
(12) STANDARD PATENT (11) Application No. AU 2013286730 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Video parameter set for HEVC and extensions

(51) International Patent Classification(s)
HO4N 19/30 (2014.01)

(21) Application No: 2013286730 (22) Date of Filing: 2013.07.02

(87) WIPO No: W014/008286

(30) Priority Data

(31) Number (32) Date (33) Country
13/932,909 2013.07.01 US
61/667,387 2012.07.02 us
61/798,135 2013.03.15 us
61/669,587 2012.07.09 us

(43) Publication Date: 2014.01.09
(44) Accepted Journal Date: 2017.07.20

(71) Applicant(s)
Qualcomm Incorporated

(72) Inventor(s)
Chen, Ying;Wang, Ye-Kui

(74) Agent / Attorney
Madderns Patent & Trade Mark Attorneys, GPO Box 2752, ADELAIDE, SA, 5001, AU

(56) Related Art
TSAI CHIA-YANG et al: "Non-CE8: Pure VLC for SAO and ALF", JCTVC-G220,
ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, Geneva, CH, 21-20 November
2011
WENGER, S. et al: "Adaptation Parameter Set (APS)", JCTVC-F747r3, ITU-T SG16
WP3 and ISO/IEC JTC1/SC29/WG11, Torino, IT, 14-22 July 2011
BOYCE, J. et al: "SEl message for sub-bitstream profile & level indicators",
JCTVC-10231, ITU-T SGI 6 WP3 and ISO/IEC JTC1/SC29/WG1 1, Geneva, CH, 27
April - 7 May 2012
WANG, YE-KUI et al: "AHG12: Video parameter set and its use in 3D-HEVC",
JCTVC-10571, ITU-T SGI 6 WP3 and ISO/IEC JTC1/SC29/WG1 1, Geneva, CH, 27
April - 7 May 2012

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau
(10) International Publication Number

(43) International Publication Date W O 2014/008286 Al
9 January 2014 (09.01.2014) W I P0 I P CT

(51) International Patent Classification: (74) Agent: FITZGERALD, Kelly Patrick; Shumaker & Sief
H04N 7/26 (2006.01) fert, P.A., 1625 Radio Drive, Suite 300, Woodbury, Min

(21) International Application Number: nesota 55125 (US).

PCT/US2013/049121 (81) Designated States (unless otherwise indicated, for every

) .a kind of national protection available): AE, AG, AL, AM,
(22) International Filng Date: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

2 July 2013 (02.07.2013) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(25) Filing Language: English DO, DZ, EC, EE, EG, ES, Fl, GB, GD, GE, GH, GM, GT,

HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR,
(26) Publication Language: English KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,

(30) Priority Data: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,

61/667,387 2 July 2012 (02.07.2012) US OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC,

61/669,587 9 July 2012 (09.07.2012) US SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,

61/798,135 15 March 2013 (15.03.2013) US TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

13/932,909 1 July 2013 (01.07.2013) US (84) Designated States (unless otherwise indicated, for every

(71) Applicant: QUALCOMM INCORPORATED [US/US]; kind of regional protection available): ARIPO (BW, GH,
ATTN: International IP Administration, 5775 Morehouse GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,

Drive, San Diego, California 92121-1714 (US). UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

(72) Inventors: CHEN, Ying; 5775 Morehouse Drive, San EE, ES, Fl, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
Diego, California 92121-1714 (US). WANG, Ye-Kui; MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
5775 Morehouse Drive, San Diego, California 92121-1714 TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
(US). KM, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: VIDEO PARAMETER SET FOR HEVC AND EXTENSIONS

(57) Abstract: A video processing device can be configured to process one
171 or more initial syntax elements for a parameter set associated with a video

PROCESS ONE OR MORE INITIAL SYNTAX bitstream; receive in the parameter set an offset syntax element for the para
ELEMENTS FOR A PARAMETER SET meter set that identifies syntax elements to be skipped within the parameter

ASSOCIATED WITH A VIDEO BITSTREAM set; and based on the offset syntax element, skip the syntax elements within
the parameter set and process one or more additional syntax elements in the

172 parameter set that are after the skipped syntax elements in the parameter set.

- RECEIVE IN THE VIDEO BITSTREAM AN
OFFSET SYNTAX ELEMENT FOR THE

PARAMETER SET

_ C173

SKIP A NUMBER OF BITS WITHIN THE
PARAMETER SET BASED ON THE OFFSET

SYNTAX ELEMENT

174

[PROCESS ONE OR MORE ADDITIONAL
SYNTAX ELEMENTS IN THE PARAMETER SET

o FIG. 7

W O 20 14/008286 A 1l II |II |||lIII lll||II|I |||||||||||||I||||I|I||I |||||||||||||||||||I

Published:

- with international search report (Art. 21(3))

WO 2014/008286 PCT/US2013/049121

VIDEO PARAMETER SET FOR HEVC AND EXTENSIONS

[0001] This application is related to:

U.S. Provisional Application No. 61/667,387 filed 2 July 2012,

U.S. Provisional Application No. 61/669,587 filed 9 July 2012, and

U.S. Provisional Application No. 61/798,135 filed 15 March 2013,

the entire content of each of which is incorporated by reference herein.

TECHNICAL FIELD

[0002] This disclosure relates to the processing of video data and, more particularly,

this disclosure describes techniques related to generating and processing parameter sets

for video data.

BACKGROUND

[0003] Digital video capabilities can be incorporated into a wide range of devices,

including digital televisions, digital direct broadcast systems, wireless broadcast

systems, personal digital assistants (PDAs), laptop or desktop computers, tablet

computers, e-book readers, digital cameras, digital recording devices, digital media

players, video gaming devices, video game consoles, cellular or satellite radio

telephones, so-called "smart phones," video teleconferencing devices, video streaming

devices, and the like. Digital video devices implement video compression techniques,

such as those described in the standards defined by MPEG-2, MPEG-4, ITU-T H.263,

ITU-T H.264/MPEG-4, Part 10, Advanced Video Coding (AVC), the High Efficiency

Video Coding (HEVC) standard presently under development, and extensions of such

standards. The video devices may transmit, receive, encode, decode, and/or store digital

video information more efficiently by implementing such video compression

techniques.

[0004] Video compression techniques perform spatial (intra-picture) prediction and/or

temporal (inter-picture) prediction to reduce or remove redundancy inherent in video

sequences. For block-based video coding, a video slice (i.e., a video frame or a portion

of a video frame) may be partitioned into video blocks, which may also be referred to as

treeblocks, coding units (CUs) and/or coding nodes. Video blocks in an intra-coded (I)

slice of a picture are encoded using spatial prediction with respect to reference samples

2

in neighboring blocks in the same picture. Video blocks in an inter-coded (P or B) slice

of a picture may use spatial prediction with respect to reference samples in neighboring

blocks in the same picture or temporal prediction with respect to reference samples in

other reference pictures. Pictures may be referred to as frames, and reference pictures

may be referred to a reference frames.

[0005] Spatial or temporal prediction results in a predictive block for a block to be

coded. Residual data represents pixel differences between the original block to be

coded and the predictive block. An inter-coded block is encoded according to a motion

vector that points to a block of reference samples forming the predictive block, and the

residual data indicating the difference between the coded block and the predictive block.

An intra-coded block is encoded according to an intra-coding mode and the residual

data. For further compression, the residual data may be transformed from the pixel

domain to a transform domain, resulting in residual transform coefficients, which then

may be quantized. The quantized transform coefficients, initially arranged in a two

dimensional array, may be scanned in order to produce a one-dimensional vector of

transform coefficients, and entropy coding may be applied to achieve even more

compression.

SUMMARY

[0006] This disclosure describes design techniques for parameter sets in video coding,

and more particularly, this disclosure describes techniques related to video parameter

sets (VPSs). VPSs are a syntax structure that may apply to multiple entire video

sequences. According to the techniques of this disclosure, a VPS may include an offset

syntax element to enable a media aware network element (MANE) to skip from one set

of fixed length syntax elements to another set of fixed length syntax elements, with the

skipped syntax element potentially including variable length syntax elements.

[0006A] In a first aspect, the present disclosure provides a method of processing

video data, the method comprising: processing one or more initial syntax elements in a

video parameter set (VPS) syntax structure associated with a video bitstream, wherein

the one or more initial syntax elements comprise fixed-length syntax elements that are

located prior to any variable length syntax elements in the VPS syntax structure,

wherein the VPS syntax structure includes information that applies to zero or more

entire coded video sequences; receiving, in the VPS syntax structure, an offset syntax

element for the VPS syntax structure, wherein a value of the offset syntax element

2A

equals a number of bytes in the VPS syntax structure that are to be skipped, wherein the

one or more initial syntax elements precede the offset syntax element in the VPS syntax

structure; based on the offset syntax element, skipping processing of at least one syntax

element within the VPS syntax structure; processing one or more additional syntax

elements in the VPS syntax structure, wherein the one or more additional syntax

elements are located after the at least one syntax element in the VPS syntax structure.

[0006B] In another form, the at least one syntax element comprises one or more

syntax elements coded using variable length coding.

[0006C] In another form, the one or more additional syntax elements comprise

additional fixed-length syntax elements and wherein the one or more additional syntax

elements follow the offset syntax element and follow the at least one syntax element.

[0006D] In another form, the one or more initial syntax elements comprise syntax

elements that include information related to session negotiation.

[0006E] In another form, the one or more initial syntax elements comprise syntax

elements for a base layer of the video data and the one or more additional syntax

elements comprise syntax elements for a non-base layer of video data.

[0006F] In another form, the VPS syntax structure is determined by a content of a

VPS identification syntax element found in a sequence parameter set (SPS) referred to

by a SPS identification syntax element, which is found in a picture parameter set (PPS)

referred to by a PPS identification syntax element found in each slice segment header.

[0006G] In another form, the processing is performed by a media aware network

element (MANE), and wherein the method further comprises forwarding the video data

to a client device.

[0006H] In another form, skipping processing of the at least one syntax element

within the VPS syntax structure comprises ignoring values of the at least one syntax

element.

[000611 In a second aspect, the present disclosure provides a method of processing

video data, the method comprising: generating one or more initial syntax elements for a

video parameter set (VPS) syntax structure associated with a video bitstream, wherein

the one or more initial syntax elements comprise fixed-length syntax elements that are

located prior to any variable length syntax elements in the VPS syntax structure,

wherein the VPS syntax structure includes information that applies to zero or more

entire coded video sequences; generating an offset syntax element for the VPS syntax

structure, wherein a value of the offset syntax element equals a number of bytes in the

2B

VPS syntax structure for which processing is to be skipped, wherein the one or more

initial syntax elements precede the offset syntax element in the VPS syntax structure;

generating at least one syntax element for which processing is to be skipped that

corresponds to the bytes for which processing is to be skipped; and generating one or

more additional syntax elements in the VPS syntax structure, wherein the one or more

additional syntax elements are located after the at least one syntax element for which

processing is to be skipped in the VPS syntax structure.

[0006J] In another form, the at least one syntax element for which processing is to

be skipped comprise one or more syntax elements coded using variable length coding.

[0006K] In another form, the one or more additional syntax elements comprise

additional fixed-length syntax elements and wherein the one or more additional syntax

elements follow the offset syntax element and follow the at least one syntax element for

which processing is to be skipped.

[0006L] In another form, the one or more initial syntax elements comprise syntax

elements including information related to session negotiation.

[0006M] In another form, the one or more initial syntax elements comprise syntax

elements for a base layer of video data and the one or more additional syntax elements

comprises syntax elements for a non-base layer of video data.

[0006N] In another form, the VPS syntax structure is determined by a content of a

VPS identification syntax element found in a sequence parameter set (SPS) referred to

by a SPS identification syntax element, which is found in a picture parameter set (PPS)

referred to by a PPS identification syntax element found in each slice segment header.

[000601 In another form, the method is performed by a video encoder.

[0006P] In another form, the method is performed by a post processing device

configured to process encoded video data.

[0006Q] In a third aspect, the present disclosure provides a method of decoding video

data, the method comprising: decoding one or more initial syntax elements for a video

parameter set (VPS) syntax structure associated with a video bitstream, wherein the one

or more initial syntax elements comprise fixed-length syntax elements that are located

prior to any variable length syntax elements in the VPS syntax structure, wherein the

VPS syntax structure includes information that applies to zero or more entire coded

video sequences; receiving, in the video bitstream, an offset syntax element for the VPS

syntax structure, wherein a value of the offset syntax element equals a number of bytes

in the VPS syntax structure for which processing is to be skipped, wherein the one or

2C

more initial syntax elements precede the offset syntax element in the VPS syntax

structure; ignoring the value of the offset syntax element; and decoding the at least one

syntax element for which processing is to be skipped.

[0006R] In another form, the at least one syntax element for which processing is to

be skipped comprise one or more variable length syntax elements, and wherein

decoding the at least one syntax element for which processing is to be skipped

comprises performing an entropy decoding process.

[0006S] In a fourth aspect, the present disclosure provides a video processing device

comprising: a memory storing video data from a video bitstream; and one or more

processors configured to: process one or more initial syntax elements for a video

parameter set (VPS) syntax structure associated with the video bitstream, wherein the

one or more initial syntax elements comprise fixed-length syntax elements that are

located prior to any variable length syntax elements in the VPS syntax structure,

wherein the VPS syntax structure includes information that applies to zero or more

entire coded video sequences; receive, in the VPS syntax structure, an offset syntax

element with a value equal to a number of bytes in the VPS syntax structure that are to

be skipped, wherein the one or more initial syntax elements precede the offset syntax

element in the VPS syntax structure; based on the offset syntax element, skip processing

of at least one syntax element within the VPS syntax structure; and process one or more

additional syntax elements in the VPS syntax structure, wherein the one or more

additional syntax elements are located after the at least one syntax element in the VPS

syntax structure.

[0006T] In another form, the at least one syntax element comprises one or more

syntax elements coded using variable length coding.

[0006U] In another form, the one or more additional syntax elements comprise

additional fixed-length syntax elements and wherein the one or more additional syntax

elements follow the offset syntax element and follow the at least one syntax element.

[0006V] In another form, the one or more initial syntax elements comprise syntax

elements including information related to session negotiation.

[0006W] In another form, the one or more initial syntax elements comprise syntax

elements for a base layer of video data and the one or more additional syntax elements

comprise syntax elements for a non-base layer of the video data.

[0006X] In another form, the VPS syntax structure is determined by a content of a

VPS identification syntax element found in a sequence parameter set (SPS) referred to

2D

by a SPS identification syntax element, which is found in a picture parameter set (PPS)

referred to by a PPS identification syntax element found in each slice segment header.

[0006Y] In another form, the device comprises a media aware network element

(MANE) configured to forward a sub-bitstream of the video bitstream to a client device.

[0006Z] In another form, to skip processing of the at least one syntax element within

the VPS syntax structure, the one or more processors are configured to ignore values of

the at least one syntax element.

[0006A1] In a fifth aspect, the present disclosure provides a video processing device

comprising: a memory storing video data from a video bitstream; and one or more

processors configured to: generate one or more initial syntax elements for a video

parameter set (VPS) syntax structure associated with the video bitstream, wherein the

one or more initial syntax elements comprise fixed-length syntax elements that are

located prior to any variable length syntax elements in the VPS syntax structure,

wherein the VPS syntax structure includes information that applies to zero or more

entire coded video sequences; generate an offset syntax element for the VPS syntax

structure, wherein a value of the offset syntax element equals a number of bytes in the

VPS syntax structure for which processing is to be skipped, wherein the one or more

initial syntax elements precede the offset syntax element in the VPS syntax structure;

generate at least one syntax element for which processing is to be skipped that

corresponds to the bytes for which processing is to be skipped; and generate one or

more additional syntax elements in the VPS syntax structure, wherein the one or more

additional syntax elements are located after the at least one syntax element for which

processing is to be skipped in the VPS syntax structure.

[0006A21 In another form, the at least one syntax element for which processing is to

be skipped comprise one or more syntax elements coded using variable length coding.

[0006A31 In another form, the one or more additional syntax elements comprise

additional fixed-length syntax elements and wherein the one or more additional syntax

elements follow the offset syntax element and follow the at least one syntax element for

which processing is to be skipped.

[0006A41 In another form, the one or more initial syntax elements comprise syntax

elements including information related to session negotiation.

[0006A51 In another form, the one or more initial syntax elements comprise syntax

elements for a base layer of video data and the one or more additional syntax elements

comprise syntax elements for a non-base layer of video data.

2E

[0006A61 In another form, the VPS syntax structure is determined by a content of a

VPS identification syntax element found in a sequence parameter set (SPS) referred to

by a SPS identification syntax element, which is found in a picture parameter set (PPS)

referred to by a PPS identification syntax element found in each slice segment header.

[0006A71 In another form, the one or more processors comprises a video encoder.

[0006A81 In another form, the video processing device comprises a post processing

device configured to process encoded video data.

[0006A91 In another form, the video processing device comprises at least one of: an

integrated circuit; a microprocessor; or a wireless communication device that comprises

a video encoder.

[0006A101 In a sixth aspect, the present disclosure provides a video processing device

comprising: a memory storing video data from a video bitstream; and one or more

processors configured to: decode one or more initial syntax elements for a video

parameter set (VPS) syntax structure associated with the video bitstream, wherein the

one or more initial syntax elements comprise fixed-length syntax elements that are

located prior to any variable length syntax elements in the VPS syntax structure,

wherein the VPS syntax structure includes information that applies to zero or more

entire coded video sequences; receive, in the video bitstream, an offset syntax element

with a value equal to a number of bytes in the VPS syntax structure for which

processing is to be skipped, wherein the one or more initial syntax elements precede the

offset syntax element in the VPS syntax structure; ignore the value of the offset syntax

element; and decode the at least one syntax element for which processing is to be

skipped.

[0006A11] In another form, at least one syntax element for which processing is to be

skipped comprise one or more variable length syntax elements, and wherein decoding

the at least one syntax element for which processing is to be skipped comprises

performing an entropy decoding process.

[0006A121 In another form, the video processing device comprises at least one of: an

integrated circuit; a microprocessor; or a wireless communication device that comprises

a video decoder.

[0006A131 In a seventh aspect, the present disclosure provides a video processing

device comprising: means for processing one or more initial syntax elements for a video

parameter set (VPS) syntax structure associated with a video bitstream, wherein the one

or more initial syntax elements comprise fixed-length syntax elements that are located

2F

prior to any variable length syntax elements in the VPS syntax structure, wherein the

VPS syntax structure includes information that applies to zero or more entire coded

video sequences; means for receiving, in the VPS syntax structure, an offset syntax

element for the v syntax structure, wherein a value of the offset syntax element equals a

number of bytes in the VPS syntax structure that are to be skipped, wherein the one or

more initial syntax elements precede the offset syntax element in the VPS syntax

structure; means for skipping the processing of at least one syntax element within the

VPS syntax structure based on the offset syntax element; and means for processing one

or more additional syntax elements in the VPS syntax structure, wherein the one or

more additional syntax elements are located after the at least one syntax element in the

VPS syntax structure.

[0006A141 In an eighth aspect, the present disclosure provides a non-transitory

computer readable storage medium storing instructions that when executed cause one or

more processors to: process one or more initial syntax elements for a video parameter

set (VPS) syntax structure associated with a video bitstream, wherein the one or more

initial syntax elements comprise fixed-length syntax elements that are located prior to

any variable length syntax elements in the VPS syntax structure, wherein the VPS

syntax structure includes information that applies to zero or more entire coded video

sequences; receive, in the VPS set syntax structure, an offset syntax element for the

VPS syntax structure, wherein a value of the offset syntax element equals a number of

bytes in the VPS syntax structure that are to be skipped, wherein the one or more initial

syntax elements precede the offset syntax element in the VPS syntax structure; skip

processing of at least one syntax element within the VPS syntax structure based on the

offset syntax element; and process one or more additional syntax elements in the VPS

syntax structure, wherein the one or more additional syntax elements are after the at

least one syntax element in the VPS syntax structure.

[0006A151 In another form, the at least one syntax element comprises one or more

syntax elements coded using variable length coding.

[0006A161 In another form, the one or more additional syntax elements comprise

additional fixed-length syntax elements and wherein the one or more additional syntax

elements follow the offset syntax element and follow the at least one syntax element.

[0006A171 In another form, the one or more initial syntax elements comprise syntax

elements including information related to session negotiation.

[0006A181 In another form, the one or more initial syntax elements comprise syntax

2G

elements for a base layer of video data and the one or more additional syntax elements

comprise syntax elements for a non-base layer of the video data.

[0006A191 In another form, storing further instructions that when executed cause the

one or more processors to forward the video data to a client device.

[0007] In one example, a method of processing video data includes processing one or

more initial syntax elements for a parameter set associated with a video bitstream;

receiving in the parameter set an offset syntax element for the parameter set, wherein

the offset syntax element identifies syntax elements to be skipped within the parameter

set; based on the offset syntax element, skipping the syntax elements within the

parameter set; and, processing one or more additional syntax elements in the parameter

set, wherein the one or more additional syntax elements are after the skipped syntax

elements in the parameter set.

WO 2014/008286 PCT/US2013/049121
3

[0008] In another example, a method of processing video data includes generating one

or more initial syntax elements for a parameter set associated with a video bitstream;

generating an offset syntax element for the parameter set, wherein the offset syntax

element identifies a number of syntax elements to be skipped within the parameter set;

generating the syntax elements to be skipped; and, generating one or more additional

syntax elements in the parameter set, wherein the one or more additional syntax

elements are after the syntax elements to be skipped in the parameter set.

[0009] In another example, a method of decoding video data includes decoding one or

more initial syntax elements for a parameter set associated with a video bitstream;

receiving in the video bitstream an offset syntax element for the parameter set, wherein

the offset syntax element identifies syntax elements to be skipped within the parameter

set; and decoding the syntax elements to be skipped.

[0010] In another example, video processing device includes a video processing

element configured to process one or more initial syntax elements for a parameter set

associated with a video bitstream; receive in the parameter set an offset syntax element

for the parameter set, wherein the offset syntax element identifies syntax elements to be

skipped within the parameter set; based on the offset syntax element, skip the syntax

elements within the parameter set; and process one or more additional syntax elements

in the parameter set, wherein the one or more additional syntax elements are after the

skipped syntax elements in the parameter set.

[0011] In another example, a video processing device includes a video processing

element configured to generate one or more initial syntax elements for a parameter set

associated with a video bitstream; generate an offset syntax element for the parameter

set, wherein the offset syntax element identifies a number of syntax elements to be

skipped within the parameter set; generate the syntax elements to be skipped; generate

one or more additional syntax elements in the parameter set, wherein the one or more

additional syntax elements are after the syntax elements to be skipped in the parameter

set.

[0012] In another example, a video processing device includes a video processing

element configured to decode one or more initial syntax elements for a parameter set

associated with a video bitstream; receive in the video bitstream an offset syntax

element for the parameter set, wherein the offset syntax element identifies syntax

elements to be skipped within the parameter set; and decode the syntax elements to be

skipped.

WO 2014/008286 PCT/US2013/049121
4

[0013] In another example, a video processing device includes means for processing

one or more initial syntax elements for a parameter set associated with a video

bitstream; means for receiving in the parameter set an offset syntax element for the

parameter set, wherein the offset syntax element identifies syntax elements to be

skipped within the parameter set; means for skipping the syntax elements within the

parameter set based on the offset syntax element; means for processing one or more

additional syntax elements in the parameter set, wherein the one or more additional

syntax elements are after the skipped syntax elements in the parameter set.

[0014] In another example, a computer readable storage medium storing instructions

that when executed cause one or more processors to process one or more initial syntax

elements for a parameter set associated with a video bitstream; receive in the parameter

set an offset syntax element for the parameter set, wherein the offset syntax element

identifies syntax elements to be skipped within the parameter set; skip the syntax

elements within the parameter set based on the offset syntax element; and, process one

or more additional syntax elements in the parameter set, wherein the one or more

additional syntax elements are after the skipped syntax elements in the parameter set.

[0015] The details of one or more examples are set forth in the accompanying drawings

and the description below. Other features, objects, and advantages will be apparent

from the description and drawings, and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

[0016] FIG. 1 is a block diagram illustrating an example video encoding and decoding

system that may utilize the techniques described in this disclosure.

[0017] FIG. 2 is a conceptual diagram illustrating an example MVC decoding order.

[0018] FIG. 3 is a conceptual diagram showing an example MVC temporal and inter

view prediction structure.

[0019] FIG. 4 is a block diagram illustrating an example video encoder that may

implement the techniques described in this disclosure.

[0020] FIG. 5 is a block diagram illustrating an example video decoder that may

implement the techniques described in this disclosure.

[0021] FIG. 6 is a block diagram illustrating an example set of devices that form part of

a network.

WO 2014/008286 PCT/US2013/049121
5

[0022] FIG. 7 is a flowchart showing an example method for processing a parameter set

in accordance with the techniques of this disclosure.

[0023] FIG. 8 is a flowchart showing an example method for generating a parameter set

in accordance with the techniques of this disclosure.

[0024] FIG. 9 is a flowchart showing an example method for decoding a parameter set

in accordance with the techniques of this disclosure.

[0025] FIG. 10 is a flowchart showing an example method for processing a parameter

set in accordance with the techniques of this disclosure.

[0026] FIG. 11 is a flowchart showing an example method for generating a parameter

set in accordance with the techniques of this disclosure.

[0027] FIG. 12 is a flowchart showing an example method for processing a parameter

set in accordance with the techniques of this disclosure.

[0028] FIG. 13 is a flowchart showing an example method for generating a parameter

set in accordance with the techniques of this disclosure.

DETAILED DESCRIPTION

[0029] This disclosure describes design techniques for parameter sets in video coding,

and more particularly, this disclosure describes techniques related to video parameter

sets (VPSs). In addition to VPSs, other examples of parameter sets include sequence

parameter sets (SPSs), picture parameter sets (PPSs), and adaptation parameter sets

(APSs), to name a few.

[0030] A video encoder encodes video data. The video data may include one or more

pictures, where each of the pictures is a still image forming part of a video. When the

video encoder encodes the video data, the video encoder generates a bitstream that

includes a sequence of bits that form a coded representation of the video data. The

bitstream may include coded pictures and associated data, where a coded picture refers

to a coded representation of a picture. The associated data may include various types of

parameter sets including VPSs, SPSs, PPSs, and APSs, and potentially other syntax

structures. SPSs are used to carry data that is valid to a whole video sequence, whereas

PPSs carry information valid on a picture-by-picture basis. APSs carry picture-adaptive

information that is also valid on a picture-by-picture basis but is expected to change

more frequently than the information in the PPS.

[0031] HEVC has also introduced the VPS which the HEVC working draft describes as

follows:

WO 2014/008286 PCT/US2013/049121
6

video parameter set (VPS): A syntax structure containing syntax

elements that apply to zero or more entire coded video sequences

as determined by the content of a videoparametersetid syntax

element found in the sequence parameter set referred to by the

seqparametersetid syntax element, which is found in the picture

parameter set referred to by the picparameter-set-id syntax

element found in each slice segment header.

[0032] Thus, as VPSs apply to entire coded video sequences, the VPS includes syntax

elements that change infrequently. The VPS, SPS, PPS, and APS mechanism in some

versions of HEVC decouples the transmission of infrequently changing information

from the transmission of coded video block data. VPSs, SPSs, PPSs, and APSs may, in

some applications, be conveyed "out-of-band" i.e., not transported together with the

units containing coded video data. Out-of-band transmission is typically reliable, and

may be desirable for improved reliability relative to in-band transmission. In HEVC

WD7, an identifier (ID) of a VPS, an SPS, a PPS, or an APS may be coded for each

parameter set. Each SPS includes an SPS ID and a VPS ID, each PPS includes a PPS

ID and an SPS ID, and each slice header includes a PPS ID and possibly an APS ID. In

this way, ID's can be used to identify the proper parameter set to be used in different

instances.

[0033] As introduced above, video encoders typically encode video data, and decoders

typically decode video data. Encoders and decoders, however, are not the only devices

used for processing video data. When video is transported, for example as part of a

packet-based network such as a local area network, a wide-area network, or a global

network such as the Internet, routing devices and other such devices may process the

video data in order to deliver it from a source to a destination device. Special routing

devices, sometimes called media aware network elements (MANEs), may perform

various routing functions based on the content of the video data. To determine the

content of the video data and perform these routing functions, the MANE may access

information in the encoded bitstream, such as information in the VPS or SPS.

[0034] In a parameter set, some syntax elements are coded using a fixed number of bits,

while some syntax elements are coded using a variable number of bits. In order to

process syntax elements of variable length, a device may require entropy decoding

capabilities. Performing entropy decoding, however, may introduce a level of

complexity that is undesirable for a MANE or other network elements. According to

WO 2014/008286 PCT/US2013/049121
7

one technique introduced in this disclosure, an offset syntax element can be included in

a parameter set, such as a VPS in order to aid network elements in identifying syntax

elements that can be decoded without any entropy decoding. The offset syntax element

may be preceded by fixed length syntax elements. The offset syntax element may then

identify syntax elements in the parameter set that are to be coded using variable length

syntax elements. Using the offset syntax element, a device, such as a MANE, may skip

over the variable the length coded syntax elements and resume processing fixed length

syntax elements. The offset syntax element may identify the syntax elements to be

skipped by identifying a number of bytes within the parameter set that are to be skipped.

These skipped bytes may correspond to the skipped syntax elements. As mentioned

above, the skipped syntax elements may include variable length coded syntax elements

and may also include fixed length coded syntax elements.

[0035] In this context, skipping the syntax elements means the MANE may avoid

parses or other processing of the syntax elements that are coded with variable lengths.

Thus, the MANE can process some syntax elements in the VPS (e.g., fixed length

elements) without having to perform entropy decoding, while skipping some syntax

elements that may otherwise require entropy decoding. The syntax elements skipped by

the MANE are not limited to variable length syntax elements, as some fixed length

syntax elements may also be skipped in various examples. A video decoder may be

configured to, upon receiving the offset syntax element, essentially ignore one or more

of the syntax elements, meaning the video decoder may avoid parsing and processing

the syntax elements that were skipped by the MANE.

[0036] The use of an offset syntax element may reduce the complexity needed for a

MANE to process portions of a parameter set, e.g., by eliminating a need for the MANE

to perform entropy decoding. Additionally, the use of an offset syntax element, as

proposed in this disclosure, may enable the use of a hierarchical format for parameter

sets. As an example of a hierarchical format, in a VPS, instead of having syntax

elements for a base layer and an enhancement layer intermixed within the VPS, all or

substantially all syntax elements of a base layer may precede all or substantially all

syntax elements of a first enhancement layer, which in turn may precede all or

substantially all syntax elements for a second enhancement layer, and so on. Using the

offset syntax element introduced in this disclosure, a MANE may process a number of

fixed length syntax elements for a base layer, skip a number of variable length syntax

elements for the base layer, process a number of fixed length syntax elements for a first

WO 2014/008286 PCT/US2013/049121
8

enhancement layer, skip a number of variable length syntax elements for the first

enhancement layer, process a number of fixed length syntax elements for a second

enhancement layer, and so on. A video decoder may be configured to parse and process

the syntax elements skipped by the MANE.

[0037] The use of an offset syntax element may additionally enable future extensions to

a video coding standard. For example, even if other types of variable length coded

information were added to a bitstream (e.g., according to a future extension to HEVC),

the one or more offset syntax elements may be defined to facilitate skipping of such

variable length elements. In other words, the one or more offset syntax elements can be

used to identify the location of fixed length syntax elements within the bitstream, and

the offset syntax elements may be modified to account for the addition of any other

elements in the bitstream for which decoding may be avoided, e.g., by a MANE.

[0038] This disclosure additionally proposes including syntax elements related to

session negotiation in the video parameter set as opposed to in another parameter set,

such as an SPS. By including syntax elements related to session negotiation in the VPS,

signaling overhead may be able to be reduced especially when the VPS describes

information for multiple layers of video as opposed to information only for a single

layer. Moreover, this disclosure proposes using fixed length syntax elements for the

session negotiation syntax elements, and the fixed length session negotiation syntax

elements can be located before any variable length syntax elements. In order to process

syntax elements of variable length, a device needs to be able to perform entropy

decoding. Performing entropy decoding, however, may introduce a level of complexity

that is undesirable for a MANE. Thus, by using fixed length syntax elements that are

present in the VPS prior to any variable length syntax elements, a MANE may be able

to parse the syntax elements for session negotiation without having to perform entropy

decoding.

[0039] Table 2 below shows examples of session negotiation-related syntax elements

that may be included in the VPS. Examples of information for session negation include

information identifying profiles, tiers, and levels. The HEVC working draft describes

profiles, tiers, and levels as follows:

A "profile" is a subset of the entire bitstream syntax that is specified by

this Recommendation | International Standard. Within the bounds

imposed by the syntax of a given profile it is still possible to require a

very large variation in the performance of encoders and decoders

WO 2014/008286 PCT/US2013/049121
9

depending upon the values taken by syntax elements in the bitstream

such as the specified size of the decoded pictures. In many applications,

it is currently neither practical nor economic to implement a decoder

capable of dealing with all hypothetical uses of the syntax within a

particular profile.

In order to deal with this problem, "tiers" and "levels" are specified

within each profile. A level of a tier is a specified set of constraints

imposed on values of the syntax elements in the bitstream. These

constraints may be simple limits on values. Alternatively they may take

the form of constraints on arithmetic combinations of values (e.g. picture

width multiplied by picture height multiplied by number of pictures

decoded per second). A level specified for a lower tier is more

constrained than a level specified for a higher tier.

[0040] During session negotiation between a client and a MANE, a client may inquire

about the availability at the MANE of video data coded according to a certain profile,

level, and/or tier. The MANE may be able to parse the first portion (i.e. a fixed-length

coded portion) of the VPS which includes the profile, level, and tier information.

Among the operation points available at the MANE, a proper one can be chosen by the

client, and the MANE can forward the corresponding packages to the client after the

session is negotiated.

[0041] This disclosure additionally proposes including syntax elements for identifying a

hypothetical reference decoder (HRD) in the video parameter set as opposed to in

another parameter set, such as an SPS. The HRD parameters identify a hypothetical

decoder model that specifies constraints on the variability of conforming NAL unit

streams or conforming byte streams that an encoding process may produce. Two types

of HRD parameter sets (NAL HRD parameters and VCL HRD parameters) may be

included in the VPS. NAL HRD parameters pertain to Type II bitstream conformance,

while VCL HRD parameters pertain to all bit stream conformance. HEVC currently

distinguished between two types of bitstream that are subject to HRD conformance.

The first is called a Type I bitstream and refers to a NAL unit stream containing only the

VCL NAL units and filler data NAL units for all access units in the bitstream. The

second type of bitstream is called a Type II bitstream and contains the VCL NAL units

and filler data NAL units for all access units in the bitstream plus other types of

additional NAL units.

WO 2014/008286 PCT/US2013/049121
10

[0042] The techniques of this disclosure can be applied in single-layer coding as well as

to scalable and multiview video coding. A layer may, for example, be a spatial scalable

layer, a quality scalable layer, a texture view, or a depth view. In HEVC, a layer

generally refers to a set of video coding layer (VCL) NAL units, and associated non

VCL NAL units, that all have a particular layer ID value. Layers can be hierarchical in

the sense that a first layer may contain a lower layer. A layer set is sometimes used to

refer to a set of layers represented within a bitstream created from another bitstream by

operation of sub-bitstream extraction process. An operation point generally refers to a

bitstream created from another bitstream by operation of the sub-bitstream extraction

process with the another bitstream. An operation point may either include all the layers

in a layer set or may be a bitstream formed as a subset of the layer set.

[0043] FIG. 1 is a block diagram illustrating an example video encoding and decoding

system 10 that may utilize the techniques described in this disclosure. As shown in

FIG. 1, system 10 includes a source device 12 that generates encoded video data to be

decoded at a later time by a destination device 14. The encoded video data may be

routed from source device 12 to destination device 14 by media aware network element

(MANE) 29. Source device 12 and destination device 14 may comprise any of a wide

range of devices, including desktop computers, notebook (i.e., laptop) computers, tablet

computers, set-top boxes, telephone handsets such as so-called "smart" phones, so

called "smart" pads, televisions, cameras, display devices, digital media players, video

gaming consoles, video streaming device, or the like. In some cases, source device 12

and destination device 14 may be equipped for wireless communication.

[0044] System 10 may operate in accordance with different video coding standards, a

proprietary standard, or any other way of multiview coding. For example, video

encoder 20 and video decoder 30 may operate according to a video compression

standard, such as the include ITU-T H.261, ISO/IEC MPEG-i Visual, ITU-T H.262 or

ISO/IEC MPEG-2 Visual, ITU-T H.263, ISO/IEC MPEG-4 Visual and ITU-T H.264

(also known as ISO/IEC MPEG-4 AVC), including its Scalable Video Coding (SVC)

and Multiview Video Coding (MVC) extensions. The recent, publicly available joint

draft of the MVC extension is described in "Advanced video coding for generic

audiovisual services," ITU-T Recommendation H.264, Mar 2010. A more recent,

publicly available joint draft of the MVC extension is described in "Advanced video

coding for generic audiovisual services," ITU-T Recommendation H.264, June 2011. A

current joint draft of the MVC extension has been approved as of January 2012.

WO 2014/008286 PCT/US2013/049121
11

[0045] In addition, there is a new video coding standard, namely High Efficiency Video

Coding (HEVC) standard presently under development by the Joint Collaboration Team

on Video Coding (JCT-VC) of ITU-T Video Coding Experts Group (VCEG) and

ISO/IEC Motion Picture Experts Group (MPEG). A recent Working Draft (WD) of

HEVC, and referred to as HEVC WD7 hereinafter, is available, as of 1 July 2013, from

http://phenix.int-evry.fr/jct/docenduser/documents/9_Geneva/wg 11/JCTVC-I1003

v6.zip.

[0046] Development of the HEVC standard is ongoing, and a newer Working Draft

(WD) of HEVC, referred to as HEVC WD9 is available, as of 1 July 2013, from

http://phenix.int-evry.fr/jct/docenduser/documents/ 11_Shanghai/wg 11 /JCTVC

K1003-vlO.zip. For purposes of description, video encoder 20 and video decoder 30 are

described in context of the HEVC or the H.264 standard and the extensions of such

standards. The techniques of this disclosure, however, are not limited to any particular

coding standard. Other examples of video compression standards include MPEG-2 and

ITU-T H.263. Proprietary coding techniques, such as those referred to as On2

VP6/VP7/VP8, may also implement one or more of the techniques described herein. A

newer draft of the upcoming HEVC standard, referred to as "HEVC Working Draft 10"

or "HEVC WD10," is described in Bross et al., "Editors' proposed corrections to HEVC

version 1," Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3

and ISO/IEC JTC1/SC29/WG1 1, 13t1 Meeting, Incheon, KR, April 2013, which as of 1

July 2013, is available from http://phenix.int

evry.fr/jct/doc_enduser/documents/13_Incheon/wg 11/JCTVC-M0432-v3.zip, the

entire content of which is hereby incorporated by reference.

[0047] The techniques of this disclosure are potentially applicable to several MVC

and/or 3D video coding standards, including the HEVC-based 3D-Video coding (3D

HEVC). The techniques of this disclosure may also be applicable to the H.264/3D

AVC and H.264/MVC+D video coding standards, or extensions thereof, as well as other

coding standards. The techniques of this disclosure may at times be described with

reference to or using terminology of a particular video coding standard; however, such

description should not be interpreted to mean that the described techniques are limited

only to that particular standard.

[0048] Destination device 14 may receive the encoded video data to be decoded via a

link 16. Link 16 may comprise any type of medium or device capable of moving the

encoded video data from source device 12 to destination device 14. In one example,

WO 2014/008286 PCT/US2013/049121
12

link 16 may comprise a communication medium to enable source device 12 to transmit

encoded video data directly to destination device 14 in real-time. The encoded video

data may be modulated according to a communication standard, such as a wireless

communication protocol, and transmitted to destination device 14. The communication

medium may comprise any wireless or wired communication medium, such as a radio

frequency (RF) spectrum or one or more physical transmission lines. The

communication medium may form part of a packet-based network, such as a local area

network, a wide-area network, or a global network such as the Internet. The

communication medium may include routers, switches, base stations, or any other

equipment that may be useful to facilitate communication from source device 12 to

destination device 14. Link 16 may include one or more MANEs, such as MANE 29,

that route the video data from source device 12 to destination device 14.

[0049] Alternatively, encoded data may be output from output interface 22 to a storage

device 27. Similarly, encoded data may be accessed from storage device 27 by input

interface. Storage device 27 may include any of a variety of distributed or locally

accessed data storage media such as a hard drive, Blu-ray discs, DVDs, CD-ROMs,

flash memory, volatile or non-volatile memory, or any other suitable digital storage

media for storing encoded video data. In a further example, storage device 27 may

correspond to a file server or another intermediate storage device that may hold the

encoded video generated by source device 12. Destination device 14 may access stored

video data from storage device 27 via streaming or download. The file server may be

any type of server capable of storing encoded video data and transmitting that encoded

video data to the destination device 14. Example file servers include a web server (e.g.,

for a website), an FTP server, network attached storage (NAS) devices, or a local disk

drive. Destination device 14 may access the encoded video data through any standard

data connection, including an Internet connection. This may include a wireless channel

(e.g., a Wi-Fi connection), a wired connection (e.g., DSL, cable modem, etc.), or a

combination of both that is suitable for accessing encoded video data stored on a file

server. The transmission of encoded video data from storage device 27 may be a

streaming transmission, a download transmission, or a combination of both. Video data

retrieved from storage device 27 may be routed to destination device 14 using one or

more MANEs, such as MANE 29.

[0050] The techniques of this disclosure are not necessarily limited to wireless

applications or settings. The techniques may be applied to video coding in support of

WO 2014/008286 PCT/US2013/049121
13

any of a variety of multimedia applications, such as over-the-air television broadcasts,

cable television transmissions, satellite television transmissions, streaming video

transmissions, e.g., via the Internet, encoding of digital video for storage on a data

storage medium, decoding of digital video stored on a data storage medium, or other

applications. In some examples, system 10 may be configured to support one-way or

two-way video transmission to support applications such as video streaming, video

playback, video broadcasting, and/or video telephony.

[0051] In the example of FIG. 1, source device 12 includes a video source 18, video

encoder 20 and an output interface 22. Video encoder 20 may, for example, generate

the offset syntax described in this disclosure. In some cases, output interface 22 may

include a modulator/demodulator (modem) and/or a transmitter. In source device 12,

video source 18 may include a source such as a video capture device, e.g., a video

camera, a video archive containing previously captured video, a video feed interface to

receive video from a video content provider, and/or a computer graphics system for

generating computer graphics data as the source video, or a combination of such

sources. As one example, if video source 18 is a video camera, source device 12 and

destination device 14 may form so-called camera phones or video phones. However,

the techniques described in this disclosure may be applicable to video coding in general,

and may be applied to wireless and/or wired applications.

[0052] The captured, pre-captured, or computer-generated video may be encoded by

video encoder 12. The encoded video data may be transmitted directly to destination

device 14 via output interface 22 of source device 20. The encoded video data may also

(or alternatively) be stored onto storage device 27 for later access by destination device

14 or other devices, for decoding and/or playback.

[0053] Destination device 14 includes an input interface 28, a video decoder 30, and a

display device 32. Video decoder 30 may parse the offset syntax element described in

this disclosure. As described above, video decoder 30 may in some instances ignore the

offset syntax element, thus enabling video decoder 30 to parse syntax elements skipped

by a MANE. In some cases, input interface 28 may include a receiver and/or a modem.

Input interface 28 of destination device 14 receives the encoded video data over link 16.

The encoded video data communicated over link 16, or provided on storage device 27,

may include a variety of syntax elements generated by video encoder 20 for use by a

video decoder, such as video decoder 30, in decoding the video data. Such syntax

WO 2014/008286 PCT/US2013/049121
14

elements may be included with the encoded video data transmitted on a communication

medium, stored on a storage medium, or stored a file server.

[0054] Display device 32 may be integrated with, or external to, destination device 14.

In some examples, destination device 14 may include an integrated display device and

also be configured to interface with an external display device. In other examples,

destination device 14 may be a display device. In general, display device 32 displays

the decoded video data to a user, and may comprise any of a variety of display devices

such as a liquid crystal display (LCD), a plasma display, an organic light emitting diode

(OLED) display, or another type of display device.

[0055] Although not shown in FIG. 1, in some aspects, video encoder 20 and video

decoder 30 may each be integrated with an audio encoder and decoder, and may include

appropriate MUX-DEMUX units, or other hardware and software, to handle encoding

of both audio and video in a common data stream or separate data streams. If

applicable, in some examples, MUX-DEMUX units may conform to the ITU H.223

multiplexer protocol, or other protocols such as the user datagram protocol (UDP).

[0056] Video encoder 20 and video decoder 30 each may be implemented as any of a

variety of suitable encoder circuitry, such as one or more microprocessors, digital signal

processors (DSPs), application specific integrated circuits (ASICs), field programmable

gate arrays (FPGAs), discrete logic, software, hardware, firmware or any combinations

thereof. When the techniques are implemented partially in software, a device may store

instructions for the software in a suitable, non-transitory computer-readable medium and

execute the instructions in hardware using one or more processors to perform the

techniques of this disclosure. Each of video encoder 20 and video decoder 30 may be

included in one or more encoders or decoders, either of which may be integrated as part

of a combined encoder/decoder (CODEC) in a respective device.

[0057] The JCT-VC is working on development of the HEVC standard. The HEVC

standardization efforts are based on an evolving model of a video coding device referred

to as the HEVC Test Model (HM). The HM presumes several additional capabilities of

video coding devices relative to existing devices according to, e.g., ITU-T H.264/AVC.

For example, whereas H.264 provides nine intra-prediction encoding modes, the HM

may provide as many as thirty-three intra-prediction encoding modes.

[0058] In general, the working model of the HM describes that a video frame or picture

may be divided into a sequence of treeblocks or largest coding units (LCU) that include

both luma and chroma samples. A treeblock has a similar purpose as a macroblock of

WO 2014/008286 PCT/US2013/049121
15

the H.264 standard. A slice includes a number of consecutive treeblocks in coding

order. A video frame or picture may be partitioned into one or more slices. Each

treeblock may be split into coding units (CUs) according to a quadtree. For example, a

treeblock, as a root node of the quadtree, may be split into four child nodes, and each

child node may in turn be a parent node and be split into another four child nodes. A

final, unsplit child node, as a leaf node of the quadtree, comprises a coding node, i.e., a

coded video block. Syntax data associated with a coded bitstream may define a

maximum number of times a treeblock may be split, and may also define a minimum

size of the coding nodes.

[0059] A CU includes a coding node and prediction units (PUs) and transform units

(TUs) associated with the coding node. A size of the CU corresponds to a size of the

coding node and must be square in shape. The size of the CU may range from 8x8

pixels up to the size of the treeblock with a maximum of 64x64 pixels or greater. Each

CU may contain one or more PUs and one or more TUs. Syntax data associated with a

CU may describe, for example, partitioning of the CU into one or more PUs.

Partitioning modes may differ between whether the CU is skip or direct mode encoded,

intra-prediction mode encoded, or inter-prediction mode encoded. PUs may be

partitioned to be non-square in shape. Syntax data associated with a CU may also

describe, for example, partitioning of the CU into one or more TUs according to a

quadtree. A TU can be square or non-square in shape.

[0060] The HEVC standard allows for transformations according to TUs, which may be

different for different CUs. The TUs are typically sized based on the size of PUs within

a given CU defined for a partitioned LCU, although this may not always be the case.

The TUs are typically the same size or smaller than the PUs. In some examples,

residual samples corresponding to a CU may be subdivided into smaller units using a

quadtree structure known as "residual quad tree" (RQT). The leaf nodes of the RQT

may be referred to as transform units (TUs). Pixel difference values associated with the

TUs may be transformed to produce transform coefficients, which may be quantized.

[0061] In general, a PU includes data related to the prediction process. For example,

when the PU is intra-mode encoded, the PU may include data describing an intra

prediction mode for the PU. As another example, when the PU is inter-mode encoded,

the PU may include data defining a motion vector for the PU. The data defining the

motion vector for a PU may describe, for example, a horizontal component of the

motion vector, a vertical component of the motion vector, a resolution for the motion

WO 2014/008286 PCT/US2013/049121
16

vector (e.g., one-quarter pixel precision or one-eighth pixel precision), a reference

picture to which the motion vector points, and/or a reference picture list (e.g., List 0,

List 1, or List C) for the motion vector.

[0062] In general, a TU is used for the transform and quantization processes. A given

CU having one or more PUs may also include one or more transform units (TUs).

Following prediction, video encoder 20 may calculate residual values corresponding to

the PU. The residual values comprise pixel difference values that may be transformed

into transform coefficients, quantized, and scanned using the TUs to produce serialized

transform coefficients for entropy coding. This disclosure typically uses the term

"video block" to refer to a coding node of a CU. In some specific cases, this disclosure

may also use the term "video block" to refer to a treeblock, i.e., LCU, or a CU, which

includes a coding node and PUs and TUs.

[0063] A video sequence typically includes a series of video frames or pictures. A

group of pictures (GOP) generally comprises a series of one or more of the video

pictures. A GOP may include syntax data in a header of the GOP, a header of one or

more of the pictures, or elsewhere, that describes a number of pictures included in the

GOP. Each slice of a picture may include slice syntax data that describes an encoding

mode for the respective slice. Video encoder 20 typically operates on video blocks

within individual video slices in order to encode the video data. A video block may

correspond to a coding node within a CU. The video blocks may have fixed or varying

sizes, and may differ in size according to a specified coding standard.

[0064] As an example, the HM supports prediction in various PU sizes. Assuming that

the size of a particular CU is 2Nx2N, the HM supports intra-prediction in PU sizes of

2Nx2N or NxN, and inter-prediction in symmetric PU sizes of 2Nx2N, 2NxN, Nx2N, or

NxN. The HM also supports asymmetric partitioning for inter-prediction in PU sizes of

2NxnU, 2NxnD, nLx2N, and nRx2N. In asymmetric partitioning, one direction of a CU

is not partitioned, while the other direction is partitioned into 25% and 75%. The

portion of the CU corresponding to the 25% partition is indicated by an "n" followed by

an indication of "Up", "Down," "Left," or "Right." Thus, for example, "2NxnU" refers

to a 2Nx2N CU that is partitioned horizontally with a 2NxO.5N PU on top and a

2Nx1.5N PU on bottom.

[0065] In this disclosure, "NxN" and "N by N" may be used interchangeably to refer to

the pixel dimensions of a video block in terms of vertical and horizontal dimensions,

e.g., 16x16 pixels or 16 by 16 pixels. In general, a 16x16 block will have 16 pixels in a

WO 2014/008286 PCT/US2013/049121
17

vertical direction (y = 16) and 16 pixels in a horizontal direction (x = 16). Likewise, an

NxN block generally has N pixels in a vertical direction and N pixels in a horizontal

direction, where N represents a nonnegative integer value. The pixels in a block may be

arranged in rows and columns. Moreover, blocks need not necessarily have the same

number of pixels in the horizontal direction as in the vertical direction. For example,

blocks may comprise NxM pixels, where M is not necessarily equal to N.

[0066] Following intra-predictive or inter-predictive coding using the PUs of a CU,

video encoder 20 may calculate residual data for the TUs of the CU. The PUs may

comprise pixel data in the spatial domain (also referred to as the pixel domain) and the

TUs may comprise coefficients in the transform domain following application of a

transform, e.g., a discrete cosine transform (DCT), an integer transform, a wavelet

transform, or a conceptually similar transform to residual video data. The residual data

may correspond to pixel differences between pixels of the unencoded picture and

prediction values corresponding to the PUs. Video encoder 20 may form the TUs

including the residual data for the CU, and then transform the TUs to produce transform

coefficients for the CU.

[0067] Following any transforms to produce transform coefficients, video encoder 20

may perform quantization of the transform coefficients. Quantization generally refers to

a process in which transform coefficients are quantized to possibly reduce the amount of

data used to represent the coefficients, providing further compression. The quantization

process may reduce the bit depth associated with some or all of the coefficients. For

example, an n-bit value may be rounded down to an m-bit value during quantization,

where n is greater than m.

[0068] In some examples, video encoder 20 may utilize a predefined scan order to scan

the quantized transform coefficients to produce a serialized vector that can be entropy

encoded. In other examples, video encoder 20 may perform an adaptive scan. After

scanning the quantized transform coefficients to form a one-dimensional vector, video

encoder 20 may entropy encode the one-dimensional vector, e.g., according to context

adaptive variable length coding (CAVLC), context adaptive binary arithmetic coding

(CABAC), syntax-based context-adaptive binary arithmetic coding (SBAC), Probability

Interval Partitioning Entropy (PIPE) coding or another entropy encoding methodology.

Video encoder 20 may also entropy encode syntax elements associated with the encoded

video data for use by video decoder 30 in decoding the video data.

WO 2014/008286 PCT/US2013/049121
18

[0069] To perform CABAC, video encoder 20 may assign a context within a context

model to a symbol to be transmitted. The context may relate to, for example, whether

neighboring values of the symbol are non-zero or not. To perform CAVLC, video

encoder 20 may select a variable length code for a symbol to be transmitted.

Codewords in VLC may be constructed such that relatively shorter codes correspond to

more probable symbols, while longer codes correspond to less probable symbols. In

this way, the use of VLC may achieve a bit savings over, for example, using equal

length codewords for each symbol to be transmitted. The probability determination

may be based on a context assigned to the symbol.

[0070] This disclosure describes design methods for parameter sets, including both

video parameter sets and sequence parameter sets, which can be applied in single-layer

coding as well as scalable and multiview coding in a mutually-compatible manner.

Multiview video coding (MVC) is an extension of H.264/AVC. The MVC specification

is briefly discussed below.

[0071] FIG. 2 is a graphical diagram illustrating an example MVC encoding or

decoding order, in accordance with one or more examples described in this disclosure.

For example, the decoding order arrangement illustrated in FIG. 2 is referred to as time

first coding. In FIG. 2, SO-S7 each refers to different views of the multiview video.

TO-T8 each represents one output time instance. An access unit may include the coded

pictures of all the views for one output time instance. For example, a first access unit

includes all of the views SO-S7 for time instance TO (i.e., pictures 0-7), a second access

unit includes all of the views SO-S7 for time instance T I (i.e. pictures 8-15), and so

forth. In this examples, pictures 0-7 are at a same time instance (i.e., time instance TO),

pictures 8-15 at a same time instance (i.e., time instance TI). Pictures with the same

time instance are generally displayed at the same time, and it is the horizontal disparity,

and possibly some vertical disparity, between the objects within the pictures of the same

time instance that cause the viewer to perceive an image that encompasses a 3D volume.

[0072] In FIG. 2, each of the views includes sets of pictures. For example, view SO

includes set of pictures 0, 8, 16, 24, 32, 40, 48, 56, and 64, view SI includes set of

pictures 1, 9, 17, 25, 33, 41, 49, 57, and 65, and so forth. Each set includes two

pictures: one picture is referred to as a texture view component, and the other picture is

referred to as a depth view component. The texture view component and the depth view

component within a set of pictures of a view may be considered as corresponding to one

another. For example, the texture view component within a set of pictures of a view can

WO 2014/008286 PCT/US2013/049121
19

be considered as corresponding to the depth view component within the set of the

pictures of the view, and vice-versa (i.e., the depth view component corresponds to its

texture view component in the set, and vice-versa). As used in this disclosure, a texture

view component and a depth view component that correspond may be considered to be

part of a same view of a single access unit.

[0073] The texture view component includes the actual image content that is displayed.

For example, the texture view component may include luma (Y) and chroma (Cb and

Cr) components. The depth view component may indicate relative depths of the pixels

in its corresponding texture view component. As one example, the depth view

component may be similar to a gray scale image that includes only luma values. In

other words, the depth view component may not convey any image content, but rather

provide a measure of the relative depths of the pixels in the texture view component.

[0074] For example, a pixel value corresponding to a purely white pixel in the depth

view component may indicate that its corresponding pixel or pixels in the corresponding

texture view component is closer from the perspective of the viewer, and a pixel value

corresponding to a purely black pixel in the depth view component may indicate that its

corresponding pixel or pixels in the corresponding texture view component is further

away from the perspective of the viewer. The pixel values corresponding to the various

shades of gray in between black and white indicate different depth levels. For instance,

a very gray pixel in the depth view component indicates that its corresponding pixel in

the texture view component is further away than a slightly gray pixel in the depth view

component. Because only one pixel value, similar to gray scale, is needed to identify

the depth of pixels, the depth view component may include only one pixel value. Thus,

values analogous to chroma components are not needed when coding depth.

[0075] The depth view component using only luma values (e.g., intensity values) to

identify depth is provided for illustration purposes and should not be considered

limiting. In other examples, any technique may be utilized to indicate relative depths of

the pixels in the texture view component.

[0076] In accordance with MVC, the texture view components are inter-predicted from

texture view components in the same view or from texture view components in one or

more different views. The texture view components may be coded in blocks of video

data, which are referred to as "video blocks" and commonly called "macroblocks" in the

H.264 context.

WO 2014/008286 PCT/US2013/049121
20

[0077] In MVC, inter-view prediction is supported by disparity motion compensation,

which uses the syntax of the H.264/AVC motion compensation, but allows a picture in a

different view to be used as a reference picture for predicting a picture being coded.

The coding of two views can also be supported by MVC. One potential advantage of

MVC is that an MVC encoder can take more than two views as a 3D video input, and an

MVC decoder can decode such a multiview representation of the captured video. Any

renderer with an MVC decoder may process 3D video contents with more than two

views.

[0078] In MVC, inter-view prediction is allowed between pictures in the same access

unit (i.e., with the same time instance). When coding a picture in a non-base view, a

picture may be added into a reference picture list if the picture is in a different view but

with a same time instance. An inter-view prediction reference picture can be put in any

position of a reference picture list, just like any inter prediction reference picture.

[0079] FIG. 3 is a conceptual diagram illustrating an example MVC prediction pattern.

In the example of FIG. 3, eight views (having view IDs "SO" through "S7") are

illustrated, and twelve temporal locations ("TO" through "T 11") are illustrated for each

view. That is, each row in FIG. 3 corresponds to a view, while each column indicates a

temporal location. In the example of FIG. 3, capital "B" and lowercase "b" are used to

indicate different hierarchical relationships between pictures, rather than different

coding methodologies. In general, capital "B" pictures are relatively higher in the

prediction hierarchy than lowercase "b" frames.

[0080] In FIG. 3, view SO may be considered as a base view, and views S1-S7 may be

considered as dependent views. A base view includes pictures that are not inter-view

predicted. Picture in a base view can be inter-predicted with respect to other pictures in

the same view. For instance, none of the pictures in view SO can be inter-predicted with

respect to a picture in any of views S1-S7, but some of the pictures in view SO can be

inter-predicted with respect to other pictures in view SO.

[0081] A dependent view includes pictures that are inter-view predicted. For example,

each one of views S1-S7 includes at least one picture that is inter-predicted with respect

to a picture in another view. Pictures in a dependent view may be inter-predicted with

respect to pictures in the base view, or may be inter-predicted with respect to pictures in

other dependent views.

[0082] A video stream that includes both a base view and one or more dependent views

may be decodable by different types of video decoders. For example, one basic type of

WO 2014/008286 PCT/US2013/049121
21

video decoder may be configured to decode only the base view. In addition, another

type of video decoder may be configured to decode each of views SO-S7. A decoder

that is configured to decode both the base view and the dependent views may be

referred to as a decoder that supports multiview coding.

[0083] Pictures in FIG. 3 are indicated at the intersection of each row and each column

in FIG. 3. The H.264/AVC standard with MVC extensions may use the term frame to

represent a portion of the video, while HEVC standard may use the term picture to

represent a portion of the video. This disclosure uses the term picture and frame

interchangeably.

[0084] The pictures in FIG. 3 are illustrated using a shaded block including a letter that

designates whether the corresponding picture is intra-coded (that is, an I-picture), inter

coded in one direction (that is, as a P-picture), or inter-coded in multiple directions (that

is, as a B-picture). In general, predictions are indicated by arrows, where the pointed-to

pictures use the pointed-from picture for prediction reference. For example, the P

picture of view S2 at temporal location TO is predicted from the I-picture of view SO at

temporal location TO.

[0085] As with single view video encoding, pictures of a multiview video coding video

sequence may be predictively encoded with respect to pictures at different temporal

locations. For example, the B-picture of view SO at temporal location TI has an arrow

pointed to it from the I-picture of view SO at temporal location TO, indicating that the b

picture is predicted from the I-picture. Additionally, however, in the context of

multiview video encoding, pictures may be inter-view predicted. That is, a view

component (e.g., a texture view component) can use the view components in other

views for reference. In MVC, for example, inter-view prediction is realized as if the

view component in another view is an inter-prediction reference. The potential inter

view references are signaled in the Sequence Parameter Set (SPS) MVC extension and

can be modified by the reference picture list construction process, which enables

flexible ordering of the inter-prediction or inter-view prediction references.

[0086] FIG. 3 provides various examples of inter-view prediction. Pictures of view Si,

in the example of FIG. 3, are illustrated as being predicted from pictures at different

temporal locations of view Si, as well as inter-view predicted from pictures of views SO

and S2 at the same temporal locations. For example, the B-picture of view SI at

temporal location TI is predicted from each of the B-pictures of view SI at temporal

WO 2014/008286 PCT/US2013/049121
22

locations TO and T2, as well as the B-pictures of views SO and S2 at temporal location

TI.

[0087] FIG. 3 also illustrates variations in the prediction hierarchy using different levels

of shading, where a greater amount of shading (that is, relatively darker) frames are

higher in the prediction hierarchy than those frames having less shading (that is,

relatively lighter). For example, all I-pictures in FIG. 3 are illustrated with full shading,

while P-pictures have a somewhat lighter shading, and B-pictures (and lowercase b

pictures) have various levels of shading relative to each other, but always lighter than

the shading of the P-pictures and the I-pictures.

[0088] In general, the prediction hierarchy may be related to view order indexes, in that

pictures relatively higher in the prediction hierarchy should be decoded before decoding

pictures that are relatively lower in the hierarchy. Those pictures relatively higher in the

hierarchy can be used as reference pictures during decoding of the pictures relatively

lower in the hierarchy. A view order index is an index that indicates the decoding order

of view components in an access unit. The view order indices are implied in the

sequence parameter set (SPS) MVC extension, as specified in Annex H of H.264/AVC

(the MVC amendment). In the SPS, for each index i, the corresponding view id is

signaled. The decoding of the view components may follow the ascending order of the

view order index. If all the views are presented, then the view order indexes are in a

consecutive order from 0 to numviewsminus_1.

[0089] In this manner, pictures used as reference pictures are decoded before pictures

that depend on the reference pictures. A view order index is an index that indicates the

decoding order of view components in an access unit. For each view order index i, the

corresponding viewid is signaled. The decoding of the view components follows the

ascending order of the view order indexes. If all the views are presented, then the set of

view order indexes may comprise a consecutively ordered set from zero to one less than

the full number of views.

[0090] For certain pictures at equal levels of the hierarchy, the decoding order may not

matter relative to each other. For example, the I-picture of view SO at temporal location

TO may be used as a reference picture for the P-picture of view S2 at temporal location

TO, which, in turn, may be used as a reference picture for the P-picture of view S4 at

temporal location TO. Accordingly, the I-picture of view SO at temporal location TO

should be decoded before the P-picture of view S2 at temporal location TO, which in

turn, should be decoded before the P-picture of view S4 at temporal location TO.

WO 2014/008286 PCT/US2013/049121
23

However, between views SI and S3, a decoding order does not matter, because views

SI and S3 do not rely on each other for prediction. Instead views SI and S3 are

predicted only from other views that are higher in the prediction hierarchy. Moreover,

view SI may be decoded before view S4, so long as view SI is decoded after views SO

and S2.

[0091] In this manner, a hierarchical ordering may be used to describe views SO through

S7. In this disclosure, the notation "SA > SB" means that view SA should be decoded

before view SB. Using this notation, SO > S2 > S4 > S6 > S7, in the example of FIG. 2.

Also, with respect to the example of FIG. 2, SO > S1, S2 > S1, S2 > S3, S4 > S3, S4 >

S5, and S6 > S5. Any decoding order for the views that does not violate this

hierarchical ordering is possible. Accordingly, many different decoding orders are

possible, with limitations based on the hierarchical ordering.

[0092] The SPS MVC Extension will now be described. A view component can use the

view components in other views for reference, which is called inter-view prediction. In

MVC, inter-view prediction is realized as if the view component in another view was an

inter prediction reference. The potential inter-view references, however are signaled in

the Sequence Parameter Set (SPS) MVC extension (as shown in the following syntax

table, Table 1) and can be modified by the reference picture list construction process,

which enables flexible ordering of the inter prediction or inter-view prediction

references. Video encoder 20 represents an ex example of a video encoder configured

to generate syntax as shown in Table 1, and video decoder 30 represents an example of

a video decoder configured to parse and process such syntax.

WO 2014/008286 PCT/US2013/049121
24

Table 1
seq_parameterset mvc_extension() { Descriptor

numviewsminus1 ue(v)

for(i = 0; i <= num views minus 1; i++)

view id[i] ue(v)

for(i = 1; i <= num views_minus1; i++) {

num anchor refs_10[i] ue(v)

for(j = 0; j < num anchorrefs_10[i]; j++)

anchor ref_10[i][j ue(v)
numanchorrefs_11[i] ue(v)

for(j = 0; j < num anchorrefs_ll[i];j++)

anchor ref_11[i]j] ue(v)

}
for(i = 1; i <= num views_minus1; i++) {

numnonanchorrefs_10[i] ue(v)

for(j = 0; j < num nonanchor refs_10[i]; j++)

nonanchorref_10[i][j] ue(v)

numnonanchorrefs_11[i] ue(v)

for(j = 0; j < num nonanchor refs_ll[i]; j++)

nonanchorref_11[i]j] ue(v)

}
numlevelvalues_signaled minus ue(v)

for(i = 0; i <= num levelvaluessignaled minus 1; i++) {

level idc[i] u(8)

num_applicableopsminus1[i ue(v)

for(j = 0; j <= num applicable ops minus 1 [i]; j++) {
applicableoptemporalid[i][j] u(3)

applicableopnumtargetviews_minus1[i][j] ue(v)

for(k = 0; k <=
applicable op num target views minus 1 [i][j]; k++)

applicableoptarget view id[i][j][k] ue(v)

applicableopnum_viewsminus1[i][j] ue(v)

}
}

}

[0093] In the SPS MVC extension, for each view, the number of views that can be used

to form reference picture list 0 and reference picture list 1 are signaled. A prediction

relationship for an anchor picture, as signaled in the SPS MVC extension, can be

different from the prediction relationship for a non-anchor picture (signaled in the SPS

MVC extension) of the same view.

[0094] Parameter sets for HEVC will now be described. In HEVC WD7, the video,

sequence, picture and adaptation parameter set mechanism in HEVC decouples the

transmission of infrequently changing information from the transmission of coded block

WO 2014/008286 PCT/US2013/049121
25

data. Video, sequence, picture and adaptation parameter sets may, in some applications,

be conveyed "out-of-band," i.e., not transported together with the units containing coded

video data. Out-of-band transmission is typically reliable.

[0095] In HEVC WD7, an identifier of a video sequence parameter set (VPS), sequence

parameter set (SPS), picture parameter set (PPS) or adaptation parameter set (APS) is

coded using a variable length syntax element 'ue(v)'. Each SPS includes an SPS ID and

a VPS ID, each PPS includes a PPS ID and an SPS ID, and each slice header includes a

PPS ID and possibly an APS ID.

[0096] Though a video parameter set (VPS) is supported in HEVC WD7, most of the

sequence level information parameters are still only present in the SPS. Several

problems or potential drawbacks of the VPS design of WD7 exist. As one example, a

significant amount of the information contained in SPSs might either be the same for all

the SPSs or be the same for at least two SPSs. Duplicating this information in the SPS

requires higher bandwidth. The parameter sets (including at least VPS, SPS and PPS)

may need to be signaled out-of-band. If signaled in-band, such bit-rate increase is

effective to each tune-in at a random access point.

[0097] As a second example, in potential HEVC extensions, if similar design principles

as AVC are followed, then a majority of the operation point description information

may not be included in the SPS or VPS, and instead, SEI messages may be used for

session initialization and negotiation. Thus, a MANE may be required to parse SPS,

VPS, and SEI messages for the above mentioned purposes. As a third example, some

information that is present in the SPS in WD7 may be changed or removed in HEVC

extensions.

[0098] To address the potential problems discussed above, this disclosure proposes

several techniques for the design of parameter sets, including the VPS or other

parameter sets. For example, according to the techniques described in this disclosure,

information that is typically the same for the whole coded video sequence may be

present in the VPS, while only syntax elements that might change in the SPS level may

be present in SPS. Other syntax elements may be excluded from the SPS if already

present in VPS.

[0099] As another example of the techniques of this disclosure, information related to

session negotiation may be present in VPS. Examples of information related to session

negotiation include profile information, level information, frame resolution information,

frame rate information, and bit rate information, as well as other information. As

WO 2014/008286 PCT/US2013/049121
26

another example of the techniques of this disclosure, the VPS may be designed in a way

that the parsing of the operation points information that are important for session

negotiation do not require variable length coding, including potentially information for

both the base layer or view and for the enhancement layers or views. The syntax

elements in VPS may be grouped so that for each group, the HEVC extension might

provide zero or more instances, and the operation points in the HEVC extension only

refer to an index.

[0100] Various examples of the syntax and semantics for VPS, SPS, video usability

information (VUI), and HRD parameters and slice header are provided below. Tables

2-6 illustrate a first example. Table 1, set forth above, shows an example of VPS

syntax. The "descriptor" columns in Tables 2-6, as well as in the other tables in this

disclosure, identify the number of bits for each syntax element, with "v" indicating the

number of bits may be variable. Number values in the "descriptor" column indicate the

syntax element is conveyed using a fixed number of bits. For example, "u(8)" signifies

a syntax element with a fixed number of eight bits, whereas "ue(v)" signifies a syntax

element with a variable number of bits. In order to parse syntax elements with the

descriptor ue(v), the parsing device (such as a video decoder or MANE) may need to

implement entropy coding in order to decode and interpret such syntax elements.

WO 2014/008286 PCT/US2013/049121
27

Table 2 - Video parameter set RBSP syntax
videoparameterset rbsp() { Descriptor

vpsmaxtemporallayersminus1 u(3)

vpsmax-layersminus1 u(5)

profilespace u(3)

profileide u(5)

for(j = 0; j < 32; j++)
profilecompatabilityflag[i] u(1)

constraint-flags u(16)

level ide u(8)

level lowertemporallayerspresent flag u(1)

if(levellowertemporal layerspresent flag)

for(i = 0; i < vps max temporal layers_minus1; i++)

level idetemporal subset[i] u(8)

videoparametersetid u(5)

vpstemporalidnestingflag u(1)

chroma formatide u(2)

if(chromaformat idc == 3)
separatecolourplaneflag u(1)

bitdepthluma_minus8 u(2)

bitdepthchroma minus8 u(2)

pic widthinluma samples u(16)

picheightinluma samples u(16)

for (i = 0; i <= vps max temporal layersminus 1; i++) {

bitrate infopresentflag[i] u(1)

frm rateinfopresentflag[i] u(1)

if(bitrateinfopresent flag[i]) {

avgbitrate[i] u(16)

maxbitrate [i] u(16)

}
if(frm_rate_infopresent flag[i]) {

constantfrmrate_idc[i] u(2)

avgfrmrate[i] u(16)

}
}
next essentialinfobyteoffset u(12)

piccroppingflag u(1)

if(piccroppingflag) {

piccropleftoffset ue(v)

piccropright_offset ue(v)

piccroptop_offset ue(v)

piccropbottomoffset ue(v)

}
for (i = 0, nalHrdPresent = 0, vclHrdPresent = 0;

i <= vps max temporal layersminus 1; i++) {
nal hrdparameterspresentflag[i] u(1)

if(nal hrdparameterspresent flag[i]) {

WO 2014/008286 PCT/US2013/049121
28

hrd_parameters(nalHrdPresent)

nalHrdPresent++

}
vclhrdparameterspresentflag[i] u(1)

if(vcl hrd_parameterspresent flag[i]) {

hrd_parameters(vclHrdPresent)

vclHrdPresent++

}
if(nalHrdPresent + vclHrdPresent = = 1) {

low delayhrdflag u(1)

subpiccpbparamspresentflag u(1)

numunitsinsubtick u(32)

}
vpsmaxdecpicbuffering[i] ue(v)

vpsnum_reorderpics[i] ue(v)

vpsmaxlatencyincrease[i] ue(v)

}
vui_parameterspresentflag u(1)

if (vuparameterspresent flag)

vuparameters()

num vpsshortterm ref picsets ue(v)

for(i = 0; i < num vpsshort term ref pic_sets; i++)

shortterm_ref picset(i)

vpsextension_flag u(1)

if(vps_extension flag)

while(more rbspdata())

vpsextension data flag u(1)

}
rbsp trailingbits()

}

Table 3 - Sequence parameter set RBSP syntax
seq_parameterset rbsp() { Descriptor

seqparametersetid ue(v)

videoparametersetid ue(v)

pcmenabled_flag u(1)

if(pcmenabled flag) {
pcmsamplebitdepthlumaminus1 u(4)

pcmsamplebitdepthchroma minus u(4)

}
log2_maxpic-orderent_lsbminus4 ue(v)

restricted ref_piclistsflag u(_1)
if(restrictedref piclistsflag)

lists modificationpresentflag u(_1l

log2_min_codingblock sizeminus3 ue(v)

log2_diff max min-coding block size ue(v)

WO 2014/008286 PCT/US2013/049121
29

log2_min_transformblocksizeminus2 ue(v)

log2_diff max_mintransformblock size ue(v)

if(pcmenabled flag) {
log2_min_pcm_codingblocksizeminus3 ue(v)

log2_diff max_min_pcm_codingblock size ue(v)

}

max transform-hierarchydepthinter ue(v)

max transformhierarchydepth intra ue(v)

scaling list enable flag u(1)

if(scalinglistenabletflag) {
spsscalinglist data present flag u(1)

if(sps scaling list datajresent flag)

scalinglist_param()

}
chromapred fromlumaenabledflag u(1)

transform skip_enabled_flag u(1)

seqloopfilteracrossslicesenabled flag u(1)

asymmetric_motionpartitionsenabled flag u(1)

nsrqtenabled_flag u(1)

sampleadaptiveoffsetenabledflag u(1)

adaptiveloopfilterenabledflag u(1)

if(adaptiveloopfilter enabled flag)
alf coefin_sliceflag u(1)

if(pcmenabled flag)
pcmloop filterdisableflag u(1)

if(log2_mi coding block sizeminus3 == 0)

inter_4x4_enabledflag u(1)

num shortterm ref pic sets ue(v)

userpsfro mvps_flag u(1)

for(i = 0; i < numshortterm ref picsets; i++){

idx = use rpsfrom vpsflag ? numvpsshort term ref pic-sets + i:

shortterm_ref picset(idx)

}
longtermref_picspresentflag u(1)

spstemporalmvpenableflag u(1)

tiles fixed structureide u(2)

spsextensionflag u(1)

if(spsextension flag)

while(more rbspdata(j))

spsextensiondataflag u(1)

rbsp trailingbits()

}

WO 2014/008286 PCT/US2013/049121
30

Table 4 - VUI parameters syntax
vuiparameters() { Descriptor

aspectratio_info_presentflag u(1)

if(aspect ratio infopresent flag) {
aspectratioide u(8)

if(aspect ratio idc == ExtendedSAR) {
sarwidth u(16)

sar height u(16)

}
}
overscaninfo present flag u(1)
if(overscan_infopresent flag)

overscan_appropriateflag u(1)

videosignal typepresentflag u(1)

if(video signal typepresent flag) {
videoformat u(3)

videofullrangeflag u(1)

colourdescriptionpresentflag u(1)

if(colour descriptionpresent flag) {
colourprimaries u(8)

transfercharacteristics u(8)

matrixcoefficients u(8)

}
}
chroma loc_info present flag u(1)

if(chromalocinfopresent flag) {
chromasample_loc_typetopfield ue(v)

chromasample_loc_typebottomfield ue(v)

}
neutral chromaindicationflag u(1)

fieldseqflag u(1)

timinginfopresentflag u(1)
if(timing infopresent flag) {

numunitsintick u(32)
time-scale u(32)

fixedpicrateflag u(1)

}
bitstreamrestrictionflag u(1)
if(bitstream_restriction flag) {

motionvectorsoverpicboundaries flag u(1)

max-bytesperpicdenom ue(v)

max-bits per_mincu_denom ue(v)

log2_max-mvlength-horizontal ue(v)

log2_max-mvlengthvertical ue(v)

}
}

WO 2014/008286 PCT/US2013/049121
31

Table 5 - HRD parameters syntax
hrd_parameters(i) { Descriptor

if(i = = 0) {
epbcntminus1 ue(v)

bit rate scale u(4)

epbsize_scale u(4)

}
for(SchedSelldx = 0; SchedSelldx <= cpb_cntminusi; SchedSelldx++) {

bit rate valueminusl[i] SchedSelldx] ue(v)

epbsizevalueminusl[i] [SchedSelldx] ue(v)

if(i == 0)

cbriflag[SchedSelldx] u(1)

}
if(i == 0) {

initialcpb removaldelaylengthminus1 u(5)

epbremoval_delaylengthminusi u(5)

dpboutputdelaylength minus u(5)

time offsetlength u(5)

}
}

Table 6 - Slice header syntax
slice header() { Descriptor

firstsliceinpicflag u(1)

picparameter_set_id ue(v)

if(!firstslice_inpicflag)

slice-address u(v)

if(dependent sliceenabled flag && first sliceinpicflag)

dependentsliceflag u(1)

if(dependent slice flag) {

slicetype ue(v)

if(output flag_present flag)

picoutputflag u(1)

if(separatecolour-planeflag == 1)

colour-plane id u(2)

if(RapPicFlag) {

rappic-id ue(v)

nooutputof-priorpicsflag u(1)

}
if(!IdrPicFlag) {

picordercent_lsb u(v)

shortterm refpicsetspsflag u(1)

if(!shortterm refjpic_set spsflag)

shortterm ref picset(NumShortTermRefPicSets)

else

shortterm ref pic set idx u(v)

WO 2014/008286 PCT/US2013/049121
32

if(longtermref picspresent flag) {
num_longtermpics ue(v)

for(i = 0; i < num long termpics; i++) {
poclsblt[i] u(v)

delta_pocmsbpresentflag[i] u(1)

if(deltapoc msbpresent flag[i])
deltapocmsbcycle_It[i] ue(v)

used_bycurrpicit_flag[i] u(1)

}
}

}
if(sample adaptive offset enabledflag) {

slice sampleadaptiveoffsetflag[0] u(1)

if(slicesampleadaptive_offsetflag[0]) {
slicesampleadaptive_offsetflag[1] u(1)

slicesampleadaptive_offsetflag[2] u(1)

}
}
if(adaptiveloopfilter enabled flag)

apsid ue(v)

if(slice type == P slice type == B) {
if(sps temporal mvpenableflag)

pictemporalmvpenableflag u(1)

numref_idx_activeoverrideflag u(1)

if(num refidxactive override_flag) {
numref_idx_10_activeminusi ue(v)

if(slice type = = B)

numref_idx_11_activeminusi ue(v)

}
}
if(lists_modificationpresent flag)

ref piclist-modification()

if(slice type = = B)

mvd_11_zeroflag u(1)

if(cabacinitpresent flag && slicetype I)

cabacinit_flag u(1)

sliceqpdelta se(v)

if(deblocking filtercontrolpresent flag) {
if(deblocking filter overrideenabled flag)

deblockingfilteroverrideflag u(1)

if(deblocking filter override flag) {
sliceheaderdisabledeblockingfilterflag u(1)

if(!sliceheader disabledeblockingfilter flag) {
betaoffsetdiv2 se(v)

tcoffset div2 se(v)

}

WO 2014/008286 PCT/US2013/049121
33

}
}
if(pic temporal mvp enable flag) {

if(slice type = = B)

collocatedfrom_10_flag u(1)

if(slice type != I &&
((collocatedfrom_10 flag && numrefidx_10_active minus > 0)

(!collocated from_10_flag && num refidx_11_active minus > 0))
collocated ref idx ue(v)

}
if((weighted_predflag && slice type == P)

(weighted bipred idc == 1 && slice type == B))
pred weighttable()

if(slice type = = P | slice type = = B)

fiveminusmaxnummergecand ue(v)

if(adaptive loopfilter enabled flag) {

sliceadaptiveloopfilter flag u(1)

if(sliceadaptiveloopfilter flag && alfcoef inslice_flag)

alf param()

if(sliceadaptiveloopfilter flag && !alf_ coefin-sliceflag)

alfcucontrolparam()

}
if(seq_loop filteracrossslices enabled flag &&

(sliceadaptiveloopfilter flag | slice sample adaptive offset flag |
!disabledeblockingfilter flag))

sliceloopfilteracrossslices enabled flag u(1)

}

if(tilesorentropycodingsyncidc = = 1
tiles or entropy coding sync ide = = 2) {
numentrypoint_offsets ue(v)

if(num entrypoint offsets > 0) {

offsetlenminusi ue(v)

for(i = 0; i < num entrypoint offsets; i++)

entrypointoffset[i] u(v)

}
}
if(sliceheaderextensionpresent flag) {

slice headerextensionlength ue(v)

for(i = 0; i < sliceheader extensionlength; i++)

sliceheaderextension databyte u(8)

}
bytealignment()

}

[0101] Video parameter set RBSP semantics, such as those shown in Table 2 above,

will now be described. The syntax element videoparametersetid in Table 2 provides

an identification for the video parameter set. Using the value of

WO 2014/008286 PCT/US2013/049121
34

videoparametersetid, another syntax structure, such as an SPS, can activate a

particular VPS. Table 3, for example, which shows an example SPS syntax structure,

also includes a syntax element videoparametersetid. Based on the value of the

syntax element videoparametersetid in the SPS, a particular VPS with that same

value can be activated for coding video blocks associated with the SPS. Typically,

multiple SPSs will be associated with the same VPS. As an example, video decoder 30

may receive in the video data a first SPS that includes a first value for the syntax

element videojparametersetid, and video decoder 30 may also receive a second SPS

that includes the same value for the syntax element videoparametersetid . The first

SPS may be a first syntax structure including a first group of syntax elements that apply

to one or more whole pictures of video data, and the second SPS may be a second

syntax structure that includes a second group of syntax elements that apply to one or

more different whole pictures of video data. Video decoder 30 decodes video blocks

associated with both the first SPS and the second SPS based on parameters from the

same VPS.

[0102] The syntax elements profile space, profileidc, profilecompatabilityflag[i],

constraint flags, levelidc, bit depth lumaminus8, bitdepth chromaminus8,

chromaformat idc, pic width-in luma samples, pic height in luma samples,

piccroppingflag, piccropleftoffset, pic crop right offset, pic crop topoffset,

pic cropbottomoffset, temporal id nestingflag and separate_colourjplaneflag

have the same semantics of those syntax elements with the same syntax element names

in the sequence parameter set as specified in the WD7 but according to the proposed

techniques of this disclosure have been moved from the SPS to the VPS.

[0103] The syntax element profile space identifies a context for interpreting the syntax

element profileidc, and the syntax element profileidc identifies a group of profiles.

The syntax elements profilecompatabilityflag[i] may identify if the video data is

compatible with profile [i]. Video decoder 30 may, for example, receive in the video

data a values for profile space and profileidc, and based on the value of profile space,

identify a context for interpreting the syntax element profile_idc. Based on the

interpreted value of profileidc, video decoder 30 can identify a group of profiles, and

for each profile, video decoder 30 can receive a value for the syntax element

profilecompatabilityflag[i] to identify if the video data is compatible with profile [i].

The syntax element profileidc may, for example, have 32 associated flags, each flag

WO 2014/008286 PCT/US2013/049121
35

indicating a specific aspect of the profile. For example, a flag may indicate if one

particular coding or process tool is turned on or off, given the same profile.

[0104] The syntax element levelidc identifies a maximum level associated with the

video data, and the syntax element levellowertemporal layersjpresent flag identifies

if a temporal layer of the video data has a level that is lower than the maximum level.

The syntax element levellower temporal layers present flag set equal to 1 specifies

that level idctemporal_subset[i] may be present. The syntax element

levellower temporallayerspresent flag set equal to 0 specifies that

level_idc temporalsubset[i] is not present. The syntax element

level_idc temporalsubset[i] specifies the level to which the bitstream subset

consisting of all NAL units with temporalid less than or equal to i conforms.

[0105] Video decoder 30 may, for example, in response to receiving a syntax element

levellower temporallayerspresent flag set equal to 1 receive syntax elements

level_idc temporalsubset[i]. The syntax elements levelidctemporal_subset[i]

may be present to identify a level to which temporal layer [i] complies.

[0106] The syntax elements vps temporalidnestingflag,

vps temporalidnestingflag, vps maxdecpicbuffering[i],

vps-num-reorderpics[i], and vps maxlatencyincrease[i] have the same semantics

of the following syntax elements respectively in the sequence parameter set of the

HEVC WD 7: sps temporal id nestingflag, sps temporal id nestingflag,

sps maxdecpic buffering[i], sps numreorderpics[i],

sps-max-latencyincrease[i].

[0107] The syntax element nextessentialinfobyteoffset is an example of the offset

syntax element introduced in this disclosure. The syntax element

nextessentialinfo byteoffset specifies the byte offset of the next set of profile and

level information and other fixed-length coded information in the VPS NAL unit,

starting from the beginning of the NAL unit. MANE 29, for example, may receive the

syntax element nextessential info byte_offset and determine a number of bytes

indicated by the syntax element nextessentialinfo byteoffset, and based on the

determined number of bytes, MANE 29 may skip one or more the variable length coded

syntax elements shown in Table 2, such as the variable length syntax elements

piccrop_leftoffset, pic crop right offset, pic crop topoffset,

pic cropbottomoffset, and the other variable length syntax elements shown in Table

2. Video decoder 30, however, upon receiving the syntax element

WO 2014/008286 PCT/US2013/049121
36

nextessentialinfo byte offset may ignore the value of the syntax element. Thus, after

parsing the syntax element nextessential-info byteoffset, video decoder 30 may

continue parsing the variable length syntax elements pic crop left offset,

pic crop right offset, pic crop topoffset, piccrop bottomoffset, and the other

variable length syntax elements shown in Table 2.

[0108] In a future extension of the HEVC specification, for example a scalable coding

extension or a 3DV extension, VPS information for a non-base layer or view may be

included in the VPS NAL unit after the VPS information for the base layer or view.

The VPS information for a non-base layer or view also may start with fixed-length

syntax elements, such as coded profile, level, and other information essential for session

negotiation. Using the bit offset specified by nextessential info byte_offset, MANE

29 may locate and access that essential information in the VPS NAL unit without the

need to perform entropy decoding. Some network entities (e.g. MANE 29) configured

to transport and process video data may not be equipped for entropy decoding. Using

an offset syntax element as described in this disclosure, however, such network entities

can still process some aspects of a parameter set, and use information contained in the

processed syntax element when making routing decision for video data. An example of

information that a network entity may process when making routing decisions includes

information related to session negotiation.

[0109] The syntax elements nalhrdparameterspresent flag[i] and

vcl-hrdparameterspresent flag[i] have the similar semantic as

nal hrdparameterspresent flag, and vcl_hrdparametersjpresent flag that are present

in VUI parameters of WD7, but are applicable to the i-th temporal layer representation.

The syntax element nalhrdparametersjpresent flag may, for example, signal whether

HRD parameters such as bitrate, coded picture buffer (CPB) size, and initial CPB

removal delay (initialcpb removaldelaylength minus 1), a CPB removal delay

(cpb removaldelaylength minus1, a DPB output delay

(dpboutputdelaylength minus 1), and a time offset length (time offset-length). The

syntax elements may, for example, include a syntax element (cbr flag) indicating if the

bit rate for the video date is constant or variable.

[0110] The syntax element low delay-hrd flag may be used to indicate the removal

time of a decoding unit from a DPB. The syntax element

subjpiccpbparamspresent flag equal to 1 may specify that sub-picture level CPB

removal delay parameters are present and the CPB may operate at an access unit level or

WO 2014/008286 PCT/US2013/049121
37

sub-picture level. The syntax element subpiccpbparamspresent flag equal to 0

may specifies that sub-picture level CPB removal delay parameters are not present and

the CPB operates at an access unit level. The syntax element numunitsinsubtick

represents the number of time units of a clock operating at the frequency time-scale Hz

that corresponds to one increment (called a sub-picture clock tick) of a sub-picture clock

tick counter. The HRD parameters discussed above may be applicable to all temporal

layer representations.

[0111] The syntax element vui videojparametersjpresent flag set equal to 1 specifies

that the vui vps() syntax structure is present in the VPS. This flag set equal to 0

specifies that the vui vps() syntax element is not present. The syntax element

numvpsshortterm refjpic sets specifies the number of short-term reference picture

sets that are specified in the video parameter set. The syntax element

bitrateinfojpresent flag[i] set equal to 1 specifies that the bit rate information for the

i-th temporal layer is present in the video parameter set. The syntax element

bitrate_infojpresent flag[i] set to 0 specifies that the bit rate information for the i-th

temporal layer is not present in the VPS.

[0112] The syntax element frmrateinfojpresent flag[i] set to 1 specifies that frame

rate information for the i-th temporal layer is present in the video parameter set. The

syntax element frmrateinfopresent flag[i] set equal to 0 specifies that frame rate

information for the i-th temporal layer is not present in the video parameter set.

[0113] The syntax element avgbitrate[i] indicates the average bit rate of the i-th

temporal layer representation. The average bit rate for the i-th temporal layer

representation in bits per second is given by BitRateBPS(avgbitrate[i]) with the

function BitRateBPS() being specified by

BitRateBPS(x)= (x & (214 1)) * 10(2x14))

[0114] The average bit rate may be derived according to the access unit removal time

specified in Annex C of the HEVC standard. In the following, bTotal is the number of

bits in all NAL units of the i-th temporal layer representation, ti is the removal time (in

seconds) of the first access unit to which the VPS applies, and t 2 is the removal time (in

seconds) of the last access unit (in decoding order) to which the VPS applies.

[0115] With x specifying the value of avg bitrate[i], the following applies:

- If ti is not equal to t2 , the following condition may be true:

(x&(2 14 -1)) == Round(bTotal+((t 2 - t) * 10(2+(x>14))

WO 2014/008286 PCT/US2013/049121
38

- Otherwise (ti is equal to t2), the following condition may be true:

(x&(2 - 1)) == 0

[0116] The syntax element maxbitrate layer[i] indicates an upper bound for the bit

rate of the i-th temporal layer representation in any one-second time window, of access

unit removal time as specified in Annex C. The upper bound for the bit rate of the

current scalable layer in bits per second is given by BitRateBPS(max bitrate layer[i])

with the function BitRateBPS() being specified in Equation G-369. The bit rate values

are derived according to the access unit removal time specified in Annex C of the

HEVC standard. In the following, ti is any point in time (in seconds), t2 is set equal to

ti + maxbitratecalcwindow[i] + 100, and bTotal is the number of bits in all NAL

units of the current scalable layer that belong to access units with a removal time greater

than or equal to ti and less than t2 . With x specifying the value of

maxbitratelayer[i], the following condition may be obeyed for all values of ti:

(x & (2 14 1)) >= bTotal + ((t2 - ti) * 102x 4))).

[0117] The syntax element constantfrmrate_idc[i] indicates whether the frame rate

of the i-th temporal layer representation is constant. In the following, a temporal

segment tSeg is any set of two or more consecutive access units, in decoding order, of

the current temporal layer representation, fTotal(tSeg) is the number of pictures, in the

temporal segment tSeg, ti(tSeg) is the removal time (in seconds) of the first access unit

(in decoding order) of the temporal segment tSeg, t2 (tSeg) is the removal time (in

seconds) of the last access unit (in decoding order) of the temporal segment tSeg, and

avgFR(tSeg) is the average frame rate in the temporal segment tSeg, which is given by:

avgFR(tSeg) = = Round(fTotal(tSeg) * 256 + (t2 (tSeg) - ti(tSeg)))

[0118] If the i-th temporal layer representation does only contain one access unit or the

value of avgFR(tSeg) is constant over all temporal segments of the i-th temporal layer

representation, the frame rate is constant; otherwise, the frame rate is not constant. The

syntax element constantfrm rateidc[i] set equal to 0 indicates that the frame rate of

the i-th temporal layer representation is not constant. The syntax element

constantfrmrate_idc[i] set equal to 1 indicates that the frame rate of the i-th temporal

layer representation is constant.

[0119] The syntax element constantfrmrate_idc[i] set equal to 2 indicates that the

frame rate of the i-th temporal layer representation may or may not be constant. The

value of constantfrmrateidc[i] may be in the range of 0 to 2, inclusive.

WO 2014/008286 PCT/US2013/049121
39

[0120] The syntax element avgfrm rate[i] indicates the average frame rate, in units of

frames per 256 seconds, of the i-th temporal layer representation. With fTotal being the

number of pictures in the i-th temporal layer representation, ti being the removal time

(in seconds) of the first access unit to which the VPS applies, and t2 being the removal

time (in seconds) of the last access unit (in decoding order) to which the VPS applies,

the following applies:

[0121] If ti is not equal to t 2 , the following condition may be true:

avgfrm rate[i] = = Round(fTotal * 256 + (t2 - ti))

Otherwise (ti is equal to t 2), the following condition may be true:

avgfrm rate[i] = = 0

[0122] VUI parameters semantics will now be described. Each syntax element in the

VUI parameters has the same semantics as the syntax element with the same name in

the VUI parameters syntax as specified in WD7.

[0123] Sequence parameter set RBSP semantics will now be described. The syntax

element userpsfromvpsflag set equal to 1 specifies that the short-term reference

pictures sets included in the sequence parameter set are additive to the short-term

reference pictures sets included in the referred video parameter set. The syntax element

userpsfrom vpsflag set equal to 0 specifies that the short-term reference pictures

sets included in the sequence parameter set override the short-term reference pictures

sets included in the referred video parameter set.

[0124] Alternatively, the syntax element numshorttermrefjpicsets may not be

present in the SPS and may always be inferred to be set equal to 0. Alternatively, the

syntax element userpsfromvpsflag may not be present and may always be inferred

to be set equal to 1. Alternatively, the syntax element use_rpsfromvpsflag may not

be present and may always be inferred to be set equal to 0.

[0125] The variable NumShortTermRefPicSets can be derived as follows.

NumShortTermRefPic Sets = numshortterm_refjpicsets

if(userpsfromvpsflag)

NumShortTermRefPic Sets += numvpsshortterm refjpicsets

[0126] Slice header semantics will now be described. The syntax element

shortterm refjpicsetidx specifies the index to the list of the short-term reference

picture sets specified in the active sequence parameter set that may be used for creation

of the reference picture set of the current picture. The syntax element

shortterm ref pic set-idx may be represented by

WO 2014/008286 PCT/US2013/049121
40

Ceil(Log2(NumShortTermRefPicSets)) bits. The value of shortterm refjpic set idx

may be in the range of 0 to numshortterm ref pic sets - 1, inclusive, where

numshorttermrefjpicsets is the syntax element from the active sequence parameter

set.

[0127] The variable StRpsIdx may be derived as follows.

if(short term refjpic set spsflag)

StRpsIdx = shorttermrefjpicset idx

else

StRpsIdx = NumShortTermRefPic Sets

[0128] The syntax element tilesfixedstructureidc set equal to 0 indicates that each

picture parameter set referred to by any picture in the coded video sequence has

tilesorentropycodingsync_idc set equal to 0. The syntax element

tilesfixedstructureidc set equal to 1 indicates that each picture parameter set that is

referred to by any picture in the coded video sequence has the same value of the syntax

elements numtilecolumnsminus 1, numtilerowsminus 1, uniform spacingflag,

columnwidth[i], row height[i] and loopfilteracrosstilesenabled flag, when

present. The syntax element tilesfixedstructure idcg set equal to 2 indicates that tiles

syntax elements in different picture parameter sets that are referred to by pictures in the

coded video sequence may or may not have the same value. The value of

tilesfixedstructure idc may be in the range of 0 to 2, inclusive. When the syntax

element tilesfixedstructure flag is not present, it is inferred to be equal to 2.

[0129] The signaling of the syntax element tiles fixedstructure flag set equal to 1 may

be a guarantee to a decoder that each picture in the coded video sequence has the same

number of tiles distributed in the same way which might be useful for workload

allocation in the case of multi-threaded decoding.

[0130] A second example, similar to the first example described above, will now be

described. In this second example, the syntax elements remaining in the SPS may be

present in the VPS and conditionally present in the SPS. The syntax and semantics of

the VPS and SPS according to this example are changed and described below in Tables

7-9.

Table 7 - Video parameter set RBSP syntax
videoparameter set rbsp() { Descriptor

vpsmaxtemporallayersminus1 u(3)

vpsmaxlayersminus1 u(5)

WO 2014/008286 PCT/US2013/049121
41

profilespace u(3)

profileide u(5)

for(j = 0; j < 32; j++)
profilecompatabilityflag[i] u(1)

constraint-flags u(16)

level ide u(8)

level lowertemporallayerspresent flag u(1)

if(levellowertemporal layerspresentflag)

for (i = 0; i < vps max temporallayersminus 1; i++)

levelidc_temporal subset[i] u(8)

videoparametersetid u(5)

vpstemporalidnestingflag u(1)

chroma formatide u(2)

if(chromaformat idc == 3)

separatecolourplaneflag u(1)

bitdepthluma_minus8 u(2)

bitdepthchroma_minus8 u(2)

pic widthinluma samples u(16)

picheight in lumasamples u(16)

for (i = 0; i <= vps max temporal layersminus 1; i++) {
bitrateinfopresentflag[i] u(1)

frm rate_infopresent flag[i] u(1)

if(bitrate infopresent flag[i]) {
avgbitrate[i] u(16)

maxbitrate [i] u(16)

}
if(frm rateinfopresent flag[i]) {

constantfrmrateidc[i] u(2)

avgfrmrate[i] u(16)

}
}
next essentialinfobyteoffset u(12)

piccroppingflag u(1)

if(piccroppingflag) {

piccropleftoffset ue(v)

piccroprightoffset ue(v)

piccroptopoffset ue(v)

piccropbottomoffset ue(v)

}
for (i = 0, nalHrdPresent = 0, vclHrdPresent = 0;

i <= vps max temporal layersminus 1; i++) {
nal hrdparameterspresentflag[i] u(1)

if(nal hrdparameterspresent flag[i]) {
hrdparameters(nalHrdPresent)

nalHrdPresent++

}

vclhrdparameterspresentflag[i] u(1)

WO 2014/008286 PCT/US2013/049121
42

if(vcl hrdparameterspresent flag[i]) {
hrdparameters(vclHrdPresent)

vclHrdPresent++

}
if(nalHrdPresent + vclHrdPresent = = 1) {

low delayhrdflag u(1)

subpiccpbparamspresentflag u(1)

num unitsinsubtick u(32)

}
vpsmaxdecpic_buffering[i] ue(v)

vpsnumreorderpics[i] ue(v)

vpsmaxlatencyincrease[i] ue(v)

}
vui_parameterspresentflag u(1)

if (vui_ parameterspresent flag)

vuiparameters()

num-vpsshort_termref pic sets ue(v)

for(i = 0; i < num vpsshort term_ref pic sets; i++)

shortterm_ref picset(i)

optional spsparameters()

vpsextension_flag u(1)

if(vpsextension flag)

while(more rbspdata())

vpsextensiondataflag u(1)

}
rbsptrailingbits()

}

WO 2014/008286 PCT/US2013/049121
43

Table 8 - Sequence parameter set RBSP syntax

seq_parameterset rbsp() { Descriptor

seqparametersetid ue(v)

videoparametersetid ue(v)

num shortterm ref pic sets ue(v)

userpsfrom_vps_flag u(1)

for(i = 0; i < numshort term ref picsets; i++){

idx = userpsfrom vpsflag ? num vpsshort term ref picsets + i:

shortterm_ref picset(idx)

}

sps parameters_override flag u(1)
if(spsparametersoverrideflag) {

optional spsparameters()

spsextensionflag u(1)

if(spsextension flag)

while(more rbspdata())

spsextensiondataflag u(1)

rbsp trailingbits()

}

Table 9 - Optional SPS parameters

optional spsparameters() {

pcmenabled_flag u(1)

if(pcm enabled flag) {

pcmsamplebitdepth-luma minus u(4)

pcmsamplebitdepthchroma minus u(4)

}
log2_maxpic-orderentisbminus4 ue(v)

restrictedref_piclistsflag u(M
if(restrictedref piclistsflag)

lists modificationpresentflag u

log2_min_codingblock sizeminus3 ue(v)

log2_diffmax_min_codingblock size ue(v)

log2_min_transformblocksizeminus2 ue(v)

log2_diff max mintransformblock size ue(v)

if(pcm enabled flag) {

log2_min_pcm_coding blocksize minus3 ue(v)

log2_diff max_min_pcm_codingblock size ue(v)

}

max transformhierarchydepthinter ue(v)

max transform hierarchy depth intra ue(v)

scaling list enable flag u(1)

if(scaling listenabletflag) {

spsscalinglist data present flag u(1)

if(sps scaling list datapresent flag)

WO 2014/008286 PCT/US2013/049121
44

scalinglist_param()

}
chromapred fromlumaenabledflag u(1)

transformskipenabledflag u(1)

seqloopfilteracrossslicesenabled flag u(1)

asymmetric_motionpartitionsenabledflag u(1)

nsrqtenabledflag u(1)

sampleadaptive_offset_enabledflag u(1)

adaptiveloop_filterenabledflag u(1)

if(adaptive loop filter enabled flag)

alf coefin_sliceflag u(1)

if(pcm enabled flag)

pcmloop filterdisableflag u(1)

if(log2 min coding block sizeminus3 == 0)

inter_4x4_enabledflag u(1)

longterm refpicspresentflag u(1)

spstemporalmvpenableflag u(1)

tiles fixedstructureide u(2)

}

[0131] The optional SPS parameters semantics will now be described. The semantics

of the syntax elements and syntax structures in this syntax structure have the same

semantics as those syntax elements in the SPS with the same syntax element names as

specified in the first example.

[0132] Sequence parameter set RBSP semantics will now be described. The syntax

element spsparametersoverrideflag set equal to 1 specifies that the values of the

syntax elements and syntax structures from pcm enabledflag through

tilesfixedstructure idc as specified in the sequence parameter set override the values

of the same syntax elements and syntax structures as specified in the referred video

parameter set. The syntax element spsparametersoverride flag set equal to 0 the

values of the syntax elements and syntax structures from pcmenabled flag through

tilesfixedstructure idc as specified in the referred video parameter set are in use.

[0133] The syntax element nextessential byteoffset shown in Table 7 may be

processed and parsed by MANE 29 and/or video decoder 30 in the manner described

above with reference to Table 2. Similarly, the syntax elements,

videojparameterset id ,profileidc, and profile space may also be generated by video

encoder 20 and processed and parsed by video decoder 30 in the manner described

above.

WO 2014/008286 PCT/US2013/049121
45

[0134] A third example is a superset of the first example. In this third example, the

syntax may be designed in a manner that makes extensions easier to implement. In

addition, an extension of the VPS may be supported in this example. The syntax design

or semantics design of a syntax table which is exactly the same as the counterpart in the

first example is not present. The third example is described below with reference to

Tables 10-19.

Table 10 - Video parameter set RBSP syntax (base specification only)
videoparameter set rbsp() { Descriptor

vpsmaxtemporallayersminus1 u(3)

vpsmax layers_minus1 u(5)

profile_levelinfo(0, vps max temporal layers minus)

videoparametersetid u(5)

vpstemporalidnestingflag u(1)

repformatinfo(0, 0)

bitrateframerate info(0, vps max temporal layers minus)

next essentialinfobyteoffset u(12)

repformatinfo(0, 1)

for(i = 0; i <= vps max temporal layers_minus1; i++) {

vpsmaxdecpic_buffering[i] ue(v)

vpsnumreorderpics[i] ue(v)

vpsmaxlatencyincrease[i] ue(v)

}
hrd info(0, vps max temporallayersminus1)

vuivpsset (0)

num-vpsshort_termref pic sets ue(v)

for(i = 0; i < num vpsshort termref picsets; i++)

shortterm_ref picset(i)

vpsextension_flag u(1)

if(vpsextension flag)

while(more rbspdata())

vpsextensiondataflag u(1)

rbsp trailingbits()

}

WO 2014/008286 PCT/US2013/049121
46

Table 11 - Video parameter set RBSP syntax (including extension)
videoparameter set rbsp() { Descriptor

vpsmaxtemporallayersminus1 u(3)

vpsmax layers_minus1 u(5)

profile_levelinfo(0, vps max temporal layers minus)

videoparametersetid u(5)

vpstemporalidnestingflag u(1)

repformatinfo(0, 0)

bitrateframerateinfo(0, vps max temporal layers minus)

next essential infobyteoffset u(12)

repformatinfo(0, 1)

for(i = 0; i <= vps max temporal layers_minus1; i++) {

vpsmaxdecpic_buffering[i] ue(v)

vpsnumreorderpics[i] ue(v)

vpsmaxlatencyincrease[i] ue(v)

}
hrd info(0, vps max temporal layers minus)

vuivpsset (0)

num-vpsshort_termref pic sets ue(v)

for(i = 0; i < num vpsshort termref picsets; i++)

shortterm ref picset(i)

vpsextension-flag g(-)
bitequal toone u(1)

vpsextension()

vpsextension_flag u(1)

if(vpsextension flag)

while(more rbspdata())

vpsextensiondataflag u(1)

}
rbsptrailingbits()

}

WO 2014/008286 PCT/US2013/049121
47

Table 12 - Profile and level information table syntax
profilelevelinfo(index, NumTempLevelMinus1) {

profilespace u(3)

profileide u(5)

for(j = 0; j < 32; j++)
profile_compatabilityflag[I] u(1)

constraintflags u(16)

level ide u(8)

level lowertemporallayerspresent flag u(1)

if(levellowertemporal layerspresent flag)

for (i = 0; i < NumTempLevelMinus1; i++)

level idc[i] u(8)

profileLevellnfoldx = index

}

Table 13 - Representation format information table syntax
repformat info(index, partIdx) {

if(!partIdx){

chromaformatide u(2)

if(chroma formatidc == 3)

separatecolourplaneflag u(1)

bitdepth-lumaminus8 u(2)

bitdepth chromaminus8 u(2)

pic widthinlumasamples u(16)

picheight in_luma_samples u(16)

}
else {

piccroppingflag u(1)

if(piccroppingflag) {

piccropleft_offset ue(v)

piccroprightoffset ue(v)

piccroptopoffset ue(v)

piccropbottomoffset ue(v)

}

}
repFormatlnfoldx = index

}

WO 2014/008286 PCT/US2013/049121
48

Table 14 - Bitrate and frame rate information table syntax
bitrate framerateinfo(TempLevelLow, TempLevelHigh){

for(i = TempLevelLow; i <= TempLevelHigh; i++) {
bitrateinfopresentflag[i] u(1)

frm rateinfopresentflag[i] u(1)

if(bitrateinfopresentflag[i]) {
avgbitrate[i] u(16)

maxbitrate [i] u(16)

}
if(frm rateinfopresent flag[i]) {

constantfrmrateidc[i] u(2)

avgfrmrate[i] u(16)

}
}

}

Table 15- HRD temporal operation points information table s yntax
hrd info(TempLevelLow, TempLevelHigh) {

for (i = TempLevelLow, nalHrdPresent = 0, vclHrdPresent = 0;
i <= NumTempLevelMinus 1; i++) {

nal hrdparameterspresentflag[i] u(1)

if(nal hrd_parameterspresent flag[i]) {
hrd_parameters(nalHrdPresent)

nalHrdPresent++

}
vclhrd_parameterspresentflag[i] u(1)

if(vcl hrd_parameterspresent flag[i]) {
hrd_parameters(vclHrdPresent)

vclHrdPresent++

}
if(nalHrdPresent + vclHrdPresent = = 1) {

low delayhrdflag u(1)

subpiccpbparamspresentflag u(1)

num units in sub tick u(32)

}

}

WO 2014/008286 PCT/US2013/049121
49

Table 16 - VUI VPS set table syntax
vui vpsset(index) {

vui videoparameterspresentflag u(1)

if(vui videoparameterspresent flag)

vuparameters()

vuiVpsSetlndex = index

}

Table 17 - VPS extension syntax
vpsextension() {

bytealligned bits u(v)

num additionalprofilelevelinfo u(4)

num additional-repfromatinfo u(3)

num additional-dependencyoperationpoints u(8)

extensiontype u(3)

for(i =0; i< numadditionalprofilelevelinfo; i++)

profile_level info(i + 1, vps max temporal layers minus)

for(i = 0; i < numadditional repfromatinfo; i++)

repformat info(i+1, 0)

for (k=0; k< numadditional dependencyoperation-points ;k++) {
if(num additional_profilelevelinfo)

profilelevelindex[k] u(4)

if(num additional repfromatinfo)

ref formatindex[k] u(3)

applicablelowesttemporal id[k] u(3)

applicablehighesttemporal id[k] u(3)

}
for (k=0; k< numadditionaldependencyoperation-points; k++) {

bitrateframerate info(applicable lowest temporal id[k],
applicable highest temporalid[k])

}
/layer dependency

for (k=0; k< numadditional dependencyoperationpoints; k++) {
if(extension type = = 0) { /* Condition always true for 3DV */

depthincludedflag[k] u(1)

num targetoutput viewsminusi [k] u(5)

num-depedentlayers[k] u(5)

for(j = 0; j < num target output views_minus1[k]; j++)
layer id[k][j] u(5)

for(j = 0; j < num depedent layers[k]; j++)
dependentlayer id[k][j] u(5)

}
else if(extension type == 1)

layer id[k] u(5)

}
for(i = 0; i < num_additional repfromatinfo; i++) {

repformat info(i + 1, 1)

WO 2014/008286 PCT/US2013/049121
50

// boundary of the fixed-length and ue(v)

//vui

numadditionalvuivpsset_info ue(v)

for(i = 0; i < numadditional vui vps setinfo; i++)

vuivpsset(i + 1)

for (k=0; k< numadditional dependencyoperationpoints; k++) {
if (num additional_vui vpsset info)

vui-vpsset_idx ue(v)

hrd info(applicable_lowest temporalid[k],
applicable highest temporalid[k])

}
}

[0135] Video parameter set RBSP semantics will now be described. The syntax

element byte alligned bits specifies the possible bits that make the bits in the VPS

NAL unit prior to numadditionalprofilelevelinfo byte aligned. The syntax element

byte alligned bits is in the range of 0 to 7, inclusive. The syntax element

numadditionalprofilelevel info specifies the number of additional profile and level

information table present in the VPS. The syntax element

numadditionalrepfromat info specifies the number of additional Representation

format information tables present in the VPS. The syntax element

numadditional-dependencyoperationpoints specifies the number of dependency

operation points further present in the bitstream, regardless of temporal scalability.

Each dependency operation point may include temporal sub operation points, each have

the same layer structure. The syntax element extension type specifies the type of the

extension of the current bitstream, with 0 corresponding to 3DV and 1 corresponding to

SVC. The syntax element profilelevel index[k] indicates the index to the level

information table signaled in the VPS for the current k-th dependency operation point.

The syntax element refformatindex indicates the index to the representation format

information table signaled in the VPS for the current k-th dependency operation point.

[0136] The syntax element applicablelowesttemporalid[k] and

applicable highest temporalid[k] specify respectively the lowest temporal id value

and the highest temporal id value corresponding to the signaled temporal sub operation

points of the k-th dependency operation point. Alternatively, the syntax elements

applicablelowesttemporalid[k] and applicable highest temporalid[k] are both

not signaled and inferred to be equal to 0 and vps_maxtemporal layersminus 1

respectively. Alternatively, the syntax element applicable lowesttemporalid[k] is

not signaled and inferred to be equal to 0. Alternatively, the syntax element

WO 2014/008286 PCT/US2013/049121
51

applicable highest temporalid[k] is not signaled and inferred to be equal to

vps max temporallayers minus.

[0137] The syntax element depth included flag[k]equal to 1 indicates that the current

3DV dependency operation point contains depth. This flag equal to 0 indicates that the

current 3DV operation point does not contain depth. Alternatively, the syntax element

depth includedflag[k] is not signaled, thus indicating a depth VCL NAL unit relies

on the layer id_plustl.

[0138] The syntax element num target output viewsminus1 [k] plus 1 specifies the

number of target output views in the k-th dependency operation point. The syntax

element num depedent layers[k] indicates the number of dependent layers for

decoding the current k-th dependency operation point. The syntax element

layer id[k][j] indicates the layer id of the j-th target output view of the k-th

dependency operation point. The syntax element dependent layer id[k] [j] indicates

the layer id of the j-th dependent view of the k-the dependency operation point. In one

alternative, a flag is signaled, right after dependent layer id[k][j], as

directdependent flag[k] [j].

[0139] The syntax element direct dependentflag[k][j] indicates whether the j-th

dependent view is a directly dependent view, to be used to derive inter-vie RPS. The

syntax element layer id[k] indicates the highest layer id of the current k-th (SVC)

dependency operation point. Alternately, num target outputviews minus 1 [k],

num-depedent layers[k], layer id[k][j] and dependent layer id[k][j] can be

signaled as ue(v).

[0140] The syntax element numadditionalvuivps set-info may specify the number

of additional VUI VPS set table present in the VPS.

[0141] For profile and level information table semantics, the syntax element

profileLevellnfoldx indicates the index of the profile and level information table. For

representation format information table semantics, the syntax element repFormatlnfoldx

indicates the index of the representation format information table.

[0142] The syntax element nextessential byteoffset shown in Table 7 may be

processed and parsed by MANE 29 and/or video decoder 30 in the manner described

above with reference to Table 2.

[0143] For VUI VPS set table semantics, the syntax element vuiVpsSetIndex indicates

the index of the VUI VPS set table.

WO 2014/008286 PCT/US2013/049121
52

[0144] Alternatively, the view dependency of each view can be signaled in the SPS, as

follows:

Table 18

seqparameterset rbsp() { Descriptor

seqparametersetid ue(v)

videoparametersetid ue(v)

num shortterm ref pic sets ue(v)

userpsfrom_vps_flag u(1)

for(i = 0; i < numshort term ref picsets; i++){

idx = use rpsfrom vpsflag ? num vpsshort term ref pic-sets + i: i

shortterm_ref picset(idx)

}

sps parameters_override flag u(1)
if(spsparametersoverrideflag) {

optional spsparameters()

sps_+xtension--flag a(-)
bitequal toone u(1)

num referenceviews ue(v)

for(i = 0; i < numreference views i++)

ref viewlayer id[i] ue(v)

sps extension flag u(1)

if(spsextension flag)

while(more rbspdata())

spsextensiondataflag u(1)

rbsp trailingbits()

}

[0145] The syntax element numreference views indicates the maximum number of

texture or depth views used to construct the inter-view RPS subset. The syntax element

refview layer id[i] identifies the layerid of the i-th texture/depth view used to

indicate the i-th inter-view (only) reference picture in the inter-view RPS subset.

[0146] Alternatively, the VPS extension can be signaled as follows. When the syntax

element extensiontype indicates SVC, the syntax element

numadditionaldependencyoperationpoints is not signaled but derived to be equal to

vps maxlayers minus 1. A constraint is given that the VCL NAL units within an

access unit are in a non-descending order of the layer id. In MVC, the syntax element

layer id is equivalent to viewidx. In 3DV, the syntax element view idx may be

calculated as follows by layer id: view idx = (layer idx>>1).

WO 2014/008286 PCT/US2013/049121
53

Table 19

vpsextension() {

bytealligned bits u(v)

num additionalprofilelevelinfo u(4)

num additional-repfromat info u(3)

extensiontype u(3)

if(extension type 1) {

numadditional-dependencyoperationpoints u(8)

depthpresent flag u(1)

for(i =0; i< numadditionalprofile levelinfo; i++)

profile_level info(i + 1, vps max temporal layers minus)

for(i = 0; i < numadditional repfromatinfo; i++)

repformat info(i+1, 0)

for (k=0; k< numadditional dependencyoperation-points ;k++) {

if(num additional_profile levelinfo)

profilelevelindex[k] u(4)

if(num additional repfromatinfo)

ref_formatindex[k] u(3)

applicablelowesttemporalid[k] u(3)

applicablehighesttemporalid[k] u(3)

}
for (k=0; k< numadditional dependencyoperation-points; k++) {

bitrateframerate info(applicable lowest temporal id[k],
applicable highest temporalid[k])

}
//layer dependency

for (k=0; k< numadditional dependencyoperationpoints; k++) {

if(extension type = = 0) { /* Condition always true for 3DV */

if(depthpresent flag)

depth includedflag[k] u(1)

num targetoutput viewsminusi [k] u(5)

num dependent layers[k] u(5)

for(j = 0; j < num target output views_minus1[k]; j++)
layer id[k][j] u(5)

for(j = 0; j < num dependent layers[k]; j++)
dependentlayerid[k][j] u(5)

}
else if(extension type == 1)

layer id[k] u(5)

}
for(i = 0; i < numadditional repfromatinfo; i++) {

repformat info(i + 1, 1)

// boundary of the fixed-length and ue(v)

//vui

numadditionalvuivpsset_info ue(v)

for(i = 0; i < num additional vui vpssetinfo; i++)

WO 2014/008286 PCT/US2013/049121
54

vuivpsset(i + 1)

for (k=O; k< num_additional dependencyoperationpoints; k++) {

if (num additionalvui vpsset info)

vui-vpsset_idx ue(v)

hrd info(applicablelowest temporal id[k],
applicable highest temporal id[k])

}
}

[0147] The syntax element depthpresent flag set equal to 1 indicates that there may be

operation points containing depth. The syntax element depthpresent flag set equal to

0 indicates that no operation point contains depth.

[0148] The syntax element num target output viewsminus 1 [k] plus 1 may be used

to specify the number of target output views in the k-th dependency operation point.

The syntax element num dependentlayers[k] may be used to indicate the number of

dependent layers for decoding the current k-th dependency operation point. When

depthpresent flag is set equal to 1, a dependent layer may be either both a depth view

or a texture view. The syntax element layer id[k] [j] indicates the layer id of the j -th

target output texture view of the k-th dependency operation point. The layer id of the

depth view, associated with the texture view, if present, is layer id[k][j]+1.

[0149] Alternatively, the syntax element viewidx[k] [j] instead of layer id[k] ji]

may be signaled for each target output view. For each view idx[k][j], the layer id of

the corresponding texture view is (view idx[k][j]<<depthpresentflag). If

depth includedflag[k] is equal to 1, the layer id of the corresponding depth view is

(view idx[k][j]<<depthpresent flag)+1, which is (view idx[k][j]<<1)+1 since

depthpresent flag must be 1 in this case. Alternatively, the syntax element

layer id[k][j] may be changed to view idx[k][j] and is u(v) coded, with the length

being 5 - depthpresent flag. Alternatively, the syntax element layer id[k][j] may be

changed to viewidx[k][j] and is u(v) coded, with the length being 5

depth included[k].

[0150] A fourth example, is a superset of the second example. The syntax is designed

in an extension friendly way. In addition, the extension of VPS is provided in this

example. The syntax design or semantics design of a syntax table which is exactly the

same as the counterpart in the second example is not present.

WO 2014/008286 PCT/US2013/049121
55

Table 20 - Video parameter set RBSP syntax (base spec. only)
videoparameter set rbsp() { Descriptor

vpsmaxtemporallayersminus1 u(3)

vpsmax layers_minus1 u(5)

profile_levelinfo(0, vps max temporal layers minus)

videoparametersetid u(5)

vpstemporalidnestingflag u(1)

repformatinfo(0, 0)

bitrateframerateinfo(0, vps max temporal layers minus)

next essentialinfobyteoffset u(12)

repformatinfo(0, 1)

for(i = 0; i <= vps max temporal layersminus 1; i++) {

vpsmaxdecpic_buffering[i] ue(v)

vpsnumreorderpics[i] ue(v)

vpsmaxlatencyincrease[i] ue(v)

}
hrd info(0, vps max temporallayersminus1)

vuivpsset (0)

num-vpsshort_termref pic sets ue(v)

for(i = 0; i < num vpsshort term_ref picsets; i++)

shortterm_ref picset(i)

optional spsparameters()

vpsextension_flag u(1)

if(vpsextension flag)

while(more rbspdata())

vpsextensiondataflag u(1)

}
}
rbsp trailingbits()

}

Table 21 - Video parameter set RBSP syntax (including extension)
videoparameter set rbsp() { Descriptor

vpsmaxtemporallayersminus1 u(3)

vpsmax layers_minus1 u(5)

profile_levelinfo(0, vps max temporal layers minus)

videoparametersetid u(5)

vpstemporalidnestingflag u(1)

repformatinfo(0, 0)

bitrateframerateinfo(0, vps max temporal layers minus)

next essentialinfobyteoffset u(12)

repformatinfo(0, 1)

for(i = 0; i <= vps max temporal layersminus 1; i++) {

vpsmaxdecpic_buffering[i] ue(v)

vpsnumreorderpics[i] ue(v)

vpsmaxlatencyincrease[i] ue(v)

WO 2014/008286 PCT/US2013/049121
56

}
hrd info(0, vps max temporal layers minus)

vuivpsset (0)

num-vpsshort_termref pic sets ue(v)

for(i = 0; i < num vps shortterm_ref pic sets; i++)

shortterm_ref picset(i)

optional spsparameters()

vps_+xtension-flag a(-)
bitequaltoone u(1)

vpsextension()

vpsextension_flag u(1)

if(vpsextension flag)

while(more rbspdata())

vpsextension_data_flag u(1)

}
rbsp trailingbits()

}

[01511 The syntax element nextessential byteoffset shown in Table 21 may be

processed and parsed by MANE 29 and/or video decoder 30 in the manner described

above with reference to Table 2.

[0152] FIG. 4 is a block diagram illustrating an example video encoder 20 that may

implement the techniques described in this disclosure. Video encoder 20 may, for

example, generate the syntax structures described above with respect to Tables 1-21.

Video encoder 20 may perform intra- and inter-coding of video blocks within video

slices. Intra-coding relies on spatial prediction to reduce or remove spatial redundancy

in video within a given video frame or picture. Inter-coding relies on temporal

prediction to reduce or remove temporal redundancy in video within adjacent frames or

pictures of a video sequence. Intra-mode (I mode) may refer to any of several spatial

based compression modes. Inter-modes, such as uni-directional prediction (P mode) or

bi-prediction (B mode), may refer to any of several temporal-based compression modes.

[0153] In the example of FIG. 4, video encoder 20 includes a partitioning unit 35,

prediction processing unit 41, filter unit 63, picture memory 64, summer 50, transform

processing unit 52, quantization unit 54, and entropy encoding unit 56. Prediction

processing unit 41 includes motion estimation unit 42, motion compensation unit 44,

and intra prediction processing unit 46. For video block reconstruction, video encoder

20 also includes inverse quantization unit 58, inverse transform processing unit 60, and

summer 62. Filter unit 63 is intended to represent one or more loop filters such as a

deblocking filter, an adaptive loop filter (ALF), and a sample adaptive offset (SAO)

WO 2014/008286 PCT/US2013/049121
57

filter. Although filter unit 63 is shown in FIG. 4 as being an in loop filter, in other

configurations, filter unit 63 may be implemented as a post loop filter. FIG. 4 also

shows post processing device 57 which may perform additional processing on encoded

video data generated by video encoder 20. The techniques of this disclosure, which

include generating a parameter set with an offset syntax element, may in some instances

be implemented by video encoder 20. In other instances, however, the techniques of

this disclosure may be implemented by post processing device 57.

[0154] As shown in FIG. 4, video encoder 20 receives video data, and partitioning unit

35 partitions the data into video blocks. This partitioning may also include partitioning

into slices, tiles, or other larger units, as wells as video block partitioning, e.g.,

according to a quadtree structure of LCUs and CUs. Video encoder 20 generally

illustrates the components that encode video blocks within a video slice to be encoded.

The slice may be divided into multiple video blocks (and possibly into sets of video

blocks referred to as tiles). Prediction processing unit 41 may select one of a plurality

of possible coding modes, such as one of a plurality of intra coding modes or one of a

plurality of inter coding modes, for the current video block based on error results (e.g.,

coding rate and the level of distortion). Prediction processing unit 41 may provide the

resulting intra- or inter-coded block to summer 50 to generate residual block data and to

summer 62 to reconstruct the encoded block for use as a reference picture.

[0155] Intra prediction processing unit 46 within prediction processing unit 41 may

perform intra-predictive coding of the current video block relative to one or more

neighboring blocks in the same frame or slice as the current block to be coded to

provide spatial compression. Motion estimation unit 42 and motion compensation unit

44 within prediction processing unit 41 perform inter-predictive coding of the current

video block relative to one or more predictive blocks in one or more reference pictures

to provide temporal compression.

[0156] Motion estimation unit 42 may be configured to determine the inter-prediction

mode for a video slice according to a predetermined pattern for a video sequence. The

predetermined pattern may designate video slices in the sequence as P slices, B slices or

GPB slices. Motion estimation unit 42 and motion compensation unit 44 may be highly

integrated, but are illustrated separately for conceptual purposes. Motion estimation,

performed by motion estimation unit 42, is the process of generating motion vectors,

which estimate motion for video blocks. A motion vector, for example, may indicate

WO 2014/008286 PCT/US2013/049121
58

the displacement of a PU of a video block within a current video frame or picture

relative to a predictive block within a reference picture.

[0157] A predictive block is a block that is found to closely match the PU of the video

block to be coded in terms of pixel difference, which may be determined by sum of

absolute difference (SAD), sum of square difference (SSD), or other difference metrics.

In some examples, video encoder 20 may calculate values for sub-integer pixel positions

of reference pictures stored in picture memory 64. For example, video encoder 20 may

interpolate values of one-quarter pixel positions, one-eighth pixel positions, or other

fractional pixel positions of the reference picture. Therefore, motion estimation unit 42

may perform a motion search relative to the full pixel positions and fractional pixel

positions and output a motion vector with fractional pixel precision.

[0158] Motion estimation unit 42 calculates a motion vector for a PU of a video block

in an inter-coded slice by comparing the position of the PU to the position of a

predictive block of a reference picture. The reference picture may be selected from a

first reference picture list (List 0) or a second reference picture list (List 1), each of

which identify one or more reference pictures stored in picture memory 64. Motion

estimation unit 42 sends the calculated motion vector to entropy encoding unit 56 and

motion compensation unit 44.

[0159] Motion compensation, performed by motion compensation unit 44, may involve

fetching or generating the predictive block based on the motion vector determined by

motion estimation, possibly performing interpolations to sub-pixel precision. Upon

receiving the motion vector for the PU of the current video block, motion compensation

unit 44 may locate the predictive block to which the motion vector points in one of the

reference picture lists. Video encoder 20 forms a residual video block by subtracting

pixel values of the predictive block from the pixel values of the current video block

being coded, forming pixel difference values. The pixel difference values form residual

data for the block, and may include both luma and chroma difference components.

Summer 50 represents the component or components that perform this subtraction

operation. Motion compensation unit 44 may also generate syntax elements associated

with the video blocks and the video slice for use by video decoder 30 in decoding the

video blocks of the video slice.

[0160] Intra-prediction processing unit 46 may intra-predict a current block, as an

alternative to the inter-prediction performed by motion estimation unit 42 and motion

compensation unit 44, as described above. In particular, intra-prediction processing unit

WO 2014/008286 PCT/US2013/049121
59

46 may determine an intra-prediction mode to use to encode a current block. In some

examples, intra-prediction processing unit 46 may encode a current block using various

intra-prediction modes, e.g., during separate encoding passes, and intra-prediction unit

processing 46 (or mode select unit 40, in some examples) may select an appropriate

intra-prediction mode to use from the tested modes. For example, intra-prediction

processing unit 46 may calculate rate-distortion values using a rate-distortion analysis

for the various tested intra-prediction modes, and select the intra-prediction mode

having the best rate-distortion characteristics among the tested modes. Rate-distortion

analysis generally determines an amount of distortion (or error) between an encoded

block and an original, unencoded block that was encoded to produce the encoded block,

as well as a bit rate (that is, a number of bits) used to produce the encoded block. Intra

prediction processing unit 46 may calculate ratios from the distortions and rates for the

various encoded blocks to determine which intra-prediction mode exhibits the best rate

distortion value for the block.

[0161] In any case, after selecting an intra-prediction mode for a block, intra-prediction

processing unit 46 may provide information indicative of the selected intra-prediction

mode for the block to entropy encoding unit 56. Entropy encoding unit 56 may encode

the information indicating the selected intra-prediction mode in accordance with the

techniques of this disclosure. Video encoder 20 may include in the transmitted

bitstream configuration data, which may include a plurality of intra-prediction mode

index tables and a plurality of modified intra-prediction mode index tables (also referred

to as codeword mapping tables), definitions of encoding contexts for various blocks,

and indications of a most probable intra-prediction mode, an intra-prediction mode

index table, and a modified intra-prediction mode index table to use for each of the

contexts.

[0162] After prediction processing unit 41 generates the predictive block for the current

video block via either inter-prediction or intra-prediction, video encoder 20 forms a

residual video block by subtracting the predictive block from the current video block.

The residual video data in the residual block may be included in one or more TUs and

applied to transform processing unit 52. Transform processing unit 52 transforms the

residual video data into residual transform coefficients using a transform, such as a

discrete cosine transform (DCT) or a conceptually similar transform. Transform

processing unit 52 may convert the residual video data from a pixel domain to a

transform domain, such as a frequency domain.

WO 2014/008286 PCT/US2013/049121
60

[0163] Transform processing unit 52 may send the resulting transform coefficients to

quantization unit 54. Quantization unit 54 quantizes the transform coefficients to

further reduce bit rate. The quantization process may reduce the bit depth associated

with some or all of the coefficients. The degree of quantization may be modified by

adjusting a quantization parameter. In some examples, quantization unit 54 may then

perform a scan of the matrix including the quantized transform coefficients.

Alternatively, entropy encoding unit 56 may perform the scan.

[0164] Following quantization, entropy encoding unit 56 entropy encodes the quantized

transform coefficients. For example, entropy encoding unit 56 may perform context

adaptive variable length coding (CAVLC), context adaptive binary arithmetic coding

(CABAC), syntax-based context-adaptive binary arithmetic coding (SBAC), probability

interval partitioning entropy (PIPE) coding or another entropy encoding methodology or

technique. Following the entropy encoding by entropy encoding unit 56, the encoded

bitstream may be transmitted to video decoder 30, or archived for later transmission or

retrieval by video decoder 30. Entropy encoding unit 56 may also entropy encode the

motion vectors and the other syntax elements for the current video slice being coded.

[0165] Inverse quantization unit 58 and inverse transform processing unit 60 apply

inverse quantization and inverse transformation, respectively, to reconstruct the residual

block in the pixel domain for later use as a reference block of a reference picture.

Motion compensation unit 44 may calculate a reference block by adding the residual

block to a predictive block of one of the reference pictures within one of the reference

picture lists. Motion compensation unit 44 may also apply one or more interpolation

filters to the reconstructed residual block to calculate sub-integer pixel values for use in

motion estimation. Summer 62 adds the reconstructed residual block to the motion

compensated prediction block produced by motion compensation unit 44 to produce a

reference block for storage in picture memory 64. The reference block may be used by

motion estimation unit 42 and motion compensation unit 44 as a reference block to

inter-predict a block in a subsequent video frame or picture.

[0166] In this manner, video encoder 20 of FIG. 4 represents an example of a video

encoder configured to generate the syntax described above in Tables 1-21. Video

encoder 20 may, for example, generate VPS, SPS, PPS, and APS parameter sets as

described above. In one example, video encoder 20 may generate a parameter set for

coded video data that includes one or more initial fixed-length syntax elements followed

by an offset syntax element. The one or more initial fixed-length syntax elements may,

WO 2014/008286 PCT/US2013/049121
61

for example, include information related to session negotiation. The offset syntax

element may indicate a number of bytes to be skipped when the parameter set is

processed by a MANE. The number of bytes to be skipped may, for example, include

one or more variable length syntax elements. Video encoder 20 may include in the

parameter set, following the skipped bytes, additional fixed length syntax elements. The

additional fixed-length syntax elements may, for example, include information related to

another layer of video data. In one example, the initial fixed length syntax elements

may include information related to session negotiation for a base layer, while the

additional fixed-length syntax elements may include information related to session

negotiation for a non-base layer.

[0167] Video encoder 20 may determine the value for the offset syntax element based

on the number of bits used to code one or more variable length syntax elements. For

example, assume for a first VPS that the syntax elements to be skipped include three

fixed-length syntax elements of 2 bits, 3 bits, and 5 bits as well as four variable length

syntax elements of 2 bits, 4, bits, 5 bits, and 3 bits. In this example, the fixed length

syntax elements include a total of 10 bits while the variable length syntax elements

include a total of 14 bits. Thus, for the first VPS, the video encoder 20 may set the

value of the offset syntax element to 24 including 24 bits (e.g. 3 bytes) are to be

skipped. For a second VPS, the number of bits for the fixed syntax elements will again

be 10, but the number of bits used for the variable length syntax elements may be

different. Thus, for a second VPS, video encoder 20 may set the value for the offset

syntax element to a different value.

[0168] The techniques of this disclosure have generally been described with respect to

video encoder 20, but as mentioned above, some of the techniques of this disclosure

may also be implemented by post processing device 57. For example, post processing

device 57 may generate a VPS for multiple layers of video data generated by video

encoder 20.

[0169] FIG. 5 is a block diagram illustrating an example video decoder 30 that may

implement the techniques described in this disclosure. Video decoder 30 may, for

example, be configured to process and parse the syntax structures described above with

respect to Tables 1-21. In the example of FIG. 5, video decoder 30 includes an entropy

decoding unit 80, prediction processing unit 81, inverse quantization unit 86, inverse

transform processing unit 88, summer 90, filter unit 91, and picture memory 92.

Prediction processing unit 81 includes motion compensation unit 82 and intra prediction

WO 2014/008286 PCT/US2013/049121
62

processing unit 84. Video decoder 30 may, in some examples, perform a decoding pass

generally reciprocal to the encoding pass described with respect to video encoder 20

from FIG. 4.

[0170] During the decoding process, video decoder 30 receives an encoded video

bitstream that represents video blocks of an encoded video slice and associated syntax

elements from video encoder 20. Video decoder 30 may receive the encoded video

bitstream from a network entity 79. Network entity 79 may, for example, be a server, a

MANE, a video editor/splicer, or other such device configured to implement one or

more of the techniques described above. Network entity 79 may or may not include

video encoder 20. As described above, some of the techniques described in this

disclosure may be implemented by network entity 79 prior to network entity 79

transmitting the encoded video bitstream to video decoder 30. In some video decoding

systems, network entity 79 and video decoder 30 may be parts of separate devices,

while in other instances, the functionality described with respect to network entity 79

may be performed by the same device that comprises video decoder 30.

[0171] Network entity 79 represents an example of a video processing device

configured to process one or more initial syntax elements for a parameter set associated

with a video bitstream; receive in the parameter set an offset syntax element for the

parameter set that identifies syntax elements to be skipped within the parameter set, and

based on the offset syntax element, skip the syntax elements within the parameter set.

Network entity 79 may also process one or more additional syntax elements in the

parameter set. The one or more additional syntax elements are after the skipped syntax

elements in the parameter set.

[0172] During the decoding process, video decoder 30 receives an encoded video

bitstream that represents video blocks of an encoded video slice and associated syntax

elements from video encoder 20. The video blocks may, for example, be routed from

video encoder 20 to video decoder 30 via one or more MANEs, such as MANE 29 in

FIG. 1 or network entity 79 in FIG. 5. Entropy decoding unit 80 of video decoder 30

entropy decodes the bitstream to generate quantized coefficients, motion vectors, and

other syntax elements. Entropy decoding unit 80 forwards the motion vectors and other

syntax elements to prediction processing unit 81. Video decoder 30 may receive the

syntax elements at the video slice level and/or the video block level.

[0173] As introduced above, entropy decoding unit 80 may process and parse both

fixed-length syntax elements and variable-length syntax elements in or more parameter

WO 2014/008286 PCT/US2013/049121
63

sets, such as a VPS, SPS, PPS, and APS. In one or more of the parameter sets, for

example a VPS, video decoder 30 may receive an offset syntax element as described in

this disclosure. In response to receiving an offset syntax element, video decoder 30 can

essentially ignore the value of the offset syntax element. For example, video decoder 30

may receive an offset syntax element but may continue to decode syntax elements,

including variable-length syntax elements, that follow the offset syntax element without

skipping any syntax elements.

[0174] When the video slice is coded as an intra-coded (I) slice, intra prediction

processing unit 84 of prediction processing unit 81 may generate prediction data for a

video block of the current video slice based on a signaled intra prediction mode and data

from previously decoded blocks of the current frame or picture. When the video frame

is coded as an inter-coded (i.e., B, P or GPB) slice, motion compensation unit 82 of

prediction processing unit 81 produces predictive blocks for a video block of the current

video slice based on the motion vectors and other syntax elements received from

entropy decoding unit 80. The predictive blocks may be produced from one of the

reference pictures within one of the reference picture lists. Video decoder 30 may

construct the reference frame lists, List 0 and List 1, using default construction

techniques based on reference pictures stored in picture memory 92.

[0175] Motion compensation unit 82 determines prediction information for a video

block of the current video slice by parsing the motion vectors and other syntax elements,

and uses the prediction information to produce the predictive blocks for the current

video block being decoded. For example, motion compensation unit 82 uses some of

the received syntax elements to determine a prediction mode (e.g., intra- or inter

prediction) used to code the video blocks of the video slice, an inter-prediction slice

type (e.g., B slice, P slice, or GPB slice), construction information for one or more of

the reference picture lists for the slice, motion vectors for each inter-encoded video

block of the slice, inter-prediction status for each inter-coded video block of the slice,

and other information to decode the video blocks in the current video slice.

[0176] Motion compensation unit 82 may also perform interpolation based on

interpolation filters. Motion compensation unit 82 may use interpolation filters as used

by video encoder 20 during encoding of the video blocks to calculate interpolated values

for sub-integer pixels of reference blocks. In this case, motion compensation unit 82

may determine the interpolation filters used by video encoder 20 from the received

syntax elements and use the interpolation filters to produce predictive blocks.

WO 2014/008286 PCT/US2013/049121
64

[0177] Inverse quantization unit 86 inverse quantizes, i.e., de-quantizes, the quantized

transform coefficients provided in the bitstream and decoded by entropy decoding unit

80. The inverse quantization process may include use of a quantization parameter

calculated by video encoder 20 for each video block in the video slice to determine a

degree of quantization and, likewise, a degree of inverse quantization that should be

applied. Inverse transform processing unit 88 applies an inverse transform, e.g., an

inverse DCT, an inverse integer transform, or a conceptually similar inverse transform

process, to the transform coefficients in order to produce residual blocks in the pixel

domain.

[0178] After motion compensation unit 82 generates the predictive block for the current

video block based on the motion vectors and other syntax elements, video decoder 30

forms a decoded video block by summing the residual blocks from inverse transform

processing unit 88 with the corresponding predictive blocks generated by motion

compensation unit 82. Summer 90 represents the component or components that

perform this summation operation. If desired, loop filters (either in the coding loop or

after the coding loop) may also be used to smooth pixel transitions, or otherwise

improve the video quality. Filter unit 91 is intended to represent one or more loop

filters such as a deblocking filter, an adaptive loop filter (ALF), and a sample adaptive

offset (SAO) filter. Although filter unit 91 is shown in FIG. 5 as being an in loop filter,

in other configurations, filter unit 91 may be implemented as a post loop filter. The

decoded video blocks in a given frame or picture are then stored in picture memory 92,

which stores reference pictures used for subsequent motion compensation. Picture

memory 92 also stores decoded video for later presentation on a display device, such as

display device 32 of FIG. 1.

[0179] In this manner, video decoder 30 of FIG. 5 represents an example of a video

decoder configured to parse the syntax described above in Tables 1-21. Video decoder

30 may, for example, parse VPS, SPS, PPS, and APS parameter sets as described above.

[0180] FIG. 6 is a block diagram illustrating an example set of devices that form part of

network 150. In this example, network 150 includes routing devices 154A, 154B

(routing devices 154) and transcoding device 156. Routing devices 154 and transcoding

device 156 are intended to represent a small number of devices that may form part of

network 150. Other network devices, such as switches, hubs, gateways, firewalls,

bridges, and other such devices may also be included within network 150. Moreover,

additional network devices may be provided along a network path between server

WO 2014/008286 PCT/US2013/049121
65

device 152 and client device 158. Server device 152 may correspond to source device

12 (FIG. 1), while client device 158 may correspond to destination device 14 (FIG. 1),

in some examples. Routing devices 154 may, for example, be MANEs configured to

rout media data.

[0181] In general, routing devices 154 implement one or more routing protocols to

exchange network data through network 150. In general, routing devices 154 execute

routing protocols to discover routes through network 150. By executing such routing

protocols, routing device 154B may discover a network route from itself to server

device 152 via routing device 154A. The various devices of FIG. 6 represent examples

of devices that may implement the techniques of this disclosure. Routing devices 154

may, for example, be media aware network elements that are configured to parse the

syntax elements of a parameter set, such as a VPS, in accordance with this disclosure.

For example, routing devices 154 may receive in a VPS one or more initial fixed length

syntax elements and parse and process the fixed length syntax elements. The initial

fixed length syntax elements may, for example, be syntax elements related to session

negotiation. Routing devices 154 may also receive, in the VPS, an offset syntax

element. The offset syntax element may identify a number of bytes to be skipped.

Routing devices 154 can skip the specified number of bytes, and after skipping the

specified number of bytes, can resume parsing and processing fixed length syntax

elements within the VPS. The skipped bytes may include one or more variable length

syntax elements that routing devices 154 cannot parse because routing devices 154

cannot perform entropy decoding operations.

[0182] FIG. 7 is a flowchart illustrating an example of how to process an offset syntax

element according to the techniques of this disclosure. The techniques of FIG. 7 will be

described with reference to a network device such as MANE 29 of FIG. 1 or one of

routing devices 154 in FIG. 6. The network entity processes one or more initial syntax

elements for a parameter set associated with a video bitstream (171). The one or more

initial syntax elements may additionally include fixed-length syntax elements and

precede the offset syntax element. The one or more initial syntax elements may include

syntax elements that include information related to session negotiation. Furthermore,

the one or more initial syntax elements comprise syntax elements for a base layer of

video data and the one or more additional syntax elements comprises syntax elements

for a non-base layer of video data.

WO 2014/008286 PCT/US2013/049121
66

[0183] The network entity receives in the video bitstream an offset syntax element for

the parameter set (172). The offset syntax element identifies a number of bits to be

skipped within the parameter set. The offset syntax element may, for example, be part

of a video parameter set. The number of bits to be skipped may, for example,

correspond to one or more syntax elements coded using variable length coding. Based

on the offset syntax element, the network entity skips a number of bits within the

parameter set (173). The network entity processes one or more additional syntax

elements in the parameter set (174). The one or more additional syntax elements are

after the number of bits skipped in the parameter set. The one or more additional syntax

elements may be additional fixed-length syntax elements, and the one or more

additional syntax elements may follow the offset syntax element and follow the bits to

be skipped.

[0184] FIG. 8 is a flowchart illustrating an example of how to process an offset syntax

element according to the techniques of this disclosure. The techniques of FIG. 8 will be

described with reference to a video processing device configured to encode video data

or process encoded video data. Examples of video processing devices configured to

process encoded video data in include video encoder 20 of FIGS. 1 and 4 and post

processing device 57 of FIG. 4. The video processing devices generates one or more

initial syntax elements for a parameter set associated with a video bitstream (181). The

one or more initial syntax elements may include fixed-length syntax elements, and the

one or more initial syntax elements may precede the offset syntax element. The one or

more initial syntax elements may include syntax elements including information related

to session negotiation. The one or more initial syntax elements may include syntax

elements for a base layer of video data, and the one or more additional syntax elements

may include syntax elements for a non-base layer of video data.

[0185] The video processing devices generates an offset syntax element for the

parameter set (182). The offset syntax element may identify a number of bits to be

skipped within the parameter set. The offset syntax element may be part of a video

parameter set. The video processing device generates one or more syntax elements to

be skipped (183). The bits to be skipped include the one or more syntax elements to be

skipped. The one or more syntax elements to be skipped may include one or more

syntax elements coded using variable length coding. The video processing device

generates one or more additional syntax elements in the parameter set (184). The one or

more additional syntax elements are after the number of bits to be skipped in the

WO 2014/008286 PCT/US2013/049121
67

parameter set. The one or more additional syntax elements may include additional

fixed-length syntax elements, the one or more additional syntax elements may follow

the offset syntax element and follow the bits to be skipped.

[0186] FIG. 9 is a flowchart illustrating an example of how to decode an offset syntax

element according to the techniques of this disclosure. The techniques of FIG. 9 will be

described with reference to a video decoder, such as video decoder 30 of FIGS. 1 and 5.

The video decoder decodes one or more initial syntax elements for a parameter set

associated with a video bitstream (191). The video decoder receives in the video

bitstream an offset syntax element for the parameter set (192). The offset syntax

element identifies a number of bits to be skipped within the parameter set. The video

decoder decodes the bits to be skipped (193). In some examples, the video decoder

decodes the bits to be skipped by performing entropy decoding to decode variable

length syntax elements included in the bits to be skipped. The video decoder may, for

example, decode the bits to be skipped because the bits are to be skipped when the video

data is being processed by a video processing device such as a MANE, but the bits may

be necessary for decoding the video data. A MANE, in contrast to a video decoder, may

skip the bits in order to perform certain processing on the video data without having to

fully decoded the video data. In some instances, a MANE may not even possess all

capabilities necessary to decode the video data.

[0187] FIG. 10 is a flowchart illustrating an example of how to process a VPS

according to the techniques of this disclosure. The techniques of FIG. 10 will be

described with reference to a generic video processing device. The video processing

device may correspond to a network device such as MANE 29 of FIG. 1 or one of

routing devices 154 in FIG. 6. The video processing device may additionally

correspond to a video decoder such as video decoder 30 of FIGS. 1 and 4. The video

processing device receives in a video parameter set, one or more syntax elements that

include information related to session negotiation (201). The video processing device

receives in the video data a first sequence parameter set comprising a first syntax

element identifying the video parameter set (202). The first sequence parameter set

comprises a first syntax structure that includes a first group of syntax elements that

apply to one or more whole pictures of the video data. The video processing device

receives in the video data a second sequence parameter set comprising a second syntax

element identifying the video parameter set (203). The second sequence parameter set

comprises a second syntax structure that includes a second group of syntax elements

WO 2014/008286 PCT/US2013/049121
68

that apply to one or more different whole pictures of the video data. The video

processing device processes, based on the one or more syntax elements, a first set of

video blocks associated with the first parameter set and a second set of video blocks

associated with the second parameter set (204).

[0188] The one or more syntax elements may, for example, be fixed length syntax

elements and may precede, in the video parameter set, any variable length coded syntax

elements. The one or more syntax elements may include a syntax element identifying a

profile of a video coding standard. The one or more syntax elements may further or

alternatively includes a syntax element identifying a level of a video coding standard.

The level may, for example, correspond to one of multiple levels associated with the

profile of the video coding standard.

[0189] The one or more syntax elements may include a first syntax element and a

second syntax element. The first syntax element may identify a context for interpreting

the second syntax element, and the second syntax element may identify a group of

profiles. The video processing device may receive, in the video parameter set, one or

more compatibility flags, each of which is associated with a profile from the group of

profiles. A value for each of the one or more compatibility flags may identify if the

video data is compatible with an associated profile from the group of profiles.

[0190] The one or more syntax elements may also include a first syntax element that

identifies a maximum temporal level associated with the video data and a second syntax

element that identifies if a temporal layer of the video data has a level that is lower than

the maximum temporal level. In response to the second syntax element indicating a

temporal layer of the video data has a level that is lower than the maximum temporal

level, the video processing device may receive additional syntax elements that identify

levels for one or more temporal layers of the vide data.

[0191] In instances when the video processing device is a video decoder, the video

decoder may decode the first set of video blocks and the second set of video blocks. In

instances when the video processing device is a MANE, the MANE may forward the

first set of video blocks and the second set of video blocks to a client device.

[0192] FIG. 11 is a flowchart illustrating an example of how to generate syntax

elements for inclusion in a VPS according to the techniques of this disclosure. The

techniques of FIG. 8 will be described with reference to a video processing device

configured to encode video data or process encoded video data. Examples of video

processing devices configured to process encoded video data in include video encoder

WO 2014/008286 PCT/US2013/049121
69

20 of FIGS. 1 and 4 and post processing device 57 of FIG. 4. The video processing

device generates for inclusion in a video parameter set, one or more syntax elements

that include information related to session negotiation (211). The video processing

device generates for inclusion in the video data a first sequence parameter set

comprising a first syntax element identifying the video parameter set (212). The first

sequence parameter set comprises a first syntax structure that includes a first group of

syntax elements that apply to one or more whole pictures of the video data. The video

processing device generates for inclusion in the video data a second sequence parameter

set comprising a second syntax element identifying the video parameter set (213). The

second sequence parameter set comprises a second syntax structure that includes a

second group of syntax elements that apply to one or more different whole pictures of

the video data. The video processing device encodes, based on the one or more syntax

elements, a first set of video blocks associated with the first parameter set and a second

set of video blocks associated with the second parameter set (214).

[0193] The one or more syntax elements may, for example, be fixed length syntax

elements and may precede, in the video parameter set, any variable length coded syntax

elements. The one or more syntax elements may include a syntax element identifying a

profile of a video coding standard. The one or more syntax elements may further or

alternatively includes a syntax element identifying a level of a video coding standard.

The level may, for example, correspond to one of multiple levels associated with the

profile of the video coding standard.

[0194] The one or more syntax elements may include a first syntax element and a

second syntax element. The first syntax element may identify a context for interpreting

the second syntax element, and the second syntax element may identify a group of

profiles. The video processing device may receive, in the video parameter set, one or

more compatibility flags, each of which is associated with a profile from the group of

profiles. A value for each of the one or more compatibility flags may identify if the

video data is compatible with an associated profile from the group of profiles.

[0195] The one or more syntax elements may also include a first syntax element that

identifies a maximum temporal level associated with the video data and a second syntax

element that identifies if a temporal layer of the video data has a level that is lower than

the maximum temporal level. In response to the second syntax element indicating a

temporal layer of the video data has a level that is lower than the maximum temporal

WO 2014/008286 PCT/US2013/049121
70

level, the video processing device may receive additional syntax elements that identify

levels for one or more temporal layers of the vide data.

[0196] FIG. 12 is a flowchart illustrating an example of how to process a VPS

according to the techniques of this disclosure. The techniques of FIG. 12 will be

described with reference to a generic video processing device. The video processing

device may correspond to a network device such as MANE 29 of FIG. 1 or one of

routing devices 154 in FIG. 6. The video processing device may additionally

correspond to a video decoder such as video decoder 30 of FIGS. 1 and 4. The video

processing device receives in a video parameter set, one or more syntax elements that

include information related to HRD parameters (221). The video processing device

receives in the video data a first sequence parameter set comprising a first syntax

element identifying the video parameter set (222). The first sequence parameter set

comprises a first syntax structure that includes a first group of syntax elements that

apply to one or more whole pictures of the video data. The video processing device

receives in the video data a second sequence parameter set comprising a second syntax

element identifying the video parameter set (223). The second sequence parameter set

comprises a second syntax structure that includes a second group of syntax elements

that apply to one or more different whole pictures of the video data. The video

processing device processes, based on the one or more syntax elements, a first set of

video blocks associated with the first parameter set and a second set of video blocks

associated with the second parameter set (224).

[0197] FIG. 13 is a flowchart illustrating an example of how to generate syntax

elements for inclusion in a VPS according to the techniques of this disclosure. The

techniques of FIG. 13 will be described with reference to a video processing device

configured to encode video data or process encoded video data. Examples of video

processing devices configured to process encoded video data in include video encoder

20 of FIGS. 1 and 4 and post processing device 57 of FIG. 4. The video processing

device generates for inclusion in a video parameter set, one or more syntax elements

that include information related to HRD parameters (231). The video processing device

generates for inclusion in the video data a first sequence parameter set comprising a first

syntax element identifying the video parameter set (232). The first sequence parameter

set comprises a first syntax structure that includes a first group of syntax elements that

apply to one or more whole pictures of the video data. The video processing device

generates for inclusion in the video data a second sequence parameter set comprising a

WO 2014/008286 PCT/US2013/049121
71

second syntax element identifying the video parameter set (233). The second sequence

parameter set comprises a second syntax structure that includes a second group of

syntax elements that apply to one or more different whole pictures of the video data.

The video processing device encodes, based on the one or more syntax elements, a first

set of video blocks associated with the first parameter set and a second set of video

blocks associated with the second parameter set (234).

[0198] In one or more examples, the functions described may be implemented in

hardware, software, firmware, or any combination thereof. If implemented in software,

the functions may be stored on or transmitted over, as one or more instructions or code,

a computer-readable medium and executed by a hardware-based processing unit.

Computer-readable media may include computer-readable storage media, which

corresponds to a tangible medium such as data storage media, or communication media

including any medium that facilitates transfer of a computer program from one place to

another, e.g., according to a communication protocol. In this manner, computer

readable media generally may correspond to (1) tangible computer-readable storage

media which is non-transitory or (2) a communication medium such as a signal or

carrier wave. Data storage media may be any available media that can be accessed by

one or more computers or one or more processors to retrieve instructions, code and/or

data structures for implementation of the techniques described in this disclosure. A

computer program product may include a computer-readable medium.

[0199] By way of example, and not limitation, such computer-readable storage media

can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic

disk storage, or other magnetic storage devices, flash memory, or any other medium that

can be used to store desired program code in the form of instructions or data structures

and that can be accessed by a computer. Also, any connection is properly termed a

computer-readable medium. For example, if instructions are transmitted from a

website, server, or other remote source using a coaxial cable, fiber optic cable, twisted

pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and

microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless

technologies such as infrared, radio, and microwave are included in the definition of

medium. It should be understood, however, that computer-readable storage media and

data storage media do not include connections, carrier waves, signals, or other transient

media, but are instead directed to non-transient, tangible storage media. Disk and disc,

as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc

72

(DVD), floppy disk and Blu-ray disc, where disks usually reproduce data magnetically,

while discs reproduce data optically with lasers. Combinations of the above should also

be included within the scope of computer-readable media.

[0200] Instructions may be executed by one or more processors, such as one or more

digital signal processors (DSPs), general purpose microprocessors, application specific

integrated circuits (ASICs), field programmable logic arrays (FPGAs), or other

equivalent integrated or discrete logic circuitry. Accordingly, the term "processor," as

used herein may refer to any of the foregoing structure or any other structure suitable for

implementation of the techniques described herein. In addition, in some aspects, the

functionality described herein may be provided within dedicated hardware and/or

software modules configured for encoding and decoding, or incorporated in a combined

codec. Also, the techniques could be fully implemented in one or more circuits or logic

elements.

[0201] The techniques of this disclosure may be implemented in a wide variety of

devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of

ICs (e.g., a chip set). Various components, modules, or units are described in this

disclosure to emphasize functional aspects of devices configured to perform the

disclosed techniques, but do not necessarily require realization by different hardware

units. Rather, as described above, various units may be combined in a codec hardware

unit or provided by a collection of interoperative hardware units, including one or more

processors as described above, in conjunction with suitable software and/or firmware.

[0202] It will be understood that the term "comprise" and any of its derivatives (eg

comprises, comprising) as used in this specification is to be taken to be inclusive of

features to which it refers, and is not meant to exclude the presence of any additional

features unless otherwise stated or implied.

[0203] The reference to any prior art in this specification is not, and should not be taken

as, an acknowledgement of any form of suggestion that such prior art forms part of the

common general knowledge.

73

WHAT IS CLAIMED IS:

1. A method of processing video data, the method comprising:

processing one or more initial syntax elements in a video parameter set (VPS)

syntax structure associated with a video bitstream, wherein the one or more initial

syntax elements comprise fixed-length syntax elements that are located prior to any

variable length syntax elements in the VPS syntax structure, wherein the VPS syntax

structure includes information that applies to zero or more entire coded video

sequences;

receiving, in the VPS syntax structure, an offset syntax element for the VPS

syntax structure, wherein a value of the offset syntax element equals a number of bytes

in the VPS syntax structure that are to be skipped, wherein the one or more initial

syntax elements precede the offset syntax element in the VPS syntax structure;

based on the offset syntax element, skipping processing of at least one syntax

element within the VPS syntax structure; and

processing one or more additional syntax elements in the VPS syntax structure,

wherein the one or more additional syntax elements are located after the at least one

syntax element in the VPS syntax structure.

2. The method of claim 1, wherein the at least one syntax element comprises one or

more syntax elements coded using variable length coding.

3. The method of claim 1 or 2, wherein the one or more additional syntax elements

comprise additional fixed-length syntax elements and wherein the one or more

additional syntax elements follow the offset syntax element and follow the at least one

syntax element.

4. The method of any one of claims I to 3, wherein the one or more initial syntax

elements comprise syntax elements that include information related to session

negotiation.

5. The method of any one of claims 1 to 4, wherein the one or more initial syntax

elements comprise syntax elements for a base layer of the video data and the one or

more additional syntax elements comprise syntax elements for a non-base layer of video

74

data.

6. The method of any one of claims 1 to 5, wherein the VPS syntax structure is

determined by a content of a VPS identification syntax element found in a sequence

parameter set (SPS) referred to by a SPS identification syntax element, which is found

in a picture parameter set (PPS) referred to by a PPS identification syntax element found

in each slice segment header.

7. The method of any one of claims 1 to 6, wherein the processing is performed by

a media aware network element (MANE), and wherein the method further comprises

forwarding the video data to a client device.

8. The method of any one of claims I to 7, wherein skipping processing of the at

least one syntax element within the VPS syntax structure comprises ignoring values of

the at least one syntax element.

9. A method of processing video data, the method comprising:

generating one or more initial syntax elements for a video parameter set (VPS)

syntax structure associated with a video bitstream, wherein the one or more initial

syntax elements comprise fixed-length syntax elements that are located prior to any

variable length syntax elements in the VPS syntax structure, wherein the VPS syntax

structure includes information that applies to zero or more entire coded video

sequences;

generating an offset syntax element for the VPS syntax structure, wherein a

value of the offset syntax element equals a number of bytes in the VPS syntax structure

for which processing is to be skipped, wherein the one or more initial syntax elements

precede the offset syntax element in the VPS syntax structure;

generating at least one syntax element for which processing is to be skipped that

corresponds to the bytes for which processing is to be skipped; and

generating one or more additional syntax elements in the VPS syntax structure,

wherein the one or more additional syntax elements are located after the at least one

syntax element for which processing is to be skipped in the VPS syntax structure.

10. The method of claim 9, wherein the at least one syntax element for which

75

processing is to be skipped comprise one or more syntax elements coded using variable

length coding.

11. The method of claim 9 or 10, wherein the one or more additional syntax

elements comprise additional fixed-length syntax elements and wherein the one or more

additional syntax elements follow the offset syntax element and follow the at least one

syntax element for which processing is to be skipped.

12. The method of any one of claims 9 to 11, wherein the one or more initial syntax

elements comprise syntax elements including information related to session negotiation.

13. The method of any one of claims 9 to 12, wherein the one or more initial syntax

elements comprise syntax elements for a base layer of video data and the one or more

additional syntax elements comprises syntax elements for a non-base layer of video

data.

14. The method of any one of claims 9 to 13, wherein the VPS syntax structure is

determined by a content of a VPS identification syntax element found in a sequence

parameter set (SPS) referred to by a SPS identification syntax element, which is found

in a picture parameter set (PPS) referred to by a PPS identification syntax element found

in each slice segment header.

15. The method of any one of claims 9 to 14, wherein the method is performed by a

video encoder.

16. The method of any one of claims 9 to 15, wherein the method is performed by a

post processing device configured to process encoded video data.

17. A method of decoding video data, the method comprising:

decoding one or more initial syntax elements for a video parameter set (VPS)

syntax structure associated with a video bitstream, wherein the one or more initial

syntax elements comprise fixed-length syntax elements that are located prior to any

variable length syntax elements in the VPS syntax structure, wherein the VPS syntax

structure includes information that applies to zero or more entire coded video

76

sequences;

receiving, in the video bitstream, an offset syntax element for the VPS syntax

structure, wherein a value of the offset syntax element equals a number of bytes in the

VPS syntax structure for which processing is to be skipped, wherein the one or more

initial syntax elements precede the offset syntax element in the VPS syntax structure;

ignoring the value of the offset syntax element; and

decoding the at least one syntax element for which processing is to be skipped.

18. The method of claim 17, wherein the at least one syntax element for which

processing is to be skipped comprise one or more variable length syntax elements, and

wherein decoding the at least one syntax element for which processing is to be skipped

comprises performing an entropy decoding process.

19. A video processing device comprising:

a memory storing video data from a video bitstream;

and one or more processors configured to:

process one or more initial syntax elements for a video parameter set

(VPS) syntax structure associated with the video bitstream, wherein the one or

more initial syntax elements comprise fixed-length syntax elements that are

located prior to any variable length syntax elements in the VPS syntax structure,

wherein the VPS syntax structure includes information that applies to zero or

more entire coded video sequences;

receive, in the VPS syntax structure, an offset syntax element with a

value equal to a number of bytes in the VPS syntax structure that are to be

skipped, wherein the one or more initial syntax elements precede the offset

syntax element in the VPS syntax structure;

based on the offset syntax element, skip processing of at least one syntax

element within the VPS syntax structure; and

process one or more additional syntax elements in the VPS syntax

structure, wherein the one or more additional syntax elements are located after

the at least one syntax element in the VPS syntax structure.

20. The video processing device of claim 19, wherein the skipped syntax elements

comprise one or more syntax elements coded using variable length coding.

77

21. The video processing device of claim 19 or 20, wherein the one or more

additional syntax elements comprise additional fixed-length syntax elements and

wherein the one or more additional syntax elements follow the offset syntax element

and follow the at least one syntax element.

22. The video processing device of any one of claims 19 to 21, wherein the one or

more initial syntax elements comprise syntax elements including information related to

session negotiation.

23. The video processing device of any one of claims 19 to 22, wherein the one or

more initial syntax elements comprise syntax elements for a base layer of video data and

the one or more additional syntax elements comprise syntax elements for a non-base

layer of the video data.

24. The video processing device of any one of claims 19 to 23, wherein the VPS

syntax structure is determined by a content of a VPS identification syntax element

found in a sequence parameter set (SPS) referred to by a SPS identification syntax

element, which is found in a picture parameter set (PPS) referred to by a PPS

identification syntax element found in each slice segment header.

25. The video processing device of any one of claims 19 to 24, wherein the device

comprises a media aware network element (MANE) configured to forward a sub

bitstream of the video bitstream to a client device.

26. The video processing device of any one of claims 19 to 25, wherein to skip

processing of the at least one syntax element within the VPS syntax structure, the one or

more processors are configured to ignore values of the at least one syntax element.

27. A video processing device comprising:

a memory storing video data from a video bitstream; and

one or more processors configured to:

generate one or more initial syntax elements for a video parameter set

(VPS) syntax structure associated with the video bitstream, wherein the one or

more initial syntax elements comprise fixed-length syntax elements that are

78

located prior to any variable length syntax elements in the VPS syntax structure,

wherein the VPS syntax structure includes information that applies to zero or

more entire coded video sequences;

generate an offset syntax element for the VPS syntax structure, wherein a

value of the offset syntax element equals a number of bytes in the VPS syntax

structure for which processing is to be skipped, wherein the one or more initial

syntax elements precede the offset syntax element in the VPS syntax structure;

generate at least one syntax element for which processing is to be

skipped that corresponds to the bytes for which processing is to be skipped; and

generate one or more additional syntax elements in the VPS syntax

structure, wherein the one or more additional syntax elements are located after

the at least one syntax element for which processing is to be skipped in the VPS

syntax structure.

28. The video processing device of claim 27, wherein the at least one syntax element

for which processing is to be skipped comprise one or more syntax elements coded

using variable length coding.

29. The video processing device of claim 27 or 28, wherein the one or more

additional syntax elements comprise additional fixed-length syntax elements and

wherein the one or more additional syntax elements follow the offset syntax element

and follow the at least one syntax element for which processing is to be skipped.

30. The video processing device of any one of claims 27 to 29, wherein the one or

more initial syntax elements comprise syntax elements including information related to

session negotiation.

31. The video processing device of any one of claims 27 to 30, wherein the one or

more initial syntax elements comprise syntax elements for a base layer of video data and

the one or more additional syntax elements comprise syntax elements for a non-base

layer of video data.

32. The video processing device of any one of claims 27 to 31, wherein the VPS

syntax structure is determined by a content of a VPS identification syntax element

79

found in a sequence parameter set (SPS) referred to by a SPS identification syntax

element, which is found in a picture parameter set (PPS) referred to by a PPS

identification syntax element found in each slice segment header.

33. The video processing device of any one of claims 27 to 32, wherein the one or

more processors comprises a video encoder.

34. The video processing device of any one of claims 27 to 33, wherein the video

processing device comprises a post processing device configured to process encoded

video data.

35. The device of any one of claims 27 to 34, wherein the video processing device

comprises at least one of:

an integrated circuit;

a microprocessor; or

a wireless communication device that comprises a video encoder.

36. A video processing device comprising:

a memory storing video data from a video bitstream;

and one or more processors configured to:

decode one or more initial syntax elements for a video parameter set

(VPS) syntax structure associated with the video bitstream, wherein the one or

more initial syntax elements comprise fixed-length syntax elements that are

located prior to any variable length syntax elements in the VPS syntax structure,

wherein the VPS syntax structure includes information that applies to zero or

more entire coded video sequences;

receive, in the video bitstream, an offset syntax element with a value

equal to a number of bytes in the VPS syntax structure for which processing is to

be skipped, wherein the one or more initial syntax elements precede the offset

syntax element in the VPS syntax structure; and

ignore the value of the offset syntax element; and decode the at least one

syntax element for which processing is to be skipped.

37. The video processing device of claim 36, wherein the at least one syntax element

80

for which processing is to be skipped comprise one or more variable length syntax

elements, and wherein decoding the at least one syntax element for which processing is

to be skipped comprises performing an entropy decoding process.

38. The video processing device of claim 36 or 37, wherein the video processing

device comprises at least one of:

an integrated circuit; a microprocessor; or

a wireless communication device that comprises a video decoder.

39. A video processing device comprising:

means for processing one or more initial syntax elements for a video parameter

set (VPS) syntax structure associated with a video bitstream, wherein the one or more

initial syntax elements comprise fixed-length syntax elements that are located prior to

any variable length syntax elements in the VPS syntax structure, wherein the VPS

syntax structure includes information that applies to zero or more entire coded video

sequences;

means for receiving, in the VPS syntax structure, an offset syntax element for

the v syntax structure, wherein a value of the offset syntax element equals a number of

bytes in the VPS syntax structure that are to be skipped, wherein the one or more initial

syntax elements precede the offset syntax element in the VPS syntax structure;

means for skipping the processing of at least one syntax element within the VPS

syntax structure based on the offset syntax element; and

means for processing one or more additional syntax elements in the VPS syntax

structure, wherein the one or more additional syntax elements are located after the at

least one syntax element in the VPS syntax structure.

40. A non-transitory computer readable storage medium storing instructions that

when executed cause one or more processors to perform a method according to any one

of claims I to 18.

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

