

(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2014211141 B2

(54) Title
Outdoor unit and refrigeration cycle apparatus

(51) International Patent Classification(s)
F24F 1/24 (2011.01) **F24F 1/18** (2011.01)

(21) Application No: **2014211141** (22) Date of Filing: **2014.01.21**

(87) WIPO No: **WO14/119430**

(30) Priority Data

(31) Number
2013-018673 (32) Date
2013.02.01 (33) Country
JP

(43) Publication Date: **2014.08.07**
(44) Accepted Journal Date: **2016.08.11**

(71) Applicant(s)
Mitsubishi Electric Corporation

(72) Inventor(s)
Uehara, Nobuaki

(74) Agent / Attorney
Freehills Patent Attorneys, ANZ Tower 161 Castlereagh Street, Sydney, NSW, 2000

(56) Related Art
JP 2005-331141
JP 2010-286187
JP 2006-336935
JP2000234883
US 2532303

(12) 特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関
国際事務局

(43) 国際公開日
2014年8月7日(07.08.2014)

(10) 国際公開番号

WO 2014/119430 A1

(51) 国際特許分類: F24F 1/24 (2011.01) F24F 1/18 (2011.01)

(21) 国際出願番号: PCT/JP2014/051155

(22) 国際出願日: 2014年1月21日(21.01.2014)

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

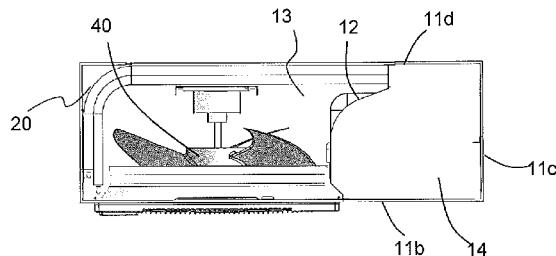
(30) 優先権データ: 特願 2013-018673 2013年2月1日(01.02.2013) JP

(71) 出願人: 三菱電機株式会社(MITSUBISHI ELECTRIC CORPORATION) [JP/JP]; 〒1008310 東京都千代田区丸の内二丁目7番3号 Tokyo (JP).

(72) 発明者: 上原 伸哲(UEHARA, Nobuaki); 〒1008310 東京都千代田区丸の内二丁目7番3号 三菱電機株式会社内 Tokyo (JP).

(74) 代理人: 安島 清, 外(AJIMA, Kiyoshi et al.); 〒1050001 東京都港区虎ノ門二丁目10番1号 虎ノ門ツインビルディング東棟8階 特許業務法人きさ特許商標事務所 Tokyo (JP).

(81) 指定国(表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.


(84) 指定国(表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, RU, TJ, TM), ヨーロッパ (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

添付公開書類:

— 国際調査報告 (条約第21条(3))

(54) Title: OUTDOOR UNIT AND REFRIGERATION CYCLE DEVICE

(54) 発明の名称: 室外機及び冷凍サイクル装置

(57) Abstract: The present invention is equipped with: a heat exchanger (20) wherein heat transfer fins (21) are inserted at desired intervals and affixed to heat transfer tubes (22), with heat being exchanged between a refrigerant circulating in the heat transfer tubes (22) and air circulating between the heat transfer fins (21); electrical components (31) for controlling the device; and a cooling member (32) that is provided in the flow path of the air passing through the heat exchanger (20) and radiates heat from the electrical components (31) into the air. The heat transfer fins (21) are inserted with a wider interval between the heat transfer fins which form the circulation path of the air passing through the cooling member (32), which corresponds to the installation position of the cooling member (32).

(57) 要約: 伝熱管22に対して伝熱フィン21を任意の間隔で挿入して固定し、伝熱管22内を通過する冷媒と伝熱フィン21間を通過する空気との熱交換を行う熱交換器20と、機器を制御する電気品31と、熱交換器20を通過した空気の流路上に設けられ、電気品31の熱を空気に放熱させる冷却部材32とを備え、冷却部材32の設置位置に対応して、冷却部材32に通過させる空気の通風路となる部分の伝熱フィン21間の間隔を広げて挿入するものである。

WO 2014/119430 A1

DESCRIPTION

Title of Invention

OUTDOOR UNIT AND REFRIGERATION CYCLE APPARATUS

Technical Field

5 [0001]

The present invention relates to an outdoor unit for an air-conditioning apparatus using a fin-and-tube heat exchanger. In particular, the present invention relates to a cooling structure of an electric component installed in an outdoor unit.

10 Background Art

[0002]

An outdoor unit for an air-conditioning apparatus includes various electric components (electric parts) such as an inverter circuit for variably controlling the rotation speed of, for example, a compressor or a fan. Some electric components generate heat because of a flow of large current, for example. A high temperature may cause damage to the electric components, unstable driving, and other problems, which lead to reduced reliability of the outdoor unit. To prevent this, such electric components are cooled in order to prevent the electric components from reaching high temperatures.

20 [0003]

In some cooling structures in electric components of outdoor units for air-conditioning apparatuses, for example, a cooling member is placed in an air passage of a heat exchanger and removes heat from the electric components so that the electric components are cooled (see, for example, Patent Literature 1).

25 In the cooling structure, to increase the flow rate of air flowing in the cooling member, the heat exchanger is configured such that the distance between heat transmission fins of the heat exchanger in a position where the heat exchanger is

15 Jun 2015

2014211141

located close to the cooling member is larger than other positions therein.

Citation List

Patent Literature

[0004]

Patent Literature 1: Japanese Unexamined Patent Application Publication No. 2005-331141

Summary of Invention

Technical Problem

[0005]

In such an outdoor unit for an air-conditioning apparatus as described in Patent Literature 1, a plurality of molds are needed for preparing heat transmission fins in order for the apparatus to have different distances between the heat transmission fins. This disadvantageously increases the manufacturing cost.

[0006]

It is therefore an object of the present invention to provide, for example, an outdoor unit that can maintain the cooling effect of electric components with reduced cost.

[0006A]

Reference to any prior art in the specification is not an acknowledgment or suggestion that this prior art forms part of the common general knowledge in any jurisdiction or that this prior art could reasonably be expected to be understood, regarded as relevant, and/or combined with other pieces of prior art by a skilled person in the art.

25

[0007]

An outdoor unit according to the present invention includes: a heat

2014211141
14 Jul 2016

1001484744

exchanger including heat transmission fins and heat transmission pipes, the heat transmission fins being spaced from one another with a distance, fitted to and fixed to the heat transmission pipes, so that heat is exchanged between refrigerant passing through the heat transmission pipes and air passing between the heat transmission fins; an electric component including a part of an electric system that controls equipment; and a cooling member disposed in a channel of air passing through the heat exchanger, the cooling member configured to dissipate heat from the electric component to the air, wherein the heat transmission fins are fitted to the heat transmission pipes such that the distance between the heat transmission fins is configured to be larger in a position that corresponds to a position where the cooling member is located and that serves as an air passage of the air passing through the cooling member, than in other positions in the heat exchanger, the heat transmission fins have insertion cutouts having an open end and a shape conforming to a shape of the heat transmission pipes, the heat transmission fins are fitted to the heat transmission pipes through the insertion cutouts, and the position in which the distance between the heat transmission fins is configured to be larger substantially corresponds to a width across the channel of air occupied by the cooling member.

20 Effects of Invention

[0008]

According to the present invention, the cooling member is disposed in the channel of air passing through the heat exchanger so as to cool an electric component. Thus, the electric component can be efficiently cooled. In the cooling, the heat transmission fins are fitted to the heat transmission pipes with increased distances therebetween in a position corresponding to the location of the cooling member. This configuration makes it possible to provide, at low cost, an outdoor unit including a heat exchanger in which air resistance caused by the heat transmission fins can be reduced so that a large amount of air is allowed to pass through the cooling member in order to maintain the cooling effect.

15 Jun 2015

2014211141

[0008A]

As used herein, except where the context requires otherwise, the term "comprise" and variations of the term, such as "comprising", "comprises" and "comprised", are not intended to exclude further additives, components, integers or steps.

Brief Description of Drawings

[0009]

[Fig. 1] Fig. 1 is an illustration (a first illustration) of, for example, a configuration of an outdoor unit 10 according to Embodiment 1 of the present invention.

[Fig. 2] Fig. 2 is an illustration (a second illustration) of, for example, the configuration of the outdoor unit 10 according to Embodiment 1 of the present

invention.

[Fig. 3] Fig. 3 is an illustration (a first illustration) of an arrangement of, for example, an electric component chamber 30 according to Embodiment 1 of the present invention.

5 [Fig. 4] Fig. 4 is an illustration (a second illustration) of the arrangement of, for example, the electric component chamber 30 according to Embodiment 1 of the present invention.

[Fig. 5] Fig. 5 illustrates a heat exchanger 20 according to Embodiment 1 of the present invention in detail.

10 [Fig. 6] Fig. 6 illustrates a configuration of an air-conditioning apparatus according to Embodiment 2 of the present invention.

Description of Embodiments

[0010]

Embodiment 1

15 Embodiment 1 of the present invention will be described hereinafter.

Figs. 1 and 2 illustrate a configuration of an outdoor unit 10 according to Embodiment 1 of the present invention, for example. Fig. 1 is a perspective view of the outdoor unit 10 when viewed from an air outlet. Fig. 2 is an illustration for describing the internal configuration of the outdoor unit 10 when viewed from above.

[0011]

The outdoor unit 10 has a body 11 including a casing having two side surfaces 11a and 11c, a front surface 11b, a rear surface 11d, an upper surface 11e, and a bottom surface 11f. The side surface 11a and the rear surface 11d have openings through which air is taken in from the outside. The front surface 11b has an opening serving as an air outlet through which air blows out to the outside. The air outlet is covered with a fan grille in order to prevent contact

between an object or the like and a blower device 40 for safety.

[0012]

The body 11 includes at least a heat exchanger 20, an electric component chamber 30, a cooling member 32, and a blower device 40. The blower device 40 includes, for example, a propeller fan in which a plurality of vanes are disposed around a propeller boss. A fan motor disposed near the rear surface of the propeller fan is driven to rotate and creates an air flow in which air in the outside (outdoor air) passes through the heat exchanger 20. The inside of the body 1 is partitioned by a partition plate 12 into a blower device chamber 13 in which the blower device 40 is disposed and a machinery chamber 14 in which the compressor and an electric component 31, for example, are disposed.

[0013]

Figs. 3 and 4 illustrate an arrangement of the electric component chamber 30 and other components in Embodiment 1 of the present invention. As illustrated in Fig. 3, the machinery chamber 14 further includes an electric component chamber 30, and the electric component chamber 30 accommodates the electric component 31. The electric component 31 is, for example, an electric circuit that performs control for, for example, driving equipment (an actuator) such as the compressor in the outdoor unit 10. The cooling member 32 is a member such as a comb-shaped heat sink that takes away (receives) heat generated by the electric component 31 in the electric component chamber 30 and rejects heat. As illustrated in Fig. 4, the cooling member 32 of Embodiment 1 is disposed at a location in an air passage through which air is caused to pass by driving the blower device 40.

[0014]

The heat exchanger 20 is formed in an L shape by bending and is designed such that air flows in two directions from the side surface 11a and the

rear surface 11d, respectively. When used in an air-conditioning apparatus, for example, the heat exchanger 20 serves as a condenser for condensing refrigerant in a cooling operation and serves as an evaporator for evaporating refrigerant in a heating operation. As will be described later, the heat exchanger 5 20 of Embodiment 1 includes heat transmission fins 21 and heat transmission pipes 22 and exchanges heat between the refrigerant and air outside the room (outdoor air). Each of the heat transmission fins 21 and the heat transmission pipes 22 is made of aluminum or an aluminum alloy. The use of, for example, aluminum can enhance the heat exchange efficiency and reduce the weight and 10 size of the heat exchanger. The heat transmission fins 21 of Embodiment 1 are flat-plate (rectangular) fins. The heat transmission pipes 22 are flat tubes that are flat-shaped heat transmission pipes partially curved in cross section.

[0015]

The heat transmission fins 21 serve as a resistance to air passing through 15 the heat exchanger 20. Thus, the heat transmission fins 21 are obstacles in supplying air in order to facilitate heat dissipation of the cooling member 32. In view of this, as illustrated in Fig. 4, the heat exchanger 20 of Embodiment 1 is configured such that the distance between the heat transmission fins 21 is increased in a position (a position close to the cooling member 32) of the heat 20 exchanger 20 so as to obtain a sufficiently large air passage for the cooling member 32. Since the distance is partially increased, the efficiency of the cooling member 32 can be increased without a significant decrease in the area of the heat transmission fins 21 in the entire heat exchanger 20.

[0016]

25 Fig. 5 illustrates the heat exchanger 20 of Embodiment 1 of the present invention in detail. As illustrated in Fig. 5, in the heat exchanger 20 of Embodiment 1, the heat transmission pipes 22 are arranged with predetermined

distances and fixed in, for example, a dedicated device. The direction in which the heat transmission pipes 22 are arranged side by side is orthogonal to the channel direction of the refrigerant flowing in the pipes.

[0017]

5 As also illustrated in Fig. 5, the heat transmission fins 21 include a plurality of insertion cutouts 23 arranged in the longitudinal direction (i.e., the direction in which the heat transmission pipes 22 are arranged side by side). Each of the insertion cutouts has one open end on one of the longitudinal edges of a corresponding of the heat transmission fins 21, so that the heat transmission pipes 22 can be fitted to the heat transmission fins 21. That is, the heat transmission fins 21 have comb-like shapes. In conformity with the arrangement of the heat transmission pipes 22, the number of the insertion cutouts 23 is equal to that of the heat transmission pipes 22, and the insertion cutouts 23 are arranged with the same distances therebetween as those between the heat transmission pipes 22 (except both ends), for example. In addition, the heat transmission fins 21 are fitted to and fixed to the heat transmission pipes 22 such that the heat transmission fins 21 are parallel to one another in the refrigerant channel direction (i.e., the direction orthogonal to the direction in which the heat transmission pipes 22 are arranged side by side).
10
15
20
25 Slits formed by cutting and raising part of the heat transmission fins 21 may be, but are not limited to being, provided between the insertion cutouts 23. Fin collars may be formed so as to stand vertically on the heat transmission fins 21 at the rims of the insertion cutouts 23.

[0018]

25 Portions (brazed portions) in which the heat transmission fins 21 are in contact with the heat transmission pipes 22 are joined by brazing, thereby fabricating the heat exchanger 20. This fabrication enables the heat

transmission fins 21 to be fitted to the heat transmission pipes 22 with desired distances therebetween. Thus, the configuration in which the distance between the heat transmission fins 21 varies in the single heat exchanger 20 can be obtained at a relatively low cost.

5 [0019]

As described above, the outdoor unit 10 of Embodiment 1 includes the cooling member 32 for cooling the electric component 31 in the air passage of air flow formed when driving the blower device 40 in the blower device chamber 13. Thus, the electric component 31 can be efficiently cooled. As a result, reliability 10 can be enhanced. In addition, the heat exchanger 20 is configured such that the heat transmission fins 21 are fitted to and fixed to the heat transmission pipes 22. Thus, in fabrication, insertion can be easily performed with wide distances between the heat transmission fins 21 serving as a channel of air that is in contact with the cooling member 32. Thus, both enhancement of cooling 15 efficiency of the electric component 31 and maintenance of efficiency of the heat exchanger 20 can be achieved at a relatively low cost.

[0020]

Embodiment 2

Fig. 6 illustrates a configuration of an air-conditioning apparatus according 20 to Embodiment 2 of the present invention. In Embodiment 2, a refrigeration cycle apparatus using the above-described outdoor unit 10 as an outdoor unit 100 will be described. Here, the air-conditioning apparatus will be described as a typical example of a refrigeration cycle apparatus. The air-conditioning apparatus illustrated in Fig. 6 includes the outdoor unit 100 and an indoor unit 25 200 that are connected to each other by refrigerant pipes so that refrigerant circulates therein. Among the refrigerant pipes, a pipe in which a gas refrigerant flows will be referred to as a gas pipe 300 and a pipe in which a liquid refrigerant

(which may be a two-phase gas-liquid refrigerant) flows will be referred to as a liquid pipe 400.

[0021]

In Embodiment 2, the outdoor unit 100 includes a compressor 101, a four-way valve 102, an outdoor-side heat exchanger 103, an outdoor-side blower device 104, and an expansion device (an expansion valve) 105.

[0022]

The compressor 101 compresses a sucked refrigerant and discharges the compressed refrigerant. Here, the presence of, for example, an inverter as an electric component 31 can change the operating frequency of the compressor 101 as intended so that the capacity (the amount of the refrigerant that is sent from the compressor 101 in a unit time) of the compressor 101 can be minutely changed. On the basis of an instruction from a control device (not shown), the four-way valve 102 switches a flow of the refrigerant between a cooling operation and a heating operation.

[0023]

The outdoor-side heat exchanger 103 constituted by the heat exchanger 20 described above exchanges heat between refrigerant and air (outdoor air). Specifically, in the heating operation, the outdoor-side heat exchanger 103 serves as an evaporator that exchanges heat between a low-pressure refrigerant from the liquid pipe 400 and air, evaporates the refrigerant, and vaporizes the refrigerant. In the cooling operation, the outdoor-side heat exchanger 103 serves as a condenser that exchanges heat between refrigerant that has flowed from the four-way valve 102 and that has been compressed in the compressor 101 and air, condenses the refrigerant, and liquefies the refrigerant. An outdoor-side blower device 104 that is the above-described blower device 40 is provided. The outdoor-side blower device 104 may also be configured such that

the inverter as the electric component 31 can change the operating frequency of the fan motor as intended so as to minutely change the rotation speed. The expansion device 105 changes its opening degree so as to adjust the pressure of the refrigerant, for example.

5 [0024]

On the other hand, the indoor unit 200 includes a load-side heat exchanger 201 and a load-side blower device 202. The load-side heat exchanger 201 exchanges heat between refrigerant and air. Specifically, in the heating operation, the load-side heat exchanger 201 serves as a condenser that exchanges heat between refrigerant from the gas pipe 300 and air, condenses the refrigerant, liquefies the condensed refrigerant (or changes the refrigerant into a two-phase gas-liquid refrigerant), and causes the refrigerant to flow out toward the liquid pipe 400. On the other hand, in the cooling operation, the load-side heat exchanger 201 serves as an evaporator that exchanges heat between refrigerant that has changed into a low-pressure state by the expansion device 105, for example, and air, causes the refrigerant to receive heat from the air, evaporates and vaporizes the refrigerant, and causes the resulting refrigerant to flow out toward the gas pipe 300. The indoor unit 200 also includes a load-side blower device 202 for adjusting the flow of air for use in the heat exchange.

10 15 20 The operation speed of the load-side blower device 202 can be set by, for example, a user.

[0025]

Here, the above-described refrigeration cycle apparatus can use HCFC (R22), HFC (e.g., R116, R125, R134a, R14, R143a, R152a, R227ea, R23, R236ea, R236fa, R245ca, R245fa, R32, R41, RC318, or a refrigerant mixture of some of these refrigerants, such as R407A, R407B, R407C, R407D, R407E, R410A, R410B, R404A, R507A, R508A, or R508B), HC (e.g., butane, isobutane,

ethane, propane, propylene, or a refrigerant mixture of some of these refrigerants), a natural refrigerant (e.g., air, carbon dioxide, ammonia, or a refrigerant mixture of some of these refrigerant substances), a low-GWP refrigerant such as HFO1234yf, or a refrigerant mixture of some of these refrigerants.

5

[0026]

Irrespective of the solubility of a refrigerant and oil, the above-described advantages can be obtained by using any types of refrigerating machine oil such as mineral oil-based refrigerating machine oil, alkylbenzene oil-based refrigerating machine oil, ester oil-based refrigerating machine oil, ether oil-based refrigerating machine oil, or fluorine oil-based refrigerating machine oil.

10

[0027]

Similar advantages can also be obtained in a case where the heat exchanger 20 of Embodiment 1 is used in the load-side heat exchanger 201 of 15 the indoor unit 200.

15

[0028]

As described above, in the refrigeration cycle apparatus of Embodiment 2, the heat exchanger 20 of Embodiment 1 is used as the outdoor-side heat exchanger 103. Thus, the electric component 31 can be efficiently cooled, 20 thereby enhancing the reliability of the apparatus.

Industrial Applicability

[0029]

The present invention is widely applicable to outdoor units constituting refrigeration cycle apparatuses, such as an outdoor unit of an air-conditioning apparatus or a hot water supply, and other apparatuses and equipment.

25

Reference Signs List

[0030]

10 outdoor unit, 11 body, 11a, 11c side surface, 11b front
surface, 11d rear surface, 11e upper surface, 11f bottom surface, 12
partition plate, 13 blower device chamber, 14 machinery chamber, 20
heat exchanger, 21 heat transmission fin, 22 heat transmission pipe, 23
5 insertion cutout, 30 electric component chamber, 31 electric component,
32 cooling member, 40 blower device, 100 outdoor unit, 101
compressor, 102 four-way valve, 103 outdoor-side heat exchanger, 104
outdoor-side blower device, 105 expansion device, 200 indoor unit, 201
load-side heat exchanger, 202 load-side blower device, 300 gas pipe,
10 400 liquid pipe.

2014211141
14 Jul 2016

1001484744

CLAIMS

[Claim 1]

An outdoor unit, comprising:
a heat exchanger including heat transmission fins and heat transmission pipes, the heat transmission fins being spaced from one another with a distance, fitted to and fixed to the heat transmission pipes, so that heat is exchanged between refrigerant passing through the heat transmission pipes and air passing between the heat transmission fins;
an electric component including a part of an electric system that controls equipment; and
a cooling member disposed in a channel of air passing through the heat exchanger, the cooling member configured to dissipate heat from the electric component to the air, wherein
the heat transmission fins are fitted to the heat transmission pipes such that the distance between the heat transmission fins is configured to be larger in a position that corresponds to a position where the cooling member is located and that serves as an air passage of the air passing through the cooling member, than in other positions in the heat exchanger,
the heat transmission fins have insertion cutouts having an open end and a shape conforming to a shape of the heat transmission pipes,

the heat transmission fins are fitted to the heat transmission pipes through the insertion cutouts, and
the position in which the distance between the heat transmission fins is configured to be larger substantially corresponds to a width across the channel of air occupied by the cooling member.

[Claim 2]

The outdoor unit of claim 1, wherein the heat transmission pipes are flat tubes.

[Claim 3]

A refrigeration cycle apparatus, comprising:

2014211141 ; 14 Jul 2016

1001484744

a refrigerant circuit including a compressor that compresses refrigerant and discharges the refrigerant, a condenser that condenses the refrigerant through heat exchange, an expansion device that reduces a pressure of the refrigerant subjected to condensation, and an evaporator that exchanges heat between the refrigerant subjected to reduction of pressure and air and evaporates the refrigerant, the compressor, the condenser, the expansion device, and the evaporator being connected by pipes, wherein

the outdoor unit of any one of claims 1 to 2 includes a heat exchanger serving as at least one of the evaporator or the condenser.

FIG. 1

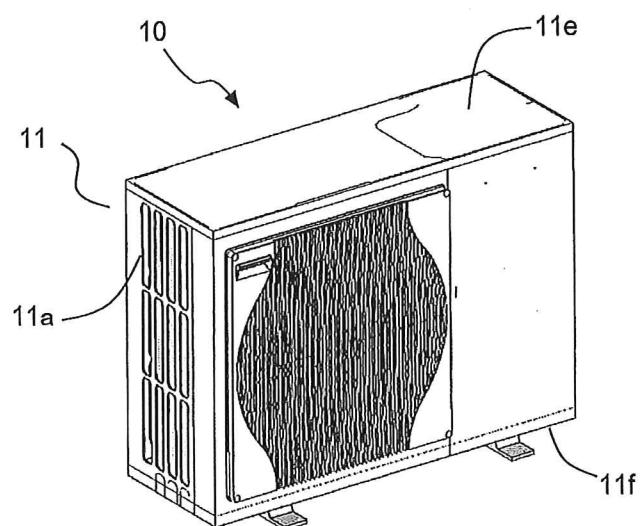


FIG. 2

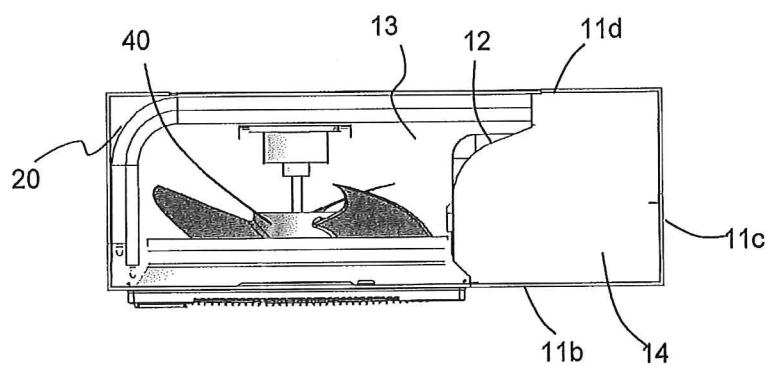


FIG. 3

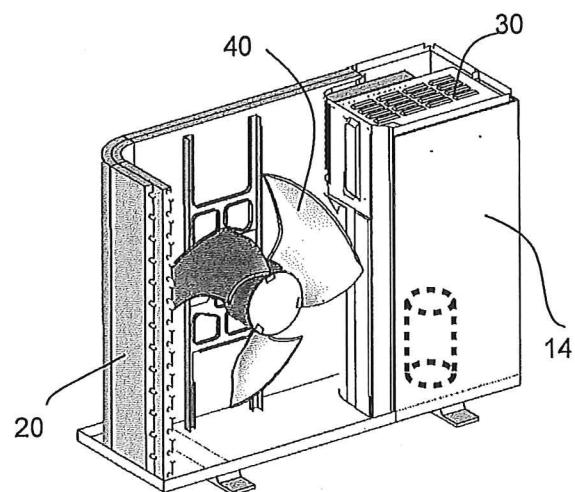


FIG. 4

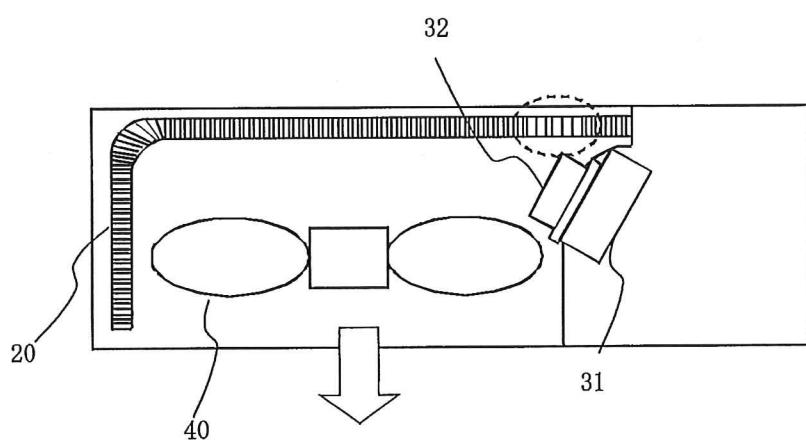


FIG. 5

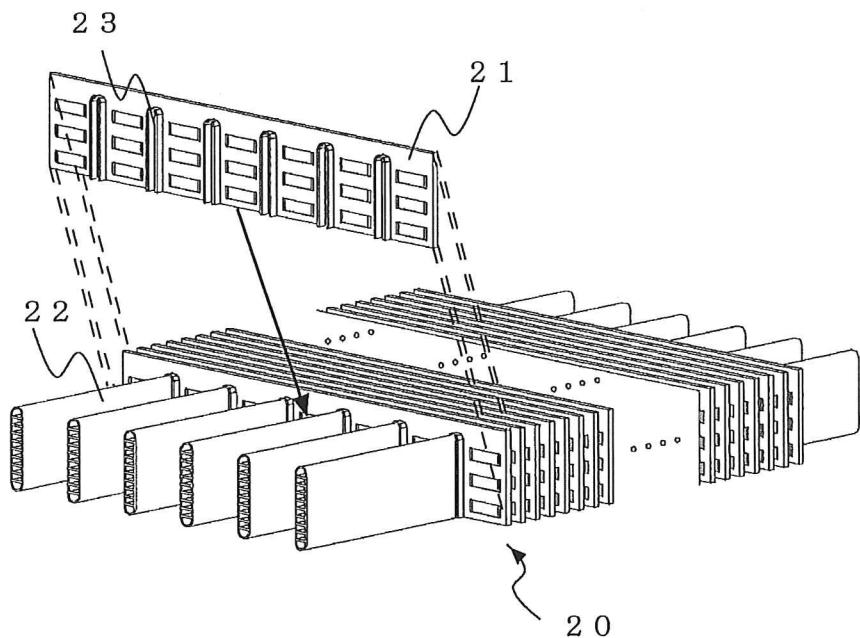
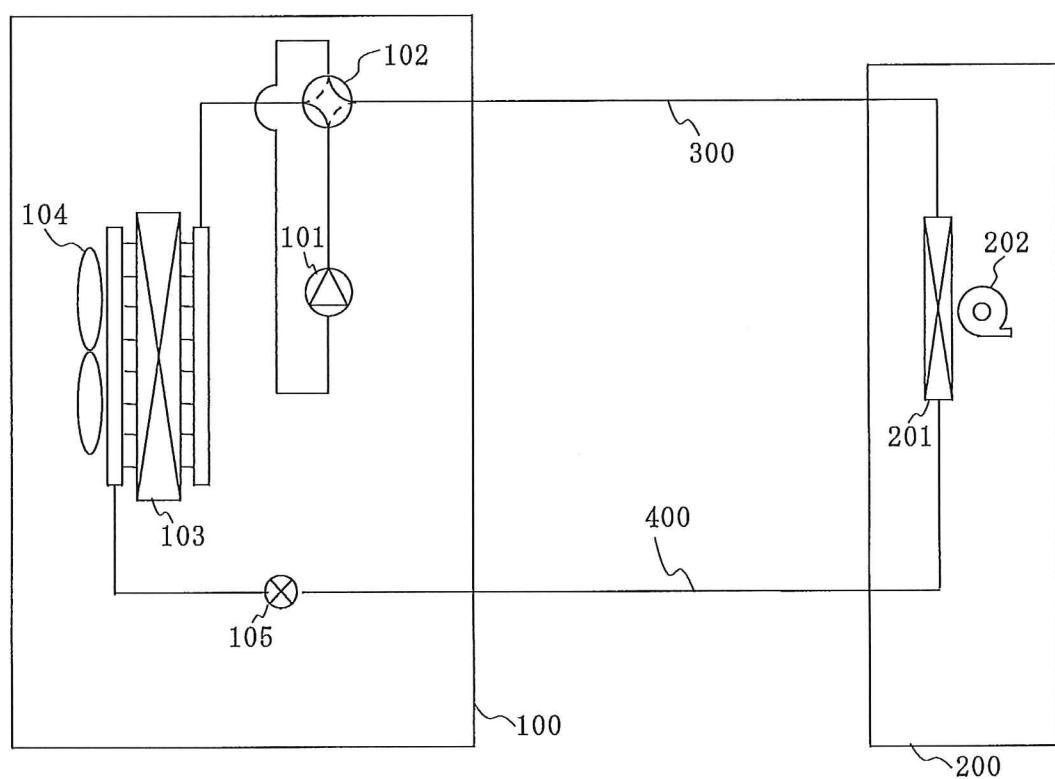



FIG. 6

