

Office de la Propriété

Intellectuelle
du Canada

Un organisme
d'Industrie Canada

Canadian
Intellectual Property
Office

An agency of
Industry Canada

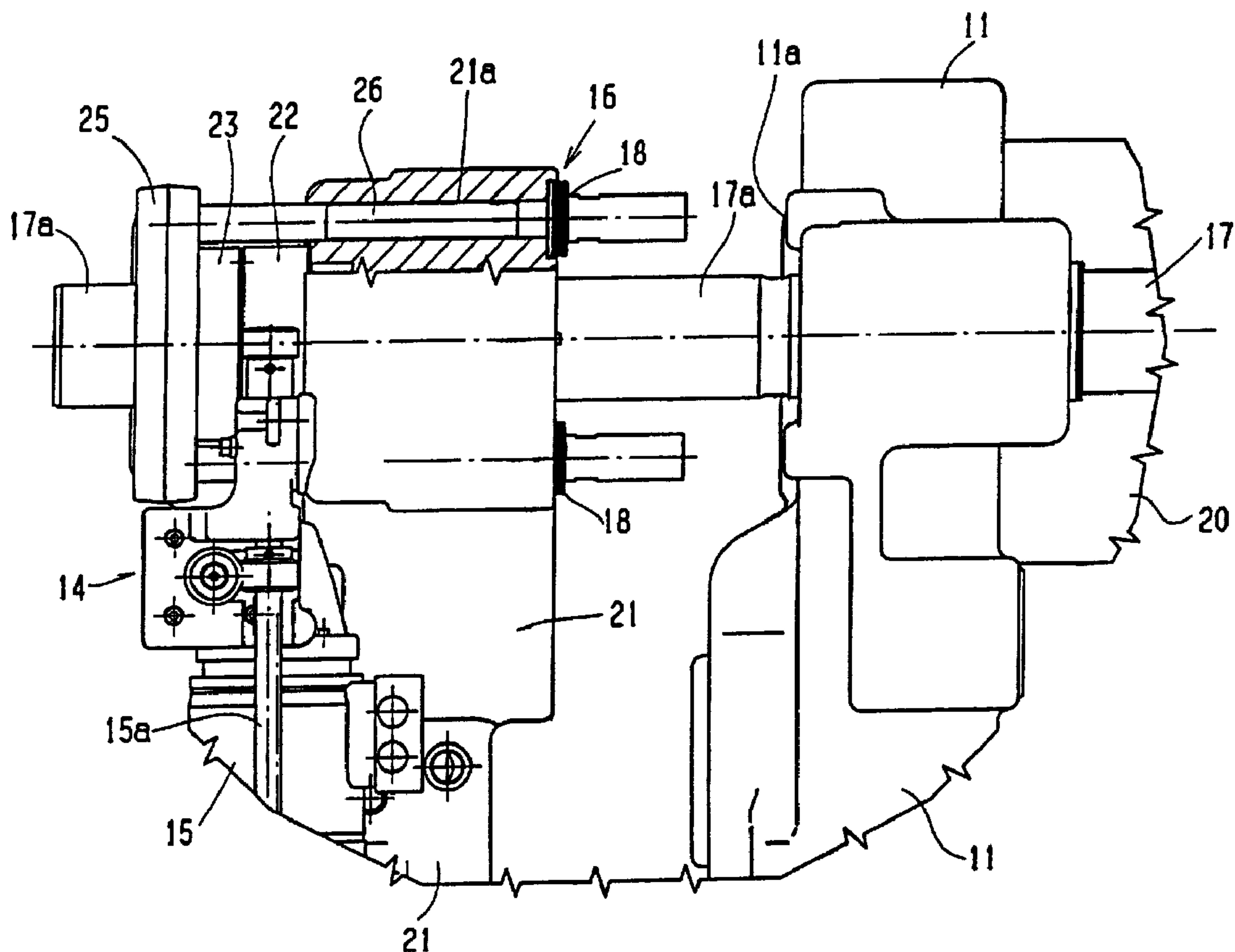
CA 2477327 C 2010/05/11

(11)(21) **2 477 327**

(12) **BREVET CANADIEN
CANADIAN PATENT**

(13) **C**

(86) Date de dépôt PCT/PCT Filing Date: 2002/12/10
(87) Date publication PCT/PCT Publication Date: 2003/09/18
(45) Date de délivrance/Issue Date: 2010/05/11
(85) Entrée phase nationale/National Entry: 2004/08/24
(86) N° demande PCT/PCT Application No.: EP 2002/013981
(87) N° publication PCT/PCT Publication No.: 2003/076161
(30) Priorité/Priority: 2002/03/12 (DE102 10 869.2)


(51) Cl.Int./Int.Cl. *B29C 45/17*(2006.01)

(72) Inventeur/Inventor:
HEHL, KARL, DE

(73) Propriétaire/Owner:
HEHL, KARL, DE

(74) Agent: OGILVY RENAULT LLP/S.E.N.C.R.L.,S.R.L.

(54) Titre : DISPOSITIF DE FERMETURE D'UN MOULE A REGLAGE EN HAUTEUR DU MOULE, ET PROCEDE
PERMETTANT SA MISE EN ACTION
(54) Title: MOLD CLOSING DEVICE WITH MOLD HEIGHT ADJUSTMENT AND METHOD FOR ACTUATION THEREOF

(57) Abrégé/Abstract:

A mold height adjustment device for modifying the distance between the stationary mold carrier and a support element (21) by means of a drive mechanism (15) is provided in a plastic injection molding machine. A locking device (16) locks the support

(57) Abrégé(suite)/Abstract(continued):

element (21) in its respective position. A release position is provided in the area of movement of the moving mold carrier (11), which unlocks the locking device (16) when the moving mold carrier is in said release position, thereby providing a mold height adjustment device and a method for actuating said device, which advantageously uses the elements moving on the machine for its actuation.

**(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG**

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum
18. September 2003 (18.09.2003)

PCT

(10) Internationale Veröffentlichungsnummer
WO 03/076161 A1

(51) Internationale Patentklassifikation⁷: B29C 45/17 (81) Bestimmungsstaaten (*national*): CA, JP, US.

(21) Internationales Aktenzeichen: PCT/EP02/13981

(84) **Bestimmungsstaaten** (*regional*): europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR).

(25) Einreichungssprache: Deutsch

Erklärung gemäß Regel 4.17:

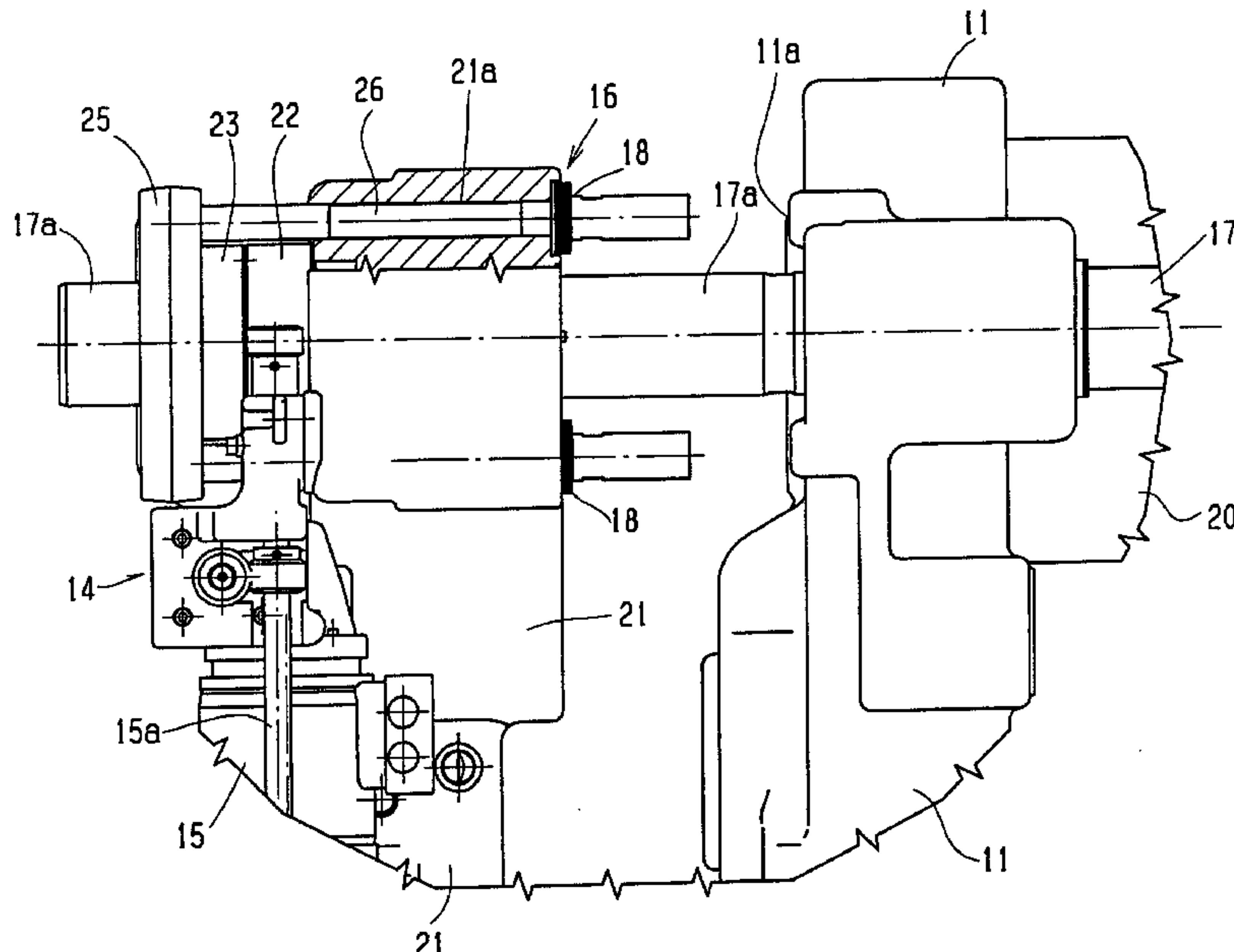
(26) Veröffentlichungssprache: Deutsch

— Erfindererklärung (Regel 4.17 Ziffer iv) nur für US

(30) Angaben zur Priorität: 102.10.869.2 12. März 2002 (12.03.2002) DE

Veröffentlicht:

— *mit internationalem Recherchenbericht*


(71) Anmelder und
(72) Erfinder: HEHL, Karl [DE/DE]; Arthur-Hehl-Strasse,
72290 Lossburg (DE).

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(74) Anwälte: **REINHARDT, Harry usw.**; Reinhardt & Pohlmann Partnerschaft, Grünstrasse 1, 75172 Pforzheim (DE).

(54) Title: MOLD CLOSING DEVICE WITH MOLD HEIGHT ADJUSTMENT AND METHOD FOR ACTUATION THEREOF

(54) Bezeichnung: FORMSCHLIESSEINHEIT MIT EINER FORMHÖHENVERSTELLUNG SOWIE VERFAHREN ZU DEN BETÄTIGUNG

(57) Abstract: A mold height adjustment device for modifying the distance between the stationary mold carrier and a support element (21) by means of a drive mechanism (15) is provided in a plastic injection molding machine. A locking device (16) locks the support element (21) in its respective position. A release position is provided in the area of movement of the moving mold carrier (11), which unlocks the locking device (16) when the moving mold carrier is in said release position, thereby providing a mold height adjustment device and a method for actuating said device, which advantageously uses the elements moving on the machine for its actuation.

[Fortsetzung auf der nächsten Seite]

(57) Zusammenfassung: An einer Kunststoffspritzgrießmaschine ist eine Formhöhenverstellung zur Veränderung des Abstandes zwischen stationärem Formträger und Abstützelement (21) mittels eines Antriebs (15) vorgesehen. Eine Verriegelungseinrichtung (16) verriegelt das Abstützelement (21) in seiner jeweiligen Stellung. Dadurch, dass im Bewegungsbereich des beweglichen Formträgers (11) eine Lösestellung vorgesehen ist, die die Entriegelung der Verriegelungseinrichtung (16) bewirkt, wenn der bewegliche Formträger in der Lösestellung ist, wird eine Formhöhenverstellung und ein Verfahren zu ihrer Betätigung geschaffen, die die sich an der Maschine bewegenden Elemente zu ihrer Betätigung vorteilhaft ausnutzt.

- 1 -

Mold closing device with a mold height adjustment and method for actuation thereof

Description

5

Field of the invention

The invention relates to a mold closing unit for an injection molding machine for processing plastics materials and other plasticizable substances having a mold height adjustment as well as to a method for actuating this type of mold height adjustment.

State of the art

15 This type of mold height adjusting means is known in DE 198 12 741 A1 to the extent that the mold closing unit can adjust the position of the supporting element in its own closing device. To this end, a locking device is provided respectively on the movable mold carrier and also on the supporting element for the closing device. In the standard condition for the production process, the supporting element is locked and the 20 movable mold carrier is released for displacement, that-is-to-say is unlocked. If the height of the mold has to be changed, the movable mold carrier is locked and the supporting element released, such that when the closing device is activated, the position of the supporting element can be altered. This type of apparatus, however, from a certain size of machine, is no longer suitable for displacing the supporting 25 element uniformly without canting.

US 4,281,977 A makes known a mold height adjusting means, where, threaded portions, which are connected to nuts, are provided on columns, which are mostly secured to the stationary mold carrier and serve as a guiding means for the movable 30 mold carrier. These nuts are driven via a separate driving means for adjusting the height of the mold. On the outside of these nuts there is an annular gear, which means that they can be actuated either by means of an annular gear or by means of a toothed belt.

For adjusting the height of the mold and locking a supporting plate for the closing mechanism, it is known from Engel Vertriebs GmbH, A-4311 Schwerberg, Austria, 1996, to provide columns with grooves and to clamp securely two half-nuts to these 5 grooves by moving the half-nuts towards one another in the radial direction until they abut against the grooved region of the guide columns.

Husky Injection Molding Systems, Moduline E-Series Machines, September 1996, made known this type of locking means with a bayonet closure. The column, for this 10 purpose, has regions in which a closing piston can engage, as well as regions along which the closing piston, which is displaceable radially on the guide columns, can slide. Rotating this closing piston effects a positive engagement, which means that, at the same time, at least a portion of the closing force can also be applied to this piston.

15

Summary of the invention

Proceeding from this state of the art, it is the object of the present invention to provide a mold height adjustment for a mold closing unit and a method for actuating the 20 mold height adjustment, which mold height adjustment uses in an advantageous manner for its actuation the moving parts which are present in any case on the machine.

In accordance with the invention, there is provided a mold closing unit having an apparatus for automatically adapting to the mold height of injection molds of variable 25 height measured in a closing direction for an injection molding machine for processing plastics materials and other plasticizable substances, having a stationary mold carrier, a movable mold carrier, a closing device for moving the movable mold carrier in the closing direction towards the stationary mold carrier and away from the stationary mold carrier, an injection mold of variable height measured in the closing direction, said injection mold being accommodatable between the mold carriers, a supporting element for the closing device, a mold height adjustment for adjusting the 30 distance between the stationary mold carrier and the supporting element by moving

- 3 -

the supporting element, a drive for automatically adjusting the mold height adjustment, a locking device for locking the supporting element in its respective position, wherein a release position is provided in the displacement region of the movable mold carrier, said release position effecting the unlocking of the locking device when
5 the movable mold carrier is in the release position.

Also in accordance with the invention, there is provided a method for automatically adapting the mold height of injection molds of variable height measured in a closing direction on an injection molding machine for processing plastics materials and other
10 plasticizable materials, having a stationary mold carrier, a movable mold carrier, a supporting element for a closing device for moving the movable mold carrier towards the stationary mold carrier and away from the stationary mold carrier, a mold height adjustment, a drive for adjusting the mold height, a locking device for locking the supporting element in its respective position, wherein the method includes the following
15 steps: releasing the supporting element from its position, which was coordinated with a previous mold height, by opening the locking device, changing a distance between the stationary mold carrier and the supporting element by moving the supporting element by means of the drive, securing the supporting element in the changed position, which is coordinated with a new mold height, by locking the locking device,
20 wherein the movable mold carrier, in a release position for releasing the supporting element, unlocks the locking device.

The mold closing unit and the method are configured in such a manner that a release position is provided for the movable mold carrier internally of its displacement region, in which release position the mold carrier, as soon as it is transferred into this position, can actuate the locking device, that-is-to-say can unlock it. This leads to a relatively simple unlocking procedure as the mold carrier only has to be transferred into this region again and can subsequently adjust the supporting element. If the movable mold carrier is not situated in this region, the supporting element is automatically
25 locked. Therefore, additional costly sensors or transferring mechanisms do not have to be provided. The construction of the locking device can be arbitrary if it is ensured that the movable mold carrier, as soon as it is in the release position, effects the
30 unlocking of the locking device of the supporting element.

- 3a-

Short description of the Figures

The invention is described in more detail below by way of an exemplified embodiment. In which:

5

- Figure 1 is a side view of a mold closing unit for an injection molding machine,
- Figure 2 is an enlarged cutout from Figure 1 in the region of the locking device,
- Figure 3 is a rear view of the injection molding machine in Figure 1 from the left,
- Figure 4 is a view according to the lines 4-4 in Figure 3 with a section through 10 the locking device.

Detailed description of preferred exemplified embodiments

The invention is now described in more detail below in an exemplary manner with

15 reference to the enclosed drawings. However, the exemplified embodiments are only examples, which are not meant to restrict the inventive concept to one specific arrangement.

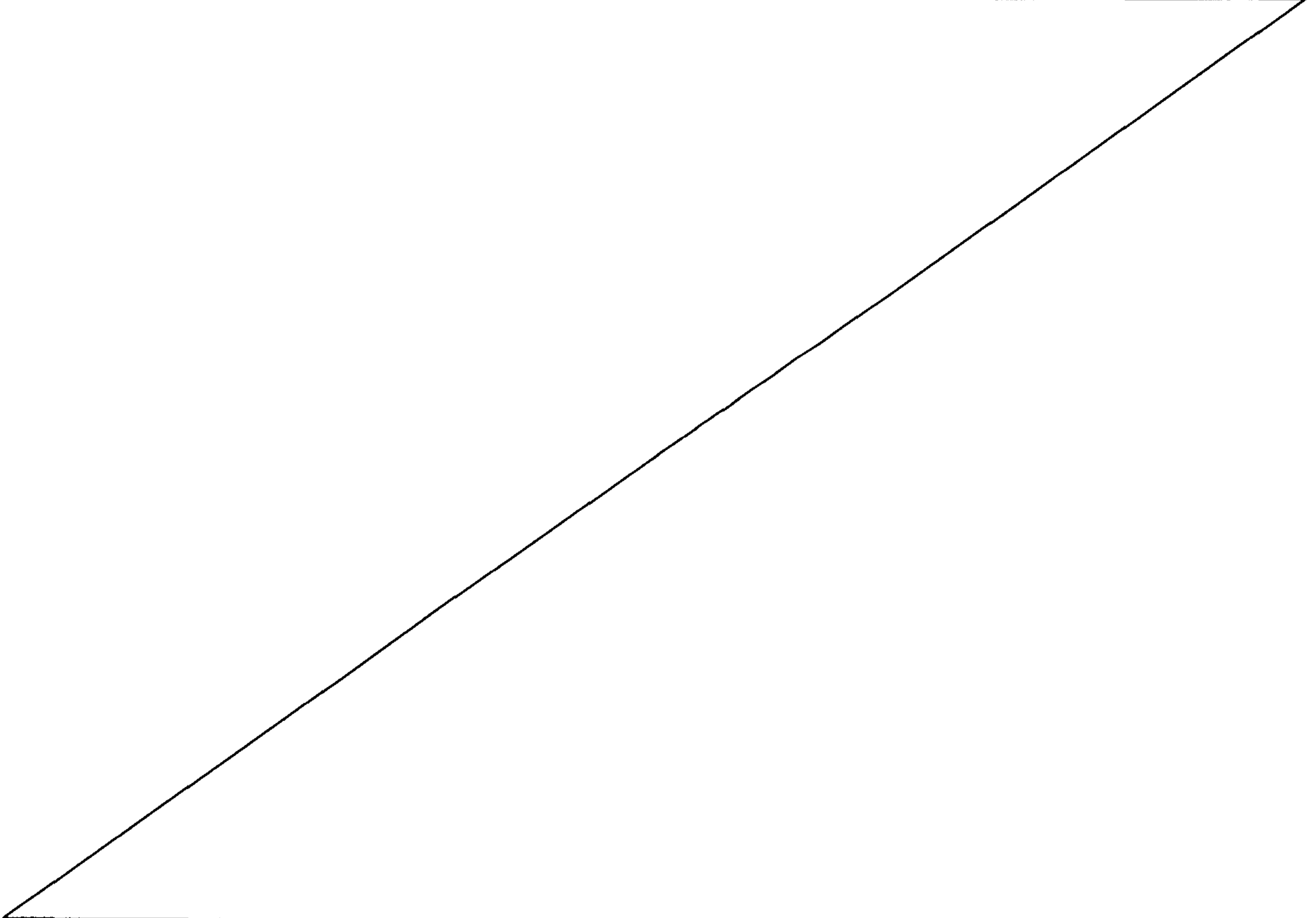


Figure 1 shows the side view of a mold closing unit for a plastic injection molding machine, which can be used for processing plastics materials and other plasticizable substances such as powdery or ceramic substances. The mold closing unit is disposed on the machine base 12 and includes a stationary mold carrier 10 and a movable mold carrier 11. Injection molds 13 of variable height can be disposed between the mold carriers in a mold clamping area R. The height of the mold overall is the measurement that is produced from the sum of the measurements a_1 and a_2 . The movable mold carrier 11 is constructed in the form of a frame, which includes, as shown in Figure 1, the right-hand plate, to which the one half of the injection mold 13 is securable, and a rear plate, said plates being interconnected via the cylinder of the closing device 20. This produces a box plate, which is actuated by the pistons (not represented in the drawing) of the closing device. These pistons are supported conventionally on the supporting element 21. However, electromechanical drives or linear drives or other driving means can also be provided in place of the described hydraulic or pneumatic piston cylinder units in the form of the closing device 20.

In the exemplified embodiment, guide elements 17 are provided in the form of guide braces or guide columns, which are mounted on the stationary mold carrier 10. They serve, in the exemplified embodiment, both the movable mold carrier 11 and the supporting element 21 as guiding means for their movement, which has yet to be described. In principle, the mold height adjustment described below can also be used on an injection molding machine without braces, where the stationary mold carrier and the movable mold carrier are interconnected via a force transferring element, for example one or several brackets, guided around the mold clamping area R. In this case, only one corresponding displacement region for the supporting element has to be made possible, this latter then having to be guided in a suitable manner, for example, at one end of the bracket.

Associated with the supporting element 21 is a mold height adjustment 14, which serves for adjusting the distance x between the stationary mold carrier 10 and the supporting element 21 by moving the supporting element. The closing device can be optimized by changing the mold height. If, with a small injection mold 13, the supporting element in Figure 1 is displaced to the right, the cycle times are initially reduced,

as the movable mold carrier does not have to open the mold to the same extent as, for example, represented in Figure 1. However, the path of the closing device can also be optimized by the adjustment, that-is-to-say, for example, can be minimized in the case of a small injection mold, which means that the pressure build-up times can 5 be drastically reduced. The advantage this produces can contribute to a reduction in cycle times of several 1/10 seconds.

In order to enable an automatic mold height adjustment, a drive 15 is provided, which can be seen best in Figure 3. The drive 15 actuates, via changeover mechanisms 10 (not represented in the drawings), various spindles 15a, which in their turn, are in engagement with the mold height adjustment 14 associated with each column 17. As soon as the mold height adjustment is unlocked by transferring the movable mold carrier 11 into the release position, the mold height adjustment can be actuated via the drive 15 and the spindles 15a at each of the guide elements 17 at the same time.

15 In order to ensure that the supporting element is reliably retained at the columns, when the not inconsiderable forces of the closing device 20 are applied during the injection molding cycle, a locking device 16 is provided for locking the supporting element 21 in its respective position. The effect and actuation of the locking device is 20 described in more detail below by way of Figures 2 and 4.

For actuating the locking device, there is provided a release position in the displacement region of the movable mold carrier 11, which release position effects the 25 unlocking of the locking device 16 when the movable mold carrier 11 is in the release position. In principle, therefore, there is no need for any additional sensors, the transferring of the movable mold carrier into the release position simply ensures that the locking device is unlocked, such that subsequently the drive 15 of the mold height adjustment 14 can adjust the supporting element 21 by changing the distance x. This release position is provided externally and at the end, which is remote from the stationary mold carrier 10, of the displacement region of the movable mold carrier 11, which displacement region is necessary during the actual injection molding process. 30 If, therefore, after conclusion of the production of a certain injection molding, a mold height adjustment is to be executed, the movable mold carrier "overtravels" the pre-

viously admitted displacement region and is brought into the release position. In this release position are provided auxiliary means that make sure that the locking device 16 can be unlocked. In this case, the unlocking procedure must not be carried out as below; instead of the bolts 26 yet to be described and the resilient means 18, lever 5 mechanisms or similar can also be provided, which are only to ensure that the existing locking is released. The mold height adjustment 14 itself is disposed on the supporting element 21. As shown in Figures 2 and 4, it includes nuts, which engage with threaded portions 17a on the guide elements 17 for the supporting element 21. If the drive 15 is actuated, these nuts are driven via the spindles 15a.

10

In the exemplified embodiment, there are preferably provided on each guide element at least two nuts 22, 23, which are clamped as a consequence of the effect of the resilient means 18 of the locking device 16. The nuts 22, 23 abut against the clamping sleeve 25 on one side and against the supporting element 21 on the other side, 15 both being in operative connection with one another by means of connecting means 26 mounted thereon and clamping the nuts 22, 23 under the effect of the resilient means 18. In place of the counter nut solution given in this case, just one nut can also work as long as the nut is secured correspondingly in its respective position in another manner. However, the advantage of the following solution is that the effect of 20 the nuts and the effect of the locking device, although they work in the direct vicinity of one another, are separate from one another. The clamping effect, in this regard, is provided, for example, by resilient means, which the movable mold carrier makes inoperative in the release position. Consequently, it is not necessary to release the clamping manually in order subsequently to be able to move the supporting element, 25 but rather the adjustability of the supporting element is provided as soon as the effect of the resilient means is lifted by the movable mold carrier.

The connecting means 26 are bolts, which penetrate a bore 21a of the supporting element. Spring washers in the form of resilient means 18 are mounted between 30 bolts and clamping sleeve 25 or – as in the exemplified embodiment – supporting element 21. Figure 4 shows that the bolt 26 is secured to the clamping sleeve 25 with a screw 26a and abuts against the supporting element 21 by means of the resilient means 18. This is achieved in that the bolt, at the end remote from its head 26a,

has a region 26b with a larger diameter, which serves the resilient means 18 as a bearing arrangement. Other suitable resilient means can be provided in place of the spring washers, as long as they are actuatable by means of the transferring of the movable mold carrier into its release position.

5

The connecting means 26, that-is-to-say the bolts, project in the direction of the movable mold carrier as far as into the region of the release position. The movable mold carrier 11, in its turn, has an actuating face 11a, which, in the release position of the movable mold carrier, actuates the connecting means 26 by lifting the locking effect of the resilient means 18. If, therefore, the movable mold carrier in Figure 4 is moved further to the left, the actuating face 11a comes to abut against the bolt. If the movable mold carrier is moved even further to the left, the bolt is pressed to the left in opposition to the force of the resilient means 18, which means that the clamping effect between the nuts 22 and 23 is lifted. The nuts are clamped in a known manner by means of radial locking pins, the effect of which is also lifted when the effect of the resilient means 18 is lifted. It is then possible for the drive 15 to adjust the nuts. The actuating face 11a is disposed in the region of a bore of the movable mold carrier, which bore is passed through by the guide elements 17 which are in the form of guide columns.

10

As soon as the movable mold carrier 11 actuates the resilient means 18, the movable mold carrier abuts against the resilient means 18 with a large part of its surface area. As this abutting is effected through a movement along the guide elements 17, the force consequently is introduced in a substantially linear manner onto the resilient means 18 and the nuts 22, 23. At the same time, there is a closed force flow between the movable mold carrier 11 and the supporting element 21. This means that the forces are applied in a torque-free manner, which means that there is no canting when the supporting element 21 is adjusted. The adjusting is effected in an almost friction-free manner. Further additional auxiliary means are not necessary.

15

In principle, it must be ensured that the movable mold carrier remains in its conventional displacement region during the production process and does not pass into the release position. To this end, the clamping bolts, which are present in any case, are

guided through the supporting element, which means that they project as far as into the region of the release position. If the movable mold carrier is then transferred into this region, the desired solution is produced.

5 The following steps are necessary for adjusting the mold height:

- Releasing the supporting element 21 from its position, which was coordinated with the previous mold height, by opening the locking device 16,
- Changing the distance x between the stationary mold carrier and the supporting element 21 by moving the supporting element 21 by means of the drive 15,
- Securing the supporting element 21 in the amended position, which is coordinated with the new mold height, by locking the locking device 16.

The releasing of the supporting element 21 is effected by the movable mold carrier

15 11 being transferred into the release position. The transferring into the release position effects the unlocking of the locking device 16. The movable mold carrier 11 is preferably transferred into this position by means of its own closing device 20, which means that no means other than the closing device, which is present in any case, are necessary for this purpose. Whilst the distance x is being changed, the supporting element 21 and the movable mold carrier 11 are moved together. There should therefore be coordination between the effect of the closing device 20 and the drive 20 15.

To change the distance x or respectively the mold height, the drive 15 actuates the

25 nuts 22, 23 and adjusts them along the threaded portions 17a of the guide elements 17. However, this is not possible until the nuts, which have been checked in principle by the effect of the resilient means 18 of the locking device 16, are un-checked. The movable mold carrier 11, therefore, brings the connecting means 26, in opposition to the force of the resilient means 18, into a position, which enables a lifting of the 30 checking effect.

- 9 -

It is obvious that this description can be subject to the most varied modifications, changes and adaptations, which are considered as equivalent to the enclosed claims.

- 10 -

List of references

- 10 Stationary mold carrier
- 11 Movable mold carrier
- 11a Actuating face
- 12 Machine base
- 13 Injection mold
- 14 Mold height adjustment
- 15 Drive for 14
- 15a Spindle
- 16 Locking device
- 17 Guide element
- 17a Threaded portion
- 18 Resilient means
- 20 Closing device
- 21 Supporting element
- 21a Bore
- 22, 23 Nut
- 25 Clamping sleeve
- 26 Bolt
- 26a Screw
- 26b Region with a larger diameter

- a Mold height
- s-s Closing device
- x Distance between 10 and 21
- R Mold clamping area

- 11 -

Claims

1. Mold closing unit having an apparatus for automatically adapting to the mold height of injection molds of variable height measured in a closing direction for an injection molding machine for processing plastics materials and other plasticizable substances, having
 - a stationary mold carrier,
 - a movable mold carrier,
 - a closing device for moving the movable mold carrier in the closing direction towards the stationary mold carrier and away from the stationary mold carrier,
 - an injection mold of variable height measured in the closing direction, said injection mold being accommodatable between the mold carriers,
 - a supporting element for the closing device,
 - a mold height adjustment for adjusting the distance between the stationary mold carrier and the supporting element by moving the supporting element,
 - a drive for automatically adjusting the mold height adjustment,
 - a locking device for locking the supporting element in its respective position,wherein a release position is provided in the displacement region of the movable mold carrier, said release position effecting the unlocking of the locking device when the movable mold carrier is in the release position.
2. Mold closing unit according to claim 1, wherein the release position is externally of and at the end, which is remote from the stationary mold carrier, of the displacement region of the movable mold carrier, which displacement region is necessary during the actual injection molding process.
3. Mold closing unit according to claim 1 or 2, wherein the mold height adjustment is disposed on the supporting element.

- 12-

4. Mold closing unit according to any one of claims 1 to 3, wherein the mold height adjustment includes nuts, which engage by means of threaded portions on guiding elements for the supporting element and are adjustable by means of the drive.
5. Mold closing unit according to claim 4, wherein at least two nuts in each case are clamped as a result of the effect of resilient means of the locking device.
6. Mold closing unit according to claim 4, wherein the nuts abut against a clamping sleeve and the supporting element, both of which are in operative connection through connecting means mounted thereon and clamp the nuts under the effect of resilient means.
7. Mold closing unit according to claim 6, wherein the connecting means are bolts which penetrate at least the supporting element, and the resilient means include spring washers mounted between the bolts and the clamping sleeve and/or the supporting element.
8. Mold closing unit according to claim 7, wherein the bolts are secured with a screw to the clamping sleeve and are mounted on the supporting element by means of the resilient means.
9. Mold closing unit according to any one of claims 6 to 8, wherein the connecting means, which are mounted on the supporting element, project in the direction of the movable mold carrier as far as into the region of the release position, and the movable mold carrier includes an actuating face, which, in the release position of the movable mold carrier, actuates the connecting means by lifting the locking effect of the resilient means.
10. Mold closing unit according to claim 9, wherein the actuating face is disposed in the region of a bore being in the form of a guiding for guiding the movable mold carrier along guide elements, which are in the form of guide columns.

- 13-

11. Method for automatically adapting the mold height of injection molds of variable height measured in a closing direction on an injection molding machine for processing plastics materials and other plasticizable materials, having

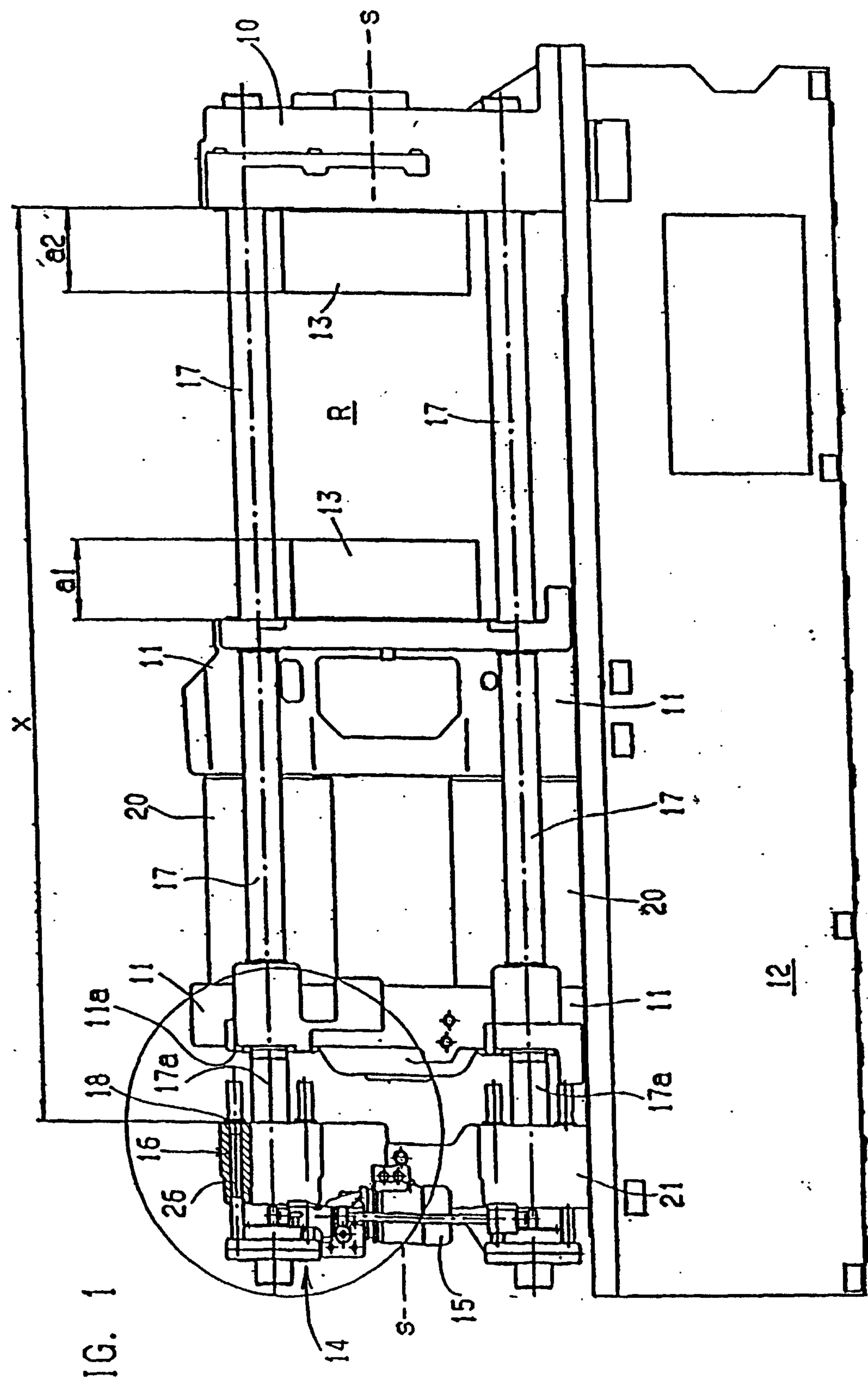
- a stationary mold carrier,
- a movable mold carrier,
- a supporting element for a closing device for moving the movable mold carrier towards the stationary mold carrier and away from the stationary mold carrier,
- a mold height adjustment,
- a drive for adjusting the mold height,
- a locking device for locking the supporting element in its respective position,

wherein the method includes the following steps:

- releasing the supporting element from its position, which was coordinated with a previous mold height, by opening the locking device,
- changing a distance between the stationary mold carrier and the supporting element by moving the supporting element by means of the drive,
- securing the supporting element in the changed position, which is coordinated with a new mold height, by locking the locking device,

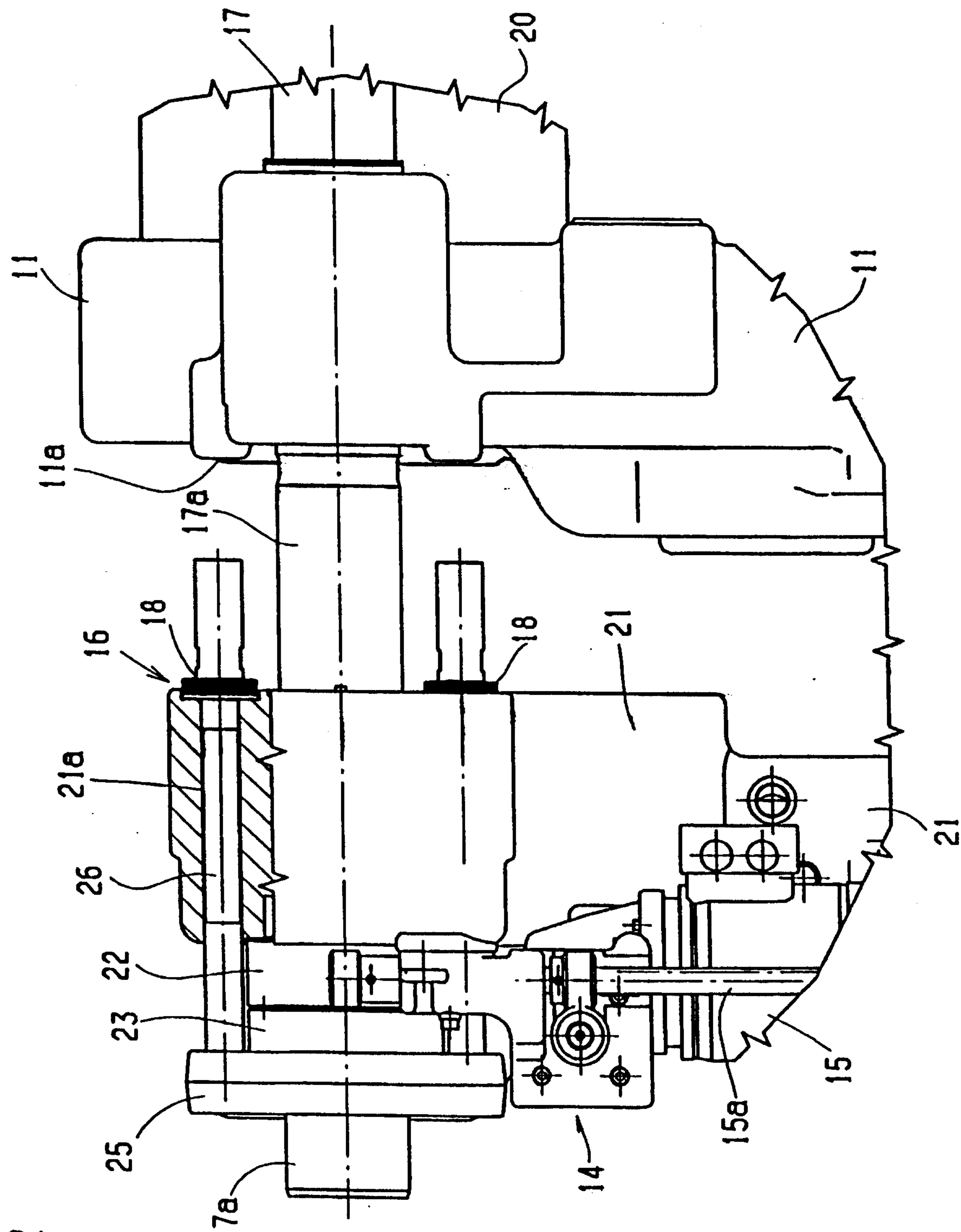
wherein the movable mold carrier, in a release position for releasing the supporting element, unlocks the locking device.

12. Method according to claim 11, wherein the movable mold carrier is transferred by means of its closing device into a position for actuating the locking device.

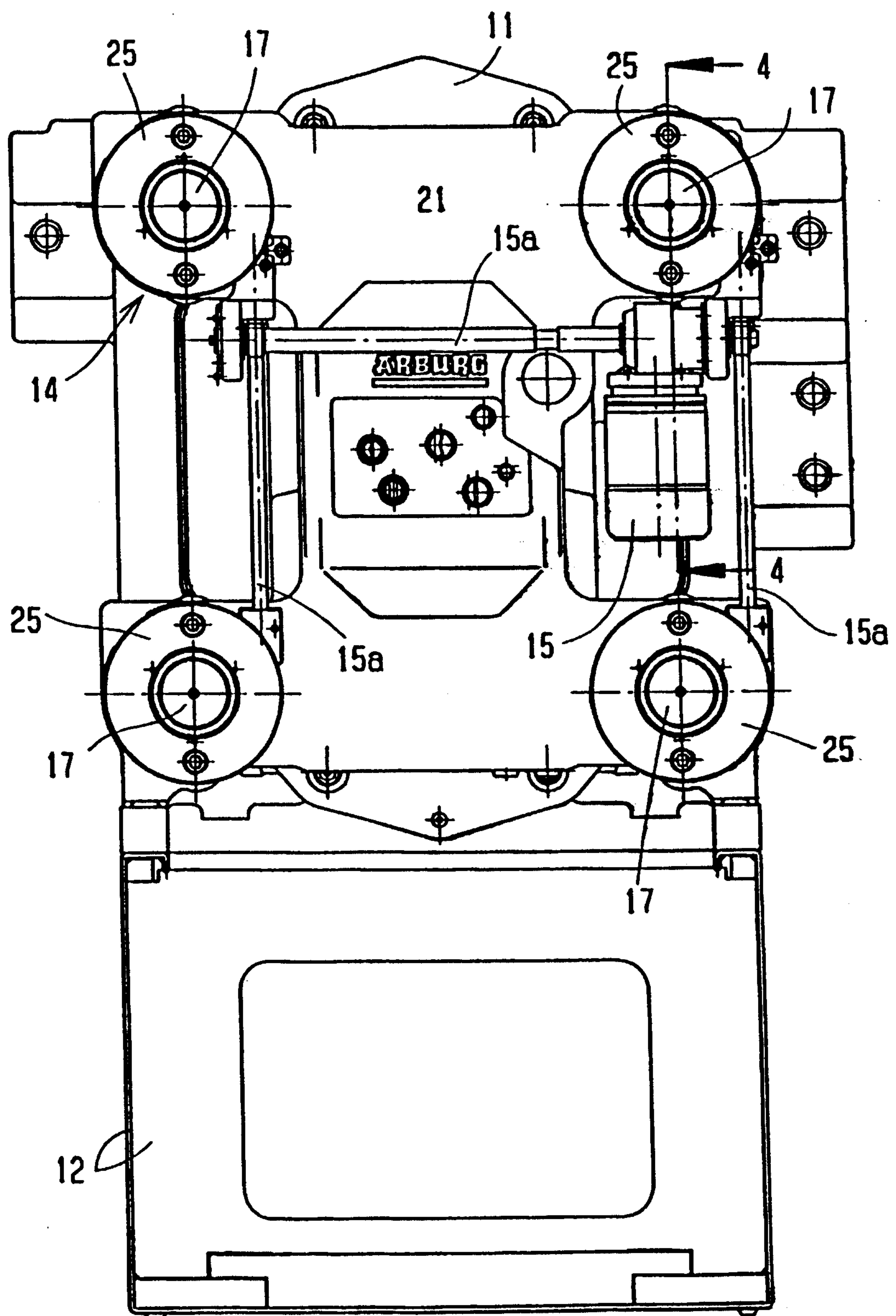

13. Method according to claim 12, wherein a position at the end remote from the stationary mold carrier is on the other side of a normal displacement region of the movable mold carrier during the production process.

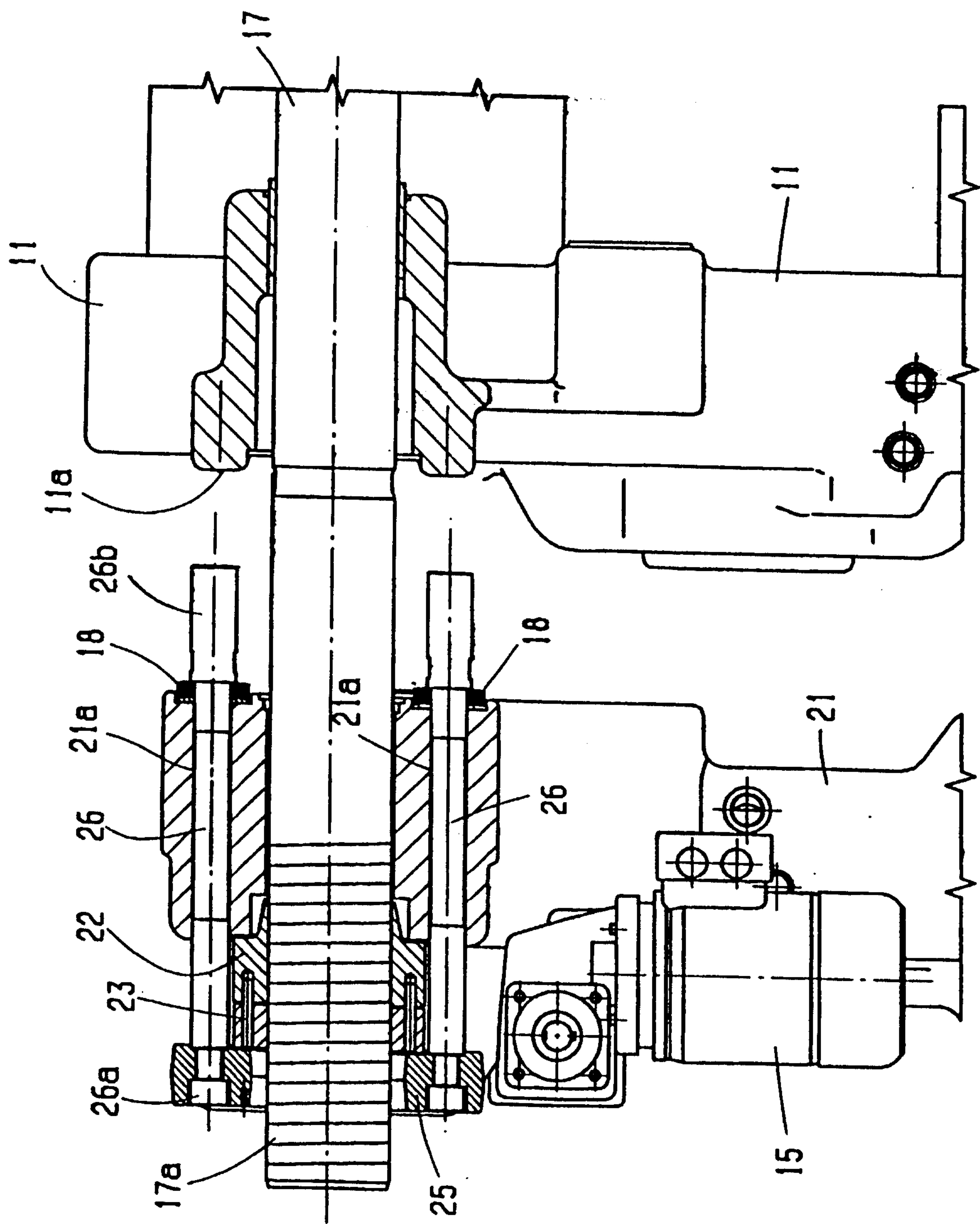
14. Method according to any one of claims 11 to 13, wherein during the changing of the distance, the supporting element and the movable mold carrier are moved together.

- 14-


15. Method according to any one of claims 11 to 14, wherein for changing the distance, the drive actuates nuts and adjusts them along threaded portions, which, in the secured condition, are checked by the locking device.
16. Method according to claim 15, wherein when the movable mold carrier approaches the supporting element, it releases resilient means and lifts the checking effect between the nuts.
17. Method according to claim 16, wherein through the movement of the movable mold carrier into the release position along guide elements, the force for lifting the effect of the resilient means is introduced to the resilient means in a substantially linear manner.

114


卷之三


2/4

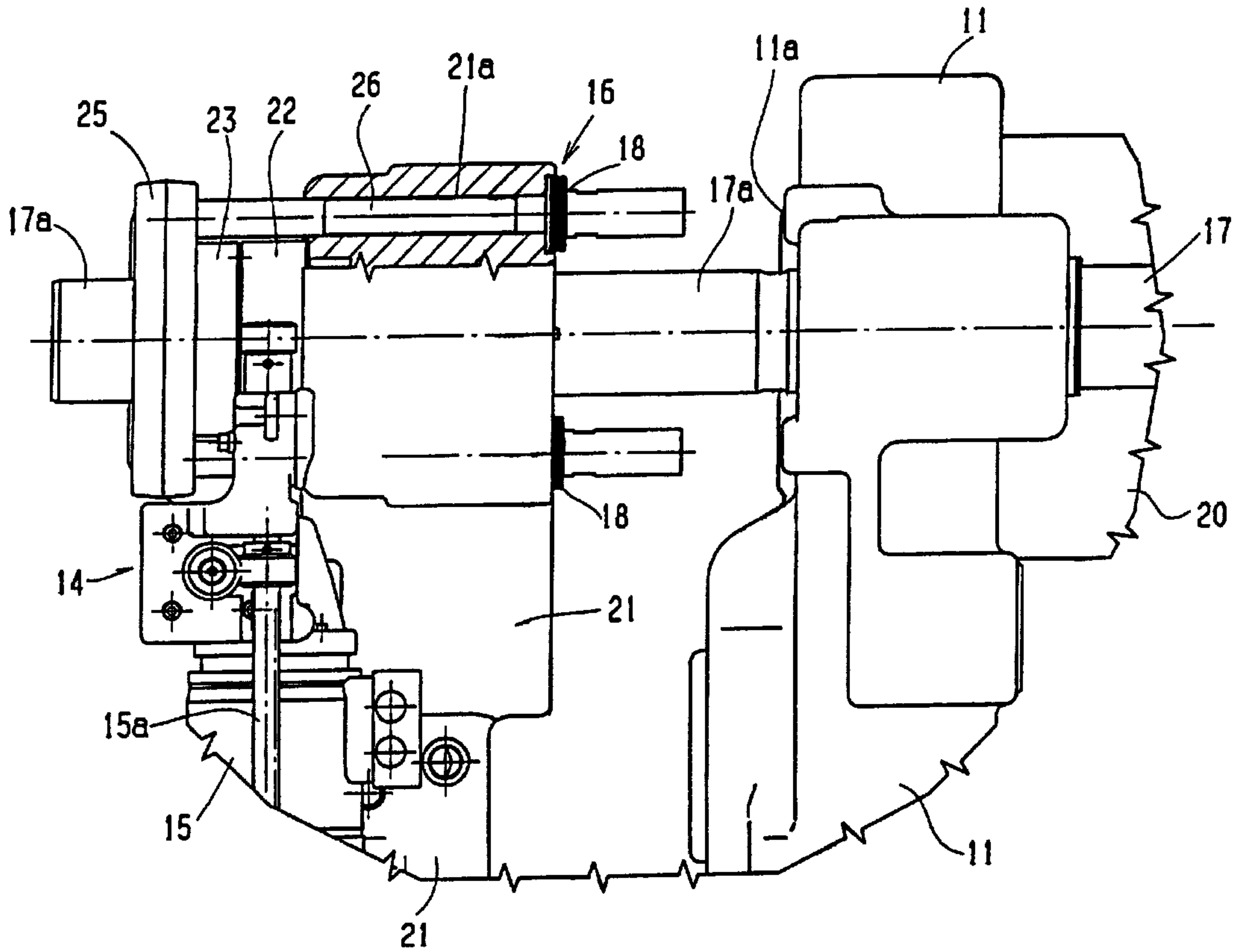

314

FIG. 3

四
七
七

