A building rooftop mounting structure including a sacrificial material that allows freedom of movement between itself and the rooftop as well as between itself and the mounting structure.
WEAR REDUCTION SYSTEM
FOR ROOFTOP MOUNTS

[0001] This application claims the benefit of United States Provisional Patent Application Nos. US 61/632,412 and US 61/699,546, filed on September 4, 2012, and September 11, 2012, respectively, the disclosures of which are incorporated herein by this reference.

BACKGROUND

[0002] Many embodiments of the invention relate to mounting structures for solar energy panels on building rooftops. Such solar panels may include photovoltaic panels, solar thermal panels among other solar capture devices.

[0003] As rooftop solar energy systems become more popular for building owners and occupants, many wish to install them on their roof. In order to reduce or eliminate roof penetrations, which increase the risk of roof leaks, a ballasted system is often used to hold the solar energy panel array on the building rooftop. The weight of the ballast and system itself hold the solar energy panel array in place against wind load, small building movements, etc.

Ballasted systems typically employ a metal tray placed directly on the roof membrane, with concrete bricks placed in the tray as ballast. Since the ballast tray often rests directly on the roof membrane, the ballast tray and other mounting components rub against the roof membrane during small building vibrations, small vibrations of the panels from wind, and differing thermal expansion rates between the building and solar energy mounting system.

Over time, this friction can wear a hole through the roof membrane and cause leakage into the building. To counter this problem, many roofing manufacturers require a “slip sheet”, or sacrificial material be placed between the roof membrane and any roof mounting component not mechanically secured, such as a ballast tray for a photovoltaic system.

BRIEF SUMMARY OF THE INVENTION

[0004] Many embodiments are related to an integrated sacrificial material that is mechanically connected to the rooftop mounting structure while allowing some freedom of movement between both the building rooftop and the sacrificial material, and the sacrificial
material and the mounting structure. The sacrificial material may be connected to the
mounting structure such that when the mounting structure is picked up and moved, as in from
a loading pallet to the installation site, the sacrificial material stays connected to the mounting
structure. When the mounting structure is placed on the roof membrane, no separate
installation of the sacrificial material is required for many embodiments. The sacrificial
material may be pre-installed, i.e. at the factory, on the mounting structure.

[0005] The sacrificial material allows freedom of movement between itself and the
mounting structure. The sacrificial material can be attached to the mounting structure in such
a way that the mounting structure can move a limited distance in all spatial directions without
moving the sacrificial material, thus significantly reducing wear between the roof membrane
and the mounting structure, as any movement from the building is not directly transmitted to
the mounting structure, or vice versa.

[0006] Many embodiments are related to a mounting structure for attaching a solar panel
module to a mounting surface. The mounting structure includes a mounting base for
coupling the solar panel to the mounting surface. The mounting base includes at least one
aperture. A sacrificial material sheet is included for coupling to the mounting base and
between the mounting surface. The sacrificial material sheet can have at least one mounting
pin with a fastening end. At least one flange is included to mate with the fastening end of the
at least one mounting pin. The at least one mounting pin is adapted to protrude through the at
least one aperture such that the mounting base is free to slide over the sacrificial material
sheet about the at least one mounting pin, but as limited by the at least one aperture and the at
least one flange.

[0007] Many embodiments are related to a method for mounting the solar energy panel
mounting structure, of the various embodiments described above, to a mounting surface. The
steps of the method include providing a mounting base, coupling a sacrificial material to the
mounting base, fastening at least one flange to at least one mounting pin that protrudes from
the sacrificial material, coupling the solar panel to the mounting base and then mounting the
solar panel to the mounting surface. As provided further herein, the mounting base has at
least one aperture and at least one mounting pin is adapted to protrude through the at least
one aperture such that the mounting base is free to slide over the sacrificial material sheet
about the at least one mounting pin as limited by the at least one aperture and the at least one
flange.
[0008] In many embodiments, the method for mounting a solar energy panel to a mounting surface also includes coupling a solar panel to the mounting base and, mounting the solar panel to the mounting surface.

[0009] In many embodiments, the mounting base comprises a tray. In various embodiments, the at least one flange cannot fit through the aperture in any orientation. In alternative embodiments the flange can only fit through the aperture in specific predetermined orientations. Further, in various embodiments, the at least one flange has a cross-sectional area larger than the cross-sectional area of the at least one aperture.

[0010] In many embodiments, the fastening end of the at least one mounting pin protrudes a predetermined distance vertically from the sacrificial material sheet such that mounting base can vertically travel the predetermined distance when the at least one flange is installed on the at least one mounting pin.

[0011] In various embodiments, the sacrificial sheet material increases in thickness in a conical shape about the at least one mounting pin. Further, the sacrificial sheet material has two faces and one or both the faces can be either smooth or textured.

[0012] In many embodiments, the mounting base can have at least one mounting tab extending outward and the at least aperture can be located in the at least one mounting base. Additionally, in many embodiments, the end trays of the mounting base can have a cross-sectional profile of any one of, a hollow square, T-shape, U-shape, L-shape and I-shape.

[0013] For a further understanding of the nature and advantages of the invention, reference should be made to the following description taken in conjunction with the accompanying figures. It is to be expressly understood, however, that each of the figures is provided for the purpose of illustration and description only and is not intended as a definition of the limits of the embodiments of the present invention.
BRIEF DESCRIPTION OF THE DRAWINGS

[0014] FIG. 1 is a profile view of a ballast mounting structure with interiorly fastened connecting pins to the sacrificial material representing one example of the present invention.

[0015] FIG. 2 is an enlarged view of a section of FIG. 1 representing the interiorly fastened connecting pins.

[0016] FIG. 3 is a profile view of FIG. 1 representing the ability of the ballast mounting structure to move a limited distance in the X, Y, and Z planes without moving the sacrificial material.

[0017] FIG. 4 is an end view of a ballast mounting structure representing one example of the present invention.

[0018] FIG. 5 is a profile view of a ballast mounting structure with exteriorly fastened connecting rods to the sacrificial material representing one example of the present invention.

[0019] FIG. 6 is a profile view of a ballast mounting structure with exteriorly fastened connecting pins to the sacrificial material representing one example of the present invention.

[0020] FIG. 7 is a profile view of a flange mounting structure fastened with connecting pins to the sacrificial material representing one example of the present invention.

[0021] FIG. 8 is a profile view of a box mounting structure with exteriorly fastened connecting pins to the sacrificial material representing one example of the present invention.

[0022] FIG. 9 is a profile view of a ballast mounting structure installed on an exemplary solar photovoltaic module assembly.

[0023] FIG. 10 is a profile view of a flange mounting structure installed on an exemplary solar photovoltaic module assembly.

[0024] FIG. 11 is a profile view of a ballast mounting structure connected with the sacrificial material.

[0025] FIG. 12 is a perspective view showing a portion of the ballast mounting structure of FIG 11.

DETAILED DESCRIPTION OF SELECTED EMBODIMENTS

[0026] FIG. 1 is a view of a ballast mounting structure 100 connected with the sacrificial material 101. The sacrificial material 101 may be smooth or textured on one or both faces in
order to achieve proper coefficients of friction between the roof membrane and sacrificial material 101, and/or between the sacrificial material 101 and ballast mounting structure 100. A cut-out 107 is included in the sacrificial material 101 to allow for drainage of liquids, such as water, to flow under the ballast mounting structure 100. In other embodiments, there may be one or more cut-outs 107. A connecting flange 106 allows for the ballast mounting structure 100 to connect with other structures, such as a solar panel (e.g. solar photovoltaic or solar water thermal panel), solar panel module mounting structure, or other structures.

[0027] FIG. 2 is an enlarged view of a section of FIG. 1. The sacrificial material 101 includes at least one mounting pin 103 that protrudes vertically through ballast mounting structure 100 through a respective hole 102. Attached to the top of mounting pin 103 is a flange surface 104, such as a washer. This flange surface 104 may be mechanically attached to mounting pin 103 by a nut 108, or similar method such as a weld, cotter pin, slip ring, or similar securing device. The flange surface 104 is large enough in area, or shaped properly such that it will not fit through hole 102 in any orientation or only in specific predetermined orientations. The distance between mounting pin 103 and the edge of hole 102 in the ballast mounting structure 100 is large enough such that the sacrificial material 101 and ballast mounting structure 100 can move independently of one-another some distance, typically 0-4 inches in the X and Y direction. The flange surface 104 is some distance Z above ballast mounting structure 100 such that ballast mounting structure 100 can be lifted vertically a distance Z without lifting the sacrificial material 101. Tab 105 protrudes vertically out of ballast mounting structure 100 a sufficient distance to prevent any obstructions from interfering with the movement of the mounting pin 103 and flange surface 104 structure. For example, concrete bricks may be placed as ballast in the ballast mounting structure 100, whereby the tab 105 would prevent the concrete brick from interfering with the movement of mounting pin 103 and flange surface 104.

[0028] FIG. 3 is a view of FIG. 1 showing the limited X and Y movement between ballast mounting structure 100 and sacrificial material 101. Sacrificial material 101 remains stationary on the rooftop membrane while the ballast mounting structure 101 freely moves some distance X and Y.

[0029] FIG. 4 is a sectional end view of FIG. 1. Ballast mounting structure 100 rests on sacrificial material 101. Mounting pin 103 is mechanically affixed to sacrificial material 101 and protrudes through hole 102 in the ballast mounting structure 100. Surface flange 104 is affixed to mounting pin 103, with surface flange 104 spaced some distance X away from ballast mounting structure 100 such that some limited movement is provided. In some
embodiments, sacrificial material 101 may increase in thickness in a conical shape around mounting pin 103, as shown by the dashed lines. This conical shape may help re-center the ballast mounting structure on the sacrificial material through the natural force of gravity.

[0030] FIG. 5 depicts an alternative embodiment where the sacrificial material 101 is connected to the exterior of the ballast mounting structure 100. One example of this attachment is using connecting rods 108, or chains, ropes, plastic tubes, springs, or similar devices from the ballast mounting structure to the sacrificial material. In another example, the sacrificial material has molded legs protruding upwards and connecting to the ballast mounting structure. Any number of connecting devices, or a combination of types of connecting devices, can be used.

[0031] FIG. 6 depicts a second alternative exterior connection method between the sacrificial material 101 and the ballast mounting structure 100. In this example, the mounting pins 103 protrude from the sacrificial material through an externally facing tab 109 attached to the ballast mounting structure 100. This externally facing tab has holes through which the mounting pins 103 protrude, and each mounting pin has a surface flange 104 affixed to the top of the mounting pin 103. Each surface flange 104 is shaped properly (e.g., circular) or large enough in size such that it will not pass through a respective hole. Additionally, the holes are large enough such that the ballast mounting structure 100 and sacrificial material 101 can move independently of one another some limited distance in the X, Y, and Z directions. The holes on the externally facing tab 109 are spaced far enough from the side of the ballast mounting structure 100 such that the surface flange 104 will not collide with the ballast mounting structure 100 at any point when the ballast mounting structure 100 and sacrificial material 101 move independently of one another. Any number of externally facing tabs 109 and associated mounting pins 103 and surface flanges 104 can be used.

[0032] FIG. 7 depicts a flange mounting structure 200 with the sacrificial material 101 connected using mounting pin 103 and surface flange 104 assemblies. This embodiment may be used to provide additional support for a roof structure where no ballast is needed, but some protection for the roof membrane is still required. The vertical flange 201 allows for mounting of equipment and support structures, such as those used in rooftop solar installations, in a variety of fashions, such as welds, bolts, clips, glues, magnets, screws, and similar connecting methods. Similar to the ballast mounting structure 100 described earlier and seen in FIG. 1, the flange mounting structure 200 is connected to the sacrificial material 101 such that there is free and independent movement from one another some limited distance. The sacrificial material 101 may be attached to the flange mounting structure 200
in ways similarly described above for FIG. 5, with the same key result being the ability for
the flange mounting structure 200 and sacrificial material 101 to freely move independently
of one another a limited distance in all spatial directions. FIG. 6 depicts a “T” shape flange
mounting structure as one example, where other examples include an “L” shape flange, “U”
Additional, different shaped flanges and beams can also be used.

[0033] FIG. 8 depicts a box mounting structure 300 with the sacrificial material 101
connected using mounting pin 103 and surface flange 104 assemblies. Similar to the flange
mounting structure 200 in FIG. 6, the box mounting structure 300 in FIG. 7 may be used to
provide additional support for a roof structure where no ballast is needed, but where some
protection for the roof membrane is still required. The box mounting structure 300 may have
end caps, flanges, hooks, rings, pins, or similar structures affixed via welds, screws, glue, or
similar as a mount to attach equipment, such as photovoltaic modules. The mounting pins
103 may protrude through the bottom wall of the box mounting structure 300, or may
protrude through both bottom and top walls of the box mounting structure 300 as shown in
FIG. 7. In other embodiments, the sacrificial material 101 may be attached to the box
mounting structure 300 using any of the methods described for FIG. 5.

[0034] FIG. 9 depicts an example use of the ballast mounting structure 100 whereby an
integrated solar energy module and mounting frame 400 is connected to the ballast mounting
structure 100. In this example usage of the present invention, the ballast mounting structure
100 is connected to the sacrificial material 101 using internal mounting pin 103 and surface
flange 104 assemblies. The sacrificial material extends beyond the dimensions of the ballast
mounting structure 100 and width of the mounting frame 400 in order to protect the roof
membrane in all configurations and orientations of the sacrificial material 101.

[0035] FIG. 10 depicts an example use of the flange mounting structure 200 whereby a
photovoltaic module 500 and supporting mounting frames 501 connect to the flange
mounting structure 200. In this example, the flange mounting structure 200 is connected to
the sacrificial material 101 using mounting pin 103 and surface flange 104 assemblies. Other
pieces of equipment could use the flange mounting structure 200, such as electrical conduit,
plumbing, weather devices, fiber optic cable, and other similar components often found on a
roof.

[0036] FIG. 11 is a view of an alternative embodiment of a ballast mounting structure 100
connected with the sacrificial material 101. The ballast mounting structure 100 includes two
end trays 602 that act as the connection tabs for receiving a correspondingly configured mounting part of a solar panel (not shown). The flange surface 104 may be connected to the sacrificial material 101 using a rivet 601, or similar connecting device such as a screw, glue, pin, staple, or similar securing device. The flange surface 104 extends vertically on either side of rivet 601 such that flange surface 104 does not interfere with end tray 602. The flange surface 104 can be configured to only pass through hole 102 in certain orientations. The distance between the edges of the hole 102 and flange surface 104 is large enough to allow for end tray 602 to move some limited distance in the X, Y, and Z directions.

[0037] FIG. 12 is a perspective view of a portion of the ballast mounting structure 100. As shown, the end trays 602 rest on the sacrificial material 101. The flange surface 104 is mechanically affixed to sacrificial material 101 with rivet 601 in this particular illustration. The lower horizontal surface where flange surface 104 is secured at rivet 601 is dimensioned to provide proper support for rivet 601. The hole 102 is wide enough to allow for the end tray 602 to move some limited distance in the X direction. Further, the flange surface 104 has a vertical distance above the lower surface of end tray 602 to allow for end tray 602 to move some limited distance in the positive Y direction.

[0038] In the claims appended hereto, the term “a” or “an” is intended to mean “one or more.” While the exemplary embodiments have been described in some detail for clarity of understanding and by way of example, a number of modifications, changes, and adaptations may be implemented and/or will be obvious to those as skilled in the art. Hence, the scope of the present invention is limited solely by the claims as follows.
WHAT IS CLAIMED IS:

1. A mounting structure for attaching a solar energy panel to a mounting surface, said mounting structure comprising:
 a mounting base for coupling a solar panel to a mounting surface, the mounting base having at least one aperture;
 a sacrificial material sheet for coupling to the mounting base and having at least one mounting pin, the at least one mounting pin having a flanged end; and
 wherein the at least one mounting pin is adapted to protrude through the at least one aperture such that the mounting base is free to move about the sacrificial material sheet about the at least one mounting pin as limited by the at least one aperture and the at least one flange.

2. The mounting structure of claim 1 wherein the flanged end comprises at least one flange that is attachable to the at least one mounting pin.

3. The mounting structure of claim 1 wherein the mounting base comprises a tray.

4. The mounting structure of claim 1 wherein the at least one flange cannot fit through the aperture in any orientation.

5. The mounting structure of claim 1 wherein the at least one flange can only fit through the aperture in specific predetermined orientations.

6. The mounting structure of claim 1 wherein the at least one flange has a cross-sectional area larger than a cross-sectional area of the at least one aperture.

7. The mounting structure of claim 1 wherein the at least one mounting pin protrudes a predetermined distance vertically from the sacrificial material sheet such that the mounting base can vertically travel the predetermined distance.

8. The mounting structure of claim 1 wherein the sacrificial sheet material increases in thickness in a conical shape about the at least one mounting pin.
9. The mounting structure of claim 1 wherein the sacrificial sheet material has a first face and a second face, the second face being opposite the first face and wherein the sacrificial sheet material is smooth or textured on one or both the first and second face.

10. The mounting structure of claim 1, the mounting base having at least one mounting tab extending outward from the mounting base and wherein the at least one aperture is located in the at least one mounting tab of the mounting base.

11. The mounting structure of claim 1, wherein the mounting base has a cross-sectional profile of one of, a hollow square, T-shaped, U-shaped, L-shaped, and I-shape.

12. A method for mounting a solar energy panel mounting structure to a mounting surface the steps comprising:
 providing a mounting base for coupling a solar panel to a mounting surface, the mounting base having at least one aperture; and
 coupling a sacrificial material sheet to the mounting base, the sacrificial sheet having at least one mounting pin, the at least one mounting pin having a flanged end,
 wherein the at least one mounting pin is adapted to protrude through the at least one aperture such that the mounting base is free to move about the sacrificial material sheet about the at least one mounting pin as limited by the at least one aperture and the at least one flange.

13. The method for mounting a solar energy panel to a mounting surface of claim 10 wherein the flanged end comprises at least one flange that is attachable to the at least one mounting pin.

14. The method for mounting a solar energy panel to a mounting surface of claim 10 the steps further comprising coupling a solar panel to the mounting base and, mounting the solar panel to the mounting surface.

15. The method for mounting a solar energy panel to a mounting surface of claim 10 wherein the mounting base has a first end and a second end opposite the first end
and further comprises end trays on both the first and second end, wherein one of the at least one aperture is located in each end tray.

16. The method for mounting a solar energy panel to a mounting surface of claim 10 wherein the at least one flange cannot fit through the aperture in any orientation.

17. The method for mounting a solar energy panel to a mounting surface of claim 10 wherein the at least one flange can only fit through the aperture in specific predetermined orientations.

18. The method for mounting a solar energy panel to a mounting surface of claim 10 wherein the at least one flange has a cross-sectional area larger than the cross-sectional area of the at least one aperture.

19. The method for mounting a solar energy panel to a mounting surface of claim 10 wherein the fastening end of the at least one mounting pin protrudes a predetermined distance vertically from the sacrificial material sheet such that mounting base can travel vertically the predetermined distance when the at least one flange is installed on the at least one mounting pin.

20. The method for mounting a solar energy panel to a mounting surface of claim 10 wherein the mounting pin protrudes a predetermined distance vertically from the sacrificial material sheet such that mounting base can travel vertically the predetermined distance when the at least one flange is installed on the at least one mounting pin.

21. The method for mounting a solar energy panel to a mounting surface of claim 10 wherein the sacrificial sheet material increases in thickness in a conical shape around the at least one mounting pin.

22. The method for mounting a solar energy panel to a mounting surface of claim 10 wherein the mounting base have a cross-sectional profile of one of, a hollow square, T-shaped, U-shaped, L-shaped, and I-shape.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - H02S 20/23, 20/24, 20/25 (2014.01)
USPC - 136/251, 243, 244

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC(8): H02S 20/23, 20/24, 20/25 (2014.01)
USPC: 130/251, 243, 244

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 6,242,685 B1 (MIZUKAMI, S. et al.) June 05, 2001; Figures 1-6; column 1, lines 50-59, column 2, lines 57-59, column 3, line 17-23, lines 39-40, column 4, lines 23-28, 34-44, 87-60</td>
<td>1,22</td>
</tr>
<tr>
<td>A</td>
<td>US 7,574,842 B2 (RUSSELL, M.) August 18, 2009; entire patent</td>
<td>1,22</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

* Special categories of cited documents:
"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier application or patent but published on or after the international filing date
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"&" document member of the same patent family

Date of the actual completion of the international search
22 January 2014 (22.01.2014)

Date of mailing of the international search report
07 FEB 2014

Name and mailing address of the ISA/US
Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450
Facsimile No. 571-272-3201

Authorized officer:
Shane Thomas
PCT Helpdesk: 571-272-4300
PCT DSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (July 2009)