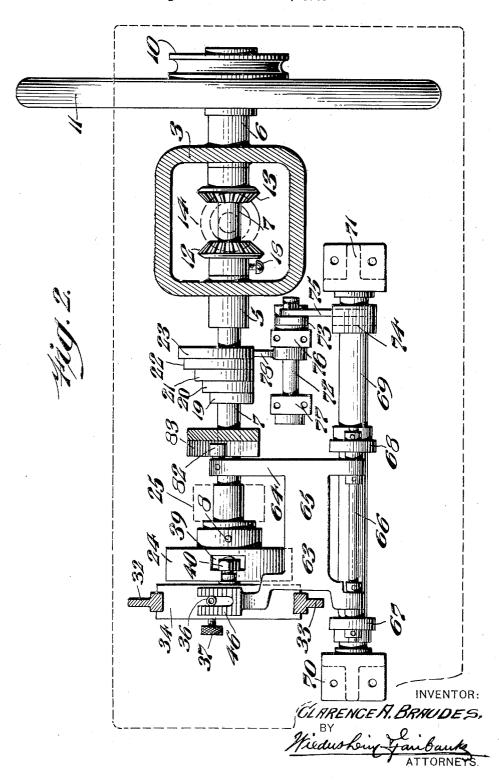
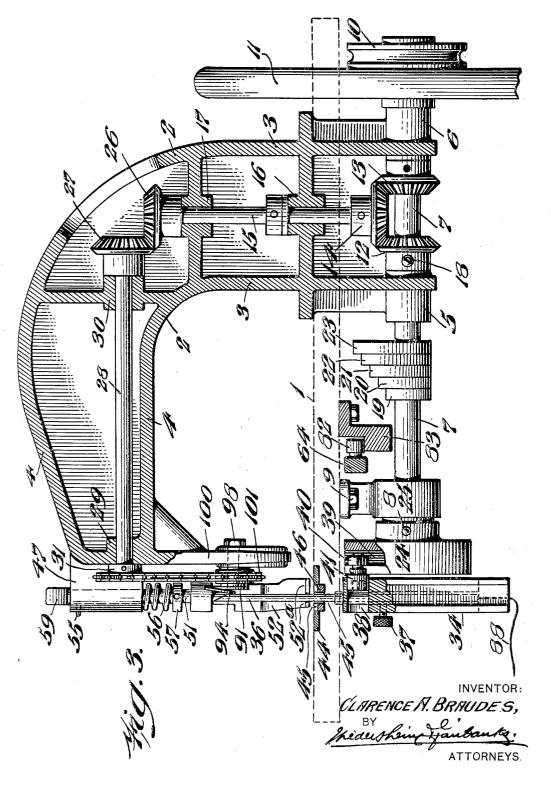

April 26, 1932.

C. A. BRAUDES

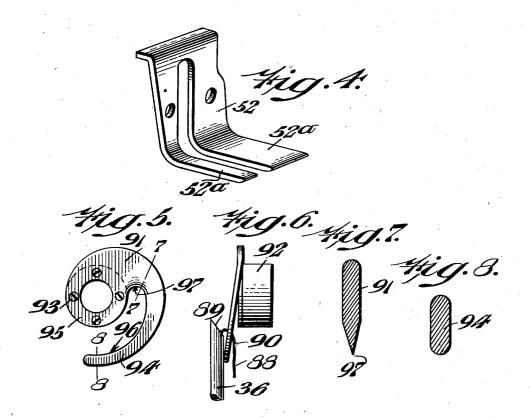
1,855,175


LOOPING AND TUFTING MACHINE

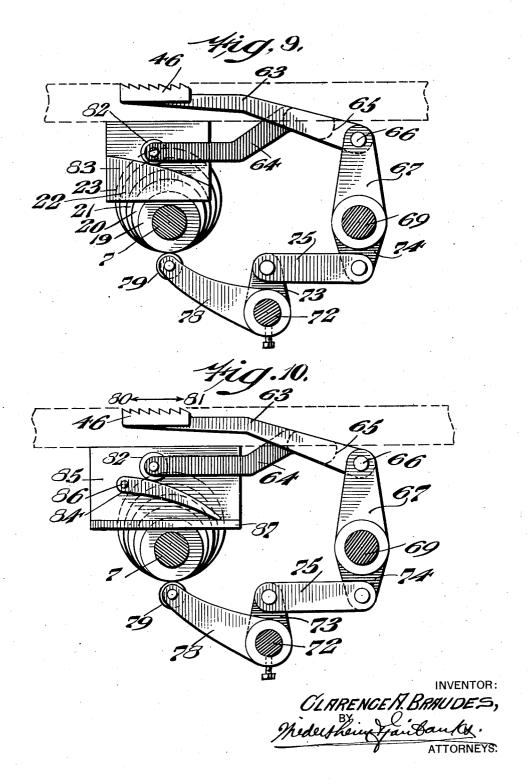
Original Filed Jan. 21, 1926 6 Sheets-Sheet 1



INVENTOR:
CLARENCE S. BRAUDES.
BY
Liberton Strong Hands
ATTORNEYS


Original Filed Jan. 21, 1926 6 Sheets-Sheet 2

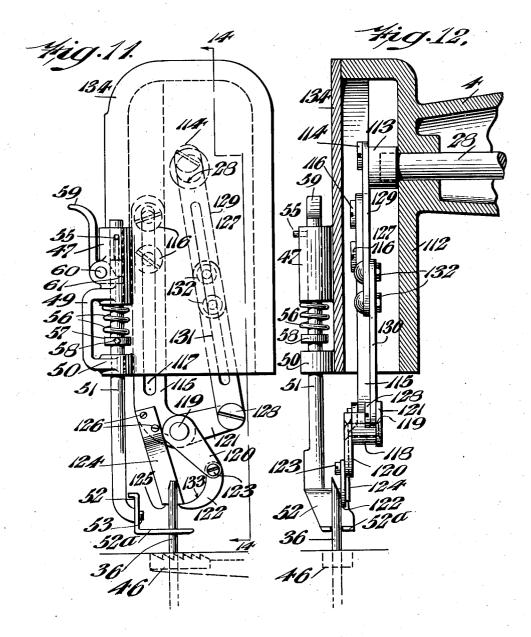
Original Filed Jan. 21, 1926 6 Sheets-Sheet 3


Original Filed Jan. 21, 1926 6 Sheets-Sheet 4

INVENTOR:

CLARENCE N. BRAUDES,

Original Filed Jan. 21, 1926 6 Sheets-Sheet 5



C. A. BRAUDES

LOOPING AND TUFTING MACHINE

Original Filed Jan. 21, 1926

6 Sheets-Sheet 6

INVENTOR:

CLARENCE A. BRAUDES,

BY

Mississius Y Fuebouls

ATTORNEYS.

UNITED STATES PATENT OFFICE

CLARENCE A. BRAUDES, OF BROOKLYN, NEW YORK

LOOPING AND TUFTING MACHINE

Continuation of application Serial No. 82,868, filed January 21, 1926. This application filed May 21, 1930. Serial No. 454,469.

5 if so desired, to cut said loops open as they are produced, in such a manner as to produce machine. a corresponding series of open ended tufts on the surface of said fabric.

My invention relates more particularly to 10 a new and useful looping and tufting machine of the character stated, adapted for the production of ornamental designs upon the upper surface of textile fabrics, through the medium of successive series of loops or tufts, 15 which may be produced of any desired colored yarn and which may be so collocated upon the surface of a fabric as to produce any desired design.

With the above ends in view, my inven-20 tion consists of suitable means for guiding a piece of fabric in a plane, means for feeding or advancing said fabric in an intermittent manner for each stroke of the machine, and means for the adjusting of the feed of tufting machine embodying my invention. ²⁵ said fabric.

My invention further consists of a hollow, tubular upright needle, adapted to carry a yarn through the fabric in an upward direction and in the form of a loop; thereby to 30 form the loops upon the upper surface of the fabric, without the aid of any auxiliary loop forming means, and means to re-ciprocate said tubular needle transversely of the fabric, as well as means for adjusting 25 the length of the stroke of said needle.

My invention further consists of novel means for engaging the loop of yarn after it is carried through the fabric by the tubular needle and before said needle has been with-40 drawn, and to retain said loop while said needle is being withdrawn from said fabric during said downward or return stroke, and means subsequently to cut said loop, thereby to produce an open tuft of the yarn.

My invention further consists of means to adjust the relative height of said needle and means correspondingly to adjust the height of said loop retaining and cutting means relative to said needle.

My invention relates to a new and useful means for actuating said fabric feeding and looping and tufting machine, adapted to pro- guiding means, said needle reciprocating duce a series of loops upon the upper surface means and said loop retaining and cutting of any suitable fabric and adapted further, means, so as properly to time the same with respect to each other, for each stroke of the

For the purpose of illustrating my invention, I have shown in the accompanying drawings forms thereof which are at present preferred by me, since they will give in practice satisfactory and reliable results, although it is to be understood that the various instrumentalities of which my invention consists can be variously arranged and organized and that my invention is not limited to 65 the precise arrangement and organization of these instrumentalities as herein shown and described.

This application is a continuation of my copending application Serial No. 82,868, filed 70 Jan. 21, 1926.

Referring to the drawings, Figure 1 represents a side elevation of a novel looping and

Figure 2 represents a horizontal section on 75 line 2-2 of Figure 1.

Figure 3 represents a front elevation, partly in section, of my novel looping ma-

Figure 4 represents a perspective view of a presser foot.

Figure 5 represents a side elevation of the loop retainer and cutter.

Figure 6 represents a front elevation of the same, showing the manner in which the loop retainer and cutter functions.

Figure 7 represents a section on line 7—7 of the Figure 5, showing the cutting portion of said retainer and cutter.

Figure 8 represents a section on line 8-8 90 of Figure 5, showing the retaining portion

Figure 9 represents a front elevation of the fabric feeding mechanism, detached from the rest of the machine.

Figure 10 represents a side elevation similar to that shown in Figure 9, of a modified form of a fabric feeding mechanism.

Figure 11 represents a side elevation of My invention further consists of a novel the upper portion of a looping machine em- 100 bodying my invention, showing a modified construction in the loop cutting device.

Figure 12 represents a section on line

14-14 of Figure 11.

Referring to the drawings, in which like reference characters indicate like parts, 1 designates the table or bed plate of my novel machine, outlined in Figures 2 and 3 in dotted lines, upon which plate are mounted the various operative elements of my novel machine. 2 designates an upper arm or housing consisting of the upright portion 3, which passes through the bed plate or table 1 and is suitably secured thereto, and the 15 overhanging horizontal, longitudinal portion 4, which is supported by said upright portion 3.

The upright housing portion 3 is provided at its lower end with a pair of pendant, lon-20 gitudinally aligned bearings 5 and 6, in which is journalled the main shaft 7, extending horizontally and longitudinally of the machine, the free end of said shaft being journalled in a bearing 8, which is secured 25 to the lower surface of the table or bed plate 1, by means of suitable bolts 9. The main shaft 7 carries at its outer end a suitable pulley 10, which is adapted to receive any suitable belt for the transmission of power to 30 said shaft 7, and a suitable hand wheel 11 whereby said shaft may be revolved manually, and which also serves as a flywheel to give a smoother action to the reciprocating

parts of the machine. The main shaft 7 also carries a pair of opposed bevel gears 12 and 13 respectively, which are in mesh with a common bevel gear 14, carried by the lower end of an upright transmission shaft 15, which is journalled in 40 the suitable bearings 16 and 17 in said upright portion 3 of the housing 2; one of said bevelled gears 12 and 13 being fixed to the shaft 7 at all times, by means of a set screw 18, while the other of said bevelled gears is loose 45 and idles on said main shaft 7. By changing the set screw from one of the bevel gears 12 and 13 to the other, the direction of rotation of the upright shaft 15 is reversed thereby adapting the machine either for the cut end loops or tufts, or for another character of

stitch formed by reverse operation.

The main shaft 7 is further provided with a series of eccentric cam discs 19, 20, 21, 22 and 23, each of a different diameter and ec-55 centricity, and is also provided with an eccentric head 24, carried by the end of said shaft, and suitably fixed thereto by the screw or pin 25. The upright transmission shaft 15 is provided with the bevel gear 26 at its 60 upper end, which is in mesh with the bevel gear 27 carried by the end of an upper shaft 28, which is journalled within the bearings 29 and 30 in the upper horizontal portion 4 of the housing 2. The sprocket wheel 31 is secured to the other end of said shaft 28.

The two pendant vertical parallel guideways 32 and 33 are secured to the underside of the table or plate 1, or may be formed integral therewith. Between the two guideways 32 and 33, shown more particularly in Figures 70 1 and 2, is slidably mounted a reciprocable slide block 34, which is provided with a suitable vertical opening 35 extending therethrough, which is adapted to receive the tubular needle 36, and to support the same be- 75 neath the table 1. The set screw 37 extends into said opening 35, and is adapted to fix and secure the needle 36 in any desired position; thus permitting the vertical adjustment of the needle to produce loops of the 80 desired length.

The slide block 34 is further provided with a transverse horizontal guide slot 38 in the upper portion thereof, while the eccentric head 24, carried by the end of the main shaft 85 7, is provided with the inwardly enlarged T channel 39, which is adapted to receive a nut 40, carried by the threaded end of the stud 41, said stud being provided with a squared opening 42, for the reception of a square 90 shank wrench. The stud 41 extends into the guide slot 38 in the slide block 34, as shown particularly in Figure 3. Thus, by setting and fixing the stud 41 at any desired point in the T channel 39, with respect to the center 95 of rotation of the head 24, said stud 41 will impart to said slide block 34 a vertical reciprocating movement, of a stroke dependent upon the distance of said stud 41 from the center. By means of the adjustable eccentric 100 stud 41, it is thus possible to adjust the length of the stroke of the needle 36.

In order properly to guide the fabric upon the table 1, and to support said fabric against the vertical upward thrust of the needle 36, 105 I provide a small slide plate 44, preferably having a smoothly polished upper surface, set into the table 1 and flush with the surface thereof, on either side of the opening 45 in said table. Into the opening 45 extends the 110 bifurcated feeder foot 46 from below. tubular needle 36 also extends upwardly from below the table 1, passing through the opening 45, and between the two limbs of the bifurcated feeder foot 46, as shown in Figure 3. 115

The upper horizontal portion 4 of the frame or housing 2, is provided at its free end with a vertical slide bearing 47, having the vertical bearing opening 48 extending therethrough, and having also the yoke 49 120 formed integral therewith and provided with the corresponding vertically aligned lower slide bearing 50. The presser rod 51 is slidably mounted in said bearings 48 and 50, and carries at its lower end the presser foot 52, which is adjustably and detachably secured thereto, by means of the screws 53. The horizontal portion 52° of the presser foot 52 is bifurcated, with the outer limb thereof wider than the inner limb; said two limbs 130

being in operative alignment with the needle 36, and straddling the same, in the manner shown in Figures 1 and 3.

In order to retain the presser rod 51 against 5 rotation, there is provided a vertical slot 54 in the bearing 47, and a guide pin 55 extending through said guide slot 54 and fixed in the rod 51. The helical compression spring 56, surrounding the rod 51, is interposed between 10 the upper part of the yoke 49 and an adjustable collar 57 fixed to said rod 51 by means of the set screw 58, thereby urging said presser foot 52 downwardly at all times, against the upper surface of the fabric, in a yieldis able manner. The handle 59, pivoted at 60, is provided with a finger 61, which is adapted to extend into a suitable recess in the rod 51, thereby to engage said rod and to lift said rod 51 upwardly when the handle 59 is turned 20 outwardly or rearwardly in the direction of the arrow 62, thereby to raise the presser foot 52 out of operative engagement with the fabric.

In order to feed or advance the fabric be-25 neath the presser foot 52 intermittently, there is provided the bifurcated feeder foot 46, having its upper surface toothed, with the teeth inclined rearwardly; said feeder foot 46 straddling the needle 36, as shown in Figures 2 and 3. In order simultaneously to impart to said feeder foot 46 a horizontal as well as a vertical reciprocating movement, said feeder foot 46 is carried by an arm 63, which is rigidly connected to a cam arm 64, through a common integral web 65. The two arms 63 and 64 are pivoted upon a common pivot 66, carried at its ends by the pair of similar arms or levers 67 and 68, which are carried by a common rocker shaft 69. The 40 rocker shaft 69 is journalled within a pair of suitable bearing blocks 70 and 71, fastened to the underside of the table or plate 1. The rocker shaft 69 is operatively connected to a second rocker shaft 72, through the rocker arms 73 and 74, and the link 75. The rocker shaft 72 is journalled within suitable bearing blocks 76 and 77, which are also secured to the underside bearing blocks 76 and 77, which are also secured to the underside of the table 50 or bed plate 1, and in turn carries a follower arm 78, having a follower roller 79 rotatably mounted at its end. The follower 79 is adapted to ride on any one of the several eccentric cams 19 to 23 inclusive.

shaft 7 will impart a rocking or oscillatory motion to the shafts 72 and 69 respectively, thereby causing said arm 63 and hence the feeder foot 46 to oscillate to and fro in the 60 direction of the arrows 80 and 81, with each stroke of the machine, and hence with each stroke of the needle 36. The length of the horizontal feeding movement or stroke of the feeder foot is determined by the choice of 65 the cam discs 19 to 23 inclusive.

In order to raise the feeder foot 46 upwardly a slight distance, into engagement with the fabric, during the forward or operative stroke of said foot 46, (in the direction of the arrow 80) and to lower said foot 46 a suitable amount out of engagement with the fabric, during the return movement of said foot, (in the direction of the arrow 81) the follower arm 64, having the follower roller 82 rotatably mounted at its end, is adapted to ride upon the inclined cam 83, which is also fixedly secured to the plate 1. Thus, as the arms 63 and 64 are oscillated to and fro, by the rocker arms 67 and 68, the arms are also raised and lowered simultaneously by the cam 83, thereby imparting to the feeder foot 46 simultaneous horizontal and vertical reciprocating movements. This construction

is best shown in Figure 9.

In Figure 10 there is shown a modified 85 form of a feeder foot cam, for raising and lowering the arms 63 and 64, which cam 84 is pivotally mounted upon a support 85, at a point 86, and has its lower end resting upon a horizontal guide flange 87, also carried by said support 85. In this modified construction, the follower roller 82, after passing over the extreme forward or pivoted end of the cam 84, in its forward and upward movement in the direction of the arrow 80, de- 95 scends abruptly and drops onto the guide flange 87. The follower roller 82 then returns along the guide flange 87, raising the cam 84, as it passes beneath the lowermost end thereof. The cam 84 drops into position 100 again by gravity, and permits the roller 82 to ride over the same, in the forward direction again. By means of this pivotally mounted cam, or switch cam, construction, all backward drag upon the fabric is eliminated, since the feeder foot 46 is disengaged from the fabric abruptly at the extreme end of the forward or operative stroke thereof. By properly adjusting the position of the cams 19 to 23, inclusive, upon the main shaft 110 7, the stroke of the feeder foot 46 may be so synchronized with the movement of the needle 36 as to impart to said feeder foot 46 a forward movement in the direction of the arrow 80 during the time that the needle 115 is in the lower position and out of engagement with the fabric. Suitable springs, not shown in the drawings, may be interposed between the shaft 72 and a suitable stationary or rigid point on the machine, for 120 maintaining said shaft under a constant torsional strain, thereby to retain the follower roller 79 against any one of the cams 19 to 23 inclusive. The follower roller 82 is held against the corresponding lifting cam either 125 by gravity or by any suitable spring, not shown in the drawings.

As shown particularly in Figures 1 and 6, the yarn 88 passes through the axial bore of the hollow needle 36, in a continuous manner, 130

and is thus carried through the fabric with said loop so as to form the desired open ended each stroke of the needle, in the form of a closed loop, having one side of the loop within the needle and having the other side of the loop on the outside of the needle, as shown in The end of the needle 36 is bev-Figure 6. elled as at 89, thereby causing said needle to penetrate the fabric more readily and also causing the yarn 88 to be positioned upon the w same side of the needle at all times, as also

shown in Figure 6.

In order to retain the loop 90 in position, while the needle 36 is being withdrawn, and in order subsequently to cut said loop at the 15 top, after said needle has been withdrawn from the fabric, I provide a novel rotary loop retainer and cutter 91, of a suitably tempered spring steel, which is secured to the boss 92, by means of a series of screws 93, 20 said retainer and cutter being provided with a spring blade 94, extending outwardly of the hub portion 95 thereof, in a spiral formation, and having a rounded or dull inner retaining edge 96, shown in enlarged section in 25 Figure 8, over a suitable portion of its length, and having the sharp cutting edge 97, along the inner portion of said blade, as shown in enlarged section in Figure 7. The combined retainer and cutter is rotatably mounted upon 33 a stud shaft 98, which is adjustably mounted in a suitable slot 99, in a lower pendant bracket 100, carried by the horizontal housing portion 4, whereby the vertical height of said retainer and cutter may be adjusted to 35 accommodate the height of the needle and hence the particular height of the loop 90. The stud shaft 98 also carries a sprocket wheel 101, whereby said rotary retainer and cutter may be revolved, and sprocket chain 40 102 is passed over said sprocket wheel 101, as well as the sprocket wheel 31 carried by the outer end of the horizontal shaft 28, and a suitable idler take-up sprocket wheel 103, thereby causing said retainer and cutter 91 to revolve in timed relation to the shaft 28 and hence in timed relation to the needle 36. In order to permit the adjustment of the position of the idler take-up sprocket wheel 103, when such adjustment is required by the adjustment of the height of the retainer and cutter 91, and the sprocket wheel 101, the stud 104 is also adjustably mounted in a suitable slot 105, as shown particularly in Figure 1.

By properly adjusting the position of the sprocket wheel 31 upon the shaft 28, the rotary movement of the retainer and cutter 91 may be so timed with respect to the stroke of the needle 36 as to cause the end of the blade 94 to engage the loop 90, in a manner shown in Figure 6, just as the needle reaches its uppermost position, thereby causing said loop to be retained by the rounded edge portion 96 of said blade, while the needle 36 is on its downward or return stroke, and thereafter causing the sharp edge 97 of said blade to cut the adjustment screws 123, the blade 122 may 130

tuft.

In Figures 11 and 12 I have shown a modified construction in the loop cutting means. In this modified construction the rotary loop retainer and cutter and the pendant bracket 100 are eliminated, and instead there is provided a housing head 112. In this modification there is an eccentric 113 provided on the end of the upper shaft 28 carrying a suitable 75 eccentric pin or screw 114. To the head 112 is adjustably secured the slotted arm 115, by means of the two screws 116 passing through a suitable slot 117. The lower end of the stationary arm 115 carries a bearing 118, in 80 which is journalled a suitable pivot pin or shaft 119. To one end of this pivot pin or shaft 119 is rigidly secured, by any suitable means, a cutter arm 120, while to the other end thereof is rigidly secured, also by suit- 85 able means, the actuating arm 121. To the cutter arm 120 is adjustably secured a thin and oscillating cutting blade 122, by means of the screws 123, while a stationary blade 124 having the lower cutting edge 125 is rigidly 90 secured to the stationary arm 115, by means of the screws 126. The actuating arm 121 is operatively connected to the eccentric pin 114 by means of an adjustable connecting rod 127 and a pin or screw 128. The adjustable 95 connecting rod 127 is composed of an upper and a lower member 129 and 130 respectively, each provided with a suitable slot 131, which are secured to each other by means of the two screws or other detachable fastening 100 means 132.

Thus, with each stroke of the machine and hence with each revolution of the shaft 28, the cutting arm 120 will be deflected by the eccentric pin 114, thereby causing the blade 105 122 to oscillate to and fro, past the stationary cutting edge 125, thereby to effect a shearing action between said stationary cutting edge 125 and the movable cutting edge 133 of the cutting blade 122. The movable cutting 110 cutting blade 122. The movable cutting blade 122 as well as the stationary blade 124 are so positioned with respect to the needle 36, as to cause said movable blade to engage and retain the loop of yarn hanging over one side of the needle and to bring the same be- 115 tween the two cutting edges 125 and 133, thereby severing the loop. The presser foot mechanism in this particular modification of my invention may be carried by the cover plate 134 of the frame head 112, as shown 120 particularly in Figure 12.

In order to adjust the height of the cutting mechanism with respect to the needle 36, and in order to adapt the same to varying heights of loops, it is merely necessary to raise or 125 lower the stationary arm 115 by means of the screws 116, and to adjust the length of the connecting rod 127 a corresponding amount, by means of the screws 132. With the aid of

be adjusted in angular relation to the arm 120, thereby to adjust the shearing angle of the movable outting edge 133 with respect to the stationary cutting edge 125.

My machine presents various advantages. The direct result of having the loops formed and treated on the upper surface of the base material rather than on the lower surface, is that the loops and pile are visible to the op-10 erator while they are being formed, retained and cut. Thus, errors in setting any part of the machine, effecting the proper desired formation of the loops or of the pile are immediately discovered by the operator and may be corrected before substantial damage is done. There is the further advantage of efficiency in that the operator seeing the performance of the machine is enabled to speed up operation without impairing the quality of the product. Manual access immediately can be had to any of the loops in case of slight irregularity. The machine, moreover, does not exert any pressure upon the loops, as would a machine forming the loops on the side of the fabric which rests on the table. Inasmuch as the loop is not formed through the thickness of the table, my machine renders possible the formation of the shortest possible loop or tuft, the thickness of the retaining pin or shear being the only limitation as to length.

While the drawings of the present application show a single needle machine and the specification concerns itself with the description of such a machine, it will be very obvious that a multiplicity or a battery of needles and associated loop retainers and cutters might be utilized and that the plurality of needles might be independently operated or might be operated in unison from a com-

mon actuating means.

It will also be understood that the term table as used in this application is to be interpreted in its broadest sense. In so far as the present invention is concerned, it is immaterial whether a solid, table-like support member is utilized or whether equivalent devices are used, such for instance as skeleton frame members or other apparatus which is the full equivalent of a table. The primary consideration is to properly support the fabric while it is being operated upon and any device for effecting such support is con-55 sidered to be a table within the scope of the appended claims.

Having thus described my invention, what I claim as new and desire to secure by Let-

ters Patent is:

1. In a device of the character stated, a horizontal table, a reciprocable needle adapted to carry a loop of yarn upwardly through said table and through a fabric thereon, means to retain said loop in the outermost position, means to cut said loop and means to loop when formed and subsequently to cause

actuate said needle and said retainer and cutter in timed relation to each other.

2. In a device of the character stated, a horizontal table, a reciprocable needle adapted to carry a loop of yarn upwardly through 70 said table and through a fabric thereon, means in operative alignment with said needle, to retain said loop of yarn, upon being carried through the fabric by said needle, and to cut the same thereafter, and means to actuate said needle and said loop retainer and cutter in timed relation to each other.

3. In a device of the character stated, a horizontal fabric supporting table, an upright, reciprocable needle adapted to carry 80 a loop of yarn through the table and fabric in an upward direction, means above the table to retain the loop after it is formed, cutting means coacting therewith, and means to actuate said needle, said retaining means 85 and said cutting means in timed relation to each other.

4. In a device of the character stated, a table, an upright, reciprocable needle adapted to carry a loop of yarn upwardly and 90 through said table and through a fabric thereon from below the table to its upper surface, means in operative alignment with said needle to retain said loop, and subsequently to cut said loop, and means to actuate said 95 needle and said loop retaining and cutting means in timed relation to each other.

5. In a device of the character stated, a substantially horizontal table, a reciprocable needle extending through said table, a loop retainer and cutter positioned above said table in operative alignment with said needle, means below said table to actuate said needle and means above said table to actuate said loop retainer and cutter in timed 105

relation to said needle.

6. In a device of the character stated, a table having a suitable opening therethrough, an upright reciprocable needle extending therethrough, means below said table 110 to support and guide said needle in a desired path, a loop retainer and cutter positioned above said table in operative alignment with said needle, means to adjust the stroke of said needle in said support, means to actuate said 115 loop retainer and cutter and said needle in timed relation to each other.

7. In a device of the character stated, a table, a reciprocable needle adapted to carry a loop of yarn through a fabric supported on 120 the table, means above the table to retain said loop, means contacting with said retainer to coact therewith for shearing said loop, means to advance the fabric intermittently and transversely of the line of travel of said needle and means to actuate said needle from below the table, said retainer and said cutter in synchronism with each other, so as to cause said loop retainer to engage the

fabric to advance while the needle is with-

drawn from the fabric.

8. In a device of the character stated, a fabric supporting table, a reciprocable needle adapted to carry a loop of yarn through the table and fabric, a loop cutting device above the table comprising a pair of shearing members adapted to move relative to each other 10 substantially free from tension on the loop, and means actuating said needle and said loop cutting device in timed relation to each other.

9. In a device of the character stated, a susbtantially horizontal table, an upright reciprocable needle extending through said table, a loop cutting device positioned above said table in operative alignment with said needle, comprising a pair of shearing elements adapted to move relative to each other, means below said table to actuate said needle, and means above said table to actuate said cutting device in timed relation to said needle.

10. In a looping and tufting machine of the character in which a needle moves through a fabric supporting table and fabric thereon, and carries a loop upwardly through the fabric, a housing, a stationary blade carried by said housing, a movable blade pivotally carried by said housing in operative alignment with said stationary blade, a shaft journalled within said housing and means intermediate said shaft and said movable blade to impart to the latter an oscillatory movement

to enter and cut the loop.

11. In a looping and tufting machine of the character in which a needle moves through a fabric supporting table and fabric thereon, and carries a loop upwardly through the fabric, a housing, a supporting arm adjustably mounted thereon, a stationary blade carried by said arm, a movable blade pivotally secured to said arm in operative alignment with said stationary blade, a shaft, and adjustable means intermediate said shaft and said movable blade for imparting to the latter an oscillatory movement to enter and cut the loop.

12. In a looping and tufting machine of the character in which a needle moves through a fabric supporting table and fabric thereon, and carries a loop upwardly through the fabric, a housing, a supporting arm adjustably mounted thereon, a stationary blade detachably secured to said arm, a cutter shaft journalled in said arm, a movable blade carried by said shaft in operative alignment with said stationary blade, a shaft journalled in said housing and adjustable means intermediate said shaft and said cutter shaft for imparting to the movable blade an oscillatory movement to enter and cut the loop.

13. In a looping and tufting machine of

said cutter to cut said loop and to cause said through a fabric supporting table and fabric thereon, and carries a loop upwardly through the fabric, a housing, a stationary blade, a movable blade arm pivotally carried thereby, said movable blade being adjustably secured 70 to said blade arm in operative alignment with said stationary blade, an operating shaft journalled in said housing, a crank pin carried by said shaft and means intermediate said crank pin and said movable blade arm to 75 oscillate the latter to enter and cut the loop.

14. In a device of the character stated, a housing, a stationary arm adjustably secured thereto, adapted to be adjusted vertically, a stationary blade detachably secured 80 thereto, a cutter shaft journalled in said stationary arm, a blade arm secured to one end of said cutter shaft, an actuating arm secured to the other end thereof, a resilient movable blade adjustably secured to said 35 blade arm, in operative alignment with said stationary blade, an operating shaft, an eccentric pin carried thereby, and an adjustable connecting link intermediate said eccentric pin and said actuating arm to oscillate 90 said cutter shaft and hence said movable

15. In a device of the character stated, a fabric supporting table, a reciprocable needle having a longitudinal bore extending there- 95 through and adapted to have a yarn passed through said bore, said needle being adapted to carry a loop of said yarn upwardly through a fabric on said table, means above the table to retain and to cut the loop and 100 means to actuate said needle and said loop retainer and cutter in timed relation to each other.

16. In a device of the character stated, a substantially horizontal table, a reciprocable 105 needle extending through said table, a loop retainer and cutter positioned above said table in operative alignment with said needle, means below said table to actuate said needle, and means to actuate said loop retainer and 110 cutter in timed relation to said needle.

17. In a device of the character stated, a substantially horizontal table, an upright reciprocable needle extending through said table, a loop cutting device positioned above 115 said table in operative alignment with said needle, comprising a pair of shearing elements adapted to move relative to each other, means below said table to actuate said needle, and means to actuate said cutting device in 120 timed relation to said needle.

18. In a device of the character stated, a horizontal table, a reciprocable needle adapted to carry a loop of yarn upwardly through said table and through a fabric thereon, 125 means above said table to cut said loop and means to actuate said needle and said cutter in timed relation to each other.

19. A method of forming a tufted fabric 65 the character in which a needle moves which includes the steps of supporting the 130

fabric in a horizontal plane and moving it step by step in said plane, passing a loop of yarn upwardly through the fabric from below the latter after each forward feeding step of the fabric, and engaging and severing said loop prior to the engagement of the next

20. In a device of the character stated, means for supporting in horizontal position a piece of fabric to be worked upon, a reciprocable needle adapted to carry a loop of yarn upwardly through said supporting means and fabric, means to retain said loop in the outermost position, means to cut the loop and means to actuate the needle, the retainer and the cutter in timed relation to each other.

21. A method of forming a tufted fabric which includes the steps of supporting the fabric in a horizontal plane and moving it 20 step by step in said plane, passing a loop of yarn upwardly through the fabric from below the latter after each forward feeding step of the fabric, supporting said loop against gravitational collapse and then cutting the

25 loop while so supported.

22. In a machine of the class described, means for supporting a fabric in a substantially horizontal plane and for moving the fabric step by step in said plane, a hollow 30 reciprocable needle arranged below the fabric and adapted to carry a loop of yarn upwardly through the support and the fabric, means arranged above the fabric for retaining said loop against gravitational collapse, means to 35 cut said loop while so retained, and means for operating the needle, the retainer and the cutter in timed relationship.

23. A machine of the class set forth in claim 22 and wherein the timing of the parts is such that one loop is cut prior to the formation of

the next loop.

Signed at New York in the county of New York and State of New York this 20th day of May, A. D. 1930.

CLARENCE A. BRAUDES.

ล้อั

60