WO 03/083617 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
9 October 2003 (09.10.2003)

PCT

(10) International Publication Number

WO 03/083617 A2

(51) International Patent Classification”: GO6F

(21) International Application Number: PCT/US03/09464

(22) International Filing Date: 25 March 2003 (25.03.2003)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

10/107,091 25 March 2002 (25.03.2002) US

(71) Applicant: NAZOMI COMMUNICATIONS, INC.
[US/US]; 2200 Laurelwood Road, Santa Clara, CA 95054
(US).

(72) Inventors: PATEL, Mukesh, K.; 787 Boar Circle, Fre-
mont, CA 94539 (US). RAVAL, Udaykumar, R.; 2200
Monroe Street, #1608, Santa Clara, CA 95050 (US).

(74) Agents: MALLIE, Michael, J. et al.; Blakely, Sokoloff,
Taylor & Zafman LLP, 12400 Wilshire Boulevard, 7th
floor, Los Angeles, CA 90025 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR,BY,BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN, YU,
ZA, 7M, ZW.
(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO,
SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Titlee HARDWARE-TRANSLATOR-BASED CUSTOM METHOD INVOCATION SYSTEM AND METHOD

(57) Abstract: A system for implementing Java methods is described in which a Java virtual machine replaces normal method invo-
cation instructions with custom method invocation instruction which are recognized by hardware translator. The hardware translator
can then use stored instructions from a microcode unit to cause a processor to set up a special hardware unit.

WO 03/083617 PCT/US03/09464

HARDWARE-TRANSLATOR-BASED CUSTOM METHOD
INVOCATION SYSTEM AND METHOD

Background of the Invention

[0001] The present invention relates to hardware units for translating Java
bytecodes into register-based instructions that can be executed by a processor and
Java accelerators. Additionally, the invention is applicable to software based Java
execution.

[0002] Java™ is an object-orientated programming language developed by Sun
Microsystems. The Java language is small, simple and portable across platforms
and operating systems, both at the source and binary level. This makes the Java
programming language very popular on the Internet.

[0003] Java’s platform independence and code compaction are the most
significant advantages of Java over conventional programming languages. In
conventional programming languages, the source code of a program is sent to a
compiler which translates the program into machine code or processor instructions.
The processor instructions are native to the system’s processor. If the code is
compiled on an Intel-based system, the resulting program will run only on other
Intel-based systems. If it is desired to run the program on another system, the user
must go back to the original source code, obtain a compiler fof the new processor,
and recompile the program into the machine code specific to that other processor.
[0004] Java operates differently. The Java compiler takes a Java program and,
instead of generating machine code for a specific processor, generates bytecodes.
Bytecodes are instructions that look like machine code. To execute a Java

program, a bytecode interpreter takes the Java bytecodes and converts them to

WO 03/083617 PCT/US03/09464

-2 -

equivalent native processor instructions and executes the Java program. The Java
bytecode interpreter is one component of the Java Virtual Machine (JVM).

[0005] Having the Java programs in bytecode form means that instead of being
specific to any one system, the programs can be run on any platform and any
operating system as long as a Java Virtual Machine is available. This allows a
binary bytecode file to be executable across platforms.

[0006] The disadvantage of using bytecodes is execution speed. System- specific
programs that run directly on the hardware for which they are compiled run
significantly faster that Java bytecodes, which must be processed by the Java
Virtual Machine on that machine. The processor must both convert the Java
bytecodes into native instructions in the Java Virtual Machine and execute the
native instructions.

[0007] Poor Java software performance, particularly in embedded system
designs, is a well-known issue and several techniques have been introduced to
increase performance. However these techniques introduce other undesirable side
effects. The most common techniques include increasing system and/or
microprocessor clock frequency, modifying a JVM to compile Java bytecodes and
using a dedicated Java microprocessor.

[0008] Increasing a microprocessor’s clock frequency results in overall improved
system performance gains, including performance gains in executing Java software.
However, frequency increases do not result in one-for-one increases in Java
software performance. Frequency increases also raise power consumption and
overall system costs. In other words, clocking a microprocessor at a higher
frequency is an inefficient method of accelerating Java software performance.
[0009] Compilation techniques (e.g., just in time “JIT” compilation) contribute
to erratic performance because the latency of software execution is delayed during

compilation. Compilation also increases system memory usage because compiling

WO 03/083617 PCT/US03/09464

-3 -

and storing a Java program consumes an additional five to ten times the amount of
memory over what is required to store the original Java program.

[0010] Dedicated Java microprocessors use Java bytecode instructions as their
native language, and while they execute Java software with better performance than
typical commercial microprocessors they impose several significant design
constraints. Using a dedicated Java microprocessor requires the system design to
revolve around it and forces the utilization of specific development tools usually
only available from the Java microprocessor vendor. Furthermore, all operating
system software and device drivers must be custom developed from scratch because
commercial software of this nature does not exist.

[0011] A number of Java instructions concern methods. As explained in "The
Java Virtual Machine Specification" (Yellin et al.), there are two kinds of methods,
namely 'instance methods' and 'class (static) methods'. Before an instance method
can be invoked, an instance is required while class methods do not require an
instance. Also, instance methods use late binding while class methods use static or
early binding. When class methods are invoked by the Java Virtual Machine, the
invoked method is selected based on the object reference which is known at
compile time. Instance methods are invoked by the Java Virtual Machine by
selecting the method to be invoked based on the actual class of the object which is
only known at runtime. Some of the Java bytecodes which invoke methods are
invokevirtual, invokestatics, ivokeinterface, etc. '

[0012] Fig. 8 shows how a compiler generates bytecodes from Java programs for
invoking methods. References to methods are initially symbolic. All invoke
instructions refer to a constant pool entry that initially contains a symbolic
reference. When the JVM encounters an invoke instruction, the symbolic
reference is resolved by doing various checks and locating the method and the
symbolic reference is replaced with a direct reference. The process of resolving

references and invoking methods can be very slow. Commonly known techniques

WO 03/083617 PCT/US03/09464

4 -

to get around the slow execution is to rename the invoke instruction as invoke
quick after resolving the symbolic reference. This now becomes a new instruction,
identified as one that can do a very fast invoke of a method if encountered by the
JVM again. Invoke instructions are used for invoking Java methods as well as
native methods. For Java methods the virtual machine creates a new stack frame
(method's local variables, operand stack and other data required by the JVM) for
each Java method it invokes. The size of the operand stack and local variables is
calculated at compile time and placed in the class file. When the JVM invokes a
Java method, it creates a stack frame of the proper size and pushes the new stack
frame onto the Java stack (comprising multiple stack frames). For instance
methods, the JVM pops the reference and arguments from the operand stack of the
calling method's stack frame. The JVM places the reference on the new stack
frame as local variable O and all the arguments are placed as local variables
thereafter, i.e. local variable 1, 2, 3, etc. For a class method only the arguments
from the calling method's operand stack are placed on the new stack frames local
variables 1, 2, 3, etc. Once the arguments (and the reference in the case of
instance methods) are placed on the new stack frame, the JVM makes the new stack
frame current and sets the program counter to point to the first instruction of the
new method. There are several instructions to return from a method. If there is a
return value, it must be on the operand stack. This return value is popped from the
operand stack and pushed on the operand stack of the calling method's stack frame.
The current method's stack frame is popped and the calling method's stack frame is
made current. The program counter is set to the instruction following the calling
method instruction that invoked the method. While the above discussion relates to
Java methods, it is possible for a JVM to invoke native methods which are usually
implementation dependant. When a native method is invoked, the JVM does not
push a new stack frame onto the Java stack. Arguments can be passed from the

calling method's operand stack and return values returned to the operand stack.

WO 03/083617 PCT/US03/09464

-5-

The Java stack is once again used when the native method returns. A number of
Java methods can be implemented in libraries which are maintained locally at the
system. The Java program can access these at local libraries and use them to
implement a number of different functions. These functions include graphics
functions. Examples of a local library defined by Java is the LCD display, PNG
image decoder or multimedia library. In order to speed the operation of these Java
applications, often native methods are used. Native methods are Java methods
whose implementation are written in another programming language such as C or
C-++. The use of the native method allows the Java method to operate quicker
because the implementation is in a compiled language rather than in an interpreted
language such as Java.

[0013] These invoke instructions are ﬁsually followed by a constant pool index
or a direct reference replacing the constant pool index.

[0014] It is desired to have an improved system for dealing with method
invocation wherein the applications can directly and efficiently execute methods
with high performance with and without special hardware to accelerate the

methods.

Summary of the Invention

[0015] An exemplary embodiment of the present invention consists of a Java
Virtual Machine (JVM) running on a CPU supported by an operating system. The
system may or may not have hardware assist for executing Java code. The
hardware assist may be in the form of a co-processor or integrated within the CPU.
The system has Java libraries which are resident on the system or device (e.g. cell
phones or Set Top Boxes) for executing various functions as called by applications.
These applications can be simple such as scan the keys on a cell phone to more
complex such as draw an image or multimedia images on the cell phone screen.

One example of the Java hardware assist would be an accelerator which uses

WO 03/083617 PCT/US03/09464

-6 -

microcode. The applications could invoke methods within the resident Java or
native libraries on the device for some of the functions described above. The
libraries can also be dynamically downloaded over a wired or wireless network
such as Ethernet, GSM, etc.

[0016] One embodiment of the invention includes a hardware translator unit for
Java, wherein a custom method invocation instruction, the invoke-custom
instruction (different than the invoke-special instruction as specified in the Java
Virtual Machine specification), causes the hardware translator unit to construct
register-based instructions to be sent to a processor so that the processor initializes
a special or custom hardware unit to run the method in whole or in part. In this
way, the special hardware unit can run the method separately from and in parallel
to the operations of the processor. Prior to calling the invoke-custom method,
appropriate arguments and/or reference would be pushed onto the operand stack.
Regular invokes are usually followed by a constant pool reference of a direct
reference to a method whereas the invoke-custom method is followed by device,
function and type information in one embodiment.

[0017] In one embodiment, the invoke-custom method invocation instruction is a
Java bytecode which is not assigned by the Java specification or the implementation
dependent bytecodes (254 and 255) where it is possible to have multiple bytes after
the bytecode. When a Java application is started, the system or device causes the
JVM to be invoked and while running the virtual machine, the hardware translator
is enabled when the interpreter loop is encountered. The hardware translator starts
decoding the bytecodes and generates register-based instructions. The register-
based instructions could be for RISC, CISC, DSP SIMD, VLIW etc. units. When
the translator encounters a native method invoke, the normal invoke instruction is
replaced by an invoke-custom invocation instruction. This can be done directly by
the hardware translator or by generating an exception or performing a callback to a

host processor. The translator can be integrated within the host processor in one

WO 03/083617 PCT/US03/09464

-7 -

embodiment. Thereafter, when the custom invocation instruction is loaded into the
hardware translator unit, the register-based instructions are constructed using the
microcode unit. The register-based instructions cause the special hardware
translator unit to be set up to run the method. Examples of a special hardware
units include a graphics engine, a video engine, a single-instruction multiple data
(SIMD) unit, a digital signal processor (DSP), and a direct memory access (DMA)
unit or other computing and processing units which may be implemented as

software or hardware.

Brief Description of the Drawing Figures
[0018] Fig. 1 is a flow chart that illustrates the operation of one embodiment of
the system of the present invention.

Fig. 2 is a diagram of one embodiment of the system of the present
invention.

Fig. 3 is a diagram illustrating one embodiment of the system of the
present invention in which a dedicated execution engine (CPU) is used.

Fig. 4 is a diagram that illustrates one embodiment of a system of the
present invention in which the special hardware is a graphics acceleration engine.

Fig. 5 is a diagram of one embodiment of the system of the present
invention in which the processor is used to execute translated instructions from a
hardware translator and native instructions that bypass the hardware translator.

Fig. 6 is a diagram that illustrates one embodiment of the method of the
present invention.

Fig. 7 is a diagram that illustrates one example for the system of Fig. 6.

Fig. 8 is a diagram of an invoke custom instruction.

Fig. 9 is a diagram illustrating the use of device, function and type in an

instruction.

WO 03/083617 PCT/US03/09464

Detailed Description of the Invention

[0019] Fig. 1 is a diagram that illustrates one embodiment of the system of one
embodiment of the present invention. In step 20, the application or applet is
provided. In step 22 a class loader loads the classes that are required for the
application to run. In the optional step 24, a bytecode verifier ensures that all the
bytecodes are valid. Once the bytecode verifier determines that the bytecodes are
valid, the system goes into a bytecode interpreter. In step 26, a hardware
translator unit determines whether the bytecode is a callback bytecode. If "yes,"
the hardware translator unit causes a virtual machine, such as a modified Java
virtual machine, to be loaded into a processor. The software checks to see whether
the method is a invoke-custom method in step 28. If not, the bytecode is executed
in software in step 30, and control is returned to the hardware. If the method is a
invoke-custom method, the invoke-custom bytecode is generated and stored into
random access memory (RAM) in step 32. In one embodiment, the invoke-custom
bytecode is an unassigned bytecode. This new bytecode would be an
invoke-custom bytecode preferably with resolved references The replacement is
preferably done after the bytecode verifier checks the bytecode. The hardware
unit, if the instruction is not a callback bytecode, checké to see whether it is a
invoke-custom bytecode in step 34. If it is not a invoke-custom bytecode, the
bytecode is executed in hardware in step 36. If it is a invoke-custom bytecode, in
step 38 the hardware system launches into the microcode for the invoke-custom
bytecode. The microcode prepares a special hardware unit for operation, such as
graphics unit where Xstart, Ystart, Xend, Yend and color are written into hardware
registers for drawing lines. Alternatively in step 38 the invoke-custom instruction
is executed in software where the special hardware units registers are read or
written. In step 40, the next bytecode is checked. Notice that the microcode in the
hardware unit is used to execute the invoke-custom method once the invoke-custom

bytecode is replaced for the normal bytecode.

WO 03/083617 PCT/US03/09464

-9.

[0020] The length of the entire invoke-custom instruction is three bytes and is the
same as regular invoke instructions which are one byte for the instruction and two
bytes for the index. Keeping the length of the instruction the same avoids
recalculating the relative references provided by other bytecodes with the code
being executed. This instruction length can be increased with special indirection
encoding in some of the bits of the index. Figure 9 shows an example of how
device, function and type can be deployed in place of the index field. The two
index bytes (I15 - I0) may be represented as I15 - I13 — provide 8 device types
(e.g. video unit (000), graphics unit (001), SIMD unit (010), Network gateway
(011), multi-media messaging (100), ...etc.), I12 - I8 — provide 16 functions for
each of the 8 devices, 17 - 16 — provides 4 types of parameters for each type of
function and 16 - I0 is the number of arguments (up to 128) on the stack for the
particular device, function and parameter. An example would be a graphics
hardware unit where the application wants to draw an anti-aliases line so one
possible assignment would be I15 - 113 — 001 (graphics unit), 112 - I8 — 0000
(line draw function), 17 - 16 — 00 (anti-aliased), and 16 - I0 — 0000101 (5
operands, Xstart, Ystart, Xend, Yend, and Color). The assignment of the
particular its in the index field can vary according to the needs of the particular

. implementation and function for the kind of product to be commercialized. An
example of such assignment of the index bits is shown in Figure 8. The above
example pertains to one particular realization of an invoke-custom instruction. It is
equally possible to have multiple invoke-custom instructions, i.e. invoke-custom 2,
invoke-custom 3, etc., each followed by its own definition of the two byte index
fields. This provides for a powerful means to directly access hardware
functionality or particular device drivers. The index bits can be parsed by software
or microcode or decoded in hardware. In one embodiment, the invoke-custom
bytecode would be decoded by hardware and provide an entry point for the

microcode. The bytecode itself can be an entry point for the microcode as well.

WO 03/083617 PCT/US03/09464

-10 -

The microcode can read the device, function and type field of the index and
appropriately enable hardware or provide a reference to where the drivers are for
that hardware. Alternatively the microcode could provide a reference for where to
execute that method in software. In another embodiment, the software interpreter
would decode the invoke-custom bytecode and directly write or enable the
hardware to execute the method. It is also possible to indicate the method type by
simply having a particular value in the index fields. Another way to provide the
type of device and function, etc., is in the arguments of the invoke-custom method.
[0021] An exemplary embodiment of the present invention comprises a hardware
translator unit receiving intermediate language instructions and producing native
instructions such as a register-based instruction for RISC, CISC, DSP, VLIW,
SIMD etc. devices. At least one intermediate language instruction is a custom
method invocation for which the hardware translator unit constructs register-based
instructions to be sent to a processor so that the processor initializes a special
hardware unit to run the method.

[0022] In the example of Figure 2, the hardware translator unit 44 receives
intermediate language instructions and produces register-based instructions. At
least one intermediate language instruction is a custom method invocation for
which the hardware translator unit constructs register-based instructions to be sent
to a processor 54 so that the processor initializes a special hardware unit 56 to run
the method.

In one embodiment, the custom method causes data to be directly written
to or read from the special hardware unit. In one embodiment, the data is sent to
the special hardware unit over a bus. In one embodiment, the bus is a coprocessor
bus. In one embodiment, the bus is a system bus.

In one embodiment, the register-based instruction are for DSP, VLIW,

SIMD, CISC and general purpose processors, including legacy processors. In one

WO 03/083617 PCT/US03/09464

-11 -

embodiment, the hardware translator produces instructions for a legacy processor
of any kind.

In one embodiment, index bits of the intermediate language instructions
for the custom method invocation are redefined to specify the type of method to
execute. In one embodiment, the index bits are replaced by a device function and
type field.

In one embodiment, the operand field bits of the intermediate language
instructions for the custom method invocation are redefined to specify the type of
method to execute. In one embodiment, the operand field bits are replaced by a
device function and type field bits.

In one embodiment, the operand field bits and index bits of the
intermediate language instructions for the custom method invocation are redefined
to specify the type of method to execute. In one embodiment, the operand field
bits and index bits are replaced by a device function and type field bits.

In one embodiment, the hardware translator is a hardware accelerator.

In an exemplary embodiment, a system comprises a hardware translator
unit receiving intermediate language instructions and producing register-based
instructions. The at least one method invocation results in the hardware unit
passing control to a virtual machine running in software that replaées the
instruction for the method invocation in memory with a custom method invocation
instruction. The custom method invocation instruction causes the hardware
translator unit constructs register-based instructions to be sent to a processor so that
the processor initializes a custom hardware unit to run the method.

In the example of Figure 2, hardware translator unit 44 receives
intermediate language instructions and producing register-based instructions. The
hardware translator unit 44 producing at least portions of register-based
instructions for execution. The at least one method invocation results in the

hardware translator unit 44 passing control to a virtual machine running in software

WO 03/083617 PCT/US03/09464

-12 -

that replaces the instruction for the method invocation in memory with a custom
method invocation instruction. The custom method invocation instruction causes
the hardware translator unit 44 constructs native instructions to be sent to a
processor 54 so that the processor initializes a special hardware unit to run the
method.

In an exemplary embodiment, a hardware translator unit receives
intermediate language instructions and produces register-based instructions. At
least one intermediate language instruction is a special graphics method invocation
for which the hardware translator constructs register-based instructions to be sent
to a processor so that the processor initializes a graphics engine to run the method.

In the example of Figure 2, hardware translator unit 44 receives
intermediate language instructions and produces register-based instructions. At
least one intermediate language instruction is a special graphics method invocation
for which the hardware translator unit constructs register-based instructions to be
sent to a processor so that the processor initializes a graphics engine to run the
method.

[0023] Fig. 2 illustrates one embodiment of the system of the present invention.
The hardware translator unit 44 translates intermediate language instructions into
register-based instructions. The intermediate language instructions are preferably
Java bytecodes. Note that other intermediate language instructions, such as MSIL
for .NET/C# or Multos bytecodes, can be used as well. For simplicity, the
remainder of the specification describes an embodiment in which Java is used, but
other intermediate language instructions can be used as well.

[0024] In one embodiment, the hardware translator 44 translates Java bytecodes
into native instructions that can be run by the processor. By doing the translation
in hardware, the operation of the Java program can be significantly speeded up. A
description of a Java translator unit is given in Patent Application No. 09/208,741.

This translator can also be integrated in the CPU.

WO 03/083617 PCT/US03/09464

-13 -

[0025] In one embodiment, the hardware translator unit 44 includes a bytecode
decoder 46, a microcode unit 48, an instruction composition unit 50, and a Java
Program Counter (PC), stack and variable manager 52. In the preferred
embodiment, the bytecode decoder 46 decodes the bytecodes as they are received.
The microcode unit 48 stores the portions of the translated instructions. The stack
and variable manager 52 supplies the register indications to the instruction
composition unit 50 so that the registers which store the portions of the Java
operand stack are accessed. The stack and variable manager 52 also causes the
microcode unit 48 to produce instructions that cause the manipulation of the
portions of the Java operand stack or variable stored in the register file of CPU 54.
By storing portions of the Java operand stack and variables in the register file of
the CPU 54, the system of the present invention can operate more efficiently. The
system of the present invention can, however, also operate without a stack and
variable manager 52, but it would operate much less efficiently. As will be
described below, in addition to the normal translated instructions in the microcode
unit 48, the microcode unit 48 will also store instructions for the invoke-custom
methods which are indicated by the invoke-custom method invoke instructions. As
described above, the invoke-custom method invoke instructions are indicated by at
least one unassigned Java bytecode or the user defined bytecode, which has been
written into the instruction memory by the modified Java virtual machine or is in
the resident libraries.

[0026] The microcode instructions are sent as the translated register-based
instructions to the CPU 54. The CPU 54 then sets up the special hardware unit 56.
Note that the special hardware unit can be a graphics engine, a video engine, a
single-instruction multiple data (SIMD) unit, a digital signal processor (DSP), a
direct memory access (DMA) unit, or any other type of special hardware unit.
[0027] In a preferred embodiment, the CPU 54 sets up registers in the special

hardware unit so that the special hardware unit can run the method in parallel to the

WO 03/083617 ~ PCT/US03/09464

- 14 -

normal operations of the system, i.e. the method can be dispatched and the
translator can continue with the next bytecode instruction. Typically, the special
hardware unit will produce an interrupt to the CPU when it is finished or the CPU
can poll a done flag or status register. Alternately, the CPU can halt its oinerations
until the special hardware units are finished.

[0028] In one embodiment, the decoded bytecodes from the bytecode decode unit
are sent to a state machine unit and an Arithmetic Logic Unit (ALU) in the
instruction composition unit. The ALU is provided to rearrange the bytecode
instructions to make them easier to be operated on by the state machine and
perform various arithmetic functions including computing memory references. The
state machine converts the bytecodes into native instructions using the microcode
table. Thus, the state machine provides an address which indicates the location of
the desired native instruction in the microcode table. Counters or other indications
are maintained to keep a count of how many entries have been placed on the
operand stack, as well as to keep track of and update the top of the operand stack in
memory and in the register file. In a preferred embodiment, the output of the
microcode table is augmented with indications of the registers to be operated on in
the register file. The register indications are from the counters and interpreted
from bytecodes. To accomplish this, it is necessary to have a hardware indication
of which operands and variables are in which entries in the register file. Native
instructions are composed on this basis. Alternately, these register indications can
be sent directly to the register file.

[0029] In another embodiment of the present invention, the Stack and Variable
(Var) manager assigns Stack and Variable values to different registers in the
register file. An advantage of this alternate embodiment is that in some cases the
Stack and Var values may switch due to an Invoke Call and such a switch can be
more efficiently done in the Stack and Var manager rather than producing a

number of native instructions to implement this.

WO 03/083617 PCT/US03/09464

-15 -

[0030] In one embodiment, a number of important values can be stored in the
hardware translator to aid in the operation of the system. These values stored in
the hardware translator help improve the operation of the system, especially when
the register files of the execution engine are used to store portions of the Java
stack.

[0031] The hardware translator unit preferably stores an indication of the top of
the stack value (memory reference of the top stack element). Additionally, the
translator may keep an indication of which register in the CPU's register file has
the top of stack content. This top of the stack value aids in the loading of stack
values from the memory. The top of the stack value is updated as instructions are
converted from stack-based instructions to register-based instructions. The register
in the translator which keeps an indication of which register in the CPU's register
file has top of stack would also get updated. When instruction level parallelism is
used, each stack-based instruction which is part of a single register-based
instruction needs to be evaluated for its effects on the Java stack.

[0032] In one embodiment, an operand stack depth value is maintained in the
hardware translator. This operand stack depth indicates the dynamic depth of the
operand stack in the execution engine (CPU) register files. For example, if eight
stack values are stored in the register files, the stack depth indicator will read "8."
Knowing the depth of the stack in the register file helps in the loading and storing
of stack values in and out of the register files.

[0033] In a preferred embodiment, a minimum stack depth value and a maximum
stack depth value are maintained within the hardware translator unit. The stack
depth value is compared to the maximum and minimum stack depths. When the
stack value goes below the minimum value, the hardware translator unit composes
load instructions to load stack values from the memory into the register file of the

execution engine. When the stack depth goes above the maximum value, the

WO 03/083617 PCT/US03/09464

- 16 -

hardware translator unit composes store instructions to store stack values back out
to the memory.

[0034] In one embodiment, at least the top eight (8) entries of the operand stack
in the execution engine register file operated as a ring buffer, the ring buffer
maintained in the translator and operably connected to a overflow/underflow unit.
[0035] The hardware translator unit also preferably stores an indication of the
operands and variables stored in the register file of the execution engine. These
indications allow the hardware translator to compose the converted register-based
instructions from the incoming stack-based instructions.

[0036] The hardware translator unit also preferably stores an indication of the
variable base and operand stack base in the memory. This allows for the
composing of instructions to load and store variables and operands between the
register file of the execution engine and the memory. For example, when a Var is
not available in the register file, the hardware issues load instructions. The
hardware adapted to multiply the Var number by four and adding the Var base to
produce the memory location of the Var. The instruction produced is based on
knowledge that the Var base is in a temporary native execution engine register.
The Var number times four can be made available as the immediate field of the
native instruction being composed, which may be a memory access instruction with
the address being the content of the temporary register holding a pointer to the
Vars base plus an immediate offset. Alternatively, the final memory location of the
Var may be read by the execution engine with an instruction the translator and then
the Var can be loaded.

[0037] In one embodiment, the hardware translator unit marks the variables as
modified when updated by the execution of Java bytecodes. The hardware
translator can copy variables marked as modified to the system memory for some

bytecodes.

WO 03/083617 PCT/US03/09464

~17 -

[0038] In one embodiment, the hardware translator unit composes native
instructions wherein the native instructions operands contains at least two native
execution engine register file references where the register file contents are the data
for the operand stack and variables.

[0039] In one embodiment a stack-and-variable-register manager maintains
indications of what is stored in the variable and stack registers of the register file
of the execution engine. This informatjon is then provided to the decode stage and
microcode stage in order to help in the decoding of the Java bytecode and
generating appropriate native instructions.

[0040] In a preferred embodiment, one of the functions of a Stack-and-Var
register manager is to maintain an indication of the top of the stack. Thus, if for
example registers R1-R4 store the top 4 stack values from memory or by executing
byte codes, the top of the stack will change as data is loaded into and out of the
register file. Thus, register R2 can be the top of the stack and register R1 be the
bottom of the stack in the register file. When a new data is loaded into the stack
within the register file, the data will be loaded into register R3, which then
becomes the new top of the stack, the bottom of the stack remains R1. With two
more items loaded on the stack in the register file, the new top of stack in the
register file will be R1 but first R1 will be written back to memory by the
translators overflow/underflow unit, and R2 will be the bottom of the partial stack
in the register file.

[0041] Note that the system of the present invention can be arranged in a number
of different ways. Fig. 3 illustrates a system in which an accelerator chip 60
includes a dedicated execution engine processor 62 and the special hardware unit
64. The dedicated execution engine 62 is separate from the processor on the
system on a chip 66 which is used to run the Java virtual machine. The execution

engine 62 is dedicated for use with the translator unit 68.

WO 03/083617 PCT/US03/09464

- 18 -

[0042] Fig. 4 illustrates an example in which an accelerator chip 72 includes a
graphics acceleration engine 74 which acts as a special hardware unit. The
graphics accelerator 34 is associated with an LCD controller and display buffer 76
which causes the update of the LCD display 78. Note in this example the
accelerator chip operates to control the display of the Java programs onto the LCD
display and frame buffer in memory. Alternatively, the frame buffer may be
integrated on to the accelerator chip. Other units such as MPEG4 and audio/video
decoders and encoders may also be integrated on to the accelerator chip and
supported through Java programs as well as native programs. Since the Java
programs are more and more being used for graphics, keeping the control of the
Java program display at the accelerator chip can allow the system to operate more
efficiently than if a native method is used, for which control would be sent to the
system on a chip 80. The accelerator chip can also be integrated with a System on
Chip (SOC) either in the same silicon or as a multiple die stack with the system on
a chip in the same package or a multiple die stack with the memory in the same
package.

[0043] Fig. 5 illustrates an alternate embodiment in which the processor 82 runs
native instructions directly from the memory 84 or alternately can run the
translated instructions from the hardware translator 86.

[0044] Fig. 6 is a diagram that illustrates the operation of the system of one
embodiment of the present invention. Note that in this example, an architecture
similar to Fig. 5 is used, but it is to be understood that the method of the present
invention will work equally well for architectures of the type of Fig. 3. In step A,
the hardware translator causes a callback on a method invoke instruction. In step
B, the processor runs a Java virtual machine and replaces the normal method
invoke instruction with a invoke-custom method invocation instruction. In step C,
the invocation instruction is written into the memory over the normal method

invoke instruction. Later, in step D, the invoke- custom method invocation

WO 03/083617 PCT/US03/09464

- 19 -

instruction is sent to the hardware translator. In step E, the hardware translator
sends invoke-custom method instructions from the microcode unit to the processor.
The processor runs the instructions that load arguments onto the special hardware
unit. In step G, the special hardware unit runs the process.

[0045] Fig. 7 illustrates an example of such a system in which a graphics display
is shown. As shown in step A, a draw line function is translated into bytecodes,
some of which set up the stack with arguments, and after which an invoke
instruction is issued an index. In step B, the invoke instruction is converted into
the invoke custom instruction. In one embodiment, the invoke custom instruction
has an argument which is a descriptor indicating the type of custom method. Note
that only a single special bytecode for the invoke custom needs to be used,
whereas the descriptors substituted in the index field can describe a wide variety of
custom functions.

[0046] In step C, the invoke instruction is overwritten in memory by the

invoke custom bytecode with the descriptor = draw line. In steps D and E, the
invoke_custom draw line is translated by the hardware translator into native
instructions that cause the processor to load up the graphics engine with the
required argument and cause the graphics engine to execute. In steps F and G, the
graphics engine has the arguments loaded into graphics unit registers by the CPU.
The graphics engine produces a line between the points (D, C) and (B, A).

[0047] Fig. 7 shows a graphics example, but note that a wide variety of different
custom methods can be implemented using the system of the present invention. In
one embodiment, a single invoke custom bytecode is used with the following
descriptor indicating the specific custom method.

[0048] In an exemplary embodiment, the hardware translator unit and the
processor is on a single silicon chip. In one embodiment, the hardware translator
is integrated with the system on a chip (SOC) on a single silicon die. In an

alternate embodiment, the hardware translator unit is placed on a separate chip

WO 03/083617 PCT/US03/09464

-20 -

from the processor. The chip with the processor and the chip with the hardware
translator unit can be combined in a stack package or multi-chip package.

[0049] _In one embodiment, the hardware translator unit is integrated on a single
chip along with a memory. The memory can store the intermediate language
instructions. In an alternative embodiment, the hardware translator unit can be
placed on its own chip and combined along with a memory chip in a stack package
or a multi-chip package

[0050] In one embodiment, index bits typically used with the intermediate
language instructions are modified to include a descriptor for the custom method.
In an alternate embodiment, the description for the custom method is stored onto a
stack. In this embodiment, the descriptor values are loaded before the custom
method is run.

[0051] The present application incorporates by reference the following earlier-
filed applications: Application No. 09/208,741 filed December 8, 1998;
Application No. 09/488,186 filed January 20, 2000; Application No. 60/239,298
filed October 10, 2000; Application No. 09/687,777 filed October 13, 2000;
Application No. 09/866,508 filed May 25, 2001, and Application No. 60/302,891
filed July 2, 2001.

[0052] It will be appreciated by those of ordinary skill in the art that the
invention can be implemented in other specific forms without departing from the
spirit or character thereof. The presently disclosed embodiments are therefore
considered in all respects to be illustrative and not restrictive. The scope of the
invention is illustrated by the appended claims rather than the foregoing
description, and all changes that come within the meaning and range of equivalents

thereof are intended to be embraced herein.

WO 03/083617 PCT/US03/09464

291 -
WHAT IS CLLAIMED 1IS:
1. A system comprising:

a hardware translator unit receiving intermediate language instructions
and producing native instructions, wherein at least one intermediate language
instruction is a custom method invocation for which the hardware translator unit
constructs at least one native instruction to be sent to a processor so that the

processor initializes a special hardware unit to run the method.

2. The system of Claim 1, wherein the native instruction is a register-

based instruction.

3. The system of Claim 1, wherein the custom method causes data to

be directly written to or read from the special hardware unit.

4. The system of Claim 3, wherein the data is sent to the special

hardware unit over a bus.

5. The system of Claim 4, wherein the bus is a coprocessor bus.
6. The system of Claim 4, wherein the bus is a system bus.
7. The system of Claim 1, wherein index bits of the intermediate

language instructions for the custom method invocation are defined to specify the

type of method to execute.

8. The system of Claim 7 wherein the index bits include device

function and type field bits.

WO 03/083617 PCT/US03/09464

-22 -

9. The system of Claim 1, wherein operand field bits on the stack for
the custom method invocation are redefined to specify the type of method to

execute.

10. The system of Claim 1 wherein the operand field bits include

device function and type field bits.

11. The system of Claim 1, wherein operand field bits in the stack and
index bits of the intermediate language instructions for the custom method

invocation are defined to specify the type of method to execute.

12. The system of Claim 11 wherein the operand field bits and index

bits include device function and type field bits.

13. The system of Claim 1 wherein the hardware translator is a

hardware accelerator.

14. The system of Claim 1, wherein the hardware translator unit

includes a microcode unit.

15. The system of Claim 1 wherein the intermediate langnage

instructions are Java bytecodes.

16. The system of Claim 1 wherein the special method invocation is a

bytecode not defined by the Java specification.

17. The system of Claim 1 wherein an argument of the special method

invocation instruction indicates the type of method.

WO 03/083617 PCT/US03/09464

-23-

18. The system of Claim 1 wherein the special hardware unit is a

graphics engine.

19. The system of Claim 1 wherein the graphics engine is associated

with a display buffer.

20. The system of Claim 1 wherein the special hardware unit is a

video unit.

21. The system of Claim 1 wherein the special hardware unit is a

single-instruction multiple data (SIMD) unit.

22. The system of Claim 1 wherein the special hardware unit is a

DSP.

23. The system of Claim 1 wherein the special method instructions are

produced by a virtual machine.

24. The system of Claim 23 wherein some methods cause the virtual
machine to replace normal method invocations with a special method invocation in

memory.

25. The system of Claim 1 wherein the processor runs the Java virtual

machine.

26. The system of Claim 1 wherein a separate processor runs the

virtual machine.

WO 03/083617 PCT/US03/09464

-2 -

27. The system of Claim 1 wherein the processor is a dedicated

Processor.

28. The system of Claim 1 wherein the processor 1S a general-purpose
processor which runs instructions not provided by the hardware translator unit as

well as instructions provided by the hardware translator unit.

29. The system of Claim 1 wherein the hardware translator unit
includes a microcode unit that interacts with a stack manager in the hardware

translator unit to produce the native instructions.

30. The system of Claim 1 wherein the hardware translator unit
includes a microcode unit that sends the data to an instruction composer which

produces the register-based instructions to be sent to the processor.

31. A system comprising:

a hardware translator unit receiving intermediate language instructions
and producing register-based instructions, wherein at least one method invocation
results in the hardware unit passing control to a virtual machine running in
software that replaces the instruction for the method invocation in memory with a
custom method invocation instruction, the custom method invocation instruction
causes the hardware translator unit to construct at least one register-based
instruction to be sent to a processor so that the processor initializes a special

hardware unit to run the method.

32. The system of Claim 31 wherein the native instruction is a

register-based instruction.

WO 03/083617 PCT/US03/09464

-25-

33. The system of Claim 31 wherein the hardware translator unit

includes a microcode unit.

34. The system of Claim 31 wherein the intermediate language

instructions are Java bytecodes.

35. The system of Claim 31 wherein the custom method invocation

instruction is not defined by the Java specification.

36. The system of Claim 31 wherein an argument to the custom

method invocation instruction indicates the type of method.

37. The system of Claim 31 wherein the special hardware unit is a

graphics engine.

38. The system of Claim 31 wherein the processor runs a Java virtual

machine.

39. The system of Claim 31 wherein a separate processor runs a Java

virtual machine.

40. The system of Claim 31 wherein the hardware translator unit
includes a microcode unit that interacts with a stack manager in hardware translator

unit to produce register-based instructions.

41. The system of Claim 31 wherein an instruction composer in the
hardware translator unit receives data from a microcode unit to produce the

register-based instructions.

WO 03/083617 PCT/US03/09464

-26 -

42. A system comprising:

a hardware translator unit receiving intermediate language instructions
and producing native instructions, wherein at least one intermediate language
instruction is a custom graphics method invocation for which the hardware
translator unit constructs native instructions to be sent to a processor so that the

processor initializes a graphics engine to run the method.

43, The system of Claim 42 wherein the native instruction is a

register-based instruction.

44. The system of Claim 42 wherein the hardware translator unit

includes a microcode unit.

45. The system of Claim 42 wherein the graphics engine is associated

with a display buffer.

46. The system of Claim 42 wherein the graphics engine is associated

with a display.

47. The system of Claim 42 wherein the graphics engine produces a

display for an LCD display.

48. The system of Claim 42 wherein the intermediate language

instructions are Java bytecodes.

49. The system of Claim 42 wherein the custom method invocation

instruction is not defined in the Java specification.

WO 03/083617 PCT/US03/09464

-27 -

50. The system of Claim 42 wherein an argument to the custom

method invocation instruction indicates the type of method.

51. The system of Claim 42 wherein the custom method instructions

are produced by a virtual machine.

52. The system of Claim 51 wherein some methods cause the virtual
machine to replace the normal method invocation instruction with a custom method

invocation instruction.

53. The system of Claim 42 wherein the processor runs a virtual

machine.

54. The system of Claim 42 wherein a separate processor runs the

virtual machine.

55. The system of Claim 42 wherein a microcode unit interacts with
the stack manager and the hardware translator unit to produce register-based

instructions.

56. The system of Claim 42 wherein an instruction composer in the
hardware translator unit receives data from a microcode unit to produce the native

instructions sent to the processor.

WO 03/083617 PCT/US03/09464

-28 -

57. A method comprising:

in a hardware translator unit, receiving intermediate language
instructions and producing native instructions, wherein at least one intermediate
language instruction is a custom method invocation for which the hardware
translator unit constructs a custom native instruction to be sent to a processor; and

in the processor, in response to the custom native instruction, initializing

a special hardware unit to run the custom method.

58. The method of claim 57, wherein the custom method causes data

to be directly written to or read from the special hardware unit.

59. The method of Claim 57, wherein the data is sent to the special

hardware unit over a bus.

60. The method of Claim 59, wherein the bus is a coprocessor bus.

61. The method of Claim 57, wherein the bus is a system bus.

62. The method of Claim 57, wherein index bits of the intermediate
language instructions for the custom method invocation are defined to specify the

type of method to execute.

63. The method of claim 62, wherein the index bits include device

function and type field bits.

64. The method of claim 57, wherein operand field bits on the stack
for the custom method invocation are redefined to specify the type of method to

execute.

WO 03/083617 PCT/US03/09464

~29 -

65. The method of claim 57, wherein the operand field bits include

device function and type field bits.

66. The method of Claim 57, wherein operand field bits in the stack
and index bits of the intermediate language instructions for the custom method

invocation are defined to specify the type of method to execute.

67. The method of Claim 66 wherein the operand field bits and index

bits include device function and type field bits.

68. The method of Claim 57 wherein the hardware translator is a

hardware accelerator.

69. The method of Claim 57, wherein the unit includes a microcode

unit.

70. The method of Claim 57 wherein the intermediate language

instructions are Java bytecodes.

71. The method of Claim 57 wherein the custom method invocation is

a bytecode not defined by the Java specification.

72. The method of Claim 57 wherein an argument of the custom

method invocation instruction indicates the type of method.

73. The method of Claim 57 wherein the special hardware unit is a

graphics engine.

WO 03/083617 PCT/US03/09464

-30 -

74. The method of Claim 57 wherein the graphics engine is associated

with a display buffer.

75. The method of Claim 57 wherein the special hardware unit is a

video unit.

76. The method of Claim 57 wherein the special hardware unit is a

single-instruction multiple data (SIMD) unit.

77. The method of Claim 57 wherein the special hardware unit is a

DSP.

78. The method of Claim 57 wherein the custom method instructions

are produced by a virtual machine.

79. The method of Claim 78 wherein some methods cause the virtual
machine to replace normal method invocations with a custom method invocation in

memory.

80. The method of Claim 57 wherein the processor runs the Java

virtual machine.

81. The method of Claim 57 wherein a separate processor runs the

virtual machine.

82. The method of Claim 57 wherein the processor is a dedicated

processor.

WO 03/083617 PCT/US03/09464

-31 -

83. The method of Claim 57 wherein the processor is a general-
purpose processor which runs instructions not provided by the hardware translator

unit as well as instructions provided by the hardware translator unit.

84. The method of Claim 57 wherein the unit interacts with the stack

manager in the hardware translator unit to produce the native instructions.

85. The method of Claim 57 wherein the unit sends the data to an
instruction composer which produces the native instructions to be sent to the

Processor.

86. The method of Claim 57 wherein the native instructions are

register-based instructions.

87. A method comprising:

Interpreting an undefined bytecode as a custom bytecode, the custom
bytecode causing a processor to initialize a special hardware unit to run the custom
method without using a native method; and

running the custom method in the special hardware unit.

88. The method of Claim 87, wherein the custom method causes data

to be directly written to or read from the special hardware unit.

89. The method of Claim 88, wherein the data is sent to the special

hardware unit over a bus.

90. The method of Claim 89, wherein the bus is a coprocessor bus.

WO 03/083617 PCT/US03/09464

-32 -

91. The method of Claim 89, wherein the bus is a system bus.

92. The method of Claim 87, wherein index bits of the intermediate
language instructions for the custom method invocation are defined to specify the

type of method to execute.

93, The method of claim 92, wherein the index bits include device

function and type field bits.

94. The method of Claim 87, wherein operand field bits on the stack
for the custom method invocation are redefined to specify the type of method to

execute.

95. The method of Claim 87, wherein the operand field bits include
device function and type field bits.

96. The method of Claim 87, wherein operand field bits in the stack
and index bits of the intermediate language instructions for the custom method

invocation are defined to specify the type of method to execute.

97. The method of claim 96 wherein the operand field bits and index

bits include device function and type field bits.

98. The method of Claim 87 wherein the custom method invocation is

a bytecode not defined by the Java specification.

99. The method of Claim 87 wherein an argument of the custom

method invocation instruction indicates the type of method.

WO 03/083617 PCT/US03/09464

33 -

100. The method of Claim 87 wherein the special hardware unit is a

graphics engine.

101. The method of Claim 87 wherein the graphics engine is associated

with a display buffer.

102. The method of Claim 87 wherein the special hardware unit is a

video unit.

103. The method of Claim 87 wherein the special hardware unit is a

single-instruction multiple data (SIMD) unit.

104. The method of Claim 87 wherein the special hardware unit is a

DSP.

105. The method of Claim 87 wherein the custom method instructions

are produced by a virtual machine.

106. The method of Claim 105 wherein some methods cause the virtual
machine to replace normal method invocations with a custom method invocation in

memory.

107. The method of Claim 87 wherein a hardware unit translates an

intermediate language instruction into a native instruction.

108. A system comprising:
a hardware translator unit receiving intermediate language instructions

and producing native instructions, wherein at least one intermediate language

WO 03/083617 PCT/US03/09464

~34 -

instruction is a custom method invocation for which the hardware translator unit
constructs at least one native instruction to be sent to a processor so that the
processor initializes a special hardware unit to run the method, and

wherein the hardware translator unit and processor are on a single chip.

109. The system of Claim 108 wherein the processor is part of a system

on a chip.

110. A system comprising:

a hardware translator unit receiving intermediate language instructions
and producing native instructions, wherein at least one intermediate language
instruction is a custom method invocation for which the hardware translator unit
constructs at least one native instruction to be sent to a processor so that the
processor initializes a special hardware unit to run the method, and

wherein the hardware translator unit is on a separate chip from the
processor, wherein the processor chip and the hardware translator unit are placed

in a stack package or a multi-chip package.

111. The system of Claim 110 wherein the processor is part of a system

on a chip.

112. A system comprising:

a hardware translator unit receiving intermediate language instructions
and producing native instructions, wherein at least one intermediate language
instruction is a custom method invocation for which the hardware translator unit
constructs at least one native instruction to be sent to a processor so that the

processor initializes a special hardware unit to run the method, and

WO 03/083617 PCT/US03/09464

-35-

wherein the hardware translator unit is integrated with a memory which
stores the intermediate language instructions, wherein the hardware translator unit

and memory are on the same chip.

113. A system comprising:

a hardware translator unit receiving intermediate language instructions
and producing native instructions, wherein at least one intermediate language
instruction is a custom method invocation for which the hardware translator unit
constructs at least one native instruction to be sent to a processor so that the
processor initializes a special hardware unit to run the method, and

wherein the hardware translator unit is formed on a chip which is placed

along with a memory chip within a stack package or multi-chip package.

114. A system comprising:

a hardware translator unit receiving intermediate language instructions
and producing native instructions, wherein at least one intermediate language
instruction is a custom method invocation for which the hardware translator unit
constructs at least one native instruction to be sent to a processor so that the
processor initializes a special hardware unit to run the method, and

wherein the custom method invocation uses index bits as descriptors for

the custom method.

115. A system comprising:

a hardware translator unit receiving intermediate language instructions
and producing native instructions, wherein at least one intermediate language
instruction is a custom method invocation for which the hardware translator unit
constructs at least one native instruction to be sent to a processor so that the

processor initializes a special hardware unit to run the method, and

WO 03/083617 PCT/US03/09464

-36 -

wherein descriptors for the custom method are loaded onto the stack.

A

Launch into microcode
for custom Bytecode ;
Microcode prepares
special hardware for
operation

wi

WO 03/083617 PCT/US03/09464
Figure 1
Application or Applet —20
Class Loader —22
.Optional
Bytecode Verifier |— o4 ptiona
Bytecode Interpreter A
Hardware
Software
Yes
Callback\ | __ !
Bytecode
Next Bytecode | 40 ?
for
A 3 Custom
6\ Method
No
< Execute Bytecode in Custom
Hardware Method
30
i Yes A /

Generate custom
Bytecode into RAM

Execute in Software

32

38

e b o e i ——————— - = -

PCT/US03/09464
2/9

WO 03/083617

A .
<) dsa
<> Hunawis
4> 03
i PIA sabeuep
25 — SUVA pue ydelg
ad eaep
P auibuzy
i soydess
sng (shiun
alempieH [eoeds
214
_ I
A4 95
LINN
Japooaq
ndos € uopisodwo) —— < - Loway jeusax3y
] CA—— Jiun @Po20IdIN apooajlyg sapooaihg
SU0J}oNJISu] aAlEN A
8
om Jojejsuel] asempieH
1
124
Z ainbi4

PCT/US03/09464

WO 03/083617

3/9

(shun
Kowspy

-

soeaIy]
Kowapy

vo Hun atempiey
— {ejoadg
Jun uoyrnoaxy il
(10ssasoid)
. aujbug | 2o
uopnooxy
) ayseo
ejeqg
suopanIsu|
pajejsuesy
. si1a)s|bay
(w , > >
—»| euyoen opoooin nun
uopsnIsu] ﬂ>2. e N —g9 ELLITENT]
Jojejsuel] 11
|
< (172)
d + >
< »

dijyo Jojes9)j900Y
(1) uoponaysuj
abenbue
ale|pawdu|

|
09

€ ainBi4

Kowapy
1200

dsa

ndo

VNG

{diyo s10ssasoid)

(o0s)
djyo e uo wayshg

99

PCT/US03/09464

WO 03/083617

4/9

#AG/AY uld yse|4 ouhsy

~

T~
ovir yio PPA/SSA #ASd
P €2
ovir | Tid siasBoy \ >
T Fre— 1>
918 — |
_% _m 4&_.. 1SO B #I 0SO oubuz
<ls uopnoexg - \
Y < #AQY N\
ayoen #ESO '#2SO
A #AQY eled "#1S0 ‘#0S0
- (aoepeiuy Bl \ 1SOH
_ _ aoepajul oA WVYS)
o HCAMHTE0 o1sEN Jr—— #IM 0 |
- \ WS oIEMpPIEH aoepoy | \
| #7318 % 3HE o | #EngW3HE |
D \ ayoe)n - \
oquiod “ezv: oV Vi uoporJsuy YA A
AVES? | ak | —_ < . /
ysejd ouhsy ﬂ.lm_‘o_ﬁ.loo_ \ aubua uoness|acoe soydelo S1OL00! \
< N™1os| SIepNq Ae[dSIp % JO[I0/U0d Q0’1 < \ Gt
|
08
Wvais e
yse} ouhsy

Aejdsiq Q01

[
8.

¥ ainBi4

WO 03/083617

Memory

5/9

Figure 5

PCT/US03/09464

Bytecode

86

A

Ll

Hardware Translator

Native

Y

82

Processor

Bus

Instructions

Special
Hardware
Unit

PCT/US03/09464

WO 03/083617

6/9

108S300.1d

()

nun

i ——p aiemaley

je1oadg

Jabeuepy

SUVA pue yoeig

Od eaep

g3

(non)
jun
uopisodwon
uojjonlsuj

+l+

@ 8pos0IINW
pouIoN
wojsny Japodeq
Y 8podajig
®PO20IIY
uojiejsuely

un vposonI

10je{SUel] elempiey

A 4

AI
—

O
O,
©

$58004d suni jupn asempiey jepads

U ssempleH [ejpads ojul sjuswnbie Peoj Jely) SUOKONLSU| SUN J0SS300Id

SUOIONIISU| 2S[O JO DS SB J0SS001d BY) 0} SHUN NO| PUE 3PCO0IIY WO SUOHONLSU] SYOAU] POYIRL WIOJSNO SPUSS JOJB{SUEL | SIEMPIEH

I0je|SUBRIL BIEMPIEH O} JUBS UOJOMLSU])OAU| POUIaW WOJSND ‘19jeT]

SUORONUSU] @XOAU POYJSLL [BULIOU JBAC AIOLISW U} USHIM UORONIISL S3OAU| POLIBUI WOISND

UOJONISU 8Y0AU| POLJSLI LUOJSND LM UOIONISU| 8YOAU} POLIOW [EULIOU S80BIdS) WAL SUMJ JOSS3201d

UORONISU| 840AU] POLJALW B UO YIBG|[ed B SISNED JOJBjSUBL] SJempieH

9 ainbiy

Kowapy

WO 03/083617 PCT/US03/09464

7/9
Figure 7
: Memory
Draw Line (Arguments)
Push A
Push B
@ Push C
Push D
Set up stack with invoke Index
arguments
Invoke Index

Invoke Index

4

Invoke_Custom (Draw Line)

@ Memory

Push A

Push B

Push C

Push D .
Invoke _Custom (Draw Line)

@ + @ Invoke_Custom (Draw Line)

Translates to custom
method code
Store R §, X1 Reg
Store R 6, Y2 Reg

Store R7, X2 Reg
Store R 8, Y4 Reg

X1Reg Y1Reg X2 Reg Y2 Reg
D c B A
Special Logic
y
Draw Buffer
A
LCD Display (B,A)
(D,C)

WO 03/083617 PCT/US03/09464

8/9
Figure 8
bit 7 bit 0
Addr N Invoke_custom1
index 1

N+1

Device, function |

&type(2bytes) [T TTTTTTTTTC
N+2

WO 03/083617 PCT/US03/09464
9/9
Figure 9
15 113 112 18 17 16 10
[| v b T [
Index 1 . Index 2 R
[I I PO I T |

Device \\
Device 115-113 Function 112-18 Type 17,16
Video Unit 000 Function1 0000 Typet 00
Graphics Unit 001 Function2 0001 Type2 .01
SIMD Unit 010 i
Gateway 011
Mulitmedia Messageing 100

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

