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SIDEBAND SCOUT THREAD PROCESSOR

BACKGROUND
Field of the Invention

This invention relates to the field of processors and more particularly to the use of a scout thread

processor to prefetch data into caches for a main thread processor.

Description of the Related Art

Computer systems typically include, amongst other things, a memory system and one or more
processors and/or execution units. The memory system serves as a repository of information, while a
processor reads information from the memory system, operates on the information, and stores results to the
memory system. A memory system can include one or more caches, main memory, and disk drives. Caches
hold most recently accessed information and have low access latencies. Because main memory can have an
access latency of 100 cycles or more, information is ideally stored in cache or in internal registers on the

Processor.

A cache is a small, fast memory, located close to the processor that holds the most recently accessed
code or data. A cache hit occurs when the processor finds requested content (data/instruction) in the cache. In
the case of a cache miss, the processor needs to load the content from the main memory. The typical wait time
for a processor, before it resumes processing, is between fifty to one hundred cycles. Access times can be
even longer if the processor must contend with other devices for accessing memory. The amount of time the

processor is idle due to cache misses can be significant, for example, as high as 80%.

While the memory access latency is a design concern for computer system designers, processing
power typically is not. Advances in Very Large Scale Integration (VLSI) technology provide an increased
number of transistors on a single die over older technologies. There is now enough space on integrated
circuits to pﬁt “r\nore than one processor on a single chip. These chips with multiple processors are called chip
multi-processors (CMPs). Alternatively, the additional space can be utilized by multi-threaded processors
utilizing symmetric multi-threading (SMT) wherein the multiple threads share pipeline resources. A
parallelized program (one that contains multiple threads of execution) can take advantage of the CMP or SMT
system to improve the performance of the program. A non-parallelized, single threaded program has no easy

way to utilize the extra processors on a CMP or SMT system and thus has a performance disadvantage.

Scout thread processing has been proposed as technique to improve performance by reducing the
occurrence of delays due to memory access latency. Scout thread processing utilizes the processing power of
an otherwise idle processor. A scout thread can be executed on a processor several cycles ahead of a main
thread that is executed on another processor or during a stall in the main thread. A processor that executes the
scout thread is referred to as the scout thread processor. The main thread contains a sequence of instructions,
typically from the gxecutable file of the program. The scout thread contains a subset of the main thread’s

sequence of instructions. The scout thread does not include the entire set of main thread instructions, but
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includes only, for example, instructions that access memory and calculate addresses. Thus, the scout thread
processing brings data into the cache, resulting in the main thread processor having fewer cache misses and
therefore shorter latencies. Even if scout thread execution is only a few cycles ahead of main thread execution,

those few cycles improve the main thread execution time. The scout thread “warms-up” the caches for the

main thread, but otherwise has no visible side-effect.

One proposed way of creating a scout thread is to create a “slice” of the normal program that just
contains the code to form the addresses and to do the pre-fetching of the data. A scout thread program
includes a subset of the instructions in the main thread. For example, the scout thread can include program

control and memory access operations but not floating point instructions from the main program.

Another proposed way of creating a scout thread is to utilize a hardware mechanism that
automatically detects portions of the code to be executed on the scout thread processor. Circuitry is provided
on the scout thread processor that identifies instructions performing address generation and executes those
instructions. The synchronization of the main thread and the scout thread is triggered off of a cache miss — the
scout circuitry uses information stored about address generation, executes a stream of instructions that will
generate the next few addresses and fetches the corresponding data into the cache. This type of scout thread
can execute on the same processor as the main thread and therefore benefit from information about which

instructions (of the main thread program) to execute.

SUMMARY

A sideband scout thread processing technique is provided. The sideband scout thread processing
technique utilizes sideband information to identify a subset of processor instructions for execution by a scout
thread processor. The sideband information identifies instructions to be executed to “warm-up” a cache
memory that is shared with a main processor executing the whole set of processor instructions by bringing data
and instructions into the caches. Because the scout thread program shares instructions with the main thread
program, there is an increased potential for the scout thread to timely prefetch information for the main thread.

Thus, the main processor has fewer cache misses and reduced latencies.

Accordingly, in some embodiments, a system includes a first processor for executing a sequence of
processor instructions, a second processor for executing a subset of the sequence of processor instructions, and
a cache shared between the first processor and the second processor. The second processor includes sideband
circuitry configured to identify the subset of the sequence of processor instructions to execute according to

sideband information associated with the sequence of processor instructions.

In some embodiments, the sideband information further identifies synchronization information for

synchronization between the first processor and second processor.

In some embodiments, the second processor communicates branch prediction information to the first

processor.
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In some embodiments, the second processor has fewer functional units than the first processor.

In some embodiments, the subset of the sequence of processor instructions consists of instructions

that access memory and calculate addresses.

In some embodiments, the sideband information is a sequence of instructions stored on computer

readable media with the sequence of processor instructions.

In some embodiments, the sideband circuitry includes a sideband program counter and a sideband
translation look-aside buffer such that the sideband program counter and the sideband translation look-aside
buffer work in conjunction to track and translate an instruction address to the corresponding sideband

information address.

The foregoing is a summary and thus contains, by necessity, simplifications, generalizations and
omissions of detail; consequently, those skilled in the art will appreciate that the summary is illustrative only
and is not intended to be in any way limiting. As will also be apparent to one of skill in the art, the operations
disclosed herein may be implemented in a number of ways, and such changes and modifications may be made
without departing from this invention and its broader aspects. Other aspects, inventive features, and
advantages of the present invention, as defined solely by the claims, will become apparent in the non-limiting

detailed description set forth below.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention may be better understood, and its numerous objects, features, and advantages

made apparent to those skilled in the art by referencing the accompanying drawings.

FIG. 1 illustrates an exemplary implementation of a sideband scout thread processing environment

according to an embodiment of the present invention.
FIG. 2, labeled prior art, illustrates an exemplary superscalar processor architecture.

FIG. 3 illustrates an exemplary sideband scout thread processor architecture according to an

embodiment of the present invention.

FIGS. 4A-4B illustrate exemplary sideband information encoding formats according to embodiments

of the present invention.
FIGS. 5A-5B illustrate an exemplary compiler according to an embodiment of the present invention.

The use of the same reference symbols in different drawings indicates similar or identical items.
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DESCRIPTION OF THE PREFERRED EMBODIMENT(S)

A sideband scout thread processing technique is provided. The sideband scout thread processing
technique utilizes sideband information to identify a subset of processor instructions for execution by a scout
thread processor. The sideband information identifies instructions that need to be executed to “warm-up” a
cache memory that is shared with a main processor executing the whole set of processor instructions. Thus,l
the main processor has fewer cache misses and reduced latencies. A sideband compiler or other software tool
produces sideband information corresponding to executable code (also referred to as binary or object code).
Alternatively, a programmer produces sideband information at the assembly level while programming the
source code. Sideband information can be stored in the same file as program executable code or can be one or
more separate files. The sideband information is ignored by processors without scout thread processing

capability providing backward compatibility for the program executable code.

The description that follows presents a series of systems, apparatus, methods and techniques that
facilitate the sideband scout thread processing technique. While much of the description herein assumes a
single process or thread context, some realizations in accordance with the present invention provide sideband
scout thread processing customizable for multiple processors of a multiprocessor, each process and/or each
thread of execution. Accordingly, in view of the above, and without limitation, certain exemplary

exploitations are now described.

Sideband Scout Thread Processing Environment

FIG. 1 illustrates an exemplary implementation of a sideband scout thread processing environment
according to an embodiment of the present invention. A main processor 102 executes a main thread. A
sideband scout thread processor 104 executes a scout thread formed by parsing the main thread and sideband
information. Both processors share a cache 106. As scout thread processor 104 executes the scout thread,
variables and instructions are brought into cache 106 from main memory 108. Thus, when main processor 102
executes the main thread, there is a reduced chance of receiving a cache miss. Even if sideband scout thread
processor 104 is only 20 cycles ahead of main processor 102, the load latency for main processor 102 due to a

cache miss will be reduced by 20 cycles.

Main processor 102 and scout thread processor 104 can be any type of processor, including, for
example, superscalar or VLIW. At least two processors can be used for scout thread processing — one for
executing the main thread and the other for executing the scout thread. Alternatively, these two processors can
be implemented as two virtual processors of a multi-threaded processor where, for example, the scout thread
program executes only during stalls of the main thread to avoid resource contention. The scout thread includes
a subset of the instructions in the main thread. The scout thread is executed ahead of the main thread to
effectively prefetch information into cache to reduce latencies due to cache misses by the main thread. Thus,

the main thread executes faster due to reduced delays for accessing information from memory.

Rather than having two separate programs, sideband scout thread processor 104 accesses the main

thread instructions. Utilizing direction provided by sideband information, scout thread processor 104 only
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executes a subset of the main thread instructions. Additionally, the sideband information can instruct sideband

scout thread processor 104, for example, where to wait and synchronize with the main thread.

Because sideband scout thread processor 104 executes, for example, only instructions that access
memory, sideband scout thread processor can have a reduced architecture. For example, sideband scout thread
processor 104 does not need floating point functional units or other specialized units. Additionally, sideband
scout thread processor 104 can have a single arithmetic logic unit (ALU) with a memory unit and a branch

unit.

Cache 106 is shared between main processor 102 and sideband scout thread processor 104. Cache
106 can be any level: first level, second level, etc. wherein caches farther from the processor are referred to as
lower level caches. A shared first level cache provides better latency reduction than does a lower level cache.
The cache level where instructions are shared between the processors and the cache level where data is shared
between the processors can be different, but both types of shared caches are important for scout thread

prefetching of instructions and data.

Main processor 102 and sideband scout thread processor 104 can be implemented as a chip multi-
processor (CMP) with both processors residing on the same integrated circuit. Additionally, cache 106 can be
implemented on the same integrated circuit. Alternatively, each can be implemented on one or more separate

integrated circuits.

Sideband scout thread processor 104 can have a bit in a processor state register to indicate that it is
executing speculatively and thus certain faults, traps, or instructions can be ignored, can cause the processor to

halt, or can cause the processor to re-synchronize with the main thread.

No communication is necessary between main processor 102 and sideband scout thread processor
104. However, in an alternate embodiment, communication can be provided, for example, including the
exchange of such information as branch prediction or synchronization information. For example, the program
counter values of the main processor can be sent to the scout thread processor for synchronization or to avoid
executing too far ahead or behind the main thread. For example, the main processor can send its program
counter value to the scout thread processor on each control transfer instruction. Control transfer instructions
include branch, conditional branch, indirect branch, call, return, and the like. Alternatively, the main processor
can use the sideband information to determine when to send the program counter values or other messages to
the scout thread. In a multi-threaded processor environment, the scout thread can begin execution at the main

thread program counter value after a stall and end when the stall is finished.

Superscalar Processor Architecture

FIG. 2, labeled prior art, is a block diagram depicting an illustrative superscalar processor
architecture. Processor 200 integrates an I/O bus module 202 to interface directly with an I/O bus 203, an I/O
memory management unit 204, and a memory and bus control unit 206 to manage all transactions to main

memory 207. A Prefetch and Dispatch Unit (PDU) 210 ensures that all execution units, including an Integer
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Execution Unit (IEU) 212, a Floating Point Unit (FPU) 214, and a Load-Store Unit (LSU) 216, remain busy by
fetching instructions before the instructions are needed in the pipeline. A memory hierarchy of processor 200
includes a data cache 222 associated with LSU 216 as well as an external cache 224, main memory 207 and
any levels (not specifically shown) of additional cache or buffering. Instructions can be prefetched from all
levels of the memory hierarchy, including instruction cache 232, external cache 224, and main memory 207.

External cache unit 233 manages all transactions to external cache 224.

A nuiltiple entry, for example, 64-entry, instruction translation lookaside buffer (iTLB) 252 and a
multiple entry data TLB (dTLB) 262 provide memory management for instructions and data, respectively.
ITLB 252 and dTLB 262 provide mapping between, for example, a 44-bit virtual address and a 41-bit physical
address.

Issued instructions are collected, reordered, and then dispatched to IEU 212, FPU 214 and LSU 216
by instruction buffer and grouping logic and a prefetch and dispatch unit (PDU) 210. Instruction reordering
allows an implementation to perform some operations in parallel and to better allocate resources. The
reordering of instructions is constrained to ensure that the results of program execution are the same as they
would be if the instructions were performed in program order (referred to as processor self-consistency). The
grouping logic of PDU 210 re-discovers parallelism, spends several cycles analyzing instructions, determining
which registers the instructions use, determining instruction dependencies and whether instructions have

completed.

IEU 212 can include multiple arithmetic logic units for arithmetic, logical and shift operations, and
one or more integer multipliers and dividers. IEU 212 is also integrated with a multi-window internal register
file 242 utilized for local storage of operands. In a multi-threaded processor, there are multiple instances of
integer register file 242, one instance for each thread. IEU 212 also controls the overall operation of the
processor. IEU 212 executes the integer arithmetic instructions and computes memory addresses for loads and
stores. 1EU 212 also maintains the program counters and may control instruction execution for FPU 214 and
LSU 216. This control logic can also be in PDU 210.

FPU 214 can include multiple separate functional units to support floating-point and multimedia
operations. These functional units include, for example, multiple multiply, add, divide and graphics units. The
separation of execution units enables processor 200 to issue and execute multiple floating-point instructions
per cycle. Source and data results are stored in a multi-entry FPU internal register file 234. In a multi-

threaded processor, there are multiple instances of FPU internal register file 234, one instance per thread.

LSU 216 is responsible for generating the virtual address of all loads and stores, for accessing the
data cache, for decoupling load misses from the pipeline through the load queue, and for decoupling the stores
through a store queue. One load or one or more stores can be issued per cycle. During context switches

LOAD and STORE instructions save off internal registers to memory.

The design of processor 200 is reminiscent of that of certain SPARC architecture based processors.
Note that descriptions and/or terminology consistent with the SPARC architecture are used herein purely for
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illustrative purposes and, based on the description herein, persons of ordinary skill in the art will appreciate
exploitations of the present invention suitable for a wide variety of processor implementations and
architectures. SPARC architecture based processors are available from Sun Microsystems, Inc., Santa Clara,
California. SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC

International, Inc. in the United States and other countries. Products bearing SPARC trademarks are based

upon an architecture developed by Sun Microsystems, Inc.

Sideband Scout Thread Processor Architecture

FIG. 3 illustrates a sideband scout thread processor architecture according to an embodiment of the
present invention. A sideband scout thread processor 300 is based roughly on superscalar processor 200 with
certain functionality differences. In particular, the functionality of PDU 310, IEU 312, instruction cache 332
and iTLB 352 includes sideband information specific circuitry.

Sideband information can be stored in a sideband portion of instruction cache 332. Thus, sideband
information can be easily related to individual instructions, and can be accessed quickly by the processor
pipeline. Part of filling a line in instruction cache 332 can include finding, decoding, and installing the
sideband information for that cache line. Lines from a sideband information file and a corresponding
executable file are loaded into instruction cache 332 from, for example, main memory or a disk drive.
Alternatively, scout thread processor 300 can have a separate sideband information cache (not shown) rather

than combining sideband information with instructions in instruction cache 332.

A sideband interpreter 372 in PDU 310 parses instruction and sideband information and distributes
instructions to the various execution units if the sideband information indicates the instruction is to be
executed. Thus, the scout thread processor 300 only executes a subset of the instructions in the executable
code. The cache shared between the scout thread processor and the main thread processor is warmed up,
reducing the likelihood of a cache miss by the main thread processor. Thus, the main thread processor

executes the executable code faster.

A sideband TLB 374 in iTLB 352 provides memory management for sideband information. Sideband
TLB 374 tracks instruction to sideband information locations. For example, when an instruction takes a
branch, the program execution is sent to a different set of instructions. Thus a similar location must be found
in the corresponding sideband information. Sideband scout thread processor 300 can alternatively have a
separate sideband information TLB (not shown) rather than combining sideband TLB 374 with iTLB 352.
When the appropriate translation is not available in sideband TLB 374, sideband scout thread processor 300
can trap to the operating system to fill in the proper translation.

IEU 312 can include multiple arithmetic logic units for arithmetic, logical and shift operations, and
one or more integer multipliers and dividers. IEU 312 is also integrated with one or more multi-window
internal register files 242 utilized for local storage of operands. IEU 312 also controls the overall operation of
the processor. IEU 312 executes the integer arithmetic instructions and computes memory addresses for loads

and stores.
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In addition, IEU 312 also maintains the program counters and can control instruction execution for
FPU 214 and LSU 216. This control logic can also be in PDU 210. IEU 312 also maintains a sideband
program counter 376 to track similar locations in the sideband information. Thus, sideband TLB 374 and
sideband program counter 376 can be used in conjunction to track and translate instruction addresses to the

corresponding sideband information addresses.

In order to keep the scout thread ahead of the main thread, but not too far ahead, some form of
synchronization between the main thread processor and the scout thread processor is preferable. This
synchronization can be performed with normal memory operations, or new instructions added to the
instruction set or certain parts of the processor state. For example, the program counter value can be
communicated from the main thread to the scout thread. Indications of these synchronization points and how

they are to be accomplished can also be included in the sideband information.

Although sideband scout thread processor 300 has been illustrated as a superscalar processor, a

sideband scout thread processor can be of any processor type, for example, VLIW or single-scalar.

Sideband scout thread processor 300 can load the program executable code into instruction cache and
sideband information cache 332. Sideband scout thread processor 300 can execute only the instructions
indicated by the sideband information and skip the others. The executed instructions should have the side-
effect of loading values required by the main processor into the shared cache. Thus the data needed by the
main thread is moved closer to the main processor, improving its performance by reducing latencies due to

cache misses.

The main thread processor (not shown) can be implemented as a normal processor, similar to
processor 200 illustrated in FIG. 2, or the main thread processor can be implemented similar to scout thread
processor 300 illustrated in FIG. 3, but with a special configuration register, for example, a bit in the processor
state register, that indicates if 2 main thread or a scout thread is currently executing. The advantage of
implementing the main thread as a scout thread processor is that the sideband information can be interpreted
by the main thread and used for indications of when to communicate with, or start or stop the scout thread.
Alternatively, the main thread processor and the scout thread processor can be implemented as two threads on

a multi-threaded processor similar to the sideband scout thread processor 300.

Sideband Information

According to an embodiment of the present invention, sideband information corresponding to an
executable file is provided. The sideband information can be used by a scout thread processor to bring
variables and instructions into the shared cache to reduce the likelihood of the main processor having a cache
miss. Sideband information is not part of the executable portion of the program file, but “off-to-the-side”,
either in the same file or a different file. No changes are made to the executable file. The sideband

information can be ignored by the main thread processor executing the executable file.
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Sideband information is encoded so that a scout thread processor can determine which instruction
corresponds to which portion of the sideband information. The sideband information can be encoded in many

different ways. FIGS. 4A-4B illustrate exemplary encoding formats for sideband information according to

embodiments of the present invention.

FIG. 4A illustrates a fixed size sideband information encoding according to an embodiment of the
present invention. As shown, multiple groups of sideband information 402[1:N] have a fixed size and
correspond to N instructions in associated executable code (i.e., the main thread). Sideband information
402[1] corresponds to a first instruction, sideband information 402[2] corresponds to a second instruction, and
so on. Using a base address of the sideband information and a fixed size of the portion of the sideband
information relating to a particular address, for example two bytes, the sideband information relating to the
sixth instruction would be found at the base address plus 12 bytes locations. In its simplest form, sideband
information can be one bit corresponding to each processor instruction in the executable code. Thus, when
active, the bit would indicate an instruction to be executed by the scout thread processor. If a bit was inactive,

the corresponding instruction would be skipped.

If the sideband information per instruction is the same size as an instruction, then the sideband
information address can be computed as follows: the instruction counter address can be broken into a page
number plus a page offset, and the instruction page number mapped to a sideband information page number,
and the sideband information address computed as the sideband information page number plus the page offset

from the instruction counter address.

If the sideband information per instruction differs by a constant scale factor from the instruction size,
then the sideband information address can be computed as follows: the instruction addresses can be partitioned
into base and size contiguous segments, and the program counter address can be used to search the set of base
and size pairs to find the instruction segment base and size. This instruction segment can be mapped to an
associated sideband information segment with a base and size, and the sideband information address can be

computed as: (instruction address - instruction segment base) * scale factor + sideband information base.

Sideband TLB 254 can contain a searchable set of entries. For example, a search for a particular
K entry can be based on instruction page address and sideband information page address. Alternatively, a search
for a particular entry can be based on instruction segment base address, instruction segment size, sideband

information segment base address, and a scaling factor.

FIG. 4B illustrates an encoding with explicit instruction identification encoding according to an
embodiment of the present invention. Each group of sideband information 412[1:X] is preceded by one or
more bytes 414[1:X] indicating a corresponding instruction in the executable file. Sideband information is
related to the original instruc{tions, for example, by specifying addresses (program counter values) in the
executable program to which the sideband information corresponds. The correspondence between the
sideband information and the executable code can be, for example, at the individual instruction level or at the

page level.
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Sideband information identifies a subset of the main thread instructions, for example, instructions that
access memory and calculate addresses. Thus, the scout thread processing brings data into the cache, resulting
in the main thread processor having fewer cache misses and therefore shorter latencies. The scout thread only
needs to execute enough instructions to prefetch data and instructions into the cache. Thus, the scout thread
processor needs to execute the memory operations, although the memory operations are modified to be
speculative, such that the loads are speculative loads or non-faulting loads or i)refetches, and the stores are
prefetches. In order to generate proper addresses for the loads and stores, all address arithmetic, generally
integer arithmetic, needs to be executed. In addition, the control-flow instructions, for example, branches,
conditional branches, and calls and returns, need to be executed in order to determine which memory
operations to execute in the scout thread. Thus, instructions that are not needed include instructions that are
computing data that will be stored, because the stores are converted into prefetches and don't actually store any
data. Certain instructions can be skipped for other reasons, for example, if a load is known to hit in the cache,
then it might be skipped by the scout thread. Certain instructions that may cause exceptions can also be
skipped to avoid any side-effects, and instructions that depend on an instruction already skipped can also be
skipped.

In addition to indicating which instructions are to be executed by the sideband scout thread processor,
sideband information can contain synchronization information, for example, indicating where the two

processors need to wait for each other.

Sideband Compiler Architecture

Sideband information can be provided by a sideband compiler during the translation of source code
into an executable file. Alternatively, a software tool can read a previously compiled executable file and

produce the sideband information.

Source code written by a programmer is a list of statements in a programming language such as C,
Pascal, Fortran and the like. Programmers perform all work in the source code, changing the statements to fix
bugs, adding features, or altering the appearance of the source code. A compiler is typically a software
program that converts the source code into an executable file that a computer or other machine can understand.
The executable file is in a binary format and is often referred to a binary code. Binary code is a list of
instruction codes that a processor of a computer system is designed to recognize and execute. Binary code can
be executed over and over again without recompilation. The conversion or compilation from source code into
binary code is typically a one-way process. Conversion form binary code back into the original source code is

typically impossible.

A different compiler is required for each type of source code language and target machine or
processor. For example, a Fortran compiler typically can not compile a program written in C source code.
Also, processors from different manufacturers typically require different binary code and therefore a different
compiler or compiler options because each processor is designed to understand a specific instruction set or

binary code. For example, an Apple Macintosh’s processor understands a different binary code than an IBM
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PC’s processor. Thus, a different compiler or compiler options would be used to compile a source program for

each of these types of computers.

Fig. 5A illustrates an exemplary compilation process according to an embodiment of the present
invention. Source code 510 is read into sideband compiler 512. Source code 512 is a list of statements in a
programming language such as C, Pascal, Fortran and the like. Sideband compiler 512 collects and
reorganizes (compiles) all of the statements in source code 510 to produce a binary code 514 and a sideband
information 515. Binary code 514 is an executable file in a binary format and is a list of instruction codes that
a processor of a computer system is designed to recognize and execute. Sideband information can be included
in the same file as the executable code, or alternatively, in one or more separate files. An exemplary compiler

architecture according to an embodiment of the present invention is shown in Fig. 5B.

In the compilation process, sideband compiler 512 examines the entire set of statements in source
code 510 and collects and reorganizes the statements. Each statement in source code 510 can translate to many
machine language instructions or binary code instructions in binary code 514. There is seldom a one-to-one
translation between source code 510 and binary code 514. During the compilation process, sideband compiler
512 may find references in source code 510 to programs, sub-routines and special functions that have already
been written and compiled. Sideband compiler 512 typically obtains the reference code from a library of
stored sub-programs which is kept in storage and inserts the reference code into binary code 514. Binary code
514 is often the same as or similar to the machine code understood by a computer. If binary code 514 is the
same as the machine code, the computer can run binary code 514 immediately after sideband compiler 512
produces the translation. If binary code 514 is not in machine language, other programs (not shown)—such as
assemblers, binders, linkers, and loaders—finish the conversion to machine language. Sideband compiler 512
differs from an interpreter, which analyzes and executes each line of source code 510 in succession, without
looking at the entire program. Although a just-in-time (JIT) interpreter can be used to generate sideband
information, the JIT interpreter will add extra run-time overhead and not produce as thorough a result as a

compiler.

Fig. 5B illustrates an exemplary compiler architecture for sideband compiler 512 according to an
embodiment of the present invention. Compiler architectures can vary widely; the exemplary architecture
shown in Fig. 5B includes common functions that are present in most compilers. Other compilers can contain
fewer or more functions and can have different organizations. Sideband compiler 512 contains a front-end

function 520, an analysis function 522, a transformation function 524, and a back-end function 526.

Front-end function 520 is responsible for converting source code 510 into more convenient internal
data structures and for checking whether the static syntactic and semantic constraints of the source code
language have been properly satisfied. Front-end function 520 typically includes two phases, a lexical
analyzer 532 and a parser 534. Lexical analyzer 532 separates characters of the source language into groups
that logically belong together; these groups are referred to as tokens. The usual tokens are keywords, such as
DO or IF, identifiers, such as X or NUM, operator symbols, such as <= or +, and punctuation symbols such as

parentheses or commas. The output of lexical analyzer 532 is a stream of tokens, which is passed to the next
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phase, parser 534. The tokens in this stream can be represented by codes, for example, DO can be represented
by 1, + by 2, and “identifier” by 3. In the case of a token like “identifier,” a second quantity, telling which of
those identifiers used by the code is represented by this instance of token “identifier,” is passed along with the
code for “identifier.” Parser 534 groups tokens together into syntactic structures. For example, the three
tokens representing A+B might be grouped into a syntactic structure called an expression. Expressions might
further be combined to form statements. Often the syntactic structure can be regarded as a tree whose leaves

are the token. The interior nodes of the tree represent strings of tokens that logically belong together.

Analysis function 522 can take many forms. A control flow analyzer 536 produces a control-flow
graph (CFG). The control-flow graph converts the different kinds of control transfer constructs in a source
code 510 into a single form that is easier for sideband compiler 512 to manipulate. A data flow and
dependence analyzer 538 examines how data is being used in source code 510. Analysis function 522
typically uses program dependence graphs and static single-assignment form, and dependence vectors. Some

compilers only use one or two of the intermediate forms, while others use entirely different ones.

After analyzing source code 510, sideband compiler 512 can begin to transform source code 510 into
a high-level representation. Although Fig. 5B implies that analysis function 522 is complete before
transformation function 524 is applied, in practice it is often necessary to re-analyze the resulting code after
source code 510 has been modified. One primary difference between the high-level representation code and
binary code 514 is that the high-level representation code need not specify the registers to be used for each

operation.

Code optimization (not shown) is an optional phase designed to improve the high-level representation
code so that binary code 514 runs faster and/or takes less space. The output of code optimization is another
intermediate code program that does the same job as the original, but perhaps in a way that saves time and/or

space.

Once source code 510 has been fully transformed into a high-level representation, the last stage of
compilation is to convert the resulting code into binary code 514. Back-end function 526 contains a
conversion function 542 and a register allocation and instruction selection and reordering function 544.
Conversion function 542 converts the high-level representation used during transformation into a low-level
register-transfer language (RTL). RTL can be used for register allocation, instruction selection, and instruction

reordering to exploit processor scheduling policies.

A table-management portion (not shown) of sideband compiler 512 keeps track of the names used by
the code and records essential information about each, such as its type (integer, real, floating point, etc.). The

data structure used to recode this information is called a symbol table.

Sideband compiler 512 generates binary code 514 and sideband information 515 while compiling
source code 510. Alternatively, a software tool can read binary code 514 and generate sideband information

515 identifying instructions for the sideband scout thread processor to execute and other information. As such,
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sideband information can be provided with an executable file to improve the execution time of the executable

file by executing a scout thread and bringing needed variables into cache memory.

Realizations in accordance with the present invention have been described in the context of particular
embodiments. These embodiments are meant to be illustrative and not limiting. Many variations,
modifications, additions, and improvements are possible. Accordingly, plural instances may be provided for
components described herein as a single instance. Boundaries between various components, operations and
data stores are somewhat arbitrary, and particular operations are illustrated in the context of specific
illustrative configurations. Other allocations of functionality are envisioned and may fall within the scope of
claims that follow. Finally, structures and functionality presented as discrete components in the exemplary
configurations may be implemented as a combined structure or component. These and other variations,
modifications, additions, and improvements may fall within the scope of the invention as defined in the claims
that follow.
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WHAT IS CLAIMED IS:

1. A system comprising:

a first processor for executing a sequence of processor instructions;

a second processor for executing a subset of the sequence of processor instructions; and

a cache shared between the first processor and the second processor;

wherein the second processor comprises sideband circuitry configured to identify the subset of the
sequence of processor instructions to execute according to sideband information associated

with the sequence of processor instructions.

2. The system as recited in claim 1, wherein the sideband information is further configured to

identify synchronization information for synchronization between the first processor and the second processor.

3. The system as recited in claim 2, wherein the synchronization information identifies to the second
processor an instruction in the subset of the sequence of processor instructions to wait for the first processor to

execute a same instruction in the sequence of processor instructions.

4. The system as recited in claim 2, wherein the synchronization information identifies to the second

processor when to continue execution of the subset of the sequence of processor instructions.

, 5. The system as recited in any of the preceding claims, wherein the second processor communicates

branch prediction information to the first processor.

6. The system as recited in any of the preceding claims, wherein the second processor has fewer

functional units than the first processor.

7. The system as recited in any of the preceding claims, wherein the subset of the sequence of

processor instructions includes instructions that access memory and calculate addresses.

8. The system as recited in any of claims 1-6, wherein the subset of the sequence of processor
instructions includes control transfer instructions and instructions that compute conditions for conditional

control transfers.

9. The system as recited in any of the preceding claims, wherein the sideband information is a

sequence of instructions stored on computer readable media with the sequence of processor instructions.

10. The system as recited in any of the preceding claims, wherein the sideband circuitry comprises:
sideband program counter; and

sideband translation look-aside buffer;
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wherein the sideband program counter and the sideband translation look-aside buffer work in

conjunction to track and translate an instruction address to the corresponding sideband

information address.

11. The system as recited in any of the preceding claims, wherein the first processor comprises other
sideband circuitry configured to identify one or more instructions of the sequence of processor instructions

where synchronization with the second processor is to occur.

12. The system as recited in claim 11, wherein the one or more instructions identify when the first
processor is to send a next instruction address to the second processor, the next instruction address indicating a

location for the second processor to begin execution.
13. The system as recited in claim 11, wherein the one or more instructions identify when the first
processor is to send a message to the second processor, the message causing the second processor to suspend

execution.

14. The system as recited in any of the preceding claims, wherein the first processor and the second

processor share one or more functional units and execution control circuitry.

15. The system as recited in any of the preceding claims, wherein the first processor sends a program

counter value to the second processor.

16. The system as recited in any of claims 1 - 14, wherein the first processor sends a program counter

value to the second processor when a control transfer instruction is executed.

17. The system as recited in any of claims 1 - 14, wherein the first processor sends a program counter

value to the second processor when a control transfer instruction causes a branch to be taken.

18. The system as recited in any of the preceding claims, wherein the sideband information includes

one bit for each of the sequence of processor instructions.

19. The system as recited in any of claims 1 - 17, wherein the sideband includes multiple sets of

sideband information with one set for each different system implementation.

20. The system as recited in any of the preceding claims, the first processor and the second processor

are formed on a same integrated circuit chip.

21. A method of operating a processor, the method comprising:
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processing a sequence of processor instructions and corresponding sideband information; wherein the

sideband information identifies a subset of the sequence of processor instructions to execute.

22. The method as recited in claim 21, wherein the sideband information further identifies

synchronization information for synchronization between the processor and another processor.

23. The method as recited in claim 21 or 22, further comprising:

communicating branch prediction information to another processor.

24. The method as recited in any of claims 21 - 23, wherein the subset of the sequence of processor

instructions consists essentially of instructions that access memory and calculate addresses.

25. The method as recited in any of claims 21 - 24, wherein the sideband information includes a

sequence of instructions stored on computer readable media with the sequence of processor instructions.

26. The method as recited in any of claims 21 - 25 further comprising:
utilizing a sideband program counter and a sideband translation look-aside buffer to track and

translate an instruction address to the corresponding sideband information address.

27. A method of preparing a sequence of instructions for execution on a processor, the method
comprising:
reading the sequence of instructions;
generating a sequence of sideband information corresponding to the sequence of processor
instructions;
wherein the plurality of processor instructions is for execution by a first processor and the sequence
of sideband information indicates a subset of the plurality of processor instructions for

execution by a second processor.

28. The method as recited in claim 27, wherein the sideband information further identifies

synchronization information for synchronization between the first processor and the second processor.

29. The method as recited in any of claims 27 - 28, wherein the subset of the sequence of proceséor

instructions consists essentially of instructions that access memory and calculate addresses.

30. The method as recited in any of claims 26 - 29, wherein the sideband information includes a

sequence of instructions stored on computer readable media with the sequence of processor instructions.

31. The method as recited in any of claims 27 - 30, wherein the second processor communicates

branch prediction information to the first processor.
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32. A processor integrated circuit operable to:

in response to a first sequence of sideband information, identify a subset of instructions of a sequence

of instructions to execute.

33. The processor integrated circuit as recited in claim 32, wherein the subset of the sequence of

processor instructions consists of instructions that access memory and calculate addresses.

34. The processor integrated circuit as recited in claim 32, wherein the sideband information is a

sequence of instructions stored on computer readable media with the sequence of processor instructions.

35. A computer readable media product comprising:

a sequence of executable instructions for execution by a first processor; and

a set of sideband information corresponding to the sequence of executable instructions wherein the set
of sideband information identifies a subset of the sequence of executable instructions for

execution by a second processor.

36. The computer readable media product as recited in claim 35, wherein the set of sideband
information further identifies synchronization information for synchronization between the first processor and

the second processor.

37. The computer readable media product as recited in claim 36, wherein the synchronization
information identifies to the second processor an instruction in the subset of the sequence of processor
instructions to wait for the first processor to execute a same instruction in the sequence of processor

instructions.

38. The computer readable media product as recited in claim 36, wherein the synchronization
information identifies to the second processor when to continue execution of the subset of the sequence of

processor instructions.

39. The computer readable media product as recited in claim 35, wherein the subset of the sequence

of processor instructions includes instructions that access memory and calculate addresses.

40. The computer readable media product as recited in claim 35, wherein the subset of the sequence
of processor instructions includes control transfer instructions and instructions that compute conditions for

conditional control transfers.
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