A grip sleeve for an exercise bar grip surface. The grip sleeve includes a tubular member having a thickness and a longitudinal length sized to accommodate a user's hand. The thickness defined by the distance between an outer surface of the tubular member and an inner surface of the tubular member. The inner surface sized to substantially surround a grip surface of the exercise bar. The cut extends across the entire longitudinal length and through the thickness for removeably securing the member to the exercise bar. The tubular member is formed of an elastic material such that the cut can be forced apart from a closed position to an open position by a user in order to removeably secure the sleeve on the exercise bar. The material being biased to return the cut to the closed position when no longer forced apart.
GRIP SLEEVE FOR EXERCISE BAR
CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] The present application claims priority to provisional patent Application Ser. No. 61/050,025, filed May 2, 2008. This earlier filed provisional application is incorporated herein by reference.

TECHNICAL FIELD

[0002] Traditional exercise bars have hard, rough and even porous grip surfaces that are abrasive to a user’s skin. Also, when numerous people use the same exercise bar, those porous surfaces breed germs and can form unsanitary conditions for users. While some user’s were gloves to avoid these problems, gloves are associated with their own discomforts, such as causing a user’s hands to overheat or just not being properly sized for the user. Also, good exercise gloves can be expensive. Leather gloves while durable, do not clean easily without substantial wear.

[0003] Accordingly, it would be desirable to provide a grip sleeve for an exercise bar and a method of using same in order to provide a sanitary and comfortable means of using an exercise bar that is durable and generally inexpensive, as well as overcoming other shortcomings of the prior art.

SUMMARY

[0004] One aspect of the disclosed technologies relates to a grip sleeve for an exercise bar grip surface. The grip sleeve includes a tubular member having a thickness and a longitudinal length sized to accommodate a user’s hand. The thickness defined by the distance between an outer surface of the tubular member and an inner surface of the tubular member. The inner surface sized to fit over a substantial portion of the exercise bar grip surface. A cut extends across the entire longitudinal length and through the thickness for removably securing the member to the exercise bar. The tubular member is formed of an elastic material such that the cut can be forced apart from a closed position to an open position by a user in order to removably install the sleeve on the exercise bar. The material being biased to return the cut to the closed position when no longer forced apart.

[0005] In accordance with another aspect of the disclosed technologies the thickness can be substantially constant across the longitudinal length. Also, the tubular member can be a generally circular cross-sectional shape perpendicular to the longitudinal length. The tubular member can be at least one of a triangular, square, hexagonal and octagonal cross-sectional shape perpendicular to the longitudinal length. The cut can form a gap in the tubular member, wherein opposed inner walls of the tubular member form the gap, wherein in the closed position the opposed inner walls are spaced apart from one another. Also, the tubular member can include more than one tubular layer, wherein upon installation on the exercise bar an inner surface of a first layer engages the exercise bar. Additionally, at least one second layer is removably secured to and substantially surrounds the first layer. The at least one second layer can be formed of at least two further layers, wherein each of the at least two further layers is capable of being removably secured to one another and can be separated from one another by a user without the use of a tool. The outer surface can include at least one of grooves and elongate protrusions. Further, the inner surface can include at least one of grooves and elongate protrusions. The cut can form opposed inner walls of the tubular member, whereby in the closed position the opposed inner walls about one another, wherein the inner surface of the tubular member is sized smaller than an outer circumference of the exercise bar grip surface, wherein upon installation on the exercise bar grip surface the cut will not return to a closed position. Alternatively, the inner surface of the tubular member can be sized larger than an outer circumference of the exercise bar grip surface, whereby upon installation on the exercise bar grip surface at least one gap is formed between the inner surface and the exercise bar grip surface. Additionally, the inner surface of the tubular member can be formed with a low coefficient of friction, whereby upon installation the tubular member is rotatably secured to the exercise bar. As a further alternative, the inner surface of the tubular member can include at least one of a high coefficient of friction and an adhesive, whereby upon installation the tubular member resists rotation relative to the first exercise bar. The outer surface can have a first cross-sectional shape perpendicular to the longitudinal length and the inner surface can have a second cross-sectional shape perpendicular to the longitudinal length, wherein the first and second cross-sectional shapes are a different geometric shape. The first cross-sectional shape can be formed as one of a circle, triangle, square, hexagon or octagon while the second cross-sectional shape can be formed as a different one of a circle, triangle, square, hexagon or octagon. An inside surface texture of the member can be different from an outside surface texture of the member, wherein one of the inside surface texture and the outside surface texture has a higher coefficient of friction as compared to the other of the inside surface texture and the outside surface texture.

[0006] Another aspect of the disclosed technologies relates to a method of performing exercise using a grip sleeve on an exercise bar grip surface. The method including applying a base grip sleeve to a first exercise bar. The base grip sleeve including a tubular member having a thickness and a longitudinal length. The thickness defined by the distance between an outer surface of the tubular member and an inner surface of the tubular member, wherein the thickness is substantially constant across the longitudinal length. The inner surface being sized to fit over a substantial portion of a gripping surface of the first exercise bar, wherein a cut extends across the entire longitudinal length and through the thickness for removably securing the member to the first exercise bar. During the application of the base grip sleeve to the first exercise bar the tubular member is forced apart at the cut from a closed position to an open position and then the gripping surface is forced through the cut until the base grip sleeve substantially surrounds a portion of the first exercise bar. The method also including performing an exercise while holding the base grip sleeve applied to the first exercise bar. Also, the method includes manually removing the base grip sleeve from the first exercise bar without the use of a tool.

[0007] In accordance with another aspect of the disclosed technologies the method can include prior to the performing of the exercise, removably securing at least one second grip sleeve to the base grip sleeve in substantially the same way the base grip sleeve was applied to the first exercise bar. Additionally, the method can include prior to removing the base grip sleeve from the first exercise bar yet subsequent to performing the exercise, removably securing at least one second grip sleeve to the base grip sleeve in substantially the same
way the base grip sleeve was applied to the first exercise bar. Further, the method can include applying the base grip to a second exercise bar in substantially the same way the base grip was previously applied to the first exercise bar.

These and other objectives, features, and advantages of this invention will become apparent from the following detailed description of illustrative embodiments thereof, which is to be read in connection with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an isometric view of two grip sleeves in accordance with an aspect of the disclosed technologies.

FIG. 2 illustrates a plan view of two dumbbells held by users, one of the dumbbells being fitted with a grip sleeve in accordance with an aspect of the disclosed technologies.

FIG. 3 illustrates a side view of multiple grip sleeves used in combination in accordance with an aspect of the disclosed technologies.

FIG. 4 illustrates an isometric view of a grip sleeve in accordance with another aspect of the disclosed technologies.

FIG. 5 illustrates an isometric view of a grip sleeve in accordance with yet another aspect of the disclosed technologies.

FIG. 6 illustrates a side view of a grip sleeve mounted on a cylindrical bar in accordance with yet another aspect of the disclosed technologies.

FIG. 7 illustrates a side view of a smaller version of the grip sleeve of FIG. 6, mounted on a cylindrical bar in accordance with yet another aspect of the disclosed technologies.

FIG. 8 illustrates a side view of a grip sleeve in accordance with yet another aspect of the disclosed technologies.

FIG. 9 illustrates a side view of a grip sleeve in accordance with yet another aspect of the disclosed technologies.

FIG. 10 illustrates a side view of a grip sleeve in accordance with yet another aspect of the disclosed technologies.

FIG. 11 illustrates a side view of a grip sleeve mounted on a cylindrical bar in accordance with yet another aspect of the disclosed technologies.

FIG. 12 illustrates a side view of a grip sleeve in accordance with yet another aspect of the disclosed technologies.

FIG. 13 illustrates a side view of a grip sleeve in accordance with FIG. 12 mounted on an exercise bar.

DETAILED DESCRIPTION

The present invention is a grip sleeve for an exercise bar. One or more of the grip sleeves of the subject invention can be used with an exercise bar, such as a barbell, dumbbell, weight lifting bar or cable gripping bar used with an exercise machine. Additionally, the grip sleeve of the subject invention can be used on circular, triangular or non-linear handles commonly used as part of weight resistance exercise. For example, the cable bars used for pull down, rowing, curling, and other weight resistance exercises can be covered by the grip sleeve in accordance with the present invention.

FIG. 1 shows two grip sleeves 100 prior to installation on an exercise bar. The grip sleeve 100 is intended to be placed over a portion of an exercise bar that would be handled or engaged by a user. It should be understood that while the illustrated embodiments show a user holding the grip in his/her hand, the grip sleeve 100 can be used to engage other parts of a user’s body, such as the back of a user’s neck during a leg press exercise. Also, the grip sleeve 100 while being firmly secured to the exercise bar, should also be easily removable by a user without the need for tools. Thus, using only his or her hand(s), the user should be able to pull the grip sleeve off the exercise bar. In this way, it can be re-used on another exercise bar, stored, removed for a period until that exercise bar is used again. The grip sleeve 100 can be easy to clean and can withstand the wear of numerous exercise intervals. Also, the grip sleeve 100 is preferably made from a durable, elastic, mildew resistant and somewhat yielding material that is comfortable for a user to grip. For example the sleeve 100 can be made of neoprene rubber or similar strong elastic materials. It should be understood that the grip sleeve 100 can be made from other materials, in order to provide a softer or firmer grip as desired. Additionally, the grip sleeve 100 can be made from a layered or non-homogenous construction in order to alter the weight, durability, firmness or other characteristics.

FIG. 2 shows an example of a grip sleeve 100 applied to a dumbbell 10. FIG. 2 shows the hands of two users A and B each holding a dumbbell 10. User A is holding dumbbell 10 in configuration 1, which has grip sleeve 100 applied to the cylindrical bar 15 in the central dumbbell grip portion. In contrast, user B is holding the cylindrical bar 15 directly, without a grip sleeve 100.

The grip sleeve in accordance with the disclosed technologies is generally formed as a tubular member. A tubular member as referred to herein means a generally elongate hollow body having apertures into the inner hollow region, wherein the apertures are disposed at opposed ends of its longitudinal extent. A tubular member is not limited to a cylindrical member. The grip sleeve is preferably sized to accommodate an intended exercise bar and sized to accommodate an average to large-sized user’s hand. For example in FIG. 1, the length of the sleeve 100 is approximately 4 and 3/4 inches which accommodates a contemporary dumbbell 10, as shown in FIG. 2. However, it should be understood that the grip sleeves 100 can be made longer or shorter to accommodate different bars and/or different applications. In the embodiment shown, the grip sleeve has an overall diameter of approximately 2 inches with an inner diameter of 1 inch which is designed to accommodate most standard barbells, dumbbells, and cable grips that have a 1 inch grip bar diameter. This provides for a uniform 1/2 inch thickness for the sleeve 100. Alternatively, this thickness could be made greater or smaller, depending on the application or desires of the user. For example, a thinner grip thickness might be helpful for users with smaller hands and/or users wanting a smaller grip configuration. By altering or adjusting the grip thickness, from that of the standard exercise bar, a user can target different muscles during an exercise.

The inner diameter 120 of the grip sleeve 100 can be designed to match the outer diameter and shape of the exercise bar on which it is placed. The grip sleeve 100 is generally mounted onto an exercise bar by separating the sleeve at cut 130 and wrapping the sleeve around the exercise bar. The material of the grip sleeve 100 is preferably flexible enough to
allow it to be expanded to accommodate the thickness of the bar on which it is being installed. Also, the cut 130, in the form of a slit, allows the grip sleeve 100 to easily be removed from the exercise bar. The cut 130 can be formed as a slit or gap that passes completely through the material of the sleeve extending across the entire sleeve from one end 125 of the sleeve to the opposed other end. In this way, when in a non-stretched configuration, the opposed inner surfaces of the cut are generally touching or just slightly separated.

The surface 110 of the grip sleeve 100 preferably provides a mildly yielding surface for the user to engage. For example, a soft rubber surface is gentler on a user's hand than the hard metal surface of a contemporary exercise bar. By using a grip sleeve 100, the user can avoid having to wear gloves when working out. Additionally, while the surface 110 is shown as a solid color in FIG. 1, virtually any color or color scheme can be provided. Also, the surface 110 can be provided with patterns, pictures, logos, text and/or names. Alternatively, the surface 110 can include advertisements or other information.

Additionally, while the grip sleeves surfaces can be made smooth, they can alternatively be provided with a more textured or porous surface to improve grip. FIG. 4 shows an alternative exercise sleeve 300 with similar inner diameter 320 and end surfaces 325. Additionally, an outer surface 310 includes mildly recessed gripping grooves 315. Such grooves 315 can be engaged by a user's fingers while gripping the sleeve 300. Further, the grooves 315 can include a more textured surface than the outer surface 310 for helping a user maintain a grip. The embodiment shown in FIG. 4 also shows an alternative cut 330 can be formed to create a gap x in the material in order to facilitate removal and or placement onto an exercise bar. Thus, opposed surfaces 332, 334 inside the gap 330 are spaced away from one another to form the gap x. While such a gap x can be of varying sizes, the grip sleeve 300 should be designed to remain securely on the exercise bar when in use. However, while the grip sleeve should not easily slip off when performing exercises, it should be removable from the exercise bar without a great deal of effort by a user.

FIG. 5 shows yet another embodiment of a grip sleeve 400 with an outer surface 410 that contains additional gripping elements 415. Gripping elements 415 extend longitudinally across the extent of outer surface 410. Such gripping elements 415 can be formed by small grooves in the outer surface 410. Alternatively, gripping elements 415 can be formed as a protruding ridge that extends across the outer surface 410. Also, as yet another alternative, the gripping elements 415 can be formed by forming alternating grooves and ridges around the circumference of the outer surface 410. It should be understood that gripping elements 415 can also be formed to extend across only a portion of the longitudinal length of outer surface 410. Also, separate regions of gripping elements 415 can be formed in the outer surface, such as the regions of grooves 315 illustrated with regard to gripping sleeve 300. Further still, the grooves and/or protrusions forming the gripping elements 415 can be non-symmetrically spaced around the outer or inner surfaces of the grip sleeve. Also, the gripping elements 415 can comprise anything from a single extending ridge or protrusion to a greater plurality as shown in the illustrations. Yet further still, each groove/protrusion can be deeper or extend outwardly further, respectively. Also, the grooves and/or ridges can vary in size, depth, height and width.

The grip sleeve 400 also includes an inner diameter 420 that forms an inner surface 422. Such an inner surface 422 can also be provided with gripping elements, similar to gripping elements 415, in order to limit or resist relative movement with the exercise bar once installed thereon. Alternatively, the inner surface of the grip sleeves 100-1000 in the various embodiments shown can be provided with a porous or gripping surface to make sure it holds onto the exercise bar and to ensure that the grip sleeve remains in place. As a further alternative, the inside surfaces of the grip sleeves 100-1000 can be formed with a relatively high coefficient of friction, a mild tackiness or even be provided with adhesives to ensure that they remain in place relative to the exercise bar. A high coefficient of friction as referred to herein refers to a level friction that generally prevents relative movement between two surfaces under normal handing and exercising conditions. Preferably, the adhesives are mild enough to allow the grip sleeve to be removed after being installed and used for the intended exercise.

FIG. 3 shows yet another grip sleeve 200 that is formed by overlapping layers of thinner grip sleeves 101, 102, 103. It should be understood that while three layers of sleeves 101, 102, 103 are shown, two or more such layers can be used as desired by a user. The use of multiple layers allows a user to adopt the grip sleeve 200 to a desired diameter suitable to the size of the user's hand or even to alter the effect of the exercise on the user. Thus, having a user grip a small diameter outer surface during an exercise can target muscles differently than having that user grip a larger diameter outer surface.

In the embodiment shown in FIG. 3 the grip sleeves 101, 102, 103 are each formed with a cut gap Y1, Y2, Y3, respectively. As shown, it is advantageous to provide varying cut gaps Y1, Y2, Y3 in order to more easily separate one sleeve layer 101, 102, 103 from another. Alternatively, the dimensions of the sleeve layers 101, 102, 103 can be formed such that cut gaps Y1, Y2, Y3 are all equal or substantially equal to one another. Additionally, the individual grip sleeves 101, 102, 103 need not be formed having the same thickness, materials or texturing. For example, outer layer 103 can be formed of a more pliable/elastic foam or gel-like material, while inner layers 101, 102 can be formed of more rigid materials. Also, the inner layer 101 along with the outer layer 103 can be formed of pliable/elastic materials, while having the middle layer 102 formed of more rigid material to maintain the form of the overall grip sleeve 200.

FIGS. 6 and 7 show a further embodiment of the disclosed technologies. The grip sleeve 500 is formed with a square cross-section. In this way, outer surface 510 is formed as a generally planar surface. Rather than having a diameter, the grip sleeve 500 has dimensions suited to the exercise bar 15 for which it is intended. In FIG. 6, the distance between opposed inner planar surfaces is substantially similar to the outer diameter of the exercise bar 15. Also, while cut 534 is shown with a gap, it should be understood that alternatively either no gap can be formed by the cut or a larger gap can be formed if desired. FIG. 7 shows an alternative where grip sleeve 500 is formed slightly smaller than that shown in FIG. 6, such that upon installation on exercise bar 15, the outer surface 511 is somewhat distorted or bulges. When the distance between opposed inner surfaces of the exercise sleeve 500 are smaller than the outer diameter of the exercise bar 15, the inner surfaces 522 somewhat conform to the shape of the bar, thus slightly drawing-in the outer corners of the otherwise square shape. The distortions or bulges in outer surface
can further assist the user in maintaining a firm grip, similar to the gripping elements described above. Also, forming the bulges and mildly protruding corners using the configuration shown in FIG. 7 can reduce manufacturing costs, as compared to the texturing and/or surfaces described with regard to grip sleeves 300, 400. A relatively simple cross-sectional shape, once installed distorts into a more form-fitting contoured shape with protrusions that assist the user to grip the outer surface.

FIGS. 6 and 7 further illustrate how the grip sleeve 500, as with the other embodiments herein, will substantially surround a grip surface of the exercise bar 15. As noted herein, the grip 534 shown can be formed larger or smaller than that shown and can be eliminated as shown in FIGS. 1 and 12. In substantially surrounding the grip surface, the grip sleeve wraps around enough of the circumference of the exercise bar 15 in order to remain secured thereon. Accordingly, a larger gap can be used with a more rigid grip sleeve composition, while a more flexible or elastic composition may require a relatively smaller gap in order to remain secured on the bar while in use. Nonetheless, the gap should be substantially smaller than the inside diameter or width of the grip sleeve in order to remain secured on the exercise bar.

FIGS. 8-11 show further alternative grip sleeves in accordance with the disclosed technologies. FIG. 8 shows grip sleeve 600 formed with an octagonal cross-sectional shape. FIG. 9 shows grip sleeve 700 formed with a hexagonal cross-sectional shape. FIG. 10 shows grip sleeve 800 formed with a triangular cross-sectional shape. FIG. 11 shows grip sleeve 900 formed with an elliptical cross-sectional shape. It should be understood that while various cross-sectional shapes are illustrated and noted herein, the grip sleeve in accordance with the disclosed technologies is not limited to those recited shapes. The cross-sectional shapes can be other known geometric shapes, for example a star, rectangle, polygon etc. Also, the cross-sectional shape need not be a uniform or symmetrical shape.

It should be further understood, that a grip sleeve can alternatively be formed having an outer surface such as one of the grip sleeves 500, 600, 700, 800, 900, but with a generally cylindrical inner surface such as grip sleeves 100, 200, 300, 400. For example, FIG. 12 shows a grip sleeve 1000 with an outer surface 1010 that forms a hexagonal cross-sectional shape, yet has an inner surface 1020 that has a circular cross-sectional shape. Similarly, outer sleeve 103 of grip sleeve 200 could alternatively be formed with a non-cylindrical outer form.

As referred to herein, the “cross-sectional shape” refers to a form included in a cross-section of the grip sleeve. The shape can refer to the outer surface and/or the inner surface of the sleeve. In several embodiments the outer and inner surfaces have a similar cross-sectional shape having different sizes. However, as shown in FIGS. 12 and 13, the grip sleeve can include a different cross-sectional shape related to its outer surface from the cross-sectional shape associated with the inner surface.

As shown in FIGS. 6 and 11, the grip sleeves can be designed to have a loose fit on the exercise bar 15. As more particularly shown in FIG. 11, by varying the internal gap 524 between the inner sleeve surfaces and the bar 15, the grip sleeve can be made to have a loose fit on the bar 15. It may be desirable for the grip sleeve to slip or rotate relative to the bar 15 while remaining secured thereon. Such slippage can also be facilitated by providing a smooth or low friction inner surface on the inside of the sleeve. A low coefficient of friction as referred to herein refers to a level friction that generally promotes or facilitates relative movement between two surfaces under normal handling and exercising conditions.

The inner diameter or form of the grip sleeve can be designed to match or closely match the outer diameter and shape of the exercise bar on which it is placed. Alternatively, it can be useful for the inner diameter of the grip sleeve to be slightly smaller than the anticipated outer diameter of the exercise bar, in order to ensure a tight fit. As shown in FIGS. 12 and 13, the grip sleeve 1000 is formed with a closed cut 1030. Thus in a relaxed position the two opposed walls within the cut 1030 engage one another. Also, the grip sleeve 1000 has an internal diameter D1. As shown in FIG. 13, once the grip sleeve 1000 is mounted onto the exercise bar 15, having a wider diameter D2, the cut 1030 separates and forms a gap Y. Providing a gap can be useful to avoid a user pinching their own skin while gripping the device.

The grip sleeve of the present invention has many advantages for use in exercise bars. By easily installing and removing the grip sleeve, a user can ensure a more sanitary exercise environment. Additionally, a user can maintain a better grip on an otherwise smooth or hard to hold exercise bar. Also, without having to use gloves a user can keep his or her hand relatively cool while still ensuring a soft surface for engaging an exercise bar. Further, a user can alter an exercise by changing the grip sleeve dimensions. The use of the grip sleeve as described herein can allow a user to alter the range of motion or even target different muscles during an exercise.

As yet, a further alternative the grip sleeve in accordance with the present invention can be used as a grip exercising device by itself without being applied to an exercise bar.

While various embodiments of the present invention are specifically illustrated and/or described herein, it is to be understood that the invention is not limited to those precise embodiments and that various other changes and modifications may be affected herein by one skilled in the art without departing from the scope or spirit of the invention, and that it is intended to claim all such changes and modifications that fall within the scope of the invention.

What is claimed is:
1. A grip sleeve for an exercise bar grip surface, the sleeve comprising:
a tubular member including a thickness and a longitudinal length sized to accommodate a user's hand, the thickness defined by the distance between an outer surface of the tubular member and an inner surface of the tubular member, wherein the thickness is substantially constant across the longitudinal length, the inner surface sized to substantially surround a grip surface of the exercise bar, wherein a cut extends across the entire longitudinal length and through the thickness for removably securing the member to the exercise bar, wherein the tubular member is formed of an elastic material such that the cut can be forced apart from a closed position to an open position by a user in order to removably secure the sleeve on the exercise bar, the material being biased to return the cut to the closed position when no longer forced apart.
2. The grip sleeve of claim 1, wherein the tubular member has a generally circular cross-sectional shape perpendicular to the longitudinal length.
3. The grip sleeve of claim 1, wherein the tubular member has at least one of a triangular, square, hexagonal and octagonal cross-sectional shape perpendicular to the longitudinal length.

4. The grip sleeve of claim 1, wherein the cut forms a gap in the tubular member, wherein opposed inner walls of the tubular member form the gap, wherein in the closed position the opposed inner walls are spaced apart from one another.

5. The grip sleeve of claim 1, wherein the tubular member includes more than one tubular layer, wherein upon installation on the exercise bar an inner surface of a first layer engages the exercise bar, wherein at least one second layer is removably secured to and substantially surrounds the first layer.

6. The grip sleeve of claim 5, wherein the at least one second layer is formed of at least two further layers, wherein each of the at least two further layers is capable of being removably secured to one another and can be separated from one another by a user without the use of a tool.

7. The grip sleeve of claim 1, wherein the outer surface includes at least one of grooves and elongate protrusions.

8. The grip sleeve of claim 1, wherein the inner surface includes at least one of grooves and elongate protrusions.

9. The grip sleeve of claim 1, wherein the cut forms opposed inner walls of the tubular member, wherein in the closed position the opposed inner walls abut one another, wherein the inner surface of the tubular member is sized smaller than an outer circumference of the exercise bar grip surface, wherein upon installation on the exercise bar grip surface the cut will not return to a closed position.

10. The grip sleeve of claim 1, wherein the inner surface of the tubular member is sized larger than an outer circumference of the exercise bar grip surface, whereby upon installation on the exercise bar grip surface at least one gap is formed between the inner surface and the exercise bar grip surface.

11. The grip sleeve of claim 1, wherein the inner surface of the tubular member is formed with a low coefficient of friction, whereby upon installation the tubular member is rotatably secured to the exercise bar.

12. The grip sleeve of claim 1, wherein the inner surface of the tubular member includes at least one of a high coefficient of friction and an adhesive, whereby upon installation the tubular member resists rotation relative to the first exercise bar.

13. The grip sleeve of claim 12, wherein the inner surface of the tubular member includes an adhesive.

14. The grip sleeve of claim 1, wherein the outer surface has a first cross-sectional shape perpendicular to the longitudinal length and the inner surface has a second cross-sectional shape perpendicular to the longitudinal length, wherein the first and second cross-sectional shapes are a different geometric shape.

15. The grip sleeve of claim 14, wherein the first cross-sectional shape is formed as one of a circle, triangle, square, hexagon or octagon and the second cross-sectional shape is formed as a different one of a circle, triangle, square, hexagon or octagon.

16. The grip sleeve of claim 1, wherein an inside surface texture of the member is different from an outside surface texture of the member, wherein one of the inside surface texture and the outside surface texture has a higher coefficient of friction as compared to the other of the inside surface texture and the outside surface texture.

17. A method of performing exercise using a grip sleeve on an exercise bar grip surface, the method comprising:
 applying a base grip sleeve to a first exercise bar, the base grip sleeve including a tubular member having a thickness and a longitudinal length, the thickness defined by the distance between an outer surface of the tubular member and an inner surface of the tubular member, wherein the thickness is substantially constant across the longitudinal length, the inner surface sized to fit over a substantial portion of a gripping surface of the first exercise bar, wherein a cut extends across the entire longitudinal length and through the thickness for removably securing the member to the first exercise bar, wherein during the application of the base grip sleeve to the first exercise bar the tubular member is forced apart at the cut from a closed position to an open position and then the gripping surface is forced through the cut until the base grip sleeve substantially surrounds a portion of the first exercise bar;
 performing an exercise while holding the base grip sleeve applied to the first exercise bar; and
 manually removing the base grip sleeve from the first exercise bar without the use of a tool.

18. The method of claim 17, further comprising:
 prior to the performing of the exercise, removably securing at least one second grip sleeve to the base grip sleeve in substantially the same way the base grip sleeve was applied to the first exercise bar.

19. The method of claim 17, further comprising:
 prior to removing the base grip sleeve from the first exercise bar yet subsequent to performing the exercise, removably securing at least one second grip sleeve to the base grip sleeve in substantially the same way the base grip sleeve was applied to the first exercise bar.

20. The method of claim 17, further comprising:
 applying the base grip to a second exercise bar in substantially the same way the base grip was previously applied to the first exercise bar.

* * * * *