发明名称
组合物、硬质聚氨酯泡沫材料及制冷设备

摘要
本发明公开了一种组合物、硬质聚氨酯泡沫材料及制冷设备。该组合物包括：组合聚醚，所述组合聚醚含有多元醇、发泡剂和复合催化剂。所述发泡剂含有反式1-氯-3,3,3-三氟丙烯；所述复合催化剂含有发泡催化剂Polycat 201以及异氰酸酯。该组合物具有长期储存稳定性，并且采用该组合物所得的泡沫材料具有流动性好、导热系数低和尺寸稳定性好等特点，从而使得所得产品具有更好的节能效果。
1. 一种组合物，其特征在于，包括：

组合聚醚，所述组合聚醚含有多元醇、发泡剂和聚合催化剂，所述发泡剂含有反式1-氯-3,3,3-三氟丙烯，所述聚合催化剂含有发泡催化剂Polycat201、凝胶催化剂和聚合催化剂；以及

异氰酸酯。

2. 根据权利要求1所述的组合物，其特征在于，所述多元醇的量为100重量份，所述反式1-氯-3,3,3-三氟丙烯的量为10～50重量份，所述Polycat201的量为0.1～1.5重量份，所述异氰酸酯的量为120～155重量份。

3. 根据权利要求2所述的组合物，其特征在于，所述多元醇的量为100重量份，所述反式1-氯-3,3,3-三氟丙烯的量为20～40重量份，所述Polycat201的量为0.3～0.8重量份，所述异氰酸酯的量为128～145重量份。

4. 根据权利要求3所述的组合物，其特征在于，所述异氰酸酯为有机多异氰酸酯。

5. 根据权利要求4所述的组合物，其特征在于，所述有机多异氰酸酯的异氰酸酯指数为0.9～1.10。

6. 根据权利要求5所述的组合物，其特征在于，所述有机多异氰酸酯的异氰酸酯指数为0.95～1.08。

7. 根据权利要求6所述的组合物，其特征在于，所述多元醇为选自聚酯多元醇和聚醚多元醇中的至少一种。

8. 根据权利要求7所述的组合物，其特征在于，所述聚酯多元醇为芳香聚酯多元醇，所述芳香聚酯多元醇的粘度为500～3000mPa.s，数均分子量为300～1000，羟值为180～400mgKOH/g。

9. 根据权利要求1所述的组合物，其特征在于，所述发泡剂进一步含有烷烃、环烷烃和氢氟烃中的至少一种。

10. 根据权利要求9所述的组合物，其特征在于，所述烷烃为烷烃。

11. 根据权利要求10所述的组合物，其特征在于，所述烷烃为选自环戊烷、异戊烷和正戊烷的至少一种。

12. 根据权利要求11所述的组合物，其特征在于，所述烷烃为选自HFC-245fa、HFC-365mfc和HFC-134a中的至少一种。

13. 根据权利要求12所述的组合物，其特征在于，所述烷烃进一步包括0.5～7重量份泡沫稳定剂。

14. 根据权利要求13所述的组合物，其特征在于，所述泡沫稳定剂为含有Si-C结构的硅类泡沫稳定剂。

15. 根据权利要求14所述的组合物，其特征在于，所述硅类泡沫稳定剂的粘度为300～2500mPa.s。

16. 根据权利要求15所述的组合物，其特征在于，所述复合催化剂含有0.1～1.5重量份的所述Polycat201、0.3～3.5重量份的所述凝胶催化剂和0.3～1.5重量份的所述聚合催化剂。

17. 根据权利要求16所述的组合物，其特征在于，所述聚醚多元醇为选自下列聚醚多元醇的至少一种：
(1) 以邻苯二胺作为起始剂制备的聚醚多元醇A，所述聚醚多元醇A的粘度为6000～12000 mpa.s，数均分子量为420～650，羟值为360～500mgKOH/g，

(2) 以山梨糖醇和甘油为起始剂制备的聚醚多元醇B，所述山梨糖醇和所述甘油的重量比为1:1～3:1，所述聚醚多元醇B的粘度为5000～10000 mpa.s，数均分子量为420～700，羟值为380～500mgKOH/g，

(3) 以蔗糖为起始剂制备的聚醚多元醇C，所述聚醚多元醇C的粘度为8000～12000 mpa.s，数均分子量为600～1000，羟值为360～480mgKOH/g，

(4) 以甘油为起始剂制备的聚醚多元醇D，所述聚醚多元醇D的粘度为180～300 mpa.s，数均分子量为800～1300，羟值为150～350mgKOH/g。

18. 根据权利要求17所述的组合物，其特征在于，所述多元醇含有：
3～20重量份数的所述聚醚多元醇；
10～55重量份数的所述聚醚多元醇A；
10～45重量份数的所述聚醚多元醇B；
20～55重量份数的所述聚醚多元醇C；以及
2～18重量份数的所述聚醚多元醇D。

19. 一种硬质聚氨酯泡沫材料，其是利用权利要求1～18任一项所述的组合物制备得到的。

20. 一种制冷设备，其特征在于，包括：
绝热材料，所述绝热材料含有权利要求19所述的硬质聚氨酯泡沫材料。
组合物、硬质聚氨酯泡沫材料及制冷设备

技术领域
[0001] 本发明属于材料技术领域，具体而言，本发明涉及一种组合物、硬质聚氨酯泡沫材料及制冷设备。

背景技术
[0002] 反式-1-氯-3,3,3-三氟丙烯（HFO-1233zd，简称LBA）由于具有沸点低、不燃、零臭氧消耗潜势（ODP）以及可接受的低全球变暖潜势（GWP<7），特别是由于它的低导热系数，因此可以良好地用于聚氨酯泡沫体的发泡剂的化合物，是环境可接受的作为HFC的替代材料。然而，LBA分子中含有双键，其固有的化学不稳定性是提供了所希望的低的全球变暖潜势以及零臭氧消耗潜势的同时，也为其在组合聚醚中的长期的储存稳定性带来了困难。同时，作为硬质聚氨酯组合料中常规的发泡型催化剂PC-5（五甲基二乙烯三胺）或A-1 [70%双（二甲胺基乙基）醚的二丙二醇溶液] 易与LBA反应，从而进一步增加LBA体系发泡料的不稳定性。
[0003] 目前，LBA体系发泡料使用方式是即时混合即时使用，然而由于管路和储存罐中的发泡料不能长时间储存，这为实际应用带来了困难。因此，现有的发泡料体系有待进一步改进。

发明内容
[0004] 本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此，本发明的一个目的在于提出一种组合物、硬质聚氨酯泡沫材料及制冷设备，该组合物具有长期储存稳定性，并且采用该组合物所得的泡沫材料具有流动性好、导热系数低和尺寸稳定性好等特点，从而使得所得产品具有更好的节能效果。
[0005] 在本发明的一个方面，本发明提出了一种组合物，包括：
[0006] 组合聚醚，所述组合聚醚含有多元醇、发泡剂和复合催化剂，所述发泡剂含有反式1-氯-3,3,3-三氟丙烯，所述复合催化剂含有发泡催化剂Polycat201；以及
[0007] 异氰酸酯。
[0008] 根据本发明实施例的组合物通过使用Polycat201作为发泡催化剂，较传统工艺中使用PC-5或A-1催化剂，由于Polycat201不与反式-1-氯-3,3,3-三氟丙烯发泡剂反应，从而可以显著提高组合物的储存稳定性，并且采用该组合物所得的泡沫材料具有流动性好、导热系数低和尺寸稳定性好等特点，从而使得所得产品具有更好的节能效果。
[0009] 另外，根据本发明上述实施例的组合物还可以具有如下附加的技术特征：
[0010] 在本发明的一些实施例中，所述多元醇的量为100重量份，所述反式1-氯-3,3,3-三氟丙烯的量为10～50重量份，所述Polycat201的量为0.1～1.5重量份，所述异氰酸酯的量为120～155重量份。由此，可以显著提高组合物的储存性能。
[0011] 在本发明的一些实施例中，所述多元醇的量为100重量份，所述反式1-氯-3,3,3-三氟丙烯的量为20～40重量份，所述Polycat201的量为0.3～0.8重量份，所述异氰酸酯的量为128～145重量份。由此，可以进一步提高组合物的储存性能。
说明书中描述的实施例中，所述含酸酯为有机多异氰酸酯，任选地，所述有机多异氰酸酯的异氰酸酯指数为0.90～1.10，优选0.95～1.08，由此，可以显著提高反应效率。

在本发明的一些实施例中，所述催化剂为选自聚酯多元醇和聚醚多元醇中的至少一种，任选地，所述聚酯多元醇为芳香族聚酯多元醇，所述芳香族聚酯多元醇的粘度为500～3000mpa.s，数均分子量为300～1000，质量为180～400mgKOH/g。由此，可以进一步提高反应效率。

在本发明的一些实施例中，所述发泡剂进一步含有烷烃、环烷烃和氢氟烃中的至少一种，任选地，所述烷烃为戊烷，任选地，所述戊烷为选自环戊烷、异戊烷和正戊烷的至少一种，任选地，所述氢氟烃为选自HFC-245fa、HFC-365mfc和HFC-134a中的至少一种。由此，可以显著降低发泡成本。

在本发明的一些实施例中，基于100重量份的所述多元醇，所述组合催化剂进一步包括0.5～7重量份泡沫稳定剂，任选地，所述泡沫稳定剂为含有Si-C结构的硅类泡沫稳定剂，任选地，所述硅类泡沫稳定剂的粘度为300～2500mpa.s。由此，可以进一步提高反应效率。

在本发明的一些实施例中，所述复合催化剂进一步包括凝胶催化剂和聚合催化剂中的至少一种，任选地，所述复合催化剂含有0.1～1.5重量份的所述Polycat201、0.3～3.5重量份的所述凝胶催化剂和0.3～1.5重量份的所述聚合催化剂。由此，可以进一步提高反应效率。

在本发明的一些实施例中，所述聚醚多元醇为选自下列聚醚多元醇的至少一种：
(1) 以邻甲苯二胺作为起始剂制备的聚醚多元醇A，所述聚醚多元醇A的粘度为6000～12000mpa.s，数均分子量为420～650，质量为360～500mgKOH/g；(2) 以山梨糖醇和甘油为起始剂制备的聚醚多元醇B，所述山梨糖醇和所述甘油的重量比为1:1～3:1，所述聚醚多元醇B的粘度为5000～10000mpa.s，数均分子量为420～700，质量为380～500mgKOH/g；(3) 以甘油为起始剂制备的聚醚多元醇C，所述聚醚多元醇C的粘度为8000～12000mpa.s，数均分子量为600～1000，质量为360～480mgKOH/g；(4) 以甘油为起始剂制备的聚醚多元醇D，所述聚醚多元醇D的粘度为180～300mpa.s，数均分子量为800～1300，质量为150～350mgKOH/g。由此，可以进一步提高反应效率。

在本发明的一些实施例中，所述多元醇含有3～20重量份的所述聚醚多元醇；10～55重量份的所述聚醚多元醇A；10～45重量份的所述聚醚多元醇B；20～55重量份的所述聚醚多元醇C；以及2～18重量份的所述聚醚多元醇D，由此，可以进一步提高反应效率。

在本发明的第二个方面，本发明提出了一种硬质聚氨酯泡沫材料，其是利用所述所述的组合物制备得到的。由此，使得该硬质聚氨酯泡沫材料具有流动性好、导热系数低和尺寸稳定性好等特点。

在本发明的第三个方面，本发明提出了一种制冷设备，该制冷设备包括：绝热材料，所述绝热材料含有上述所述的硬质聚氨酯泡沫材料。由此，可以显著降低制冷设备的能耗。

本发明的附加方面和优点将在下面的描述中部分给出，部分将从下面的描述中变得明显，或通过本发明的实践了解到。

具体实施方式
[0022] 下面详细描述本发明的实施例，下面描述的实施例是示例性的，旨在用于解释本发明，而不能理解为对本发明的限制。

[0023] 在本发明的一个方面，本发明提出了一种组合物。根据本发明的实施例，该组合物包括组合聚醚和聚醚酸酯，根据本发明的具体实施例，组合聚醚可以含有多元醇、发泡剂和复合催化剂。根据本发明的具体示例，发泡剂可以含有LBA，复合催化剂可以含有发泡催化剂Polycat 201（购自Air Products and Chemicals, Inc）。发明人发现，传统工艺中使用PC-5或A-1等作为发泡催化剂，由于PC-5或A-1的胺基易与LBA反应，并且生成的HCL会降低催化剂的活性，从而导致发泡反应速度变慢，同时上述反应过程中会产生一些氯离子，氯离子会破坏泡沫稳定剂中的Si-O-Si键，使得Si-O-Si键发生断裂，从而导致硅油分子量变小，进而导致泡沫热聚系数升高；泡沫强度和尺寸稳定性变差，严重时可能导致泡沫塌泡。而发明人通过大量实验意外发现，采用Polycat 201作为发泡催化剂，由于Polycat 201不与反式-1-氯-3,3,3-三氟丙烯发泡剂反应（简称LBA），从而可以显著提高组合物的储存稳定性，并且采用该组合物所得的泡沫材料具有流动性好、热聚系数低和尺寸稳定性好等特点，从而使所得产品具有更好的节能效果。

[0024] 根据本发明的实施例，在组合物中，多元醇的量为100重量份，LBA的量为10～50重量份，Polycat 201的量为0.1～1.5重量份，异氰酸酯的量为120～155重量份。由此，可以显著提高组合物的稳定性能。

[0025] 根据本发明的实施例，在组合物中，多元醇的量为100重量份，LBA的量为20～40重量份，Polycat 201的量为0.3～0.8重量份，异氰酸酯的量为128～145重量份。由此，可以进一步提高组合物的稳定性能。

[0026] 根据本发明的实施例，异氰酸酯的具体类型并不受特别限制，根据本发明的具体实施例，异氰酸酯为有机多元异氰酸酯，根据本发明的具体示例，有机多元异氰酸酯的异氰酸酯指数可以为0.90～1.10。例如可以为购自烟台华仪的PM2010。发明人发现，异氰酸酯指数过低使得泡沫强度下降，尺寸稳定性差；而异氰酸酯指数过高，泡沫流动性差，泡沫脆，粘接性差，由此采用本发明的异氰酸酯可以显著提高泡沫的流动性，并保持较高的强度。

[0027] 根据本发明的实施例，有机多元异氰酸酯的异氰酸酯指数可以为0.95～1.05。由此，可以进一步提高泡沫的流动性，并保持较高的强度。

[0028] 根据本发明的实施例，多元醇可以为选自聚酯多元醇和聚醚多元醇中的至少一种。根据本发明的具体实施例，聚酯多元醇可以为芳香族聚酯多元醇，根据本发明的具体示例，可以选择粘度为500～3000mPa·s，数均分子量为300～1000，羟值为180～400mgKOH/g的芳香族聚酯多元醇。发明人发现，该类聚酯多元醇由于含有苯环，可以提高泡沫的强度并降低泡沫的热聚系数。

[0029] 根据本发明的实施例，发泡剂可以进一步含有烷烃、环烷烃和氢氟烃中的至少一种。根据本发明的实施例，烷烃可以为戊烷，例如可以为选自环戊烷、异戊烷和正戊烷的至少一种，氢氟烃可以为HFC-245fa、HFC-365mfc和HFC-134a中的至少一种。由此，可以在满足泡沫材料环境友好和能耗低的条件下，显著降低原料成本。

[0030] 根据本发明的实施例，基于100重量份的多元醇，组合聚醚可以进一步包括0.5～7重量份泡沫稳定剂。发明人发现，若泡沫稳定剂含量少时，发泡时的乳化、成核效果不好，泡沫孔粗，并有可能产生塌泡现象。
根据本发明的实施例，泡沫稳定剂的具体类型并不受特别限制，根据本发明的具体实施例，泡沫稳定剂可以为含有Si-C结构的硅类泡沫稳定剂，根据本发明的具体示例，可以为粘度为300～2500mPas的硅类泡沫稳定剂。发明人发现，该类泡沫稳定剂可以显著提高组合物的成核效果。

根据本发明的实施例，复合催化剂可以进一步包括凝胶催化剂和聚合催化剂中的至少一种，根据本发明的具体实施例，复合催化剂可以含有0.1～1.5重量份的Polycat201,0.3～3.5重量份的凝胶催化剂和0.3～1.5重量份的聚合催化剂。发明人发现，发泡型催化剂Polycat201含量少时，导致起泡慢，易漏料，泡孔粗且导热系数高，由此采用该组成的催化剂，可以显著提高泡沫的流动性，并且反应平稳，可以达到快速脱模的要求。

根据本发明的实施例，凝胶催化剂可以为选自二甲基环己胺(PP-82)和二甲基苄胺中的至少一种，聚合催化剂可以为选自甲基铵盐、乙季铵盐和辛季铵盐中的至少一种。由此，可以显著提高发泡反应速率。

根据本发明的实施例，组合多元醇的具体类型并不受特别限制，根据本发明的具体实施例，聚醚多元醇为选自下列聚醚多元醇的至少一种：(1)以邻甲苯二胺作为起始剂制备的聚醚多元醇A，聚醚多元醇A的粘度为6000～12000mPas，数均分子量为420～650，羟值为360～500mgKOH/g，(2)以硬脂酸和甘油为起始剂制备的聚醚多元醇B，硬脂酸和所述甘油的重量比为1:1～3:1，聚醚多元醇B的粘度为5000～10000mPas，数均分子量为420～700，羟值为380～500mgKOH/g，(3)以蔗糖为起始剂制备的聚醚多元醇C，聚醚多元醇C的粘度为8000～12000mPas，数均分子量为600～1000，羟值为360～480mgKOH/g，(4)以甘油为起始剂制备的聚醚多元醇D，聚醚多元醇D的粘度为180～300mPas，数均分子量为800～1300，羟值为150～350mgKOH/g。发明人发现，采用该类聚醚多元醇可以使得该组合物所得泡沫材料对环境友好，并且具有较低的导热系数，从而使得所得产品具有更好的节能效果。

根据本发明的实施例，多元醇中可以含有：3～20重量份的聚醚多元醇；10～55重量份的聚醚多元醇A；10～45重量份的聚醚多元醇B；20～55重量份的聚醚多元醇C；以及2～18重量份的聚醚多元醇D。由此，可以进一步较低的所得泡沫材料的导热系数，从而使得所得产品具有更好的节能效果。

发明人发现，组合物中聚醚多元醇含量过高严重影响泡沫的脱模性，由此采用本发明含量范围的聚醚多元醇有利于提高泡沫材料的导热系数和强度，同时有利于提高泡沫的流动性，从而提高泡沫的脱模性能；聚醚多元醇A含量过高，严重影响泡沫流动性，同时增加成本，由此采用本发明含量范围的聚醚多元醇A有利于降低泡沫的导热系数，提高泡沫的强度，并且由于含有胺基，有利于提高泡沫的脱模性能；聚醚多元醇B含量过高严重影响泡沫材料强度，由此采用本发明含量范围的聚醚多元醇B有利于使泡孔细腻，降低导热系数，同时提高泡沫材料的强度；聚醚多元醇C含量过高严重影响泡沫流动性和材料强度，由此采用本发明含量范围的聚醚多元醇C有利于提高泡沫材料的强度；聚醚多元醇D含量过高严重影响泡沫强度和导热系数，由此采用本发明含量范围的聚醚多元醇D有利于提高泡沫的流动性、强度和导热系数。

在本发明的另一方面，本发明提出了一种硬质聚氨酯泡沫材料。根据本发明的实施例，该硬质聚氨酯泡沫材料是利用上述组合物制备得到的。由此，可以使得该硬质聚氨酯泡沫材料具有流动性好、导热系数低和尺寸稳定性好等特点，具体的，该硬质聚氨酯泡沫
材料的流动指数>0.82cm/g,平均芯密度≤28.0kg/m^3,极差<0.5kg/m^3,导热系数λ(10℃)<17.5mW/m•K,从而可以显著降低产品能耗。

[0038] 在本发明的第三个方面，本发明提出了一种制冷设备。根据本发明的实施例，该制冷设备包括绝热材料，根据本发明的具体实例，该绝热材料可以含有上述的硬质聚氨酯泡沫材料。根据本发明的实施例，制冷设备可以为冰箱或冰柜。由此，使得该制冷设备环境友好且能耗较低，从而易于市场推广。

[0039] 下面参考具体实施例，对本发明进行描述，需要说明的是，这些实施例仅仅是描述性的，而不以任何方式限制本发明。

[0040] 实施例1

[0041] 原料配方：20重量份的聚醚多元醇A,20重量份的聚醚多元醇B,40重量份的聚醚多元醇C,4.2重量份的聚醚多元醇D,10重量份的芳香族聚酯多元醇(粘度为1200mpa.s,数均分子量为550,羟值为280mgKOH/g,官能度2.7),0.3重量份的polyca7201.1.5重量份的凝胶催化剂(PC-8),0.5重量份的甲季铵盐、2.0重量份的硅类泡沫稳定剂(粘度为1011mpa.s)、1.5重量份的水、28重量份的LBA、3重量份的环戊烷、5重量份的HFC-245fa、142.8重量份的异氰酸酯(异氰酸酯指数为1.05)。

[0042] 实施例2

[0043] 原料配方：20重量份的聚醚多元醇A,20重量份的聚醚多元醇B,35重量份的聚醚多元醇C,8.9重量份的聚醚多元醇D,10重量份的芳香族聚酯多元醇(粘度为1200mpa.s,数均分子量为550,羟值为280mgKOH/g,官能度2.7),0.5重量份的polyca7201.1.4重量份的凝胶催化剂(PC-8),0.5重量份的甲季铵盐,2.0重量份的硅类泡沫稳定剂(粘度为1011mpa.s)、1.7重量份的水,35重量份的LBA、137.7重量份的异氰酸酯(异氰酸酯指数为1.02)。

[0044] 实施例3

[0045] 原料配方：20重量份的聚醚多元醇A,20重量份的聚醚多元醇B,40重量份的聚醚多元醇C,8.9重量份的聚醚多元醇D,10重量份的芳香族聚酯多元醇(粘度为1200mpa.s,数均分子量为550,羟值为280mgKOH/g,官能度2.7),0.8重量份的polyca7201.1.2重量份的凝胶催化剂(PC-8),0.5重量份的甲季铵盐,2.0重量份的硅类泡沫稳定剂(粘度为1011mpa.s)、1.6重量份的水,40重量份的LBA、141.4重量份的异氰酸酯(异氰酸酯指数为1.01)。

[0046] 对比例1

[0047] 原料配方：20重量份的聚醚多元醇A,20重量份的聚醚多元醇B,35重量份的聚醚多元醇C,8.9重量份的聚醚多元醇D,10重量份的芳香族聚酯多元醇(粘度为1200mpa.s,数均分子量为550,羟值为280mgKOH/g,官能度2.7),0.5重量份的发泡催化剂(PE-5),1.4重量份的凝胶催化剂(PC-8),0.5重量份的甲季铵盐,2.0重量份的硅类泡沫稳定剂(粘度为1011mpa.s)、1.7重量份的水,35重量份的LBA、137.7重量份的异氰酸酯(异氰酸酯指数为1.02)。

[0048] 对比例2

[0049] 原料配方：20重量份的聚醚多元醇A,20重量份的聚醚多元醇B,35重量份的聚醚多元醇C,8.9重量份的聚醚多元醇D,10重量份的芳香族聚酯多元醇(粘度为1200mpa.s,数均分子量为550,羟值为280mgKOH/g,官能度2.7),0.5重量份的发泡催化剂(A-1),1.4重量份的凝胶催化剂(PC-8),0.5重量份的甲季铵盐,2.0重量份的硅类泡沫稳定剂(粘度为
1011mpa.s，1.7重量份的水，35重量份的LBA，137.7重量份的异氰酸酯（异氰酸酯指数为1.02）。

【0050】评价：
【0051】1、分别对实施例1-3和对比例1-2所得混合原料的导热系数、模塑芯密度、尺寸稳定性和密度性能进行评价。
【0052】2、评价指标和测试方法：
【0053】导热系数的测定：根据ISO12939-01/DIN 52612，采用EKO DEF-074-200导热仪在平均温度10°C（上板2°C，下板18°C）下测定。泡沫制品后24小时，从模塑部分的中心切割泡沫样品，并在切割后立即对这些样品进行测定，单位mW/m·K。
【0054】模塑芯密度的测定：相同模具中发泡的泡沫除外表皮之外的密度，根据ASTM1622-88测定，单位kg/m³。
【0055】尺寸稳定性的测定：根据GB/T8811-2008，采用GDJS-010型恒温恒湿试验箱，分别在低温-30°C下测定24h后泡沫的尺寸变化，在60°C、相对湿度为95%的高温条件下降定24h后泡沫的尺寸变化，单位%。
【0056】测试结果如表1所示：
【0057】表1实施例1-3和对比例1-2所得混合原料性能对比
【0058】

<table>
<thead>
<tr>
<th>项目</th>
<th>实施例1</th>
<th>实施例2</th>
<th>实施例3</th>
<th>对比例1</th>
<th>对比例2</th>
</tr>
</thead>
<tbody>
<tr>
<td>直接进行混合</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>乳白时间（s）</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>凝胶时间（s）</td>
<td>55</td>
<td>54</td>
<td>55</td>
<td>54</td>
<td>55</td>
</tr>
<tr>
<td>不粘时间（s）</td>
<td>68</td>
<td>68</td>
<td>69</td>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td>流动指数（cm/g）</td>
<td>0.83</td>
<td>0.85</td>
<td>0.86</td>
<td>0.78</td>
<td>0.77</td>
</tr>
<tr>
<td>芯密度（Kg/m³）</td>
<td>27.2</td>
<td>26.5</td>
<td>26.0</td>
<td>26.2</td>
<td>26.3</td>
</tr>
<tr>
<td>密度极差（Kg/m³）</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.6</td>
<td>0.5</td>
</tr>
<tr>
<td>导热系数（mw/m）</td>
<td>17.3</td>
<td>17.1</td>
<td>16.9</td>
<td>17.3</td>
<td>17.5</td>
</tr>
<tr>
<td>尺寸稳定性（24h，%）</td>
<td>0.8</td>
<td>0.5</td>
<td>0.4</td>
<td>0.6</td>
<td>0.7</td>
</tr>
<tr>
<td>室温密封放置1个月后</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>乳白时间（s）</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>凝胶时间（s）</td>
<td>55</td>
<td>56</td>
<td>56</td>
<td>66</td>
<td>64</td>
</tr>
<tr>
<td>室温密封放置2个月后</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>不粘时间（s）</td>
<td>69</td>
<td>70</td>
<td>70</td>
<td>97</td>
<td>96</td>
</tr>
<tr>
<td>导热系数（mw/m）</td>
<td>17.4</td>
<td>17.2</td>
<td>17.1</td>
<td>18.0</td>
<td>17.9</td>
</tr>
<tr>
<td>尺寸稳定性（24h，%）</td>
<td>0.8</td>
<td>0.6</td>
<td>0.5</td>
<td>1.3</td>
<td>1.2</td>
</tr>
</tbody>
</table>

【0059】

<table>
<thead>
<tr>
<th>项目</th>
<th>实施例1</th>
<th>实施例2</th>
<th>实施例3</th>
<th>对比例1</th>
<th>对比例2</th>
</tr>
</thead>
<tbody>
<tr>
<td>乳白时间（s）</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>22</td>
<td>19</td>
</tr>
<tr>
<td>凝胶时间（s）</td>
<td>57</td>
<td>57</td>
<td>58</td>
<td>83</td>
<td>82</td>
</tr>
<tr>
<td>不粘时间（s）</td>
<td>71</td>
<td>71</td>
<td>72</td>
<td>120</td>
<td>118</td>
</tr>
<tr>
<td>导热系数（mw/m）</td>
<td>17.4</td>
<td>17.3</td>
<td>17.2</td>
<td>18.8</td>
<td>18.6</td>
</tr>
<tr>
<td>尺寸稳定性（24h，%）</td>
<td>0.9</td>
<td>0.7</td>
<td>0.7</td>
<td>1.6</td>
<td>1.5</td>
</tr>
</tbody>
</table>
[0060] 注：

[0061] 乳白时间：从开始混合到原料开始反应变成乳白色的时间；

[0062] 凝胶时间：从开始混合到放入泡沫中的棒在取出时拉伸出纤维的时间；

[0063] 不粘时间：从开始混合到泡沫表面不粘手的时间；

[0064] 流动指数：在固定的垂直模具内密闭发泡，制成的泡沫高度与重量之比，单位cm/g。

[0065] 由表1可知，对比比例1-2混合原料在室温密封放置2个月后，发泡料的反应速度和尺寸稳定性明显变差，导热系数明显升高，而与对比比例1-2混合原料相比，比例1-3混合原料室温密封放置2个月后，发泡料的反应速度、尺寸稳定性和导热系数基本无变化，表明以polycat201作为发泡催化剂可以有效改善LBA在混合原料中的储存性能。

[0066] 在本说明书的描述中，参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中，对上述术语的示例性描述不必针对的是相同的实施例或示例。而且，描述的具体特征、结构、材料或者特点可以在任何一个或多个实施例或示例中以合适的方式结合。此外，在不相互矛盾的情况下，本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。

[0067] 尽管上面已经示出和描述了本发明的实施例，可以理解的是，上述实施例是示例性的，不能理解为对本发明的限制，本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。