2007/134648 A1 I} UAT 0 00 0 D000 O 0O

WO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
29 November 2007 (29.11.2007)

LD |y

(10) International Publication Number

WO 2007/134648 Al

(51) International Patent Classification:
GOGF 11/34 (2006.01) GOGF 9/30 (2006.01)

(21) International Application Number:
PCT/EP2006/069992

(22) International Filing Date:
20 December 2006 (20.12.2006)

English
English

(25) Filing Language:
(26) Publication Language:

(30) Priority Data:
11/437,220 19 May 2006 (19.05.2006) US

(71) Applicant (for all designated States except US): INTER-
NATIONAL BUSINESS MACHINES CORPORA-
TION [US/US]; New Orchard Road, Armonk, New York
10504 (US).

(71) Applicant (for MG only): IBM UNITED KINGDOM
LIMITED [GB/GB]; PO Box 41, Portsmouth Hampshire
PO6 3AU (GB).

(72) Inventor; and

(75) Inventor/Applicant (for US only):
[US/US]; 1615 Tiffany Way, San Jose,
95125-5021 (US).

(74) Agent: WILLIAMS, Julian, David; IBM United King-
dom Limited, Intellectual Property Law, Hursley Park,
Winchester Hampshire SO21 2IN (GB).

GREINER, Dan
California

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS,
JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS,
LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY,
MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS,
RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report

Fortwo-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: EXTRACT CPU TIME FACILITY

ECTG: OPERATION

ECTG D:{B: 1102(B, iRy [SSF)
e R gF’DE B, | D, | B |0,
A SR 5602
616 | 600 ; 1st OPERAND (IN STORAGE)
::‘ |\§ ________ ! 612
! 2nd OPERAND (IN STORAGE)
e e N g 618
3rd OPERAND {IN STORAGE)

DIFFERENCE BETWEEN OPERAND

GRO AND CPU TIMER

| s-608

/

614
GR1 [CONTENTS OF 2nd OPERANDf
5620

GRR,| CONTENTS OF 3rd OPERAND

)

i

(57) Abstract: An efficient facility for determining resource usage, such as a processor time used by tasks. The determination is
performed on behalf of user applications that do not require a call to operating system services. The facility includes an instruction
that determines elapsed time and reports it to the user as a single unit of operation.

10

15

20

25

WO 2007/134648 PCT/EP2006/069992

EXTRACT CPU TIME FACILITY

Technical Field

This invention relates, in general, to processing within a processing environment, and in

particular, to a facility to efficiently determine resource usage of tasks.

Background of the Invention

The determination of resource usage is critical for many aspects of processing, including
code refinement, billing, etc. One resource for which utilization is determined is processor
time. In the z/Architecture, offered by International Business Machines Corporation, a timer
is provided that measures elapsed central processing unit (CPU) time and causes an

interruption when a specified amount of time has elapsed.

This timer is set by a Set CPU Timer (SPT) control instruction, and the contents of the timer
are inspected via a Store CPU Time (STPT) control instruction. Both of these instructions
are privileged instructions to ensure the accuracy of the time, and as such are not usable by

problem-state programs (i.e., user programs).

In addition to the above, the z/OS® operating system, offered by International Business
Machines Corporation, also provides a service routine referred to as TIMEUSED, which is
available to problem-state programs. A program or operation calls the service to determine
the amount of CPU time a piece of code (e.g., task) has used. The TIMEUSED service
routine computes the elapsed time, adds the accumulated time, and returns the value to the
program. The calculations of the TIMEUSED routine must be performed while being
disabled for interruptions, since any interruption could adversely effect the results by

manipulating the CPU timer or the accumulator.

The TIMEUSED service routine is linked to via program call and program return
instructions. This routine disables for interruptions, obtains and releases a CPU lock,
establishes a recovery environment, calculates the elapsed time, and re-enables after having

completed its work, all of which takes hundreds of CPU cycles. When attempting to measure

10

15

20

25

WO 2007/134648 PCT/EP2006/069992

a small fragment of code, the overhead of the TIMEUSED service routine can severely

perturb what is being measured.

Summary of the Invention

Based on the foregoing, a need exists for a facility to efficiently determine resource usage,
such as elapsed CPU time of a task. In particular, a need exists for a facility that efficiently
determines resource usage of tasks without calling operating system services. A need exists

for the ability of a user to efficiently determine resource usage.

The shortcomings of the prior art are overcome and additional advantages are provided

through the provision of a method as claimed in claim 1.

System and computer program products corresponding to the above-summarized method, as

well as one or more instructions, are also described and claimed herein.

Additional features and advantages are realized through the techniques of the present
invention. Other embodiments and aspects of the invention are described in detail herein

and are considered a part of the claimed invention.

Brief Description of the Drawings

One or more aspects of the present invention are particularly pointed out and distinctly
claimed as examples in the claims at the conclusion of the specification. The foregoing and
other objects, features, and advantages of the invention are apparent from the following

detailed description taken in conjunction with the accompanying drawings in which:

FIG. 1 depicts one embodiment of a processing environment incorporating and using one or

more aspects of the present invention;

FIG. 2 depicts one embodiment of the logic associated with determining resource usage, in

accordance with an aspect of the present invention;

FIG. 3 depicts one example of a format of an Extract CPU Time instruction used in

accordance with an aspect of the present invention;

10

15

20

25

WO 2007/134648 PCT/EP2006/069992

FIG. 4a depicts one embodiment of the fields of general register 0 used by the Extract CPU

Time instruction of one aspect of the present invention;

FIG. 4b depicts one embodiment of the fields of general register 1 employed by the Extract

CPU Time instruction of one aspect of the present invention;

FIG. 5 depicts one embodiment of the logic associated with executing the Extract CPU Time

instruction, in accordance with an aspect of the present invention;

FIG. 6 is a pictorial representation of the operations of the Extract CPU Time instruction of

one aspect of the present invention; and

FIG. 7 depicts one example of a computer program product incorporating one or more

aspects of the present invention.

Best Mode for Carrving OQut the Invention

In accordance with an aspect of the present invention, a facility is provided to efficiently
determine resource usage of tasks executing within a processing environment. In one
example, a facility is provided in which a user (e.g., user code, user application, user
program, etc.) can accurately measure the processor time required to execute a particular
code fragment (referred to herein as a task). This facility determines the elapsed processor
time without significant overhead that has skewed such measurements, such as overhead

associated with using an operating system service to determine the elapsed time.

One embodiment of a processing environment incorporating and using one or more aspects
of the present invention is described with reference to FIG. 1. Processing environment 100
is, for instance, a multi-processing environment including a plurality of processors 102 (e.g.,
central processing units (CPUs)), a memory 104 (e.g., main memory) and one or more
input/output (I/0) devices 106 coupled to one another via, for example, one or more buses

108 or other connections.

As one example, each processor 102 is a an IBM System Z™ server, offered by International
Business Machines Corporation, Armonk, New York, and one or more of the processors

execute an operating system, such as z/OS®, also offered by International Business Machines

10

15

20

25

WO 2007/134648 PCT/EP2006/069992

Corporation. (IBM and z/OS are registered trademarks of International Business Machines
Corporation, Armonk, New York, USA. Other names used herein may be registered
trademarks, trademarks or product names of International Business Machines Corporation or

other companies.)

Processing within the processing environment is facilitated by the provision of a facility that
enables the determination of resource usage, such as elapsed processor (e.g., CPU) time,
without requiring the call of an operating system service or without using privileged

instructions or operations.

One embodiment of the logic associated with determining resource usage is described with
reference to FIG. 2. This logic is executed by a processing unit of the processing
environment, in response to, for instance, a request by a user application (e.g., non-
privileged code). The resource usage is determined for a task absent a call to an operating

system service and without using privileged operations, STEP 200.

Initially, a current value of a counter used to track the resource for the task, such as time
used, is determined by reading the counter value, as instructed by the logic, STEP 202. The
determined value is then subtracted from a saved value, which is, for instance, the value of
the counter when it was started, STEP 204. In one example, the counter decrements as the
resource is used by the task and the current value of the counter is read, in response to the
request. The result of the subtraction represents the amount of resource used by the task for
this time interval, which is defined by the beginning and ending values of the counter, STEP

206.

In one example, the operations used to determine resource usage are performed by an
instruction. As a specific example, an instruction is provided to determine an amount of
processor time used by a task. The instruction can be implemented in many architectures
and may be emulated. As examples, the instruction is executed in hardware by a processor;
or by emulation of an instruction set that includes this instruction, by software executing on
a processing unit having a different native instruction set. In one particular example, the
instruction is implemented in the z/Architecture, offered by International Business Machines

Corporation, and is referred to herein as an Extract CPU Time (ECTG) instruction.

10

15

20

25

WO 2007/134648 PCT/EP2006/069992

An Extract CPU Time instruction 300 (FIG. 3) is a non-privileged instruction, and includes,
for instance, an operation code 302a, 302b designating the Extract CPU Time instruction; a
general register 304, the contents of which specify a third operand used by the instruction; a
base register 306, which may be any of sixteen general purpose registers of the processing
unit and includes a portion of an address of a first operand in storage used by the instruction;
a displacement value 308, which is, for instance, an unsigned 12 bit binary number added to
the contents of register 306 to provide the address of the first operand in storage; a base
register 310, which again is any of the sixteen general purpose registers in the processing
unit and includes a portion of an address of a second operand in storage used by the
instruction; and a displacement value 312, which is added to the contents of register 310 to

provide the address of the second operand in storage for the instruction.

In addition to the registers described above, the Extract CPU Time instruction also implicitly
uses two general registers that do not have to be encoded in the instruction, but are used by

the instruction. These registers include general register 0 and general register 1.

General register 0 (400, FIG. 4a) includes, for instance, the elapsed time since last dispatch
of the task 402. It is the difference resulting from subtracting the value of the current CPU
timer from the first operand, the contents of which include the value of the CPU timer at task

dispatch.

General register 1 (410; FIG. 4b) includes, for instance, a value of the task time accumulator
when the task was dispatched 412. This is the contents of the second operand of the

instruction.

Although examples of registers are described above, each of the registers may include more,
less or different information. Further, each may include additional data not necessarily
needed in one or more aspects of the present invention. The specific location within the

registers for the information is implementation and/or architecture dependent.

One embodiment of the logic associated with the Extract CPU Time instruction is described
with reference to FIG. 5. As one example, this instruction is executed by a processor of the
processing environment on behalf of a non-privileged user application (e.g., in problem

state) that requests the operation as it relates to a particular task. The Extract CPU Time

10

15

20

25

30

WO 2007/134648 PCT/EP2006/069992

instruction is a non-privileged instruction that does not invoke an operating system service.
It does, however, assume in this embodiment, that the CPU timer (e.g., counter, register,
etc.) is set when a task is dispatched. In one example, the timer is set by a Set CPU Timer

(STP) instruction, which is a privileged instruction described in z/Architecture: Principles of

Operation, IBM® Publication No. SA22-7832-04, September 2005, which is incorporated
herein by reference in its entirety. It may also be set by any other means. The timer is set to
a given value which represents a specified time slice for execution of the task (e.g., 10-12

ms).

In response to executing the Extract CPU Time instruction, the current value of the CPU
timer is determined, STEP 500. For instance, the timer decrements as the processor
processes the task, and in response to executing the Extract CPU Time instruction, the value
of the timer, at that time, is observed. This includes, for instance, reading the register that
holds the timer. In one embodiment, the value of the timer can be extracted at any time,
including prior to the end of the time slice provided for the task and without waiting for an

interruption of the timer.

The current value of the CPU timer is then subtracted from the first operand of the
instruction, STEP 502. The first operand represents the value of the CPU timer at the time
the task was dispatched. For example, when a task is dispatched, the CPU timer is set to a
chosen value (e.g., 10-12 ms) and that value is stored in storage (e.g., PSDATSAV). Thus,
PSADTSAYV — current CPU Timer = elapsed processor time since last dispatch of the task.
This value is placed in general register 0, STEP 504.

In addition to the above, additional information is also extracted, in one embodiment, STEP
506. As one example, the second operand of the instruction is placed unchanged in general
register 1. The second operand includes, for instance, an address of a task control block
(e.g., TCBTTUSD) that maintains the previously used amount of total CPU time for the task.
By extracting and placing this information in general register 1, the user application is able
to determine the total amount of processor time used thus far, by adding the results of

general register 0 and general register 1.

Also, in one embodiment, information at the third operand location of the instruction

replaces the contents of general register R;. This information includes various types of

10

15

20

25

WO 2007/134648 PCT/EP2006/069992

information, including but not limited to, flags designating information important or desired
for the task, a scaling factor usable in adjusting the processor time for billing purposes, as

well as other types of information.

A pictorial representation of the operations is depicted in FIG. 6. B;D; (600) reference a
first operand in storage 602. Subtracted from the contents of the first operand 604 is the
current value of the CPU timer 606. The difference is stored in general register 0 (608).
B,D» (610) reference a second operand in storage 612, the contents of which are placed
unchanged in general register 1 (614). Additionally, R3 (616) references a third operand in

storage 618, the contents of which are placed unchanged in general register R3 (620).

In one embodiment, the above operations all occur within the same unit of operation,
without the possibility of being interrupted. By performing these operations atomically, the

values retain their meanings.

Described in detail above is a facility to efficiently determine resource usage without the
overhead associated with costly operating system services and/or without using privileged
operations. In particular, an Extract CPU Time facility is described that enables the efficient
determination of the amount of CPU time consumed, without the costly overhead of calling
an operating system service and/or without issuing Program Call and/or Program Return
instructions. This facility enables an application program to accurately measure the CPU
time required to execute a particular code fragment without the significant overhead that has
traditionally skewed such measurements. The measurements are useful in many aspects,
including, but not limited to, fine tuning of application code and billing. The facility
advantageously enables an application program to efficiently determine the amount of task
time used at any given moment, and not just at the end of a time slice. This allows the
program to effectively determine instruction timings in the microsecond or nanosecond

range without having to wait until milliseconds have elapsed.

One or more aspects of the present invention can be included in an article of manufacture
(e.g., one or more computer program products) having, for instance, computer usable media.
The media has therein, for instance, computer readable program code means or logic (e.g.,

instructions, code, commands, etc.) to provide and facilitate the capabilities of the present

10

15

20

25

WO 2007/134648 PCT/EP2006/069992

invention. The article of manufacture can be included as a part of a computer system or sold

separately.

One example of an article of manufacture or a computer program product incorporating one
or more aspects of the present invention is described with reference to FIG. 7. A computer
program product 700 includes, for instance, one or more computer usable media 702 to store
computer readable program code means or logic 704 thereon to provide and facilitate one or
more aspects of the present invention. The medium can be an electronic, magnetic, optical,
electromagnetic, infrared, or semiconductor system (or apparatus or device) or a propagation
medium. Examples of a computer-readable medium include a semiconductor or solid state
memory, magnetic tape, a removable computer diskette, a random access memory (RAM), a
read-only memory (ROM), a rigid magnetic disk and an optical disk. Examples of optical
disks include compact disk-read only memory (CD-ROM), compact disk-read/write (CD-
R/W) and DVD.

A sequence of program instructions or a logical assembly of one or more interrelated
modules defined by one or more computer readable program code means or logic direct the

performance of one or more aspects of the present invention.

Although one or more examples have been provided herein, these are only examples. Many
variations are possible without departing from the spirit of the present invention. For
instance, processing environments other than the example provided herein may include
and/or benefit from one or more aspects of the present invention. As an example, one or
more processors can be other than IBM System Z™ processors and/or execute operating
systems other than z/OS®. Further, the environment need not be based on the z/Architecture,
but instead, can be based on other architectures, offered by, for instance, Intel, Sun
Microsystems, as well as others. Yet further, the instruction can include other registers or
entities other than registers to designate information. Further, different data and/or
positioning within the registers and/or entities are possible. Still further, the timer can be
other than counters or registers. Any mechanism can be used to determine resource usage.
The term “timer” is meant to include a broad spectrum of mechanisms, including, but not

limited to, counters and registers. Further, although in the embodiments herein, the timer

10

15

20

25

WO 2007/134648 PCT/EP2006/069992

decrements, in other embodiments, it may increment and/or follow some pattern. Many

other variations exist.

Moreover, an environment may include an emulator (e.g., software or other emulation
mechanisms), in which a particular architecture or subset thereof is emulated. In such an
environment, one or more emulation functions of the emulator can implement one or more
aspects of the present invention, even though a computer executing the emulator may have a
different architecture than the capabilities being emulated. As one example, in emulation
mode, the specific instruction or operation being emulated is decoded, and an appropriate

emulation function is built to implement the individual instruction or operation.

In an emulation environment, a host computer includes, for instance, a memory to store
instructions and data; an instruction fetch unit to fetch instructions from memory and to
optionally, provide local buffering for the fetched instruction; an instruction decode unit to
receive the instruction fetch unit and to determine the type of instructions that have been
fetched; and an instruction execution unit to execute the instructions. Execution may include
loading data into a register for memory; storing data back to memory from a register; or
performing some type of arithmetic or logical operation, as determined by the decode unit.
In one example, each unit is implemented in software. For instance, the operations being
performed by the units are implemented as one or more subroutines within emulator

software.

Further, a data processing system suitable for storing and/or executing program code is
usable that includes at least one processor coupled directly or indirectly to memory elements
through a system bus. The memory elements include, for instance, local memory employed
during actual execution of the program code, bulk storage, and cache memory which provide
temporary storage of at least some program code in order to reduce the number of times code

must be retrieved from bulk storage during execution.

Input/Output or I/O devices (including, but not limited to, keyboards, displays, pointing
devices, etc.) can be coupled to the system either directly or through intervening I/O
controllers. Network adapters may also be coupled to the system to enable the data

processing system to become coupled to other data processing systems or remote printers or

10

15

WO 2007/134648 PCT/EP2006/069992

10

storage devices through intervening private or public networks. Modems, cable modems and

Ethernet cards are just a few of the available types of network adapters.

As used herein, the term “operand” not only includes and/or refers to operands of an
instruction, but also other operands, as well as parameters or arguments passed between
functions of programs, or any other data that is passed between entities. Further, a task
includes any portion of code, including an entire application or program or any portion

thereof.,

The capabilities of one or more aspects of the present invention can be implemented in
software, firmware, hardware or some combination thereof. At least one program storage
device readable by a machine embodying at least one program of instructions executable by

the machine to perform the capabilities of the present invention can be provided.

The flow diagrams depicted herein are just examples. There may be many variations to
these diagrams or the steps (or operations) described therein without departing from the
spirit of the invention. For instance, the steps may be performed in a differing order, or steps
may be added, deleted or modified. All of these variations are considered a part of the

claimed invention.

10

15

20

25

WO 2007/134648 PCT/EP2006/069992

11
Claims

1. A method of determining central processing unit time usage of tasks of a processing

environment, said method comprising:

selecting a task of the processing environment for which usage of central processing

unit time is to be determined; and

determining an amount of the central processing unti time used by the task within a

particular time interval, by
determining a current value of a timer set for the task; and

subtracting said current value from a saved value to determine an amount of

elapsed processor time used by the task during the particular time interval.

2. The method of claim 1, wherein said determining occurs at least at a time prior to an

end of a time slice provided for the task.

3. The method of claim 1, further comprising adding the amount of elapsed processor
time to an accumulated value for the task to determine a total amount of processor time used

by the task thus far.

4. The method of claim 3, further comprising extracting the accumulated value, wherein
the determining the amount of elapsed processor time and the extracting the accumulated

value occur as a single unit of operation.

5. The method of claim 1, wherein said determining is performed using an instruction.
6. The method of claim 5, wherein said instruction enables extraction of additional
information.

7. The method of claim 6, wherein the extraction of additional information and the

determining occur as a single, uninterruptible unit of operation.

8. The method of claim 1, wherein the particular time interval is defined by a starting

time of a timer associated with the task and an ending time of the timer.

WO 2007/134648 PCT/EP2006/069992

12

9. The method of claim 1, wherein said method further comprises extracting additional
information relating to the task, wherein the determining the amount of elapsed processor

time and the extracting occur as a single unit of operation.

10. A system comprising means adapted for carrying out all the steps of the method

according to any preceding method claim.

11. A computer program comprising instructions for carrying out all the steps of the
method according to any preceding method claim, when said computer program is executed

on a computer system.

WO 2007/134648 PCT/EP2006/069992
1/6

100

PROCESSGRI
mz—%l
I PRQCESSORI

PROCESS0R |

WO 2007/134648 . ’ PCT/EP2006/069992

F-

2/6

3

o 2L

DETERMINE RESOURCE USAGE
ABSENT OPERATING SYSTEM
SERVICES AND PRIVLEGED

OPERATONS t 202

DETERMINE CURRENT
VALUE OF COUNTER

| SUBTRACT VALUE FROM

R 2 206
RESULT IS RESOURCE
USED, AT THIS TIME

WO 2007/134648 PCT/EP2006/069992
3/6

fig. 3

400

]

GENERAL REGISTER O
ELAPSED TIME SINCE LAST DISPATCH I

fig. 4a

402

410

GENERAL REGISTER 1

& fig. 4b

WO 2007/134648 PCT/EP2006/069992
4/6

EXTRACT
CURRENT CPU TIMER

SUBTRACT FROM
FIRST OPERAND

RETURN DIFFERENGE

EXTRACT
ADDITIONAL INFORMATION

PCT/EP2006/069992

WO 2007/134648

5/6

9 61f

%mmmn_o pIC 40 mmzu._.zou

023

de.m_mmo ncw 30 m._.zu._.zau

vig

WAL NdD ONY

809 azimu% N33m]3d uuzumumh__n_

PIET

4D

0¥

NI 3&0 ENIYAEND

809

4O B M A ay ED TR R W D R e M M e M M AN MG M W G e i e oy

- Go«mohm NI} azqmu% =

aNvy3d0 Pig

¥
¢

P77 1k -

,,awéokm NIL)
gig—> |
(IOVHOLS N) ONVYHIDO PuZ

4 mw.

qumowm z_v aNYY350 181

209~

{58] ‘*uY Nmu«aimv.a

NGILY¥3d0 0103

WO 2007/134648 PCT/EP2006/069992
6/6

COMPUTER
PROGRAM
PRODUCT

700

/S—‘ 704

PROGRAM

CODE LOGIC
COMPUTER

USABLE
MEDIUM

702

fig. 7

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2006/069992

CLASSIFICATION OF SUBJECT MATTER

NG T GO6F11/38 o 'G06FI/30

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consuited during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 6 385 637 Bl (PETERS MICHAEL [US] ET 1-3,5-8,
AL) 7 May 2002 (2002-05-07) 10,11

A abstract; figure 2 4,9
column 6, 1ine 59 - column 10, line 23

X US 6 016 466 A (GUINTHER THOMAS [US] ET 1-3,5-8,
AL) 18 January 2000 (2000-01-18) 10,11

A abstract; figures 13,15 4,9
column 18, line 48 - column 22, line 23

X WO 00/72143 A (BULL HN INFORMATION SYST 1-3,5-8,
[US]) 30 November 2000 (2000-11-30) 10,11

A page 5, line 13 - page 10, l1ine 16 4,9

A EP 0 953 908 A (SUN MICROSYSTEMS INC [US]) 1-11
3 November 1999 (1999-11-03)
abstract
paragraph [0019] - paragraph [0032]

-f—

m Further documents are listed in the continuation of Box C.

E See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international
filing date

L document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

O document referring to an oral disclosure, use, exhibition or
other means

"P* document published prior to the international filing date but
later than the priority date claimed

T later document published after the international filing date
or priority date and not in confiict with the application but
cited to understand the principle or theory underlying the
invention

X document of patticular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu~
ments, such combination being obvious to a person skilled
in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

23 August 2007

Date of mailing of the intemational search report

31/08/2007

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Bozas, Ioannis

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2006/069992

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

ZAGHA M ET AL: "Performance Analysis
Using the MIPS R10000 Performance
Counters™

SUPERCOMPUTING, 1996. PROCEEDINGS OF THE
1996 ACM/IEEE CONFERENCE ON PITTSBURGH,
PA, USA 01-01 JAN. 1996, PISCATAWAY, NJ,
USA,IEEE, 1 January 1996 (1996-01-01),
pages 16-16, XP010779838

ISBN: 0-89791-854-1

the whole document

1-11

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2006/069992
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 6385637 Bl 07-05-2002 NONE
US 6016466 A 18-01-2000 NONE
WO 0072143 A 30-11-2000 EP 1292888 Al 19-03-2003
us 6247170 Bl 12-06-2001
EP 0953908 A 03-11-1999 JP 2000040022 A 08-02-2000
US 2002099760 Al 25-07-2002

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - claims
	Page 13 - claims
	Page 14 - drawings
	Page 15 - drawings
	Page 16 - drawings
	Page 17 - drawings
	Page 18 - drawings
	Page 19 - drawings
	Page 20 - wo-search-report
	Page 21 - wo-search-report
	Page 22 - wo-search-report

