用于制造螺钉的挤压模具的阴模模块组

摘要

本发明涉及一种用于制造螺钉、螺栓和球头销的挤压模具的阴模模块组 (1)，具有两个不同的芯 (5, 14) 和两个不同的增强环 (8, 11)，它们这样相互协调构造，使得它们能拼合成具有一个芯 (5) 和所述增强环 (8, 11) 的第一阴模 (2) 或者替代地拼合成具有另一芯 (14) 和所述增强环中的仅一个增强环 (11) 的第二阴模 (2)。
1. 用于挤压模具的阴模模块组 (1)，具有两个不同的芯 (5, 14) 和两个不同的增强环 (8, 11)，它们这样相互协调地构造，使得由它们能拼合成具有一个芯 (5) 和所述增强环 (8, 11) 的第一阴模 (2) 或者替换地拼合成具有另一芯 (14) 和所述增强环中的仅一个增强环 (11) 的第二阴模 (2)。

2. 如权利要求 1 所述的阴模模块组 (1)，其特征是，第一芯 (5) 具有第一内径 (6) 和第一外径 (7)，第二芯 (14) 具有第二内径 (15) 和第二外径 (16)，其中，第二芯 (14) 的第二外径 (16) 大于第一芯 (5) 的第一外径 (7)，第一增强环 (8) 具有第三内径 (9) 和第三外径 (10)，其中，第一增强环 (8) 的第三内径 (9) 为第二芯 (14) 的第二外径 (16) 相同；并且第二增强环 (11) 具有第四内径 (12) 和第四外径 (13)，其中，第一芯 (5) 的第一外径 (7) 和第一增强环 (8) 的第三内径 (9) 以及第一增强环 (8) 的第三外径 (10) 和第二增强环 (11) 的第四外径 (12) 这样相互协调，使得能拼合成具有第一芯 (5)、第一增强环 (8) 和第二增强环 (11) 的第二阴模 (2)，并且，第二芯 (14) 的第二外径和第二增强环 (11) 的第四外径 (12) 这样相互协调，使得能替换地拼合成具有第二芯 (14) 和第二增强环 (11)、但没有第一增强环 (8) 的第二阴模 (2)。

3. 如权利要求 1 或 2 所述的阴模模块组 (1)，其特征是，第二芯 (14) 的第二内径 (15) 大于第一芯 (5) 的第一内径 (6)。

4. 如前述权利要求至少之一所述的阴模模块组 (1)，其特征是，芯 (5) 的所述外径 (7) 和增强环 (8) 的所述内径 (9) 这样相互协调，使得它们能够为了形成过盈配合而相互连接，和 / 或

一个增强环的外径和另一增强环的内径这样相互协调，使得它们能够为了形成过盈配合而相互连接。

5. 如前述权利要求至少之一所述的阴模模块组 (1)，其特征是，所述增强环 (8, 11) 的厚度随着它们的内径 (9, 12) 和 / 或外径 (10, 13) 而增大。

6. 如前述权利要求至少之一所述的阴模模块组 (1)，其特征是，增强环 (8, 11) 的厚度相对于内径 (9, 12) 的比例处在约 5% 到 25% 之间。

7. 如前述权利要求至少之一所述的阴模模块组 (1)，其特征是，所述芯 (5, 14) 具有多个在轴向上被分开的段部 (38, 39, 40)。

8. 如前述权利要求至少之一所述的阴模模块组 (1)，其特征是，具有三个不同的芯 (5, 14, 18) 和三个不同的增强环 (8, 11, 21)。

9. 如权利要求 8 所述的阴模模块组 (1)，其特征是，所述三个芯 (5, 14, 18) 具有不同的内径 (6, 15) 和不同的外径 (7, 16)，并且，所述三个增强环 (8, 11, 21) 具有不同的内径 (9, 12) 和不同的外径 (10, 13)。

10. 如前述权利要求至少之一所述的阴模模块组 (1)，其特征是，所述阴模 (2) 是机器驱动的压力机的冷流动挤压模具阴模。

11. 如前述权利要求至少之一所述的阴模模块组 (1)，其特征是，所述阴模构造得用于制造螺钉。

12. 用于挤压模具的阴模模块组系列 (20)，具有如前述权利要求至少之一所述的第一阴模模块组 (1)；和如前述权利要求至少之一所述的第二阴模模块组 (1)，其中，第二阴模模块组 (1) 的芯 (28) 和增强环 (29, 30) 不同于第一阴模模块组 (1) 的芯 (5, 14) 和增强
环 (8, 11) 地构造。

13. 如权利要求 12 所述的阴模模块组系列 (20)，其特征是，第二阴模模块组的芯 (28) 和增强环 (29, 30) 具有与第一阴模模块组的芯 (5, 14) 和增强环 (8, 11) 不同的外径 ; 和 / 或

第二阴模模块组的芯 (28) 和增强环 (29, 30) 具有与第一阴模模块组的芯 (5, 14) 和增强环 (8, 11) 不同的内径。

14. 如权利要求 12 或 13 所述的阴模模块组系列 (20)，其特征是，如权利要求 1 到 10 至少之一所述的第三阴模模块组 (1)，其中，第三阴模模块组 (1) 的芯和增强环不同于第一阴模模块组 (1) 的和第二阴模模块组 (1) 的芯 (5, 14) 和增强环 (8, 11) 地构造。
用于制造螺钉的挤压模具的阴模模块组

技术领域
[0001] 本发明涉及一种用于通过成型并且尤其通过冷成型制造构件的挤压模具。挤压模具具有阴模和阳模。所述构件尤其涉及尤其由金属构成的螺钉、螺栓、螺纹管和其它基本旋转对称的构件。
[0002] 首先从原材料，即所谓线材上截下一区段并且该区段输送给压力机的挤压模具。然后通过操作阳模将该区段压入阴模中并在其成型，例如用于产生头部或杆部。由此产生的工件也被称为毛坯并且接着被继续加工。这样，能例如通过转压来制造确定的外轮廓，尤其是螺纹段、螺旋线、滚花和其他成型轮廓。
[0003] 为了能更好地承受在阴模中产生的大的力，阴模被增强。这意味着，阴模具有内部的芯和包围该芯的增强环。

背景技术
[0004] 在现有技术中已经普遍已知用于挤压模具的阴模。各个阴模分别由芯和一个增强环或两个套在一起的增强环组成。通过压力机的在其中装入阴模的相应容纳部规定阴模的外径并且由此规定最外侧的增强环的外径。通过要压制的工件规定内径。然后根据芯的外径和该压力机容纳部的尺寸由模具设计工程师在窄的边界中确定，使用一个增强环或两个增强环。

发明内容
[0006] 本发明的任务是，能快速并且灵活地制造用于制造不同工件的挤压模具的不同阴模。
[0007] 其他优选的根据发明的构造可从从属权利要求中获知。
[0008] 本发明涉及用于挤压模具的阴模模块组，具有两个不同的芯和两个不同的增强环，它们这样相互协调地构造，使得用它们能拼合成具有一个芯和这些增强环的阴模或替代地拼合成具有另一芯和这些增强环中的仅一个增强环的第二阴模。
[0009] 本发明此外还涉及用于挤压模具的阴模模块组系列。该阴模模块组系列具有上面描述的第一上述阴模模块组和一第二上述阴模模块组。在此，第二阴模模块组的芯和增强环相对于第一阴模模块组的芯增强环不同地构造。
[0010] “芯”理解为阴模的径向内部构件，该径向内部构件包围、接触要在阴模中成型的构件并且确定它的几何形状。概念“芯”不表明它在横截面上看在中心具有材料。而在那里（中心）为了容纳要成型的工件而恰恰不存在材料，而是存在空气。概念“芯”与涉及到阴模的构造并且应该相对于其他的模块，即增强环而言，该芯在横截面视图中布置在径向内部。
[0011] 如果该芯在轴向上是分体并且由此在该方向上由不同的部段组合成，则这在本发
明的定义的范围内仅被理解为一个芯。相应情况也适用于增强环。因此，轴向分体的增强环不视为两个增强环。

[0012] 概念增强“环”表明，该环如“芯”一样在横截面视图中在径向内部不具有材料，即是空心的。但概念“环”不表明，它在轴向上只有小的延伸尺度。因此，概念“环”不代表相对概念“管”或“管区段”划界。

[0013] 因此，根据发明提供一种模块组，由该模块组能组合成用于挤压模具的不同阴模。因此，在现有技术中公知的用于适配对应的待成型工作和压力机容纳部的阴模的定制通过模块化积木系统替代。由这些积木能灵活地并且迅速地组合成不同的阴模。

[0014] 所述不同的芯和不同的增强环是阴模模块组的部分并且自身也被称为模块。该模块组这样构造，使得由它能拼合成至少两个不同的阴模。但是该模块组也能这样构造，使得由它能拼合成更大数量的不同阴模并且必要时也可相同的阴模，尤其是三个、四个、五个、六个或更多个阴模。为此，该阴模组能具有多个相同的增强环，尤其是较大的增强环，然后能用它们与不同的芯组合用于由一模具组形成更多不同的阴模。

[0015] 芯被至少一个增强环在径向上包住并且预夹紧。该预夹紧通过芯和增强环之间的、即芯的外径和增强环的内径之间的过盈配合产生。在芯中引入越大的预紧力，该芯在成型过程中就能承受越高的负载。

[0016] 模块在它们的内径和外径方面这样在彼此协调地确定尺寸，使得能由它们组合成不同的阴模。不同的阴模在此尤其理解为具有相对另一阴模具有不同的芯的阴模。这样，第一阴模的具有相对过小内径和相对较小外径的芯能通过第二阴模的具有相对较大内径的芯替换。为了遵守芯的所要求的最小厚度，外径也增大。因此，在第二阴模中取消了与第二阴模的芯具有相同外径的增强环。换句话说，第一阴模的第一芯和紧随它的最内部的增强环被第二阴模的第二芯替代。第一阴模的第二增强环则被等同地使用为第二阴模的第一增强环。该积木系统能相应地也继续用于第三、第四、第五、第六等阴模。

[0017] 该阴模模块组尤其能具有第一芯、第二芯、第一增强环和第二增强环。第一芯具有第一内径和第一外径。第二芯具有第二内径和第二外径。第二芯的第二外径大于第一芯的第一外径。第一增强环具有第三内径和第三外径。第二增强环的第一外径与第二芯的第二外径相同。第二增强环具有第四内径和第四外径。第一芯的第一外径和第一增强环的第三内径以及第一增强环的第三外径和第二增强环的第四内径这样相互协调，使得能拼合成具有第一芯、第一增强环和第二增强环的第一阴模。第二芯的第二外径和第二增强环的第四内径这样相互协调，使得替换芯能拼合成具有第二芯和第二增强环，但没有第一增强环的第二阴模。

[0018] 因而，第二芯的第二内径能大于第一芯的第一内径。但也可能的是，第一芯和第二芯具有相同的内径或第二芯的第二内径小于第一芯的第一内径。因此，这些芯能通过它们的内径和/或外径进行区别。

[0019] 芯的外径和增强环的内径能这样相互协调，使得它们能够为了形成过盈配合而相互连接。替换芯或附加芯，一个增强环的外径和另一增强环的内径能这样相互协调，使得它们能够为了形成过盈配合而相互连接。以这种方式由这些模块组合成适合用于承受在压制过程中在挤压模具中产生的显著的力的阴模。

[0020] 增强环的厚度能随着它们的内径和/或外径增加。增强环的厚度相对于内径的比
例可处在约5%到25%之间，其余处在约10%到20%之间并且优选大约处于15%。通过这种比例确保增强环一方面提供希望的增强作用，但是另一方面达到模块组的所希望的灵活构造。

[0021] 芯可以具有多个在轴向上分开的部段。如已经在上面提及的，这种类型的部段不是单独的芯。而不是在这种情况下一个芯被分成多个部段。这些部段可以具有不同的内径和/或不同的外径（尤其见后述的图5）。因此，在这种情况中，不仅对应的芯在轴向上被分成多个部段，而且基于这些部段的不同外径增强环也以填充环的形式存在。这些填充环补偿芯的不同部段之间的外径差别，使得在径向上向外填充环之后能接合完整的增强环。

[0022] 但是芯的和/或增强环的之后在组装好的阴模中形成一个芯或者一个增强环的部段也可以完全地或部分地具有相同的内径和/或外径。这样除非可以，一个部段用于制造一个杆部区段，紧随的部段用于制造接的杆部区段和一个头部区段，接下来的部段用于制造接着的头部区段（参阅图15）。

[0023] 该阴模模块组能具有至少三个不同的芯和三个不同的增强环。由此已经可以拼合成三个不同的阴模。但是阴模模块组也可以具有四个、五个、六个或更多个不同的芯和四个、五个、六个或更多个不同的增强环。

[0024] 所述至少三个芯可以具有不同的内径和/或不同的外径。所述至少三个增强环能具有不同的内径和不同的外径。通过芯的不同的内径制造不同的工件。不同的外径替换地或附加的确保：保持芯的必需的壁厚。增强环的内径协调于芯的外径。增强环的外径一方面这样选择，使得它们适配于对应的在径向上向外接纳的增强环的内径，另一方面保证增强环的必需的壁厚或厚度。

[0025] 这些阴模可以是机械驱动的压力机的冷流动挤模模具阴模。该压力机可以是单级压力机或者也可以是多级压力机。

[0026] 这些阴模能构造得用于制造螺钉。则它们用于使线材区段成形为毛坯或者用于毛坯的进一步成形。这些成形步骤尤其在通过滚子施加螺钉的螺纹区段之前进行。

[0027] 本发明还涉及一种用于挤压模具的阴模模块组系列。该阴模模块组系列具有上述的第一阴模模块组和上述的第二阴模模块组。在此，第二阴模模块的芯和增强环被构造为不同于第一阴模模块的芯和增强环。因此，这两个（或者多于两个）阴模模块组构成一个共同的阴模模块组系列。

[0028] 在此，第二阴模模块组的芯和增强环能相对于第一阴模模块组的芯和增强环具有不同的外径。替换地或附加地，第二阴模模块组的芯和增强环能相对于第一阴模模块组的芯和增强环具有不同的内径。也可以相应地存在第三、第四、第五、第六或更多的阴模模块组。

[0029] 多个在成系列地组合的不同阴模模块组具有如下目的：由它们能拼合成用于多个不同芯的阴模。为了加工这些模块并且在相互压入，这些模块必须具有确定的最小厚度或者说最小壁厚。通过最小壁厚限定最小直径跃变。如果要将新的芯集成到一模块组中，该芯由于增大的内径和要保持的最小厚度而具有增大的最小外径，该最小外径大于在第一阴模模块组中适配的外径，则不必使外径增大到第一模具组的下一直径跃变，而是仅使它增大到第二阴模模块组的离开不太远的直径跃变。同时要注意，芯的壁厚也具有上限。在上限之上增强不再有效，因为不再能施加所需的预紧力。
包含在该系列中的模块组尤其这样相互协调，使得直径跃变在两个模块组情况下大致在中部相对彼此错开。在三个模块组情况下该错开大致在 1/3 处，在四个模块组情况下大致在 1/4 处，在 5 个模块组情况下大致在 1/5 处等。

用这些新的模块能拼合成阴模的所需要直径和长度。为了在长度上也获得希望的灵活性，能配置相对较大的芯管和增强管，然后从它们截取分别需要的锯段以形成希望的芯和增强环。这些管在此能尤其以已经被调整的形式被安置。

阴模的、从而径向最外部增强环的外径通过压力机中的容器部来确定。在完全拼合阴模后，如果对于容器部所需的几何形状与增强环的几何形状有偏差，则相应地再加工最外部的增强环。

芯的内部几何形状限定要通过压制来加工的工件的外部几何形状，因此能不同地构作。该几何形状例如可以是圆柱形的或圆锥形的孔。该几何形状根据内径的大小尤其通过车、磨或钻制造。

为了简化加工并且能达到对应模块的轴间中间区域，该模块能如上文所述分成多个轴向部段。

芯可以由钢、特别由调质钢和优选由硬金属构成。增强环可以尤其由调质钢或纤维复合材料例如碳纤维复合材料构成。

模块优选构造为闭合的环形元件。因此它们在该方向不被分体，使得它们能很好地承受在成型过程中产生的力。

本发明的有利扩展构型由权利要求、说明书和附图得知。说明书书中提到的特征和多特征组合的优点仅作为例子并且能替代地或累积地生效，不是强制性地由根据本发明的实施方式获得。在不由此改变所附的权利要求的主题的情况下，关于原始申请文件和专利的公开内容而言有：其他的特征由附图、尤其是示出的几何形状和多个构件的相对彼此的尺寸以及它们的相对布置和作用连接中获知。本发明的不同实施方式的特征的或不同权利要求的特征的组合同样可以与权利要求的所选的引用关系不同并且由此被启示。这些也涉及在单独的附图中示出或在附图说明中提到的特征。这些特征也能够与不同的权利要求的特征组合。同样对于本发明的其他实施方式能够取消在权利要求中提及的特征。

在权利要求和说明书中提到的特征在它们的数量方面这样理解：存在刚好该数量或比提到的数量大的数量，而不需要明确地使用副词“至少”。因此，当例如谈及一个芯时，应该这样理解：存在刚好一个芯、两个芯或更多个芯。这些特征可以通过其他特征补充，或者是单一的特征，由它们组成对应的产品。

在权利要求中包含的参考标记不是由权利要求保护的主题的范围的限制。它们仅用于使权利要求更容易被理解的目的。

在权利要求中参考标记仅针对多个示例性实施方式之一给出。由此，不同的芯设有参考标记 5 和 14。但这些芯也可以是其他芯，例如芯 14 和 18 或 18 和 19。相应情况适用于增强环。

实施方式的一定构件部分地在附图中未设参考标记。这例如导致，在一个权利要求中述及三个外径，但在那里仅给出了两个参考标记。这不表示仅存在两个不同的外径，而是第三外径不具有参考标记。
附图说明

[0042] 在下文中参考在附图中示出的优选实施例进一步说明和解释本发明。
[0043] 图1示出按照图9和11中的线I-I穿过由多个模块组合成的阴模的第一示例性实施方式的纵剖面。
[0044] 图2示出按照图10和12中的线II-II穿过由多个模块组合成的阴模的第二示例性实施方式的纵剖面。
[0045] 图3示出穿过阴模模块组的第一示例性实施方式的纵剖面。
[0046] 图4示出穿过具有两个阴模模块组的阴模模块组系列的第一示例性实施方式的纵剖面。
[0047] 图5示出穿过由模块组合成的阴模的另一示例性实施方式的纵剖面。
[0048] 图6示出穿过由模块组合成的阴模的另一示例性实施方式的纵剖面。
[0049] 图7示出按照图9中的线VII-VII穿过阴模的第一实施方式的横截面。
[0050] 图8示出按照图10中的线VIII-VIII穿过阴模的第二实施方式的横截面。
[0051] 图9示出所述阴模的第一实施方式的侧视图。
[0052] 图10示出所述阴模的第二实施方式的侧视图。
[0053] 图11示出所述阴模的第一实施方式的端面侧的视图。
[0054] 图12示出所述阴模的第二实施方式的端面侧的视图。
[0055] 图13示出穿过由多个模块组合成的阴模的另一示例性实施方式的纵剖面。
[0056] 图14示出穿过由多个模块组合成的阴模的另一示例性实施方式的纵剖面。
[0057] 图15示出穿过由模块组合成的阴模的另一示例性实施方式的纵剖面的立体视图。

具体实施方式

[0058] 图1,2和7,8和9,10和11,12共同示出了用于挤压模具的新的阴模模块组1的第一示例性实施方式。该阴模模块组1具有多个模块。这些模块中的一部为了形成第一阴模2而拼合并且在图1,7,9和11中示出。在图2,8,10和12中示出了另一阴模2,该阴模能由这些模块中的一部分替代地拼合。
[0059] 如在这些图中可看出,这些模块是在径向方向是相互套在一起的环。这些环在内部具有圆形的横截面。该横截面在纵向适宜地继续延伸,但也可以构造为锥形或其他形状。相应情况也施用于外部几何形状。但外部几何形状也可以具有非圆的构型并且尤其适配于压力机的容纳部。
[0060] 阴模关于纵轴线3对称地具有孔4,该孔限定要借助该阴模2通过冷变形制造的工件的几何形状。
[0061] 在图1,7,9和11中示出的第一阴模2在径向内部具有第一芯5,第一芯具有第一内径6和第一外径7。在第一芯5的第一外径7上借助过盈配合布置具有第三内径9和第三外径10的第一增强环8。在第一增强环8上又布置具有第四内径12和第四外径13的第二增强环11。
[0062] 在图2,8,10和12中由阴模模块组1组合成另一阴模2。该阴模2具有替代第一芯5的第二芯14,该第二芯具有第二内径15和第二外径16。第二芯14的第二内径15在
此比第一芯 5 的第一内径 6 大。第二芯 14 的第二外径 16 比第一芯 5 的第一外径 7 大。参考图 1 和图 2 之间用于说明所画的虚线 17 能很好地看出，第二芯 14 的第二外径 16 与第一增强环 8 的第二外径 10 相当。因此，相应地取消了第一增强环 8。取而代之，在第二芯 14 上借助过盈配合布置有第二增强环 11。

[0063] 因此，以这种方式能由阴模模块组 1 的不同模块灵活并且快速地组合成用于制造不同工件的不同阴模 2。

[0064] 在图 1, 2, 7, 8, 11 和 12 中，此外还能看到，这些模块具有不同的厚度。厚度在此理解为对应环的壁厚，即形成模块的在纵轴线 3 的一侧在内径和外径之间的距离，该纵轴线同时是对称轴线。这些厚度在此这样选择，使得增强环 8, 11 的厚度随着它们的内径 9, 12 和它们的外径 10, 13 而增加。这在当前情况下意味着，第二增强环 11 的厚度大于第一增强环 8 的厚度。

[0065] 在图 3 中示出另一示性阴模模块组 1。在图 3 中最上面示出的阴模 2 的情况下，装有最小的芯 5 和所有的增强环。在下面示出的阴模 2 中在径向外侧，这些增强环中的一部分没有示出。这些增强环在所有的的图 3 中示出的阴模 2 中可以存在或者不存在。

[0066] 图 3 说明，阴模模块组 1 也可以具有更大数量的不同芯和增强环。在当前情况下，除了第一芯 5 和第二芯 14 外还存在另外的芯 18 和 19。除了增强环 8 和 11 外另外的增强环 21, 22, 23, 24, 25, 26 和 27 也是阴模模块组 1 的部分。

[0067] 第一阴模 2 具有芯 5 以及增强环 8, 11 和 21。第二阴模 2 具有芯 14 和增强环 11, 21 和 22。增强环 8 被取消。第三阴模 2 具有芯 18 和增强环 21, 22 和 23。增强环 11 被取消。第四阴模 2 具有芯 19 和增强环 22, 23 和 24。增强环 21 被取消。

[0068] 在图 4 中示出穿过具有两个阴模模块组 2 的新的阴模模块组系列 20 的第一示性实施方式的纵剖面。由于示出性或者说可识别性的原因，在此仅示出对称轴线或者说纵轴线 3 左侧的半侧。阴模模块组系列 20 具有两个不同的阴模模块组 1。在图 4 的上面区域中示出的阴模模块组 1 与在图 1, 2, 3, 7 和 8 中示出的阴模模块组 1 一致，所以取消了与此相关的进一步说明。但是显然，在阴模模块组 1 的范围内关于不同阴模 2 的组合而言的变化是可能的。

[0069] 参考图 17 可以看出，在图 4 的下方区域中示出的第二阴模模块组 2 具有芯 28。该芯具有与芯 4 一致的内径，但与芯 4 不同的（较小的）外径。然后径向外向纵轴线连接增强环 29–37。这些增强环 29–37 具有与增强环 8, 11 和 21–27 不同的内径和外径。通过直径偏差获得的网格尺寸相对于第一阴模模块组 1 的网格尺寸或角度大致错开一半。换句话说，第二模块组系列 20 的增强环的外径大致处在第一阴模模块组系列 20 的对应增强环的内径和外径之间的中部。

[0070] 图 5 示出穿过由模块组合的阴模 2 的另一示性实施方式的纵剖面。在这种情况中，阴模 2 具有轴向上，即在纵轴线 3 的方向上分体构造的芯 5。芯 5 具有三个部段 38, 39 和 40。在这种情况中两个部段 39 和 40 具有一致的内径，该内径与另一部段 38 的内径不同。全部的三个部段 38, 39, 40 具有不同的外径。为了补偿这些不同的外径，设有填充环 41, 42。填充环 41, 42 构造为增强环。它们在径向上部分地与芯 5 重合。然后径向外向连接有另外的增强环 43, 44, 45。

[0071] 在图 6 中示出穿过由模块组合的阴模 2 的另一示性实施方式的纵剖面。在这
种情况下，增强环 46, 47, 48 和 49 分别在轴向分体。它们相应地分别具有部段 51 和 52。这些部段 51, 52 在径向上不与芯 5 重合。

[0072] 图 13 和 14 共同示出用于挤压模具的新的阴模模块组 1 的另一示例性实施方式。在此，该图示相应于图 1 和 2 的图示，从而就此而言可参考上面给出的解释。

[0073] 在示出的例子中，在图 13 中示出的第二阴模 2 具有第二芯 14，该芯具有两个不同的成型区段。在第一成型区段的区域中，该芯 14 具有第二内径 15。但是该内径不在芯 14 的整个纵向长度上延伸。在第二成型区段中，芯 14 具有较大的内径 53。因而孔 4 构造成阶梯状。

[0074] 通过较小的内径 15 形成的成型区域在此尤其用于成型螺钉的杆部。通过较大的内径 53 形成的成型区域在此尤其用于构造螺钉的头部。

[0075] 在此示出的阴模 2 除了在内部阶梯状构造的芯 14 外，还具有增强环 11, 21 和 22。

[0076] 在图 14 中示出的阴模 2 具有在此同样在内部阶梯状构造的芯 5 以及增强环 8, 11, 21 和 22。在此限定第一成型区域的内径 6 在此与内径 15 一致。而限定第二成型区域的内径 54 大于内径 53。由此能用该芯 5 制造具有与图 13 相比具有一致的杆部，但具有较大外径的头部的螺钉。

[0077] 在图 15 中示出穿过由模块组合成的阴模 2 的另一示例性实施方式的纵剖面的立体视图。在此芯 5 在轴向上分体并且具有部段 38, 39 和 40。这些部段 38, 39 和 40 在此具有不同的内径 6 和 53。但是它们也可以具有一致的内径。部段 39 在此构造为过渡件，在该过渡件中实现直径跃变。

[0078] 这些部段 38, 39 和 40 在此不仅具有不同的内径，而且也具有不同的外径。但是它们也可以具有一致的外径。这些外径这样选择，使得它们满足阴模模块组 1 的构成规则。这还意味着，使用轴向分体的增强环。因此，部段 38, 39, 40 在模块化系统内与模块化系统的不同增强环组合。在此，在示出的例子中，增强环 8 具有部段 55, 56, 57。然后径向向外衔接有增强环 11 和 21。

[0079] 由于，这些不同的芯和增强环不仅能以不同的组合来构造不同的阴模 2，而且也能共同地在由部段组成的所有阴模 2 中使用。以这种方式能在阴模模块组 1 的模块的基础上灵活地制成多个不同的挤压模具。

[0080] 参考标记列表

[0081] 1 阴模模块组

[0082] 2 阴模

[0083] 3 绳轴线

[0084] 4 孔

[0085] 5 第一芯

[0086] 6 第一内径

[0087] 7 第一外径

[0088] 8 第一增强环

[0089] 9 第三内径

[0090] 10 第三外径

[0091] 11 第二增强环
[0092] 12 第四内径
[0093] 13 第四外径
[0094] 14 第二芯
[0095] 15 第二内径
[0096] 16 第二外径
[0097] 17 虚线
[0098] 18 芯
[0099] 19 芯
[0100] 20 阴模模块组系列
[0101] 21 增强环
[0102] 22 增强环
[0103] 23 增强环
[0104] 24 增强环
[0105] 25 增强环
[0106] 26 增强环
[0107] 27 增强环
[0108] 28 芯
[0109] 29 增强环
[0110] 30 增强环
[0111] 31 增强环
[0112] 32 增强环
[0113] 33 增强环
[0114] 34 增强环
[0115] 35 增强环
[0116] 36 增强环
[0117] 37 增强环
[0118] 38 部段
[0119] 39 部段
[0120] 40 部段
[0121] 41 填充环
[0122] 42 填充环
[0123] 43 增强环
[0124] 44 增强环
[0125] 45 增强环
[0126] 46 增强环
[0127] 47 增强环
[0128] 48 增强环
[0129] 49 增强环
[0130] 50 增强环
[0131] 51 部段
[0132] 52 部段
[0133] 53 内径
[0134] 54 内径
[0135] 55 部段
[0136] 56 部段
[0137] 57 部段
图 3
图4
图5
图 6
图15