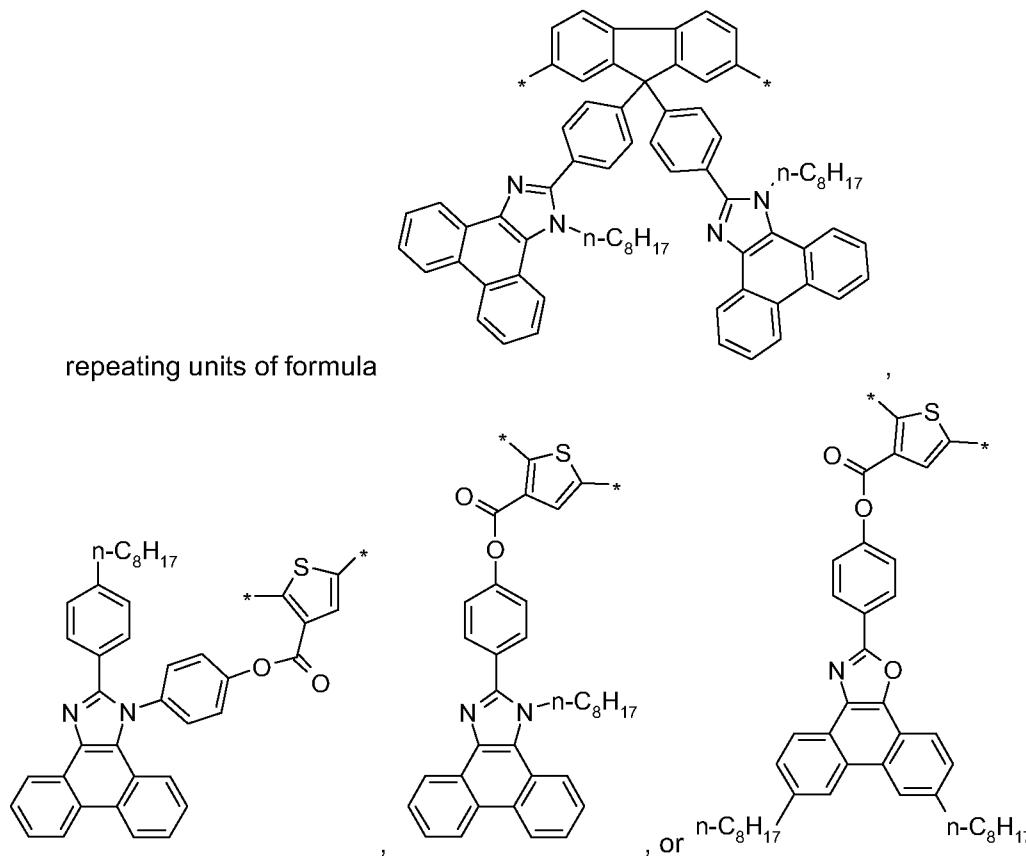














or a homopolymer of formula

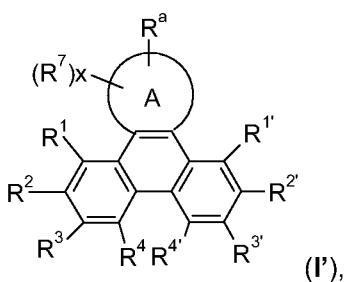
Cpd.	PG'	X	R ^{9'}	R ^{9''}
K-1		S	H	H
K-2	SO ₂		H	H


K-3		O	H	H
K-4	ditto	ditto		
K-5	ditto	ditto		
K-6	ditto	ditto	CN	CN
K-7	ditto	ditto		
K-8	ditto	ditto		
K-9	ditto	ditto		
K-10	ditto	ditto		

K-11	ditto	ditto		
K-12	ditto	ditto		
K-13	ditto	ditto		
K-14	ditto	ditto		
K-15	ditto	ditto		
K-16	ditto	ditto		
K-17	ditto	ditto		
K-18	ditto	ditto		

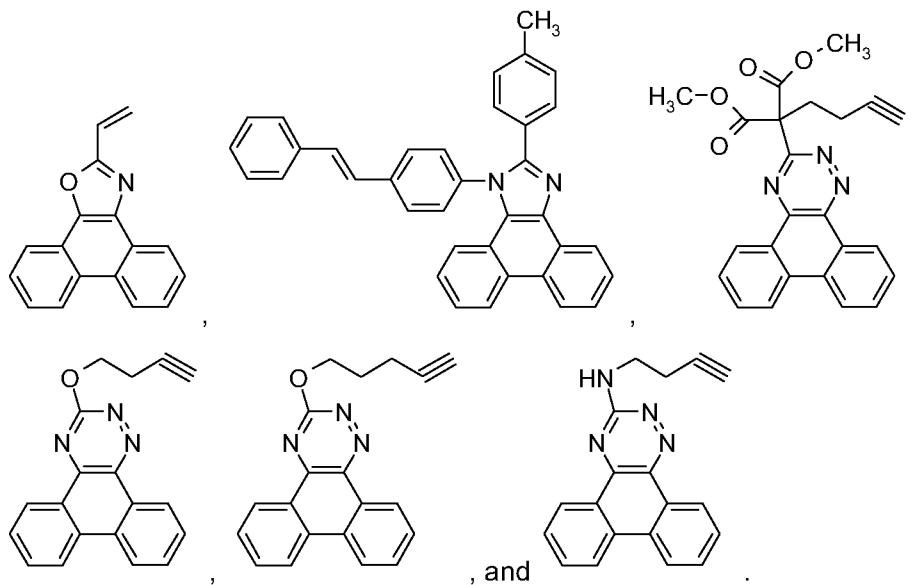

K-19	ditto	ditto	tBu	
K-20	ditto	ditto		
K-21	ditto	ditto		tBu
K-22	ditto	ditto		
K-23	ditto	ditto		
K-24	ditto	ditto		
K-25		ditto	ditto	ditto
K-26		ditto	ditto	ditto
K-27		ditto	ditto	ditto
K-28		ditto	ditto	ditto
K-29		ditto	ditto	ditto

K-30		ditto	ditto	ditto
K-31		ditto	ditto	ditto
K-32		ditto	ditto	ditto
K-33		ditto	ditto	ditto
K-34		ditto	ditto	ditto

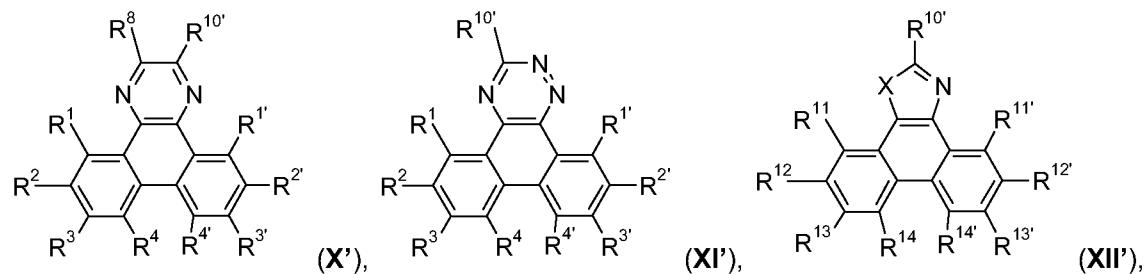

6. The polymer according to claim 1, wherein the polymer comprises repeating units of formula

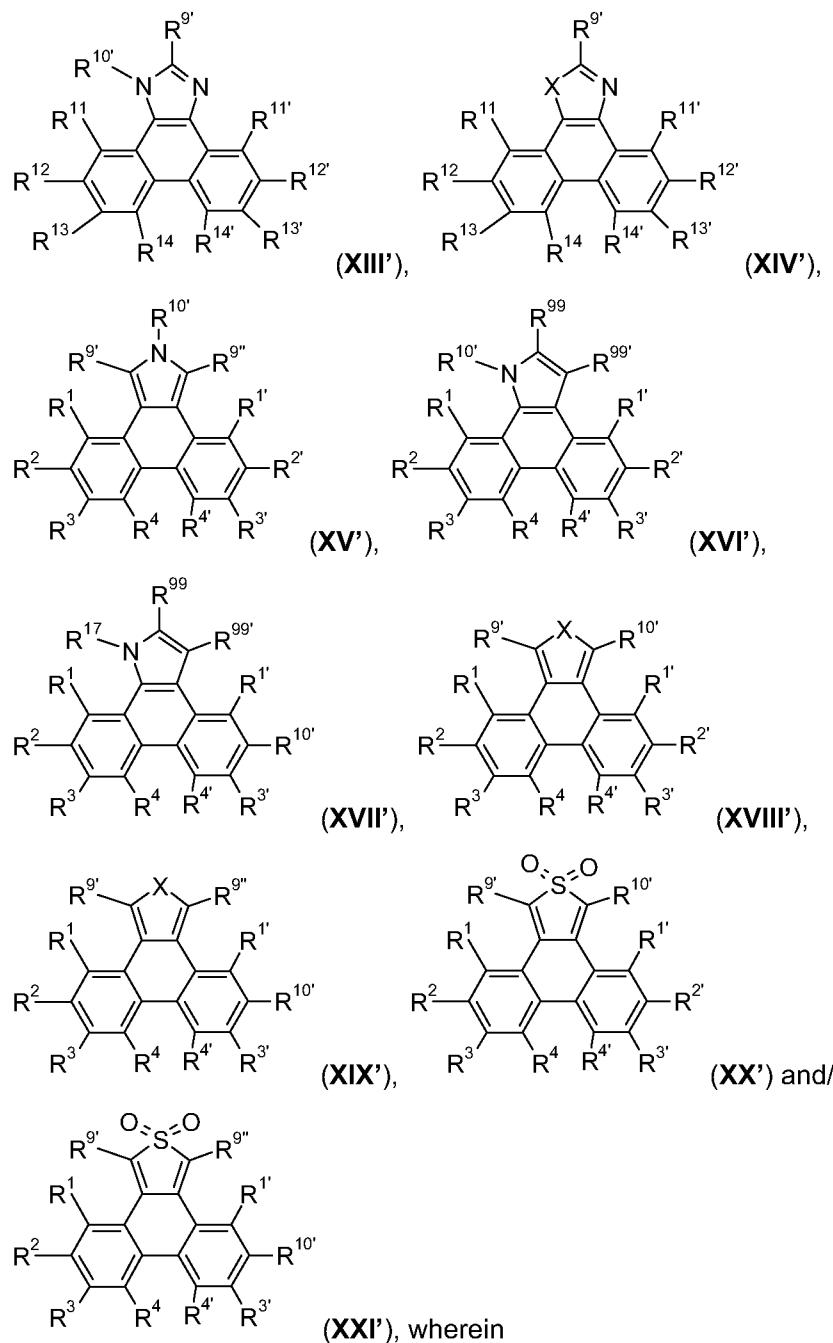
R^{216} and R^{217} are independently of each other C_1 - C_{18} alkyl, or C_6 - C_8 aryl, which can optionally be substituted by one, or more C_1 - C_{18} alkyl groups, and R^{17} is C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, or C_1 - C_{18} alkoxy; C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by $-O-$; or the polymer comprises

7. An electronic device or a component therefore, comprising the polymer according to any of claims 1 to 6.
8. Use of the polymers according to any of claims 1 to 6, in organic light emitting diodes (OLEDs), especially as host material for phosphorescent compounds.
9. OLEDs, organic integrated circuits (O-ICs), organic field effect transistors (OFETs), organic thin film transistors (OTFTs), organic solar cells (O-SCs), thermoelectric devices, or organic laser diodes comprising one or more of the polymers according to any of claims 1 to 6.
10. A compound of the formula

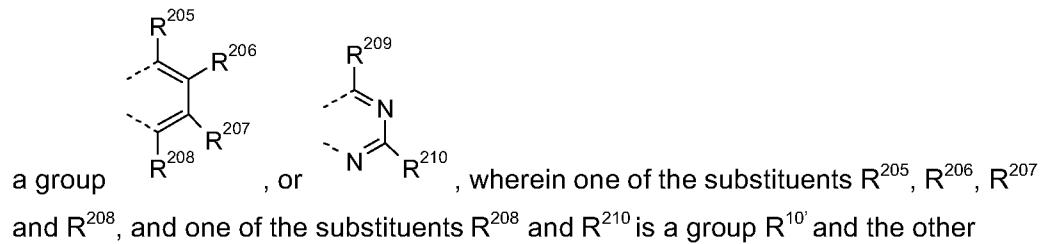

wherein x, A, R^a, R¹, R², R³, R⁴, R^{1'}, R^{2'}, R^{3'}, R^{4'} and R⁷ are as defined in claim 1,
at least one of R^a, R¹, R², R³, R⁴, R^{1'}, R^{2'}, R^{3'} and R^{4'} is a group R^{10'}, wherein
R^{10'} is a group -(Sp)_{x1}-[PG]<, wherein

Sp is a spacer unit,

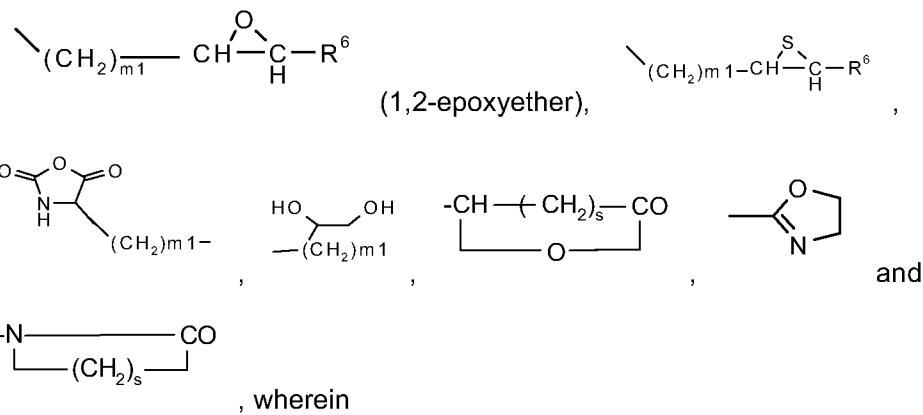

PG is a polymerisable group,


x1 is 0, or 1, and

x is 0, or an integer of 1 to 5, with the proviso that the following compounds are excluded:



11. A compound according to claim 10 of the formula

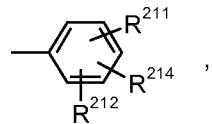


$X, R^1, R^{1'}, R^2, R^3, R^4, R^{2'}, R^{3'}, R^{4'}, R^8, R^{9'}, R^{9''}, R^{99}, R^{99'}, R^{17}, R^{11}, R^{11'}, R^{12}, R^{13}, R^{14}, R^{12'}$, $R^{13'}$ and $R^{14'}$ are as defined in claim 2, $R^{10'}$ is a group $-(Sp)_{x1}-[PG]$, wherein Sp is a spacer unit, PG is a polymerisable group, and $x1$ is 0, or 1, or R^8 and $R^{10'}$ together form

substituents are independently of each other H, C₁-C₁₈alkyl, C₁-C₁₈alkyl which is substituted by E and/or interrupted by D, C₁-C₁₈alkoxy, or C₁-C₁₈alkoxy which is substituted by E and/or interrupted by D, with the proviso that in case of the compound of the formula **XIV** at least one of the substituents R¹², R¹³, R^{12'} and R^{13'} is a group R^{10'}.

12. A compound according to claim 10, or 11, wherein Sp is selected from $-\text{Ar}-$, $-\text{ArY}-$, $-\text{YAr}-$, $-\text{YAr}(\text{CR}^{47}\text{R}^{48})_n-$, $-(\text{CR}^{47}\text{R}^{48})_n-$, $-(\text{YCR}^{47}\text{R}^{48})_n-$, or $-(\text{CR}^{47}\text{R}^{48}\text{Y})_n-$, wherein Y is NR^5 , O, S, $\text{C}=\text{O}$, $\text{C}(\text{=O})\text{O}$, wherein R^5 is H; $\text{C}_6\text{-C}_{18}\text{aryl}$; $\text{C}_6\text{-C}_{18}\text{aryl}$ which is substituted by $\text{C}_1\text{-C}_{18}\text{alkyl}$, or $\text{C}_1\text{-C}_{18}\text{alkoxy}$; $\text{C}_1\text{-C}_{18}\text{alkyl}$; or $\text{C}_1\text{-C}_{18}\text{alkyl}$ which is interrupted by $-\text{O}-$;
 R^{47} and R^{48} are independently of each other hydrogen, fluorine, or $\text{C}_1\text{-C}_{20}\text{alkyl}$,
n is an integer of 1 to 20,
Ar is alkyl, cycloalkyl, aryl, aralkylene, or heteroarylen, which can optionally be substituted,
PG is a polymerisable group selected from $-\text{C}(\text{R}^{44})=\text{CH}_2$, $-\text{NHC}(\text{O})-\text{C}(\text{R}^{45})=\text{CH}_2$, $-\text{OCH}_2\text{CH}_2\text{OC}(\text{O})-\text{C}(\text{R}^{45})=\text{CH}_2$, $-\text{OC}(\text{O})-\text{C}(\text{R}^{45})=\text{CH}_2$, $-\text{C}(\text{O})-\text{C}(\text{R}^{46})=\text{CH}_2$, $-\text{C}\equiv\text{C}-$, $-\text{N}\equiv\text{C}-$, $-\text{O}-\text{CH}(\text{CH}_2\text{CH}_2\text{CH}=\text{CH}_2)_2$; $\text{C}_5\text{-C}_8\text{cycloalkenyl}$, bicycloalkenyl (a substituted or unsubstituted bicycloalkenyl group having 5 to 30 carbon atoms),

s is an integer from 1 to 6, m1 is an integer from 1 to 6,


R^6 is hydrogen, or C_1-C_{20} alkyl,


R^{44} is hydrogen, or C_1-C_4 alkyl, or halogen,

R^{45} is hydrogen, C_1 - C_4 alkyl, or halogen, and

R⁴⁶ is hydrogen, C₁-C₄alkyl, or C₆-C₁₂aryl, or

PG is a polymerisable group $\begin{array}{c} R^{211} \\ | \\ R^{212}-AHG \end{array}$, wherein AHG is an aromatic, or heteroaromatic

residue, which can optionally be substituted, such as

R^{211} and R^{212} are independently of each other halogen, $-C\equiv CH$, boronic acid, or boronic esters, $-Mg-Hal$, $-Zn-Hal$, $-Sn(R^{213})_3$, wherein Hal is halogen, and R^{213} is C_1-C_{18} alkyl, R^{214} and $R^{214'}$ are independently of each other H, C_1-C_{18} alkyl, C_1-C_{18} alkyl which is interrupted by D, C_1-C_{18} perfluoroalkyl, C_1-C_{18} alkoxy, C_1-C_{18} alkoxy which is interrupted by D, or C_7-C_{25} aralkyl.

INTERNATIONAL SEARCH REPORT

International application No
PCT/EP2007/050934

A. CLASSIFICATION OF SUBJECT MATTER
INV. C08G61/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C08G

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EP0-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 2005/104264 A (COVION ORGANIC SEMICONDUCTORS GMBH; BUESING, ARNE; HEUN, SUSANNE; TUER) 3 November 2005 (2005-11-03) the whole document -----	1-12
X	US 2005/156516 A1 (WANG HAILIANG ET AL) 21 July 2005 (2005-07-21) the whole document -----	1-12
X	US 2005/106418 A1 (KIM KYU-SIK ET AL) 19 May 2005 (2005-05-19) the whole document ----- -/-	1-12

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

14 March 2007

21/03/2007

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Glomm, Bernhard

INTERNATIONAL SEARCH REPORT

International application No PCT/EP2007/050934

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 2005/030828 A (COVION ORGANIC SEMICONDUCTORS GMBH; VESTWEBER, HORST; GERHARD, ANJA; S) 7 April 2005 (2005-04-07) the whole document -----	1-12
X	WO 2005/014689 A (COVION ORGANIC SEMICONDUCTORS GMBH; BECKER, HEINRICH; BREUNING, ESTHER) 17 February 2005 (2005-02-17) the whole document -----	1-12
X	WO 94/23333 A (IGEN, INC) 13 October 1994 (1994-10-13) the whole document -----	1-12
X	US 5 457 564 A (LEVENTIS ET AL) 10 October 1995 (1995-10-10) the whole document -----	1-12
X	EP 0 295 676 A (BASF AKTIENGESELLSCHAFT) 21 December 1988 (1988-12-21) the whole document -----	1-12

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2007/050934

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 2005104264	A 03-11-2005	DE 102004020298 A1		10-11-2005
		EP 1741149 A1		10-01-2007
US 2005156516	A1 21-07-2005	NONE		
US 2005106418	A1 19-05-2005	CN 1637113 A		13-07-2005
		JP 2005113144 A		28-04-2005
		KR 20050032691 A		08-04-2005
WO 2005030828	A 07-04-2005	EP 1668058 A1		14-06-2006
		KR 20060088105 A		03-08-2006
WO 2005014689	A 17-02-2005	CN 1835986 A		20-09-2006
		DE 10337346 A1		31-03-2005
		EP 1656408 A2		17-05-2006
		JP 2007501884 T		01-02-2007
		KR 20060118403 A		23-11-2006
WO 9423333	A 13-10-1994	AU 6700294 A		24-10-1994
		CA 2159914 A1		13-10-1994
		EP 0698226 A1		28-02-1996
		IL 109171 A		25-07-2004
		JP 2788121 B2		20-08-1998
		JP 8509819 T		15-10-1996
US 5457564	A 10-10-1995	NONE		
EP 0295676	A 21-12-1988	DE 3720321 A1		29-12-1988