In preferred embodiments, one of R2 or R3 is valine, leucine, isoleucine, or alanine, particularly valine.
The present invention relates to ester derivatives of certain nucleoside analogues having therapeutic use in the prophylaxis and treatment of viral infections such, for example, as those caused by the Varicella Zoster virus (VZV). Varicella Zoster virus is the aetiological agent in chickenpox and shingles, which can cause considerable human illness and suffering. The invention also provides a pharmaceutical composition comprising such an ester derivative, and a method of treatment or prophylaxis of viral infection by administering such a derivative.

WO 01/83501 Al, the contents of which are incorporated herein by reference, describes certain nucleoside analogues with potent activity against Varicella Zoster virus (VZV), said nucleoside analogues having general formula (I):

![Chemical Structure](image)

wherein:

- Ar is an optionally substituted, aromatic ring system, the aromatic ring system comprising one six-membered aromatic ring or two fused six-membered aromatic rings;

- R8 and R9 are each independently selected from the group comprising hydrogen, alkyl, cycloalkyl, halogens, amino, alkylamino, dialkylamino, nitro, cyano, alkyloxy, aryloxy, thiol, alkylthiol, arylthiol, aryl;

- Q is selected from the group comprising O, S and CY2, where Y may be the same or different and is selected from H, alkyl and halogens;

- X is selected from the group comprising O, NH, S, N-alkyl, (CH2), where m is 1 to 10, and CY2 where Y may be the same or different and is selected from hydrogen, alkyl and halogens;

- Z is selected from the group comprising O, S, NH, and N-alkyl;

- U” is H and U’ is selected from H and CH2T, or U’ and U” are joined so as to form a ring moiety including Q wherein U’-U” together is respectively selected from the group
comprising CTH-CT 1T and CT-CT', so as to provide ring moieties selected from the group comprising:

\begin{center}
\begin{tikzpicture}
% Draw the structure here
\end{tikzpicture}
\end{center}

wherein T is selected from the group comprising OH, H, halogens, O-alkyl, O-acyl, O-aryl, CN, NH\textsubscript{2} and N\textsubscript{3}; T' is selected from the group comprising H and halogens and, where more than one T' is present, they may be the same or different; T'' is selected from the group comprising H and halogens; and W is selected from the group comprising H, a phosphate group and a pharmacologically acceptable salt, derivative or pro-drug thereof; with the proviso that when T is OAc and T' and T'' are present and are H, Ar is not 4-(2-benzoxazolyl) phenyl.

[0003] Compounds 1 and 2 below are particularly preferred compounds according to WO 01/83501 Al:

\begin{center}
\begin{tikzpicture}
% Draw the structure here
\end{tikzpicture}
\end{center}

Compound 1 \hspace{1cm} Compound 2

[0004] An object of the present invention is to provide novel compounds for the treatment or prophylaxis of viral infections, especially those caused or exacerbated by the Varicella Zoster virus (VZV).
Another object of the present invention is to provide compounds for the treatment of such viral infections, said compounds having improved bioavailabilities.

Yet another object of the present invention is to provide such compounds which have advantageous pharmacokinetic properties.

A different object of the present invention is to provide a method of making such compounds.

According to one aspect of the present invention therefore there is provided a compound of general formula (II):

\[
\begin{align*}
\text{R}_1 & \\
\text{R}_2 & - \text{O} \\
\text{R}_3 & - \text{O} \\
\end{align*}
\]

wherein \(X \) is O, S, NH or CH\(_2\),
\(Y \) is O\(_5\)S or NH\(_5\),
\(Z \) is O\(_5\)S or CH\(_2\),
\(R_1 \) is C\(_1\)–C\(_6\) alkyl, preferably n-alkyl, e.g., \(\text{w-pentyl} \) or \(\text{w-hexyl} \), and
one of \(R_2 \) and \(R_3 \) is \(\text{OH} \) and the other of \(R_3 \) and \(R_2 \) is a neutral, non-polar amino acid moiety,
or a pharmaceutically acceptable salt or hydrate thereof.

Preferably said neutral, non-polar amino acid moiety \(R_2 \) or \(R_3 \) is:

\[
\begin{align*}
\text{R}_4 & \\
\text{R}_5 & \\
\text{NR}_6\text{R}_7 & \\
\end{align*}
\]

in which \(R_4 \), \(R_5 \), \(R_6 \) and \(R_7 \) are each independently H or C\(_1\)–C\(_2\) alkyl.
[0010] R₆ and R₇ are preferably both H.

[0011] In some embodiments, one of R₂ or R₃ may be valine, leucine, isoleucine or alanine. Preferably R₂ or R₃ is valine.

[0012] It is to be understood that the valine ester of the present invention may be either L-valine, D-valine or D,L-valine.

[0013] Further, X, Y and Z are preferably all O.

[0014] Particularly preferred compounds according to the present invention are

[0015] It will be appreciated that Compounds 3 and 5 are the valine esters of the 3'- and 5'- hydroxy groups respectively of Compound 1.
According to a different aspect of the present invention there is provided a method of synthesising a compound of the invention, said method comprising esterifying a compound of formula (III):

![Chemical structure of compound (III)]

with a protected neutral, non-polar amino acid, wherein R_1, X, Y and Z are as defined above.

Preferably, said amino acid has the formula (IV):

![Chemical structure of amino acid (IV)]

wherein R_4, R_5, R_6 and R_7 are as defined above.

The α-amino group is suitably protected during the esterification reaction. In some embodiments, where R_6 and R_7 are both H, said amino acid may be protected using a 3,9-fluorenylmethoxycarbonyl (Fmoc) protecting group. Other suitable protecting groups are known and available to those skilled in the art.
[0019] The Fmoc group may be introduced under Schotten-Baumen conditions. It is exceptionally stable towards acid. The cleavage of this group may be base catalysed (ammonia, piperidine, morpholine, DBU) undergoing an E1 \(\beta \)-elimination mechanism.

[0020] The esterification is preferably carried out under Mitsunobu conditions\(^1\):

\[
\begin{align*}
\text{(III)} &\quad \text{(V)} \\
\text{1. Fmoc-} &\quad \text{R}^4\text{R}^5\text{CH(NH}_2\text{)COOH, \text{Ph}_3\text{P (SS), DBAD, DMF}} \\
\text{2. Piperidine, \text{DMF}} &\quad \text{\text{R}^4\text{O}\text{O}\text{R}^5\text{NH}_2\text{HO}}
\end{align*}
\]

[0021] The hydrochloride salt may be prepared by treatment of the ester (V) with a solution of HCl in THF.

[0022] Preferably, \(R^1 \) is \(-\text{pentyl}, X, Y \) and \(Z \) are all O, and \(R^4 \) and \(R^5 \) are both methyl.

\(^1\)Mitsunobu, Synthesis, January 1981: 1-28
It has been found that the compounds of the present invention, and their hydrochloride salts, e.g., Compound 6 (see below), have advantageous pharmacokinetic (PK) properties and improved bioavailability as compared to Compound 1 of WO 01/83501 AI.

Bioavailability is often a key factor in the practical application of a drug as a therapeutic agent and compounds that demonstrate enhanced PK and/or solubility generally have improved potency in vivo over compounds with less favorable PK properties even though their in vitro potency may be similar. Such compounds, i.e., derivatives of known in vitro active compounds, are often referred to as prodrugs. Novel Compound 5 and its hydrochloride salt Compound 6, are examples of two such prodrugs.

Compounds 5 and 6 were tested for antiviral activity as described below and found to be active. In addition, a comparative study of the pharmacokinetic behaviour of Compounds 1 and 5 was conducted in a mouse model, demonstrating the improved bioavailability of Compound 5 compared to Compound 1.

According to another aspect of the present invention therefore there is provided a compound according to the present invention for use in a method of treatment, particularly the prophylaxis or treatment of a viral infection. In some embodiments, said compound
may be provided for use in the treatment or prophylaxis of an infection with the Varicella
Zoster virus.

[0027] According to a yet another aspect of the present invention there is provided use of a compound according to the present invention in the manufacture of a medicament for the prophylaxis or treatment of viral infection, especially a viral infection caused by the Varicella Zoster virus, e.g., chicken pox or shingles.

[0028] According to yet another aspect of the present invention there is provided a method of prophylaxis or treatment of viral infection, said method comprising administration to a human or non-human animal patient in need of such treatment an effective dose of a compound according to the present invention.

[0029] According to a further aspect of the present invention there is provided a pharmaceutical composition comprising a compound of the present invention in combination with a pharmaceutically acceptable excipient. Medicaments embodying the present invention can be administered by oral, enteral or parenteral routes, including intravenous, intramuscular, intraperitoneal, subcutaneous, transdermal, airway (aerosol), rectal, vaginal and topical (including buccal and sublingual) administration.

[0030] For oral administration, compounds embodying the present invention will generally be provided in the form of tablets or capsules, as a powder or granules, or as an aqueous solution or suspension.

[0031] Tablets for oral use may include the active ingredient mixed with pharmaceutically acceptable excipients such as inert diluents, disintegrating agents, binding agents, lubricating agents, sweetening agents, flavouring agents, colouring agents and preservatives. Suitable inert diluents include sodium and calcium carbonate, sodium and calcium phosphate, and lactose, while corn starch and alginic acid are suitable disintegrating agents. Binding agents may include starch and gelatin, while the lubricating agent, if present, will generally be magnesium stearate, stearic acid or talc. If desired, the tablets may be coated with a material such as glyceryl monostearate or glyceryl distearate, to delay absorption in the gastrointestinal tract.
[0032] Capsules for oral use include hard gelatin capsules in which the active ingredient is mixed with a solid diluent, and soft gelatin capsules wherein the active ingredient is mixed with water or an oil such as peanut oil, liquid paraffin or olive oil.

[0033] Formulations for rectal administration may be presented as a suppository with a suitable base comprising for example cocoa butter or a salicylate.

[0034] Formulations suitable for vaginal administration may be presented as pessaries, tampons, creams, gels, pastes, foams or spray formulations containing in addition to the active ingredient such carriers as are known in the art to be appropriate.

[0035] For intramuscular, intraperitoneal, subcutaneous and intravenous use, compounds embodying the present invention will generally be provided in sterile aqueous solutions or suspensions, buffered to an appropriate pH and isotonicity. Suitable aqueous vehicles include Ringer's solution and isotonic sodium chloride. Aqueous suspensions embodying the invention may include suspending agents such as cellulose derivatives, sodium alginate, polyvinyl-pyrrolidone and gum tragacanth, and a wetting agent such as lecithin. Suitable preservatives for aqueous suspensions include ethyl and n-propyl />-hydroxybenzoate.

[0036] Compounds embodying the present invention can be presented as liposome formulations.

[0037] In general, a suitable dose will be in the range of 0.001 to 300 mg per kilogram body weight of the recipient per day, preferably in the range of 0.01 to 25 mg per kilogram body weight per day and most preferably in the range 0.05 to 10 mg per kilogram body weight per day. The desired dose is preferably presented as two, three, four, five or six or more sub-doses administered at appropriate intervals throughout the day. These sub-doses may be administered in unit dosage forms, for example, containing 0.1 to 1500 mg, preferably 0.2 to 1000 mg, and most preferably 0.5 to 700 mg of active ingredient per unit dosage form.
Following are various examples of the invention with reference to the accompanying drawings, from which examples further advantages and effects of the compounds of the invention will be apparent.

In the drawings the single Figure is a graph of Mean ± SD Plasma Compound 1 (shown as relative peak area) in Female Mice After a Single Oral Gavage Dose of Compound 1 (25 mg/kg) or Compound 5 (31.25 mg/kg, equivalent to 25 mg/kg of Compound 1)

Experimental procedures and biological results

Example 1

Preparation of Compound 5: Formation of Valine ester

[0041] Compound 1 (200 mg, 0.5 mmol, prepared as described in WO 01/83501 Al, Example 3, page 15) was dissolved in dry DMF (5mL), followed by the addition of polymer-bound triphenylphosphine [370 mg, 1.1 mmol, (3 mmol p/g resin)] and α-tert-butyl azodicarboxylate (DBAD) (231 mg, 1.0 mmol) to the mixture and stirred for 20 minutes. A solution of Fmoc-Val-OH (340 mg, 1.0 mmol) in DMF (5 mL) was added dropwise over a period of 30 minutes. The reaction mixture was stirred at room temperature under an argon atmosphere until complete disappearance of the starting material (overnight). The resin was filtered off and washed with ethyl acetate. Piperidine
(1 mL, 10 mmol) was added to the solution and stirred for 10 minutes. The solvent was removed under reduced pressure without warming over 35°C and the residue was dissolved in ethyl acetate (20 mL), washed with 10% NaHCO₃ (3 x 20 mL) and brine (2 x 20 mL). The final residue was purified by column chromatography (gradient CH₂Cl₂ : MeOH 100% 98% 95% 90%), to give 137 mg of Compound 5 (55% yield) as a yellow solid.

[0042] ¹H-NMR (CDCl₃) δ : 8.3 (IH, s), 7.55 (2H, d), 7.15 (2H, d), 6.6 (IH, s), 6.25 (IH, t), 4.45-4.30 (4H, m), 3.23 (IH, d), 2.80 (IH, m), 2.53 (2H, s), 2.12 (IH, m), 1.97 (IH, m), 1.60 (2H, m), 1.24 (4H, m), 0.90-0.78 (9H, m).

[0043] ¹³C-NMR (CDCl₃) δ : 175.16, 171.62, 156.26, 154.89, 145.19, 135.29, 129.02, 125.69, 124.95, 108.60, 96.82, 88.73, 85.08, 70.90, 64.19, 60.19, 41.91, 35.82, 32.32, 31.44, 30.89, 22.50, 19.30, 17.24, 13.99.

Example 2
Preparation of Compound 6: Formation of the HCl salt

[0044] 300 mg of Compound 5 were dissolved in 3 mL of THF. Under vigorous stirring 2 mL of HCl 1M were added at 0°C and the mixture were stirred for 10 minutes. The solvents were dried under reduce pressure to obtain 322 mg (100%) of yellow oil that solidified with addition of ether.
Biological and Pharmacokinetic Studies

In order to demonstrate the improved exposure profile of Compound 5, several experiments were run using mouse animal models. Below are representative results.

Pilot Comparative Virology Study with Compounds 1 and 5

The objective of this pilot study was to compare the antiviral activity of Compounds 1 and 5 in HEL cells inoculated with the thymidine-kinase deficient Oka VZV strain. Antiviral activity was assessed as the ability of 1 or 5 to reduce viral plaque formation after incubation periods ranging from 3 to 7 days compared to untreated control cultures. Preliminary results of the antiviral efficacy studies showing comparable efficacy between the two compounds are shown in Table 4.2.
Table 1: Preliminary Results Comparing Compound 1 and Compound 5 for Anti-Varicella Zoster Virus Activity in HEL Cells

<table>
<thead>
<tr>
<th>Compound</th>
<th>EC_{50} in VZV OKA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.007 μM (2.8 ng/mL)</td>
</tr>
<tr>
<td>5</td>
<td>0.016 μM (8.0 ng/mL)</td>
</tr>
</tbody>
</table>

Note: The molecular weight of Compound 5 is approximately 1.25 times that of Compound 1 due to the valine ester.

In conclusion, the results of these comparative pilot in vitro studies showed that Compound 5 has comparable in vitro antiviral activity to Compound 1.

Nonclinical Pharmacokinetic Studies with Compound 5

A pilot study was conducted with Compounds 1 and 5 to compare the relative bioavailability of Compound 1 after oral dosing in mice. Two groups of female mice received equimolar doses of Compound 1 (25 mg/kg) or 5 (31.25 mg/kg; equivalent to 25 mg/kg of Compound 1) as a single oral gavage dose) formulated in 0.5% carboxymethylcellulose. The mice were serially sacrificed at time-points ranging from 0.25 to 3 hours post dosing (3 mice/time-point), and plasma samples were taken and analyzed for Compound 1 concentration using a non-validated HPLC method with fluorescence detection. Results are reported as relative peak areas for Compound 1, which assumes that peak area is directly proportional to concentration over these ranges of concentrations.

The results of this study are shown in the accompanying Figure. Plasma concentrations of Compound 1 were much higher in mice receiving Compound 5 compared to mice receiving Compound 1. Note that although these data do not provide absolute plasma concentrations of Compound 1, one can estimate from the peak areas that Compound 5 increases the oral bioavailability of Compound 1 by approximately 8.4 to 10 fold (e.g., the AUC is increased by ~840% and the C_{max} is increased by ~1000%).
In conclusion, this data supports the hypothesis that Compound 5 is a prodrug of Compound 1, and greatly increases the oral bioavailability of Compound 1.
Claims

1. A compound of general formula (II):

 ![Chemical Structure](image)

 wherein X is O, S, NH or CH₂,
 Y is O, S or NH,
 Z is O, S or CH₂,
 R₁ is C₁₆ alkyl, preferably n-alkyl, e.g., n-pentyl or n-hexyl, and
 one of R₂ and R₃ is OH and the other of R₃ and R₂ is a neutral, non-polar amino acid moiety,
 or a pharmaceutically acceptable salt or hydrate thereof.

2. A compound as claimed in claim 1, wherein said neutral, non-polar amino acid moiety R₂ or R₃ is:

 ![Chemical Structure](image)

 in which R₄, R₅, R₆ and R₇ are each independently H or C₁₋₂ alkyl.

3. A compound as claimed in claim 2, wherein R₆ and R₇ are both H.

4. A compound as claimed in claim 1, wherein one of R₂ or R₃ is valine, leucine, isoleucine or alanine.

5. A compound as claimed in claim 1 or claim 4, wherein R₂ or R₃ is valine.
6. A compound as claimed in claim 5, wherein said valine is L-valine, D-valine or DL-valine.

7. A compound as claimed in any preceding claim, wherein X, Y and Z are preferably all O.

8. A compound as claimed in claim 1, which is:

![Compound 3](image1)

Compound 3,

![Compound 5](image2)

Compound 5,

or the hydrochloride salt of Compound 3 or Compound 5.
9. A compound as claimed in any of claims 1, which is:

- HCl

![Compound 6]

10. A method of synthesising a compound as claimed in any of claims 1-9, said method comprising esterifying a compound of formula (III):

![Formula III]

with a protected neutral, non-polar amino acid, wherein Ri, X, Y and Z are as defined in claim 1, and optionally thereafter reacting the resultant ester with acid to form a pharmaceutically acceptable salt.
11. A method as claimed in claim 10, wherein said amino acid has the formula (IV):

\[
\begin{array}{c}
\text{R}_4 \\
\text{R}_5 \\
\text{N}\text{R}_6\text{R}_7
\end{array}
\]

(IV)

wherein R₄, R₅, R₆ and R₇ are as defined in claim 2.

12. A method as claimed in claim 11, wherein R₆ and R₇ are both H, and said α-amino group is protected during the esterification reaction by a 3,9-fluorenylmethoxycarbonyl (Fmoc) protecting group.

13. A method as claimed in claim 10, claim 11 or claim 12, wherein said esterification is carried out under Mitsunobu conditions.

14. A method as claimed in any of claims 10-13, further comprising treating the ester with a solution of HCl to form the hydrochloride salt.

15. A method as claimed in any of claims 10-14, wherein R₁ is ft-pentyl or «-hexyl, X, Y and Z are all O, and R₄ and R₅ are both methyl.

17. Use of a compound as claimed in any of claims 1-9 in the manufacture of a medicament for the prophylaxis or treatment of a viral infection.

18. A method of prophylaxis or treatment of viral infection, said method comprising administration to a human or non-human animal patient in need of such treatment an effective dose of a compound as claimed in any of claims 1-9.

20. A pharmaceutical composition comprising a compound as claimed in any of claims 1-9 in combination with a pharmaceutically acceptable excipient.
FIG. 1
INTERNATIONAL SEARCH REPORT

International application No
PCT/GB2007/001677

A. CLASSIFICATION OF SUBJECT MATTER

| INV. | No | C07D491/04 | C07H19/04 | A61K31/70 | A61P31/12 |

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

| C07D |

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data, BEILSTEIN Data, BIOSIS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication where appropriate of the relevant passages</th>
<th>Relevant to claim</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>WO 01/83501 A [UNIV CARDIFF [GB]; REGA FOUNDATION [BE]; MCGUIGAN CHRISTOPHER [GB]; BA] 8 November 2001 (2001-11-08) cited in the application page 1, line 3 - line 6 claim 1</td>
<td>1-20</td>
</tr>
<tr>
<td>Y</td>
<td>WO 01/85749 A [UNIV CARDIFF [GB]; REGA FOUNDATION [BE]; MCGUIGAN CHRISTOPHER [GB]; BA] 15 November 2001 (2001-11-15) page 1, line 3 - line 5 claim 1</td>
<td>1-20</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C

X See patent family annex

Special categories of cited documents

- **A** document defining the general state of the art which is not considered to be of particular relevance
- **E** earlier document but published on or after the international filing date
- **I** document which may throw doubts on prior art claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- **O** document referring to an oral disclosure, use, exhibition or other means
- **P** document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents such combination being obvious to a person skilled in the art

A document member of the same patent family

Date of the actual completion of the international search

2 August 2007

Date of mailing of the international search report

10/08/2007

Name and mailing address of the ISA/ European Patent Office, P B 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel (+31-70) 342-2040, Tx 31 651 epo nl Fax (+31-70) 340-3016

Authorized officer

ß ssmire, Stewart

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US 2001/018440 A1 (CHU CHUNG K [US] ET AL) 30 August 2001 (2001-08-30) page 1, column 1, paragraph 3 - column 2, paragraph 9 claim 1</td>
<td>1-20</td>
</tr>
<tr>
<td>Y</td>
<td>ANGELL A ET AL: "Bicyclic anti-VZV nucleosides: thieno analogues bearing an alkylphenyl side chain have reduced antiviral activity" BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, OXFORD, GB, vol. 14, no. 10, 17 May 2004 (2004-05-17), pages 2397-2399, XP004841208 page 2398, column 1, paragraph 3 page 2398; table 1</td>
<td>1-20</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>WO 0183501</td>
<td>08-11-2001</td>
<td>AT 261451 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 781323 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 9519101 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2403835 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 60102293 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 60102293 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 1274713 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2215931 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2004506606 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 521828 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 1274713 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TR 200400785 T4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003148967 A1</td>
</tr>
</tbody>
</table>

		AU 780879 B2	21-04-2005
		AU 5494501 A	20-11-2001
		CA 2406633 A1	15-11-2001
		DE 60101223 D1	18-12-2003
		DE 60101223 T2	02-09-2004
		DK 1280813 T3	22-03-2004
		EP 1280813 A1	05-02-2003
		ES 2210153 T3	01-07-2004
		JP 2003532735 T	05-11-2003
		NZ 521877 A	26-11-2004
		PT 1280813 T	31-03-2004
		TR 2003023213 T4	21-01-2004
		US 2003176370 A1	18-09-2003

US 2001018440 A1 30-08-2001 NONE