Title
Environmentally friendly tanning composition

International Patent Classification(s)

C14C 3/04 (2006.01) C11D 3/12 (2006.01)
C01B 39/02 (2006.01)

Application No: 2012314229 Date of Filing: 2012.09.28

WIPO No: WO13/045764

Priority Data

Number Date Country
11183499.0 2011.09.30 EP

Publication Date: 2013.04.04
Accepted Journal Date: 2017.07.06

Applicant(s)
Taminco Finland Oy

Inventor(s)
Bagiran, Cuneyit; Brendler, Dominicus; Wegener, Frank

Agent / Attorney
Griffith Hack, GPO Box 1285, Melbourne, VIC, 3001, AU

Related Art
EP 0439006 A1
Title: ENVIRONMENTALLY FRIENDLY TANNING COMPOSITION

Abstract: The invention relates to a composition suitable for leather tanning comprising zeolite contacted with monocarboxylic acid and to a method for manufacturing said composition. The method comprises providing zeolite into a reactor and keeping said zeolite in motion while introducing concentrated monocarboxylic acid thereto provided that the mean temperature of the resulting composition is 50°C or below. Furthermore, the invention provides use of said composition for treating leather and the resulting product and uses thereof.

Fig. 1
— before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
ENVIRONMENTALLY FRIENDLY TANNING COMPOSITION

The present invention relates to a composition suitable for tanning leather. In addition, the present invention relates to a method for manufacturing said compound and, more specifically, to certain uses thereof.

Background

Tanning is one process stage in manufacturing animal skins into durable leather. In tanning the protein structure of the skin is permanently altered. The tanning process aims at, in addition to avoiding rotting of the skin, increasing resistance to water, humidity and usage together with increasing flexibility, anti-allergenic properties and visual attractiveness. Pre-treatment processes known in the art are so called beamhouse operations comprising stages following curing and preceding the actual tannage of the skin aiming at decreasing the amount of unwanted components.

There are three dominating tanning methods; aldehyde or synthan tanning, mineral tanning predominated by chrome tanning and vegetable tanning. Each of these tanning agents produces leathers with different properties. However, increasingly environmentally friendly solutions such as chrome or aldehyde free tanning agents are favoured, especially within e.g. automotive industry.

Chrome tanning with basic chrome sulphate is used in 85% of the world’s tanned leather processing. A major advantage in this approach is the very high shrinkage temperature, 100 °C or more, provided to the finished leather by the method. The major future drawback will be the environmental problems related to the use of chromium and depletion of the availability of the ore. The visual appearance of bluish hue in colour is another unwanted product feature. In chrome tanning the chromium salts crosslink collagen protein molecules which make the hides less susceptible to effects of heat and putrefaction. The chrome tanning process, however, requires use of additional chemicals such as buffering and basification solutions. Prior to the introduction of the basic chromium, several steps are required to produce a tannable hide including scudding, liming, introduction of alkali agents such as sodium hydroxide, deliming, restoring neutral pH, bating, or softening the skin with enzymes, pickling i.e. lowering pH of the hide with salt and sulphuric acid. The pH is very acidic when the chromium is introduced to ensure that the chromium complexes are small enough to fit in between the fibres and residues of
the collagen. Once the desired level of penetration of chrome into the hide is achieved, pH of the material is raised again i.e. “basified” to facilitate the process. At this stage, the chrome tanned skins obtain the bluish colour.

Vegetable tanning is an earlier process to mineral tanning the name originating from the use of tannin in the process. Tannins bind to the collagen proteins in the hide and coat them causing them to become less water-soluble, more resistant to bacterial attack, and increasing the hide flexible. This tanning method is, however, quite slow and has been largely overcome by the more efficient chrome tanning which is faster, taking less than a day, and produces a stretchable leather which is excellent for use e.g. in handbags and garments. Vegetable tanning is still in use for e.g. furniture and luggage leathers.

In aldehyde tanning amino groups of collagen are reacted with aldehydes. The shrinkage temperature obtained is adequate, about 75 °C, but the colour hue of the tanned hide is yellowish, or sometimes even orange. The major drawback is that the hide can only partly be modified. Aldehyde tanning is typically used in conjunction with other tanning agents but it is not suitable as the sole tanning agent. The possible formaldehyde release is another concern. Specifically, this is an issue in the automotive and toy industry wherein strict concentration limits have been imposed.

Modern chrome-free mineral tanning comprises the use of sodium aluminium silicates (NAS) providing tanned leather with whitish or white colour hue. Synthetic zeolites have been tested also providing durable, resistant, readily machine processable, shavable and dimensionally stable leather products. A typical drawback in these processes is the lowered shrinkage temperature, TS, of the hides compared to chrome tanning due to formation of less stable complexes with collagen.

Costantini et al., “Studies on the tanning reactions of zeolite” in JALCA, vol. 95, 2000, pp. 125-137 discloses a study on the reactions involved in pretanning or tanning when using zeolite based masking agents. The hydrothermal stability of sodium aluminium silicate is considered to be too low for use in tanning solely by a zeolite. The role of pH and acidic solutions in aluminosilicate breakdown are emphasized and discussed in detail. Maleic acid and phthalic acid are considered the only possible carboxylic acids to elevate the shrinkage temperature to an acceptable level. The shrinkage temperatures are determined by differential scanning spectroscopy. The hides are pretanned before the actual tanning.
GB2368346 discloses a pre-tannage system for leather comprising treating the hide with a zeolite material, such as sodium aluminium silicate in a first pre-tannage step and thereafter treating the hide with one or more modified aldehyde tanning agents. At this stage, the hide is suitable for a number of different tanning steps namely chrome tannage, vegetable tannage, synthetic tannage or combinations thereof.

Sodium aluminium silicate used for tanning leather must be added in the acidic phase with the result that it hydrolyses to alkaline aluminium salts and polysilicic acids. As the sodium aluminium silicate has not enough time to fully penetrate into the skin and become an active tanning agent prior to the decomposition, the tanning action will be restricted to the outer layers of the hide.

US4264318 and US4264319 disclose a process of tanning for the production of dressed fur skins. In this process pickled fur skins are subjected to the action of an aqueous liquor containing tanning agents. A water-insoluble aluminosilicate containing bound water, of the formula \((\text{Cat}_{2n}O)_x\text{Al}_2\text{O}_3(\text{SiO}_2)_y\) wherein \(\text{Cat}\) represents a cation selected from the group consisting of alkali metals, bivalent metal ions, trivalent metal ions and mixtures thereof; \(n\) represents an integer from 1 to 3; or \(x\) is a number of from 0.5 to 1.8; and \(y\) is a number of from 0.8 to 50, is added to the pickling bath as the tanning agent. Auxiliary tanning agents such as chrome and further chemicals such as carboxylic acids having at least two carboxyl groups may be added into the pretanning stage and tanning.

Summary of the invention

It would be advantageous if the present invention provides a toxic free composition suitable for tanning leather and providing an adequate shrinkage temperature performance.

It would be advantageous if the present invention also provides a cost efficient and easy-to-handle composition suitable for tanning leather.
It would further be advantageous if the present invention provides a tanning composition able to tan throughout the hide cross section, not only the hide surface as is the case with the presently known tanning agents.

It would yet further be advantageous if the present invention provides a method for manufacturing a composition suitable for tanning leather and having an adequate shrinkage temperature performance.

In the first aspect of the present invention an environmentally friendly composition suitable for tanning leather is provided as depicted by claim 7.

In the second aspect, a method is provided for manufacturing an environmentally friendly composition, and especially the composition defined in claim 7, as depicted by claim 1.

In the third aspect the use of the environmentally friendly composition for treating leather is provided as depicted by claim 14.

In the fourth aspect a method for producing tanned leather using the composition defined in claim 7 is depicted by claim 17.

In the fifth aspect the uses of the leather manufactured by the method of claim 17 is provided by claim 18.

In using the composition of the present invention for e.g. tanning it was found that the zeolite which has been modified by e.g. formic acid, and preferably with a metal salt such as an acidic aluminium salt, results in effective tanning. The hide is tanned not merely from the surface thereof but the tanning agent is able to penetrate deeper into the hide. The pH increase in the hide is slow due to the buffering action of the used composition formulation.

Figures

Figure 1 shows the pH of the tanning solution as a function of the amount and quality of added tanning agent according to example 8.

Figure 2 shows a scanning electron microscopic (SEM) image of the distribution of tanning agent throughout the hide according to example 11F.

Detailed description of the invention
In the first aspect of the present invention a composition which is able to replace chromium compounds in tanning is provided. In addition, the composition of the present invention is able to simultaneously replace the buffering and/or basification agents required in e.g. chrome tanning process. The composition of the present invention can thus be used instead of all the three typically used chemicals; basic chromium sulphate, the buffer and the base which will streamline the tanning process considerably and reduce processing costs.

A further advantage in using a composition according to the present invention is that the colour hue of the final leather will be white instead of being bluish as is the case in chrome tanning.

The composition of the present invention comprises a zeolite which is specifically treated with a monocarboxylic acid. The monocarboxylic acid is preferably concentrated monocarboxylic acid which is specifically impregnated or diffused into the zeolite structure i.e. contacted with the used zeolite. The monocarboxylic acid is preferably selected from formic acid, acetic acid, propionic acid, glycolic acid, lactic acid or mixtures thereof. The use of lower monocarboxylic acid is found advantageous contrary to the prior teaching such as e.g. Costantini et al. as it provides an enhanced ability to penetrate into the zeolite structure and pores therein compared to higher monocarboxylic acids.

In one embodiment the monocarboxylic acid is selected from formic acid, acetic acid or glycolic acid or mixtures thereof, preferably the monocarboxylic acid is formic acid.

In order to provide as effective acidity as possible per unit volume and as efficient acidifying and tanning response as possible, the use of concentrated monocarboxylic is favoured. Preferably, the concentration of the monocarboxylic acid to be used is 84 % by weight or more, more preferably 90 % or more, most preferably 95 % or more, such as 99%. A concentrated acid is preferred in order to provide as low moisture content for the end product as possible. The dry or dried zeolite is preferred as moisture affects, for example, handling properties of the powdery product such as flowability.

In a preferred embodiment the composition is a reaction product of zeolite contacted with concentrated formic acid, preferably 99% by weight formic acid, and is depicted by formula 1:

\[
\text{NaAlSiO}_4.x\text{H}_2\text{O} + x\text{HCOOH} \quad (1)
\]
This contacting is anticipated to lead into formation of sodium formate, NaCOOH, and an acidified zeolite, H₂Al₂O₄·SiO₂·xH₂O but in analysis of the produced composition no sodium formate could be detected. Moreover, no characteristic odour of free formic acid could be detected in the formed compound suggesting that no free formic acid is present.

Furthermore, the zeolite structure remains intact after the treatment with monocarboxylic acid i.e. the analysis shows that no breakdown or disintegration takes place. As the pore volume of the zeolite varies the amount of carboxylic acid readily impregnated may vary accordingly.

The structures and reactivity of zeolites can be modified by confining specific molecules into the small pores therein. For example, hydrogen form of zeolites typically prepared by ion exchange are powerful solid state acids and can facilitate to host acid catalysed reactions. Synthetic zeolites can be tailor made to fulfil the specific uses aimed at. Presently, about 200 unique zeolite frameworks are identified and over 40 naturally occurring frameworks are known.

The zeolites of the present invention preferably comprise essentially of Al and Si oxides. The zeolite comprised in the composition of the present invention is preferably a basic zeolite. More preferably, the pH of the basic zeolite is about 10. The zeolites to be used are microporous aluminosilicate minerals with open three dimensional framework structures built of SiO₄ and AlO₄ tetrahedra linked to each other by sharing all the oxygen atoms to form regular intra crystalline cavities and channels of molecular dimensions. These frameworks are typically negatively charged and attract positive cations that reside in cavities to compensate the negative charge of the framework. Preferably, alkali metals or earth alkaline metals are included into the zeolites of the present invention. More preferably the zeolites comprise Na, K, Mg, Ca or Ba aluminosilicates.

The ratio of Si to Al in the zeolite is preferably from 0.7 to 2.5. More preferably, the ratio is from 0.7 to 1.2, and most preferably from 0.7 to 1.1 such as from 0.9 to 1.1 or very close to unity.

In another preferred embodiment the alkali or earth alkaline metal:Si:Al ratio of the zeolite is about 1:1:1, the alkali metal being preferably sodium.

In one embodiment the zeolite is selected from the group of faujasit, zeolite A, and mordenite, zeolite X, which have a nearly maximal aluminium content possible in the tetrahedral framework, or the mixtures thereof. Preferably the zeolite is type A.
The number of cation exchange sites is the highest in these zeolites rendering them highly selective for polar or polarizable molecules.

In another embodiment the zeolite is selected from zeolites defined by their CAS numbers of 1344-00-9, 1318-02-1 and/or 1318-02-1.

Preferably, the zeolite according to the present invention has a low moisture content of less than 25% by weight, more preferably less than 10%, most preferably less than 7%, such as less than 5%, or even 4% or less. The zeolite may be dried, preferably overdried, before subjecting it to monocarboxylic acid treatment.

According to one embodiment zeolite A4 having a pore size of 4 Å is preferred. Especially, the combination of overdried zeolite A4 treated with concentrated formic acid was found to exhibit an excellent performance.

The ratio of monocarboxylic acid to zeolite is preferably from 5 to 40% by weight. The ratio is to some extent dependent on the quality of the acid used. For formic acid the more preferred ratio is from 7 to 30%, most preferably from 8 to 28%, such as from 10 to 25%. The characteristic smell of formic acid becomes clearly evident when the ratio exceeds 40% by weight.

For acetic acid and glycolic acid the more preferred ratio is from 7 to 35%, most preferably from 10 to 34%, such as from 13 to 33%.

Preferably, the zeolites and the impregnated zeolites used according to the present invention do not include any heavy metals or toxic metals such as chrome.

The tanning agent composition comprising the monocarboxylic acid treated zeolite may further comprise co-tanning agents. These co-tanning agents include inorganic salts enhancing the required pH behaviour of the composition in aqueous tanning stage. These solid state salts comprise pH buffering salts, preferably metal sulphates, more preferably aluminium sulphate. Aluminium sulphate forms sulphuric acid upon dissolution in water and aids in lowering and stabilising the pH. Furthermore, co-tanning agents may include solid carboxylic acids, preferably citric acid, orthophosphoric acid, salicylic acid, lactic acid, maleic acid, tartaric acid or polyaluminium silicate sulphate (PASS). Moreover, organic boosters, preferably glutaraldehyde, glyoxal, tetrakis hydroxymethyl phosphonium sulphate (THPS) or a low molecular weight resin, preferably metylol resins, may be used as co-tanning agents.
In a preferred embodiment the tanning agent composition further comprises aluminium sulphate. The sulphate salt aids in buffering the tanning solution and results in enhanced performance in combination with the monocarboxylic acid, preferably formic acid, treated zeolite. The rise in pH during tanning is delayed and the tanning procedure is more controlled when using sulphate salt addition. The hide becomes tanned to the core and the tanning is more efficient. The tanning effect will be restricted to the hide surface if mere zeolite is used without the monocarboxylic acid and/or aluminium salts and/or polycarboxylic acids, and the core will become inflexible and unyielding. Despite of the addition of a sulphate salt and polycarboxylic acids monocarboxylic acid impregnation is required.

Most preferably the composition according to the present invention is formulated into a dual component system. This means that there are at least two sequential additions of tanning agent compositions comprising the zeolite contacted with concentrated formic acid, as described above. At least one of the dual component system compounds to be added further comprises additional aluminium salt(s) and polycarboxylic acid(s). The dual component system preferably comprises a more acidic compound and a less acidic compound.

A preferred more acidic dual component system compound comprises the following formulations based on components i, ii and iii:

i. Aluminium sulfate from 40% to 70% by weight, preferably from 45% to 60%, more preferably from 50% to 55%

ii. Formic acid contacted zeolite from 30% to 60% by weight, preferably from 35% to 50%, more preferably from 40% to 45%

iii. Citric acid up to 12% by weight, preferably from 2% to 8%, more preferably from 3% to 5%.

A preferred less acidic dual component system compound comprises the following formulations based on components i, ii and iii:

i. Aluminium sulfate up to 20% by weight, preferably up to 10%, more preferably up to 5%

ii. Formic acid contacted zeolite more than 70% by weight, preferably more than 80%, more preferably more than 90%
iii. Citric acid up to 12% by weight, preferably up to 8%, more preferably up to 5%.

Another possible less acidic dual component system compound is the basic formic acid contacted zeolite, as such.

The use of the dual component system enables a particularly thorough tanning performance throughout the hide cross section and superior final leather quality. Furthermore, the tanning action is completely homogenous throughout the leather.

The composition of the present invention is preferably essentially odourless. It preferably exhibits a pH of from 3.5 to 7.5, more preferably from 3.8 to 6.8 when 1 % by weight of the composition according to the present invention is dispersed in water.

The appearance of the material is a solid powder, and it has preferable the same flowability as the zeolite used as precursor i.e. the treatment according to the invention does not degrade the handling properties. The solid appearance provides handling advantage compared to e.g. liquid tanning agents. The tanning agent of the present invention has good solubility in acidic aqueous solutions, especially at pH of about 2.5 – 3.5 which is the typical pH for tanning.

The addition of the composition according to the present invention into an aqueous tanning hide solution of pH from 2.5-3.5, preferably about 3, will provide self-buffering of the pH to a value of from 3.8 to 5.5, preferably from 4 to 5, more preferably from 4.2 to 4.8 when dispersed into the tanning bath.

The composition according to the present invention has been found environmentally beneficial e.g. in tanning solutions as it simplifies the tanning process while retaining an overall affordable processing. Furthermore, this composition may absorb further liquids such as free formic acid, glutaraldehyde, metylol resins, and the like, that are known to be beneficial in tanning and leather finishing processes.

The composition of the present invention suitable for use as a tanning agent has the advantage that it can directly replace the chrome tanning agent typically used in the hide manufacturing process. No substantial changes into the process flow chart are required. In a typical mineral tanning process the hide is pickled with formic acid containing solution at a pH from 2.5 to 3.5 before addition of the tanning agent. This necessitates the use of a sodium formate buffer for buffering the solution, and a slow acting base such as magnesium oxide or sodium bicarbonate.
for basification in order to achieve the final pH higher than 4 for completing the tanning. The tanning agent of the present invention already contains the buffer. It dissolves at the pH from 2.5 to 3.5 into formic acid pickle and self-basifies to pH higher than 4 in about 8 h. The use of the compound of the present invention thus removes the need for a separate buffering and/or basifying, as well.

In a preferred embodiment the composition of the present invention comprises zeolite, preferably zeolite having a Si to Al ratio from 0.7 to 2.5, more preferably A4 zeolite, treated with concentrated formic acid, preferably the concentration of the acid is more than 84 % by weight, more preferably 90 % or more, most preferably 95 % or more, such as 99% and having the zeolite structure still intact; an acidic salt, preferably metal sulphate salt, more preferably aluminium sulphate salt; solid additional carboxylic acid, preferably citric acid; and is in a form of a powdery solid having a moisture content less than 25 % by weight. In this composition the amount of formic acid treated zeolite is preferably from 38 to 46 % by weight, more preferably from 39 to 45 % by weight. The amount of acidic salt is preferably from 50 to 62 % by weight, and the amount of solid additional carboxylic acid is from 0 to 8 % by weight.

In a yet preferred embodiment the composition of the present invention comprises zeolite having a Si to Al ratio from 0.7 to 2.5 treated with concentrated formic acid, preferably the concentration of the acid being more 95 % and having the zeolite structure still intact; aluminium sulphate salt; citric acid; and is in a form of a powdery solid having a moisture content less than 25 % by weight wherein the amount of zeolite is from 34 to 39 % by weight, the amount of formic acid (calculated as 99%) is from 1 to 6 %, the amount of aluminium sulphate (including crystal water) is from 51 to 61 % by weight and the amount of citric acid is from 0 to 8 % by weight. The use of this type of composition results in a final pH of the tanning process to be from 3.8 to 4.8, preferably from 3.9 to 4.7, most preferably from 4.0 to 4.6.

In a yet preferred embodiment the composition of the present invention comprises zeolite having a Si to Al ratio from 0.7 to 2.5 treated with concentrated formic acid, preferably the concentration of the acid being 99 % by weight and having the zeolite structure still intact; aluminium sulphate salt; citric acid; and is in a form of a powdery solid having a moisture content less than 25 % by weight wherein the amount of zeolite is from 34 to 39 % by weight, the amount of formic acid (calculated as 99%) is from 1 to 6 %, the amount of aluminium sulphate (including crystal water) is from 51 to 61 % by weight and the amount of citric acid is from 0 to 8 % by weight.
% by weight, preferable from 0.1 to 4 % by weight. The use of this type of composition results in a final pH of the tanning process to be from 4.0 to 4.6. The final pH in this range affects the quality of the processed leather. The shrinkage temperature is high, preferably above 75 °C, the resulting hide is especially soft and the physical strength of the hide was found to be excellent at the same time as the preferred colour hue remains white after the tanning treatment. This provides optimal leather quality for demanding applications. Depending on the thickness and post tanning, the strength and softness of the leather are close to those values that are normally obtained with leathers that are produced with basic chrome sulphate.

The composition pH may further be adjusted by addition of a metal oxide, such as magnesium oxide, if necessary.

In the second aspect of the present invention a method for manufacturing a composition suitable for e.g. leather tanning is provided. In this method zeolite is first introduced into a reactor, or another vessel suitable for withstanding the required treatment conditions. The provided zeolite is kept in motion while concentrated monocarboxylic acid is introduced onto the zeolite residing inside the reactor.

It is essential to introduce the acid in a spray form i.e. slowly and uniformly enough to ensure that a homogenous solid powdery composition is obtained and maintained, similar to the original zeolite powder, and simultaneously the temperature of this mixture is controlled. The temperature of the mixture should stay low enough, at a critical value of 50 °C, preferably below 50 °C, to avoid unwanted reactions to take place as the treatment of the monocarboxylic acid with the zeolite is exothermic. Such unwanted reactions originate from heat peaks, and additionally, too high temperature causes volatilization of the acid. Unwanted reactions may comprise degradation of the zeolite structure such as decomposition, decreased effect of acid loading, formation of hard particles or other undesired or detrimental side effects.

By the term spray is meant a small droplet size atomised liquid flow. A spray is generally taken to mean a dynamic collection of drops dispersed in gas. The process of forming a spray is called atomisation. A spray nozzle is typically used to generate a spray. The main characteristic of a spray is to distribute the material over a specified cross section and to generate a liquid surface area. A man skilled in the art is able to select the most appropriate spray technology depending on the reactor configuration.
Preferably, a suitable spray is provided by a nozzle atomizer capable of injecting a spreading spray with a small droplet size, preferably in the range from 0.01 to 1 mm diameter. The mass transfer rate of the acid may be adjusted by measuring the temperature of the resulting zeolite-acid mixture and setting the mass transfer rate into a value wherein this temperature is still below the critical value. Spraying may be performed continuously or discontinuously.

The zeolite needs to be in motion inside the reactor. Preferably, this motion is vigorous enough in order to ensure good uniformity for the acid contact and to avoid generation of local hot spots. A preferred option is to use a drum reactor or the like wherein the rotation speed may be adjusted according to the mixing needs. A skilled person is able to optimize the mixing to maintain a uniform temperature below the critical value.

In a preferred embodiment the reactor is equipped with a cooling system to ensure that the temperature of the mixture is maintained below the critical temperature. More preferably, a drum reactor with a cooling casing or jacket is utilised. There are several other commercially available options for cooling in a reactor set up suitable for the present use which may be applicable and within the expertise of a skilled person.

In a preferred embodiment the amount of the monocarboxylic acids sprayed onto the zeolite is within the ratio of from 5 to 50 % by weight, more preferably from 7 to 35 %, most preferably from 10 to 30 %. The pore size and amount of the zeolite may cause some variation on the desired outcome.

In a preferred embodiment the ratio of Si to Al in the zeolite is from 0.7 to 2.5. Preferably, the ratio is from 0.7 to 1.2, and more preferably from 0.7 to 1.1 such as from 0.9 to 1.1 or very close to unity.

In a further preferred embodiment concentrated formic acid, most preferably 99% by weight formic acid, is sprayed onto zeolite, preferably a basic zeolite of type A or X. The critical temperature in this case is 50 °C, preferably 45 °C, most preferably 35 °C such as 30 °C.

In another preferred embodiment concentrated acetic acid, preferably 99% by weight acetic acid, is sprayed onto zeolite, preferably a basic zeolite of type A or X. The critical temperature in this case is 50 °C, preferably 45 °C, most preferably 35 °C such as 30 °C.
In another preferred embodiment concentrated glycolic acid, preferably 75% by weight glycolic acid, is sprayed onto zeolite, preferably a basic zeolite of type A or X. The critical temperature in this case is 50 °C, preferably 45 °C, most preferably 35 °C such as 30 °C.

In yet another preferred embodiment concentrated propionic acid, preferably 99% by weight propionic acid, is sprayed onto zeolite, preferably a basic zeolite of type A or X. The critical temperature in this case is 50 °C, preferably 45 °C, most preferably 35 °C such as 30 °C.

When all the monocarboxylic acid is dosed into the reactor the reaction is completed. After cooling down to room temperature the product is ready. The product has a shelf life of at least several months, possibly years.

In a preferred embodiment metal sulphate, preferably aluminium sulphate, and optionally polycarboxylic acid, is added into the composition after providing the zeolite with the monocarboxylic acid. This addition aids in preserving or even lowering the final temperature of the composition which tends to increase due to the exothermic reaction between the zeolite and the monocarboxylic acid.

In a preferred embodiment of the present invention the method comprises providing zeolite having a Si to Al ratio from 0.7 to 2.5 into a reactor and keeping said zeolite in motion while introducing concentrated monocarboxylic acid, the concentration thereof being more than 95% by weight, thereto provided that the mean temperature of the resulting composition is maintained at a temperature of 45°C or below, preferably 40°C or below, more preferably 35°C or below. After the formic acid treatment of zeolite metal salt, preferably aluminium sulphate, and optionally solid carboxylic acid, preferably citric acid, are introduced into the reactor with additional mixing. Preferably, the ratio of aluminium sulphate to formic acid treated zeolite if from 1.1 to 1.6. The ratio of citric acid to formic acid treated zeolite is preferably up to 0.15, preferably up to 0.12.

In the third aspect of the present invention the use of the composition for leather treatment is provided. This treatment is preferably tanning the hide.

In the fourth aspect of the present invention a method for producing tanned leather using the composition according to the present invention is provided. The method comprises the steps of deliming, bating, optional washing and pickling the hide. Subsequently, the hide is subjected to tanning preferably at a temperature from 25
to 35 °C, more preferably from 26 to 30 °C, using the tanning agent composition according to the present invention and depickling.

In a preferred embodiment the hide is subjected to a multiple tanning sequence, preferably using the dual component system compound. The hide is first tanned with part of the tanning agent which is preferably the more acidic dual component system compound, for a desired running time, preferably from 30 min to 180 min, and the treatment is repeated with at least one further running time, preferably using the less acidic dual component system compound. This processing scheme is further illustrated in table 2.

In one embodiment when the hide has been pre-treated by deliming and bating and it has passed the pickling stage having a typical pH of about 2.5 – 3.5 it is subjected to tanning. At this stage the composition of the present invention is added into the hide tanning vessel comprising an aqueous solution which is mainly water, preferably in an amount ranging from 5 to 20 % by weight of the hide mass, preferably from 4 to 15 %. The tanning compound is added and tanning is carried out. Subsequently, the hides are removed from the solution and the solution typically becomes waste.

In a preferred embodiment the processing sequence comprises (a) a deliming stage; (b) washing the hide; (c) a pickling stage including additions of water, formic acid and sulphuric acid before providing the zeolite tanning agent treated with monocarboxylic acid according to the present invention to the tanning solution. When using e.g. chrome tanning agent the tanning stage further comprises additions of further chemicals such as pretanning agents, buffering agents such as metal formates and/or basification agents such as metal bicarbonates. In using the zeolite treated with monocarboxylic acid as the tanning agent the need for these further chemicals becomes redundant.

In a preferred embodiment a final pH aimed at in the tanning process is from 3.8 to 5.5, preferably from 4.0 to 5.0, most preferably from 4.2 to 4.8. The differences in the final pH arise typically from the differences in the acid/base balance of the used formulation. Furthermore, the buffering capacity of the applied buffering agent has a further influence in the tanning treatment behaviour of the leather.
This final pH is obtained preferably by using a tanning agent composition comprising zeolite having a Si to Al ratio from 0.7 to 2.5 treated with concentrated formic acid, preferably the concentration of the acid being more 95% and having the zeolite structure still intact; aluminium sulphate salt; citric acid; and being in a form of a powdery solid having a moisture content less than 25% by weight wherein the amount of zeolite is from 34 to 39% by weight, the amount of formic acid (calculated as 99%) is from 1 to 6%, the amount of aluminium sulphate (including crystal water) is from 51 to 61% by weight and the amount of citric acid is from 0 to 8% by weight. The final pH has a clear visual and mechanical effect on the leather quality. The shrinkage temperature is increased, preferably above 75 °C, the resulting hide is especially soft and the physical strength of the hide was found to be excellent. The preferred colour hue still remains whitish after the tanning treatment to this range of final pH. Optimal leather quality is thus provided for demanding applications.

One advantage in using the composition of the present invention as the tanning agent is that the waste solution will be chromium-free and can be easily exposed of, or even recycled. A further advantage is that the actual hide or leather product originating from the tanning process is also totally chrome-free.

Chrome-free leather is provided having a high shrinkage temperature, Ts, which is higher than 65 °C, preferably higher than 70 °C, more preferably higher than 72°C, such as 75 °C, and which does not have a bluish colour hue but a whitish or white one. The chrome-free leather is obtained by the above described tanning method and composition. Preferably the leather product obtained is tanned to the core and provides an especially soft touch sensation.

Moreover, the dyeability of the leather produced by using the tanning composition of the present invention becomes superior to application of any other presently known tanning agent system. This is evident from a visual observation and evaluation of the tanned leathers using known tanning agents in direct comparison with the tanning agent of the present invention.
Besides the chromium-free advantage of the tanning waste water solutions of the present invention the waste water of superior COD (Chemical Oxidation Demand) value is provided. As an example, after application of the first tanning step on bovine hides COD values like 9300 mg/l are obtained for chromium sulphate, 32550 mg/l for glutaraldehyde and merely 3800 mg/l for the tanning agent waste solution of the present invention.

By shrinkage temperature, Ts, is meant a temperature measured according to ASTM D6076 - 08 Standard Test which method is designed to determine the temperature at which a thoroughly wetted leather specimen experiences shrinkage. Shrinkage occurs as a result of hydrothermal denaturation of the collagen protein molecules which make up the fiber structure of the leather. The shrinkage temperature of leather is influenced by many different factors, most of which appear to affect the number and nature of crosslinking interactions between adjacent polypeptide chains of the collagen protein molecules. The value of the shrinkage temperature of leather is commonly used as an indicator of the type of tannage or the degree of tannage, or both. In the present invention Ts is the temperature at which a thoroughly wetted leather experiences shrinkage.

In the fifth aspect of the present invention the uses of the leather manufactured by the method the present invention are provided. The excellent leather quality obtained based on the use of the tanning composition as described above enables the use of thus treated leather for demanding application. In a preferred application the produced leather is used for manufacturing shoes, upholstery, automotive and garments or accessories. In these applications it is especially advantageous to use leather which is tanned homogenously and throughout the whole hide thickness.

The invention is further illustrated by the following non-limiting examples.

Examples

Example 1

A powdery, overdried Zeolite A4 having Na:Si:Al ratio of 1:1:1 (from Industrial Chemicals Limited) was added into a turbulent mixer (Lödige VT(A) 300 paddle
dryer) equipped with a cooling system. Concentrated formic acid, 99% by weight (Kemira Chemicals), was sprayed on the zeolite slowly and continuously while mixing the resulting composition vigorously. The contacting was completed when all formic acid was introduced into the mixture.

The following formic acid to zeolite ratios in weight % were tested:

Sample A: 1:3 i.e. 24.5 % by weight formic acid and 75.5 % by weight zeolite;
Sample B: 2:3 i.e. 40 % by weight formic acid and 60 % by weight zeolite;
Sample C: 3:7 i.e. 30% by weight formic acid and 70 % by weight zeolite

The formic acid reacted exothermally with the zeolite. Temperature of the mixture was kept below 50 °C by efficient mixing and external cooling.

Free flowing solid powder was obtained which was free from formic acid smell in test A. Analysis showed that the test sample had 75.5 % by weight of Zeolite 4A and 24.5 % by weight of formic acid. Moreover, the zeolite structure was found to be intact.

Free flowing solid powder was obtained in test C. The sample had a slight acidic smell suggesting the presence of some free formic acid.

Solid powder with some spherical agglomerates was obtained in test B. The sample had a clear acidic smell suggesting the presence of free formic acid.

Example 2

A powdery, overdried Zeolite A4 having Na:Si:Al ratio of 1:1:1 (from Industrial Chemicals Limited) was added into a turbulent mixer (Lödige VT(A) 300 paddle dryer). Concentrated acetic acid, 99% by weight (Kemira Chemicals) was sprayed on the zeolite slowly and continuously while mixing vigorously. Reaction was completed when all acetic acid was introduced into the mixture.

A sample of acetic acid to zeolite ratio of 1:2 i.e. 30 % by weight of acetic acid to 70 % by weight of zeolite was prepared.

The acetic acid reacted exothermally with the zeolite. Temperature of the mixture was kept below 50 °C by efficient mixing and external cooling.
Free flowing solid powder was obtained which was free from acetic acid smell. Analysis showed that the test sample had 70 % by weight of Zeolite 4A and 30 % by weight of acetic acid. Moreover, the zeolite structure was found intact.

Example 3

The product A of example 1 was introduced into pure water in concentration of 1 % by weight. A white slurry was formed having pH of 5.86.

When this product was introduced into pure water in a concentration of 10 % by weight a clearly white slurry was formed having pH of 5.78.

Example 4

Samples D and E were prepared the same way as in example 1 with the difference that the ratio of formic acid to zeolite was

D: 24% to 76 % by weight

E: 36 % to 64 % by weight

The samples were sieved to a particle size of below 125 μm. Two aqueous solutions were prepared by adjusting the pH thereof into 2.5 by addition of concentrated formic acid. Subsequently, samples D and E were gradually introduced into these solutions in increments of about 0.08 g.
Table 1 shows the results obtained.

<table>
<thead>
<tr>
<th>Cumulative amount of D or E in g</th>
<th>pH in D-solution</th>
<th>pH in E-solution</th>
<th>remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.49</td>
<td>2.46</td>
<td>no remarks</td>
</tr>
<tr>
<td>0.07</td>
<td>2.97</td>
<td>2.94</td>
<td>white at start but becomes clear</td>
</tr>
<tr>
<td>0.13</td>
<td>3.33</td>
<td>3.22</td>
<td>white at start but becomes clear</td>
</tr>
<tr>
<td>0.24</td>
<td>3.77</td>
<td>3.52</td>
<td>white at start but becomes quite clear (little haze)</td>
</tr>
<tr>
<td>0.32</td>
<td>4.01</td>
<td>3.66</td>
<td>white at start but becomes clear (little haze) after a longer waiting period</td>
</tr>
<tr>
<td>0.41</td>
<td>4.11</td>
<td>3.81</td>
<td>white at start but becomes clear (little haze) after a long waiting period</td>
</tr>
</tbody>
</table>

Example 5

Bovine hides were tanned in the conventional chrome tanning way using

1) chrome tanning agent (BCS) as a reference process, and

2) zeolite treated with formic acid prepared according to example 1 with the ratio of formic acid to zeolite 13 % by weight formic acid and 87 % by weight zeolite.

In the first chrome process a shrinkage temperature of 95 °C was obtained for the finished leather and in the second process with formic acid treated zeolite a temperature of 75 °C. The colour of the leather from the first chrome process was clearly bluish in comparison to the white colour of the leather from in the second process.
Example 6

Three samples F, G and H were made according to example 1 with the exceptions of using 25 kg of zeolite and

Sample F: 13 % by weight formic acid (3.8 kg) and 87 % zeolite

Sample G: 25 % by weight formic acid (7.9 kg) and 75 % zeolite

Sample H: 7.8 % by weight formic acid (3.8 kg) and 40 % aluminium sulphate (19.1 kg, below 280 μm particle size) and 52.2% zeolite.

Zeolite was first cooled to 20 °C and formic acid was sprayed into the mixer whereby the temperature inside the mixer was kept below 45 °C. Aluminum sulphate was added after the formic acid feed. The formed mixtures were mixed further for half an hour.

It was found that adding aluminium sulphate resulted in decreasing the pH when the obtained solid powder was dispersed in water. A 1% by weight solution in water of sample H gave pH of 4.31 and for a 10 % by weight solution the pH was 4.39 whereas sample and G provided pHs of 5.13 and 4.77, respectively.

Example 7

A comparison between three Cr-free tanning agents and the tanning agent according to the present invention was made. The process sequence depicted in table 2 was used.

The used tanning agent samples in the tanning step (X1 and X2) for preparation of tanned hides, were

- reference 1, AF-Z3: aluminium trifomrate and zeolite
- reference 2, PAF-Z4: basic aluminium formate and zeolite
- reference 3, PASS-ZO: basic aluminium sulphate with a silicate stabilizer with zeolite
- sample according to the present invention similar to example 1: zeolite A4 + 99% formic acid in a weight ratio of 75.5:24.5 zeolite to formic acid.
The process scheme for the reference samples 1-3 included additions of the buffering agent, Na-bicarbonate, in stage Y1 and Y2 whereas the process scheme for the samples according to the present invention did not include the additions of the buffering agent.

After processing according to the scheme in table 2 the end pHs of all the test solutions were measured to be the same, pH 4. The shrinkage temperatures for the finalized leathers were measured after 2 days of storage.

The shrinkage temperatures for reference 1, reference 2, reference 3 and the sample according to the invention were found to be 64, 58, 62 and 73°C, respectively.

These results clearly show the better tanning effect of the formic acid treated zeolite compared to the other chrome-free tanning agents. In addition to the higher shrinkage temperature the feel of the leather product was softer than the feel of the reference leather samples.
Table 2.

<table>
<thead>
<tr>
<th>Process</th>
<th>g/l</th>
<th>Additive</th>
<th>t°C</th>
<th>min.</th>
<th>remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bating</td>
<td>100</td>
<td>Water</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2R/MIN 60</td>
<td></td>
<td></td>
<td>slow rotating drum</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Na-formate</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>Na-bicarbonate</td>
<td>120</td>
<td></td>
<td>pH=7, Tc=42</td>
</tr>
<tr>
<td>Wash</td>
<td>40</td>
<td>Water</td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3R/MIN 90</td>
<td></td>
<td></td>
<td>slow rotating drum</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>Water</td>
<td>38</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Wash</td>
<td>40</td>
<td>Water</td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3R/MIN 90</td>
<td></td>
<td></td>
<td>slow rotating drum</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>Water</td>
<td>38</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drain/Wash</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pickling</td>
<td>100</td>
<td>Water</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Formic acid</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Formic acid</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>sulphuric acid</td>
<td>180</td>
<td></td>
<td>pH=3</td>
</tr>
<tr>
<td>tanning</td>
<td>X1</td>
<td>Tanning agent, part</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>X2</td>
<td>Tanning agent, part</td>
<td>180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>depickling</td>
<td>1.5</td>
<td>Na-Formate</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Y1</td>
<td>Na-bicarbonate</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Y2</td>
<td>Na-bicarbonate</td>
<td>240</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example 8

A set of five samples I, J, K, L and M were prepared according to example 1 with the exception of using in

Sample I (TT-25): Zeolite and formic acid ratio of 75% to 25 % with the maximum spraying temperature of 45 °C

Sample J (TT-36): Zeolite and formic acid ratio of 64% to 36 % with the maximum spraying temperature of 45 °C

Sample K (TTA-30): Zeolite and acetic acid ratio of 70% to 30 % with the maximum spraying temperature of 45 °C

Sample L (TT-25G): Zeolite and formic acid ratio of 75% to 25 % with the maximum spraying temperature of 45 °C and grinding the resulting compound before dispersion.

Sample M (TT-25 AlSulph 70/30): Zeolite and formic acid ratio of 75% to 25 % with the maximum spraying temperature of 45 °C and adding further aluminium sulphate to the composition at a weight ratio of 70 to 30 formic acid treated zeolite to aluminium sulphate.

The pH performance was studied by introducing the samples gradually in 0.08 g intervals into 100 ml of water made acidic (pH 2.5) by formic acid. The pH change resulting from the additions of these samples is shown in figure 1.

Example 9

Various tanning agent composition were tested according to the processing scheme of table 2. The processing parameters and the results measured from leather samples are shown in tables 3-5. Tests were made for probing the influence of the tanning agent composition modifications to shrinkage temperatures.

The reference samples include chrome tanning agent (BCS=basic chrome sulphate), ammonium products and aluminium sulphate products. The samples according to the present invention include formic acid and acetic acid treated zeolite A4 with no or further additions of orthophosphoric acid, citric acid and THPS (Fennocide). The treated leather was bovine hides (ZIG).
<table>
<thead>
<tr>
<th>Product name</th>
<th>Reference samples</th>
<th>Samples according to the present invention</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chromium product</td>
<td>Commercial aluminium product (BASF)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aluminium sulphate product (Kemira), polyaluminium sulphate</td>
</tr>
<tr>
<td>Basic chrome sulphate (BSC)</td>
<td>AF-Z3</td>
<td>PASS-Z0</td>
</tr>
<tr>
<td></td>
<td>TANFOR-T</td>
<td>TTA-30</td>
</tr>
<tr>
<td></td>
<td>TTFP-12</td>
<td>TT-C11</td>
</tr>
<tr>
<td></td>
<td>TT-13</td>
<td>TT-FC11</td>
</tr>
<tr>
<td></td>
<td>TT-13 (*)</td>
<td></td>
</tr>
<tr>
<td>Appearance</td>
<td>Liquid</td>
<td>Powder</td>
</tr>
<tr>
<td></td>
<td>Powder</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Al2O3 [wt%]</td>
<td>8,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SO4 [wt%]</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basicity [%]</td>
<td>< 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dosage</td>
<td>Is BCS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3,2 x dose of BCS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,0 x dose of BCS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,0 x dose of BCS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,0 x dose of BCS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,0 x dose of BCS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,0 x dose of BCS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,0 x dose of BCS</td>
</tr>
</tbody>
</table>
Table 4.

<table>
<thead>
<tr>
<th>Product name</th>
<th>Basic chrome sulphate (BSC)</th>
<th>AF-Z3</th>
<th>PASS-Z0</th>
<th>TANFOR-T</th>
<th>TTA-30</th>
<th>TTFP-12</th>
<th>TT-C11</th>
<th>TT-13</th>
<th>TT-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>PASS-10 S</td>
<td>---</td>
<td>---</td>
<td>100</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>PolyAluminium Silicate Sulphate [%]</td>
<td>---</td>
<td>6.7</td>
<td>0</td>
<td>75</td>
<td>70</td>
<td>75.5</td>
<td>75</td>
<td>87</td>
<td>73</td>
</tr>
<tr>
<td>Zeolite-4A SodiumAluminoSilicate (Na-Al-Si-O₄) [%]</td>
<td>---</td>
<td>65</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Water [%]</td>
<td>---</td>
<td>28.3</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>AluminiumTriFormate solid (Al-(OCHO)₃) [%]</td>
<td>---</td>
<td>25</td>
<td>---</td>
<td>12.5</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Formic Acid 99% [%]</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>12</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>OrthoPhosphoric Acid 85% [%]</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>30</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Acetic Acid 99.8% [%]</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>30</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Citric Acid anhydrous [%]</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>14</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Fennocide PS 75 [%]</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>16</td>
<td>---</td>
</tr>
<tr>
<td>Dosage in tanning test (Cr tanning = 4.0 g/l)</td>
<td>4.0</td>
<td>12.8</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Product name</td>
<td>Basic chrome sulphate (BSC)</td>
<td>AF-Z3</td>
<td>PASS-Z0</td>
<td>TANFOR-T</td>
<td>TTA-30</td>
<td>TTFP-12</td>
<td>TT-C11</td>
<td>TT-13</td>
<td>TT-13</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>--------</td>
<td>---------</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Type of leather</td>
<td>ZIG</td>
<td>ZIG</td>
<td>ZIG</td>
<td>ZIG</td>
<td>ZIG</td>
<td>ZIG</td>
<td>ZIG</td>
<td>ZIG</td>
<td>ZIG</td>
</tr>
<tr>
<td>Weight leather [gr]</td>
<td>400</td>
<td>400</td>
<td>350</td>
<td>700</td>
<td>350</td>
<td>450</td>
<td>216</td>
<td>165</td>
<td>216</td>
</tr>
<tr>
<td>Starting pH after dosing H2SO4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
</tr>
<tr>
<td>Dosage Sample [%] and time [min]</td>
<td>4.0 / 60</td>
<td>12.8 / 60</td>
<td>4.0 / 60</td>
<td>4.0 / 120</td>
<td>2.67 / 150</td>
</tr>
<tr>
<td>Dosage Sample [%] and time [min]</td>
<td>4.0 / 180</td>
<td>12.8 / 180</td>
<td>4.0 / 180</td>
<td>4.0 / 480</td>
<td>2.67 / 150</td>
</tr>
<tr>
<td>Dosage Sample [%] and time [min]</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Dosage Sodium Formate [%] and time [min]</td>
<td>1.5 / 60</td>
<td>1.5 / 60</td>
<td>1.5 / 60</td>
<td>1.5 / 330</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Dosage BiCarbonate [%] and time [min]</td>
<td>1.0 / 30</td>
<td>1.0 / 30</td>
<td>1.0 / 30</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Dosage BiCarbonate [%] and time [min]</td>
<td>1.0 / 240</td>
<td>1.0 / 240</td>
<td>1.0 / 240</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Total time [min]</td>
<td>570</td>
<td>570</td>
<td>570</td>
<td>570</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>Final pH</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4.5</td>
<td>4.7</td>
<td>4.5</td>
<td>5.0</td>
<td>5.52</td>
<td>5.3</td>
</tr>
<tr>
<td>Shrinkage temperature [°C]</td>
<td>95</td>
<td>64</td>
<td>62</td>
<td>70 (73 after 2 days)</td>
<td>74</td>
<td>75</td>
<td>70 (72 Next day)</td>
<td>75</td>
<td>76 (76 Next day)</td>
</tr>
</tbody>
</table>
The results from tables 3-5 show that aluminium based tanning agent chemicals have clearly a lower shrinkage temperatures compared to the compositions according to the present invention. Furthermore, in using the tanning agents according to the present invention there was no need to use buffering and/or basifying chemicals such as sodium formate and sodium bicarbonate. The chromium reference, TANKROM has a higher shrinkage temperature compared to the sample according to the present invention but the colour hue of the sample was clearly bluish compared to whitish colour of the other samples.

Example 10

A powdery, overdried Zeolite A4 having Na:Si:Al ratio of 1:1:1 (from Industrial Chemicals Limited) was added into a turbulent mixer (Lödige VT(A) 300 paddle dryer) equipped with a cooling system. Concentrated formic acid, 99% by weight (Kemira Chemicals), was sprayed on the zeolite slowly and continuously while mixing the resulting composition vigorously. The reaction was completed when all formic acid was introduced into the mixture. Aluminium sulphate with 14H2O (Kemira) and citric acid (Sigma Aldrich) were introduced into the reactor with further mixing for half an hour.

The following ratios in weight % were tested:

Sample A: 8 % citric acid, 52 % aluminium sulphate, 35 % zeolite, 5 % formic acid;
Sample B: 4 % citric acid, 52 % aluminium sulphate, 38 % zeolite, 2 % formic acid;
Sample C: 0 % citric acid, 60 % aluminium sulphate, 35 % zeolite, 5 % formic acid;

The formic acid reacted exothermally with the zeolite. Temperature of the mixture was kept below 45 °C by efficient mixing and external cooling. Free flowing solid powder was obtained which was free from formic acid smell. The zeolite structure was found to be intact.

Tanning treatment according to table 2 sequence was performed using 4 % of samples A, B and C and additional 4 % of mere formic acid treated zeolite (87 % zeolite and 13 % formic acid). The final pH in the tanning process was for sample A: 3.8; sample B: 4.2; and sample C: 4.4. A further test was made by increasing the pH with addition of MgO into 5.2 (sample D)

Samples B and C provided leather with high shrinkage temperature. The feel of the leather was especially soft and the physical strength was found to be excellent.
The colour hue was whitish. The leather quality of samples A and D were still good but clearly inferior to samples B and C.

Example 11

The bovine hides were first delimed, bated, washed and pickled as described in example 7, table 2. The hides were washed and tanned at a temperature of about 28 °C using the dual tanning agent composition system (X1 and X2). The tanning agent compositions were prepared according to example 10 and they were dual component formulations A and B containing the following components:

A: 4 % citric acid, 52 % aluminium sulphate, 44 % zeolite contacted with concentrated formic acid, and

B: 0.1 % citric acid, 0.5 % aluminium sulphate, 99.4 % zeolite contacted with concentrated formic acid.

After tanning and depickling the hides were washed and dried and subjected to SEM measurements for obtaining the aluminium and silicon contents and distributions from both the flesh side and the grain side i.e. the inner part and the outer surface of the hide. The results are provided by the SEM images shown in figure 2.

Sample I represents treatment of the hide with 2 % by weight solution of formulation A for 90 min running time.

Sample II represents treatment of the hide with 2 % by weight solution of formulation A for 90 min running time continued by another 90 min treatment with further 2 % by weight solution of formulation A.

Sample III represents treatment of the hide with 2 % by weight solution of formulation B for 90 min running time continued by another 90 min treatment with further 2 % by weight solution of formulation B.

The aluminum and silicon are evenly spread in these samples across the whole bovine hide thickness. The amount of Al and Si observed is increased in hides tanned with formulation B compared to formulation A.

Example 12
The tanning according to example 11 was performed with the exception of using the following dual component system compound formulations:

A: 4% citric acid, 52% aluminium sulphate, 44% zeolite contacted with concentrated formic acid, and

B: 100% zeolite contacted with concentrated formic acid.

The results showed equally uniform tanning throughout the hide thickness to example 10 with a slightly increased amount of Al and Si remaining inside the hide.

In the claims which follow and in the preceding description of the invention, except where the context requires otherwise due to express language or necessary implication, the word “comprise” or variations such as “comprises” or “comprising” is used in an inclusive sense, i.e. to specify the presence of the stated features but not to preclude the presence or addition of further features in various embodiments of the invention.

It is to be understood that, if any prior art publication is referred to herein, such reference does not constitute an admission that the publication forms a part of the common general knowledge in the art, in Australia or any other country.
Claims

1. A method for manufacturing a composition suitable for leather tanning comprising zeolite contacted with concentrated monocarboxylic acid, characterized in that said method comprises providing zeolite into a reactor and keeping said zeolite in motion while introducing concentrated monocarboxylic acid, the concentration thereof being more than 84% by weight, thereto provided that the mean temperature of the resulting composition is maintained at a temperature of 50°C or below.

2. The method according to claim 1, wherein said zeolite has a Si to Al ratio from 0.7 to 2.5.

3. The method according to claim 1, wherein said monocarboxylic acid selected from the group of formic acid, acetic acid, propionic acid, glycolic acid, lactic acid and mixtures thereof.

4. The method according to claim 2, wherein said monocarboxylic acid selected from the group of formic acid, acetic acid, propionic acid, glycolic acid, lactic acid and mixtures thereof.

5. The method according to any one of claims 1-4, wherein said introduction of concentrated monocarboxylic acid is by spraying.

6. The method according to any one of claims 1-5, wherein the reactor is equipped with a cooling system.

7. A composition suitable for leather tanning leather, characterized in that said composition is in a form of a powdery solid having moisture content less than 25 % by weight comprising zeolite having a Si to Al ratio from 0.7 to 2.5 treated with concentrated monocarboxylic acid selected from formic acid, glycolic acid or acetic acid, at a temperature of 50 °C or below, the concentration of said monocarboxylic acid being more than 84% by weight, and having the zeolite structure intact.

8. The composition of claim 7, characterized in that said monocarboxylic acid is formic acid.

9. The composition according to claim 7 or 8, characterized in that the ratio of monocarboxylic acid to zeolite is from 5 to 40 % by weight.
10. The composition according to any one of claims 7-9, characterized in that said zeolite is a basic zeolite.

11. The composition according to any one of claims 7-10, characterized in that said composition is a powdery solid having flowability equal to the zeolite before said monocarboxylic acid treatment.

12. The composition according to any one of claims 7-11, characterized in that the composition further comprises metal sulphate, preferably aluminium sulphate.

13. The composition according to any one of claims 7-12, characterized in that the composition further comprises a polycarboxylic acid.

14. Use of the composition of any one of claims 7-13 for treating leather.

15. The use according to claim 14, wherein the leather, which is a delimed and bated hide and which has been pickled at pH of 2.5 – 3.5, is treated by tanning in aqueous solution.

16. Use of the composition of any one of claims 7-13 for manufacturing a chromium-free leather having a shrinkage temperature, Ts, more than 65 °C and wherein the colour of said leather is white.

17. A method for producing tanned leather comprising the steps of deliming, bating, optionally washing and pickling the hide, and tanning the hide using the tanning agent composition of claim 7, and depickling.

18. Use of the leather produced by the method of claim 17 for manufacturing shoes, upholstery, automotive and garments or accessories.
Fig. 1
Fig. 2