
(19) United States
US 2010O242111A1

(12) Patent Application Publication (10) Pub. No.: US 2010/0242111A1
Kraemer et al. (43) Pub. Date: Sep. 23, 2010

(54) METHODS AND APPARATUS PROVIDING
COMPUTER AND NETWORKSECURITY
UTILIZING PROBABILISTIC POLICY
REPOSTURING

(76) Inventors: Jeffrey A. Kraemer, Wellesley,
MA (US); Andrew Zawadowskiy,
Nashua, NH (US)

Correspondence Address:
HICKMAN PALERMO TRUONG & BECKER,
LLP
2055 GATEWAY PLACE, SUITE 550
SANJOSE, CA 95110 (US)

(21) Appl. No.: 12/789,339

(22) Filed: May 27, 2010

220 APPLICATION

240
USER 2.Er 200-7 DATA
SPACE INTERCEPTOR NTERCPTOR

210 EVENT
CORRELATION

ENGINE
200-5

OPERATING C C
SYSTEM CALL 211
INTERCEPTOR SECURITY

POLICY
242

KERNEL 2004 REGISTRY
SpACE NTERCEPTOR

216-1
SECURITY
HISTORY

228 OPERATING SYSTEM

/

212 EVENT
DATA

Related U.S. Application Data
(63) Continuation of application No. 1 1/415,022, filed on

May 1, 2006.
(60) Provisional application No. 60/751,439, filed on Dec.

16, 2005.
Publication Classification

(51) Int. Cl.
G06F2L/00 (2006.01)

(52) U.S. Cl. .. 726/22
(57) ABSTRACT

A system defines at least one key event to be monitored by at
least one agent, and creates a graphical model for the at least
one key event. The system observes the at least one key event.
The system infers a degree of attack on the computer system
based on an observation of the at least one key event in
conjunction with a result of an effect the at least one key event
has on the graphical model. The system then adjusts a security
policy based on an output of the graphical model.

214 LOCA
213 AGENT USERVENT MANAGEr

INTERFACE if AGENT SERVICE
CONTROL

200-3 APPLICATION
FILE INTERCEPTOR

200-2NETWORKAPPLICATION
INTERCEPTOR

226 COMMUNICATIONS
PROTOCOL COMPONENTS

200-1NEWORKTRAFFIC
INTERCEPTOR

224 NETWORK iNTERFACE
DRIVER

222 PERIPHERAL
EVICE ORIVERS

(E.G., REMOVABLE
MEDIA)

US 2010/0242111A1

WELSÅS HELTACHWOO >]ELNEJO JLNEVNESOW/NW/W 9 || ||

Sep. 23, 2010 Sheet 1 of 7 Patent Application Publication

US 2010/0242111A1 Sep. 23, 2010 Sheet 2 of 7 Patent Application Publication

ARJO ISIH

NOI LVOITddw OŽŽ

Patent Application Publication Sep. 23, 2010 Sheet 3 of 7 US 2010/0242111A1

2OO DEFINEAT LEAST ONE KEY EVENT TO BE MONITORED BY AT LEAST ONE
AGENT

201 CREATE A GRAPHICAL MODE FOR THE AT LEAST ONE KEY EVENT

2O2 OBSERVE THE AT LEAST ONE KEY EVENT

203 NFERADEGREE OF ATTACK ON THE COMPUTER SYSTEM BASED ON AN
OBSERVATION OF THE AT LEAST ONE KEY EVENT IN CONJUNCTION WITH A
RESULT OF AN EFFECT THEAT LEAST ONE KEY EVENT HAS ON THE
GRAPHICAL MODEL

204 ADJUST A SECURITYPOLICY BASED ON AN OUTPUT OF THE GRAPHICAL
MODEL

205 TRANSITION TO A NEW SECURITYPOSTURE

FIG. 3

Patent Application Publication Sep. 23, 2010 Sheet 4 of 7 US 2010/0242111A1

206 DEFINEAT LEAST ONE KEY EVENT TO BE MONITORED BY AT LEAST
ONE AGENT

207 DEFINE THE AT LEAST ONE KEY EVENT TO INCLUDE AT LEAST
ONE OF
i) A SYSTEM CALL
ii) A BUFFEROVERFLOW
iii) AN INSTANCE OF DOWNLOADED CONTENT
iv) AN INSTANCE OF CPU UTILIZATION
v) AT LEAST ONE NETWORK CONNECTION
vi) APROCESS EXCEPTION
vii) A SYSTEM CONFIGURATION MODIFICATION
viii) AN INSTANCE OF A NEWSOFTWARE PROGRAM INSTALLATION
ix) AN INSTANCE OF A NEW SERVICE INSTALLATION
x) A FIRST TIME INSTANCE OF AAPPLICATION INVOCATION
xi) AN INSTANCE OF MOBILE CODE EXECUTION
xii) AN INSTANCE OF AT LEAST ONE ROOT-KIT DETECTION
xiii) AN INSTANCE OF MEMORY UTILIZATION
xiv). AT LEAST ONE TRANSACTION FAILURE; AND
xv) AT LEAST ONE LOSS OF SERVICE.

208 CREATE A GRAPHICAL MODEL FOR THEAT LEAST ONE KEY EVENT

209 ASSIGN AWEGHT TO THE AT LEAST ONE KEY EVENT WITHIN
THE GRAPHICAL MODEL

210 IDENTIFY ASTEP NAPROCESS AT WHICH THE AT LEAST ONE
KEY EVENT OCCURRED

FIG. 4

Patent Application Publication Sep. 23, 2010 Sheet 5 of 7 US 2010/0242111A1

211 CREATE A GRAPHICAL MODEL FOR THEAT LEAST ONE KEY EVENT

212 CREATE ABAYESAN NETWORK FOR USE IN DETECTING THE
DEGREE OF ATTACK ON THE COMPUTER SYSTEM

213 CREATE AT LEAST ONE SUBJECTIVE INITIAL PROBABILITY FOR
EACH NODE IN THE PLURALITY OF NODES WITHIN THE GRAPHICAL
MODEL

214 ADJUST THEAT LEAST ONE SUBJECTIVE INITIAL PROBABILITY
OF AT LEAST ONE NODE WITH IN THE PLURALITY OF NODES, USING
AT LEAST ONE STATISTICAL DATUMASSOCATED WITH APREVIOUS
SECURITY ATTACK

FIG. 5

Patent Application Publication Sep. 23, 2010 Sheet 6 of 7 US 2010/0242111A1

215 OBSERVE THEAT LEAST ONE KEY EVENT

216DETECT THE AT LEAST ONE KEY EVENT S ASSOCATED WITH
A SET OF KEY EVENTS

217 IDENTFY THE AT LEAST ONE KEY EVENTS
RELATED TO THE SET OF KEY EVENTS

218 IDENTFY THE AT LEAST ONE KEY EVENT IS NOT
RELATED TO THE SET OF KEY EVENTS

219 OBSERVE AN ORDER OF THE SET OF KEY EVENTS,
THE ORDER INCLUDING A PLACEMENT OF THEAT
LEAST ONE KEY EVENT WITHIN THE ORDER OF THE
SET OF KEY EVENTS

FIG. 6

Patent Application Publication Sep. 23, 2010 Sheet 7 of 7 US 2010/0242111A1

220 INFER A DEGREE OF ATTACK ON THE COMPUTER SYSTEMBASED ON AN
OBSERVATION OF THE AT LEAST ONE KEY EVENT IN CONJUNCTION WITH A
RESULT OF AN EFFECT THEAT LEAST ONE KEY EVENT HAS ON THE GRAPHICAL
MODEL

221 UTILIZE THE BAYESIAN NETWORK TO INFER THE DEGREE OF
ATTACK ON THE COMPUTER SYSTEM

222 CORRELATE THE DEGREE OF ATTACK TO A CONFIGURABLE LIMIT

223 NITIALIZE THE CONFIGURABLE LIMIT OF THE DEGREE OF
ATTACK

224 DEFINE THE CONFIGURABLE LIMIT OF THE DEGREE OF
ATTACK AS A RANGE OF CONFIGURABLE LIMITS

225 MODIFY THE DEGREE OF ATTACK ON THE COMPUTER SYSTEM
BASED ON THE OBSERVATION OF THE AT LEAST ONE KEY EVENT

FIG. 7

US 2010/02421 11 A1

METHODS AND APPARATUS PROVIDING
COMPUTER AND NETWORK SECURITY
UTILIZING PROBABILISTIC POLICY

REPOSTURING

CROSS REFERENCE TO RELATED
APPLICATIONS

0001. The present application claims the benefit of U.S.
Provisional Patent Application No. 60/751,439, filed on Dec.
16, 2005, which is incorporated herein by reference.

BACKGROUND

0002 Computer systems, networks and data centers are
exposed to a constant and differing variety of attacks that
expose Vulnerabilities of Such systems in order to compro
mise their security and/or operation. As an example, various
forms of malicious Software program attacks include viruses,
worms, Trojan horses and the like that computer systems can
obtain over a network such as the Internet. Quite often, users
of Such computer systems are not even aware that such mali
cious programs have been obtained within the computer sys
tem. Once resident within a computer, a malicious program
that executes might disrupt operation of the computer to a
point of inoperability and/or might spread itself to other com
puters within a network or data center by exploiting Vulner
abilities of the computer's operating system or resident appli
cation programs. Other malicious programs might operate
within a computer to secretly extract and transmit informa
tion within the computer to remote computer systems for
various Suspect purposes. As an example, spyware is a form of
Software that can execute in the background (e.g., unbe
knownst to users) of a computer system and can perform
undesirable processing operations such as tracking, recording
and transmitting user input from the spyware-resident com
puter system to a remote computer system. Spyware can
allow remote computes to silently obtain otherwise confiden
tial information Such as usernames and passwords required to
access protected data, lists, contents of files or even remote
web sites user account information.
0003 Computer system developers, software developers
and security experts have created many types of conventional
preventive measures that operate within conventional com
puter systems in an attempt to prevent operation of malicious
programs from stealing information or from compromising
proper operation of the computer systems. As an example,
conventional virus detection Software operates to periodically
download a set of virus definitions from a remotely located
server. Once the virus detection software obtains the defini
tions, the security software can monitor incoming data
received by the computer system, such as email messages
containing attachments, to identify viruses defined within the
virus definitions that might be present within the data
accessed by the computer. Such data might be obtained over
a network or might be unknowingly resident on a computer
readable medium, such as a disk or CD-ROM that a user
inserts into the computer. Upon detection of inbound data
containing a virus or other malicious program, the virus
detection Software can quarantine the inbound data so that a
user of the computer system will not execute code or access
the data containing the detected virus that might result in
compromising the computer's operation.
0004. Other examples of conventional malicious attacks,
intrusions, or undesirable processing that can cause problems

Sep. 23, 2010

within computer systems or even entire computer networks
include virus attacks, worm attacks, trojan horse attacks,
denial-of-service attacks, a buffer overflow operations,
execution of malformed application data, and execution of
malicious mobile code. Virus attacks, worm attacks, and tro
jan horse attacks are variants of each other that generally
involve the execution of a program, for which a user often is
unaware of its existence, that performs some undesired pro
cessing operations to comprise a computer's proper opera
tion. A denial-of-service attack operates to provide an inten
tional simultaneous barrage of packets (e.g., many
connection attempts) emanating from many different com
puter systems to one or more target computer systems, such as
a web site, in order to intentionally cause an overload in
processing capabilities of the target computer resulting in
disruption of service or a business function provided by the
target computer. Denial of Service attacks may also seek to
crash the targeted machine (rather than simply consume
resources). Buffer overflow attacks occur when programs do
not provide appropriate checks of data stored in internal data
structures within the software that result in overwriting sur
rounding areas of memory. Attacks based on buffer overflows
might allow an attacker to execute arbitrary code on the target
system to invoke privileged access, destroy data, or perform
other undesirable functions. Malformed application data
attacks might result in an application containing a code sec
tion that, if executed, provides access to resources that would
otherwise be private to the application. Such attacks can
expose Vulnerabilities due to an incorrect implementation of
the application, for example by failing to provide appropriate
data validity checks, or allowing data stream parsing errors,
and the like.
0005. Many of the conventional malicious programs and
mechanisms for attack of computer systems, such as viruses
and worms, include the ability to redistribute themselves to
other computer systems or devices within a computer net
work, Such that several computers become infected and expe
rience the malicious processing activities discussed above.
Some conventional attempts to prevent redistribution of mali
cious programs include implementing malicious program
detection mechanisms such as virus detection software within
firewalls or gateways between different portions of net
worked computer systems in order to halt propagation of
malicious programs to Sub-networks.

SUMMARY

0006 Conventional technologies for providing computer
security suffer from a variety of deficiencies. In particular,
conventional technologies for providing computer security
are limited in that conventional security Software programs
rely on the ability to periodically remotely receive informa
tion such as virus definitions that allow the conventional
security Software programs to identify and quarantine mali
cious programs. Many of the most common conventional
forms of security Software Such as virus definitions programs
rely upon obtaining the periodic virus definition updates from
a centralized server accessed over the Internet that is main
tained by the vendor of the security software. As a result, the
most recent virus definition updates only reflects those
viruses that have been recently detected, fingerprinted in
inserted into the virus definition file by the vendor of that
maintains and distributes the virus definition files.
0007 Because conventional security software programs
require periodic updates, such conventional security Software

US 2010/02421 11 A1

programs are only as good as the most recent updates of the
malicious program definitions (e.g., virus definitions) that
individual instances of the conventional protection Software
have been able to receive. As an example, conventional virus
detection software will not recognize viruses created and
transmitted to a computer system that have not yet been
identified and/or defined within the most recent update of a set
of virus definitions obtained from a remote server. Accord
ingly, the malicious program code or data not defined within
the most recent virus definitions update may be successfully
inserted and executed within computer systems in a network
in order to perform some of the malicious processing dis
cussed above, even though Such systems are equipped with
conventional Security Software (i.e., virus detection soft
ware).
0008. As a result, conventional security software program
implementations are often several steps behind the prevention
and spread of new attacks that are constantly being created
and disseminated by malicious program developers. This
problem is compounded by the fact that modern malicious
programs are able to distribute themselves quickly to hun
dreds or thousands of computer systems on a network Such as
the Internet within a short amount of time, such as several
hours, whereas most conventional security Software only
obtains updates on a less frequent basis, such as nightly.
0009 Embodiments disclosed herein significantly over
come Such deficiencies and provide a system that includes a
probabilistic security policy re-posturing process. The proba
bilistic security policy re-posturing process rapidly identifies
malicious attacks and prevents the spread of Such attacks to
other computer systems. In effect, embodiments disclosed
herein provide for a self-healing computer network system.
Embodiments disclosed herein include one or more security
agents that operate within individual host computer systems
in a network. The security agents can interact with a manage
ment center to obtain a security policy that contains a set of
rules that indicate types of operations that may be allowed or
disallowed within computer system. Once a security agent
has obtained the security policy, the security agent operates a
plurality of security interceptors that can watch over and
monitor processing operations performed by various Soft
ware and hardware components within the host computer
system that that security agent protects. The security agent
provides security to a computerized device by detecting pro
cessing outcomes produced via operation of a sequence of
related processing operations within the computerized
device. As an example, processing operations related to an
inbound connection to a Web server can be monitored by
various interceptors operating within different parts of the
computer system's operating system and application layer
code in order to detect the related sequence of processing
operations that the inbound Web server connection attempt
triggers. Each interceptor detects a specific event and trans
fers that event to an event correlation engine that records the
processing outcomes and the sequence of related processing
operations in a security history. The event correlation engine
identifies a security violation when one of the detected pro
cessing operations in the security history produces a process
ing outcome that violates a security policy. This may be
before, during or after occurrence of an undesired processing
outcome within computer system Such as a system crash,
system error, protection violation, process disruption or other
Such undesired action as defined within the security policy.
The security agent is then able to Subsequently detect

Sep. 23, 2010

attempted performance of a similar sequence of related pro
cessing operations that attempt to produce at least one pro
cessing outcome that violates the security policy. In response,
the security agent denies operation of at least a portion of the
sequence of related processing operations within the comput
erized device to avoid violation of the security policy. The
security agents can also mark or otherwise identify sequences
of processing operations that led up to the security violation
as a disallowed sequence of processing operations and can
disseminate this information to other security agents operat
ing on other host computer systems in the network in real
time (e.g., upon detection) in order to spread the knowledge of
the behavior or processing pattern that the malicious attack
attempted to perform on the computer system the detected the
attack, so that other computer systems will not be vulnerable
to the attack.

00.10 Embodiments disclosed herein include a computer
system executing a probabilistic security policy re-posturing
process. The probabilistic security policy re-posturing pro
cess defines a set of key events to be monitored by at least one
agent. The probabilistic security policy re-posturing process
creates a graphical model. Such as a Bayesian Network, for
the set of key events. The probabilistic security policy re
posturing process observes the set of key events. In one
embodiment, the set of key events are related to each other. In
another embodiment, the set of key events are not related to
each other. In yet another embodiment, the set of key events
have a causal relationship with each other. The key events are
observed, and inputted into the Bayesian Network. Using the
resulting data, the probabilistic security policy re-posturing
process infers a degree of security attack on the computer
system, and adjusts the security policy accordingly.
0011 Embodiments disclosed herein include a computer
system executing a probabilistic security policy re-posturing
process. The probabilistic security policy re-posturing pro
cess defines at least one key event to be monitored by at least
one agent, and creates a creating a graphical model for the at
least one key event. The probabilistic security policy re-pos
turing process observes the at least one key event, and infers
a degree of attack on the computer system based on an obser
Vation of the at least one key event in conjunction with a result
of an effect the at least one key event has on the graphical
model. The probabilistic security policy re-posturing process
then adjusts a security policy based on an output of the graphi
cal model.

0012. During an example operation of one embodiment,
Suppose the probabilistic security policy re-posturing process
is monitoring a computer system. The probabilistic security
policy re-posturing process defines a set of key events, includ
ing, for example, a buffer overflow, and creates a graphical
model. Such as a Bayesian Network, that infers a degree of
probability of an attack on the computer system, based on the
occurrence of a buffer overflow. The probabilistic security
policy re-posturing process observes the activity on the com
puter system, and detects an occurrence of a buffer overflow.
The probabilistic security policy re-posturing process infers a
degree of attack on the computer system, for example, fifty
percent, based on the buffer overflow, and the result of input
ting the instance of the buffer overflow into the Bayesian
Network. Based on the probability that there is an attack on
the computer system, the probabilistic security policy re
posturing process adjusts the security policy on the computer
system. In one embodiment, the security policies of other

US 2010/02421 11 A1

computer systems also protected by the probabilistic security
policy re-posturing process are also adjusted.
0013. Other embodiments disclosed herein include any
type of computerized device, workstation, handheld or laptop
computer, or the like configured with software and/or cir
cuitry (e.g., a processor) to process any or all of the method
operations disclosed herein. In other words, a computerized
device Such as a computer or a data communications device or
any type of processor that is programmed or configured to
operate as explained herein is considered an embodiment
disclosed herein.

0014. Other embodiments that are disclosed herein
include Software programs to perform the steps and opera
tions summarized above and disclosed in detail below. One
Such embodiment comprises a computer program product
that has a computer-readable medium including computer
program logic encoded thereon that, when performed in a
computerized device having a coupling of a memory and a
processor, programs the processor to perform the operations
disclosed herein. Such arrangements are typically provided as
Software, code and/or other data (e.g., data structures)
arranged or encoded on a computer readable medium such as
an optical medium (e.g., CD-ROM), floppy or hard disk or
othera medium Such as firmware or microcode in one or more
ROM or RAM or PROM chips or as an Application Specific
Integrated Circuit (ASIC). The software or firmware or other
Such configurations can be installed onto a computerized
device to cause the computerized device to perform the tech
niques explained herein as embodiments disclosed herein.
0015. It is to be understood that the system disclosed
herein may be embodied strictly as a software program, as
Software and hardware, or as hardware alone. The features, as
explained herein, may be employed in data communications
devices and other computerized devices and Software systems
for such devices such as those manufactured by Cisco Sys
tems, Inc. of San Jose, Calif.

BRIEF DESCRIPTION OF THE DRAWINGS

0016. The foregoing and other objects, features and
advantages disclosed herein will be apparent from the follow
ing description of particular embodiments disclosed herein,
as illustrated in the accompanying drawings in which like
reference characters refer to the same parts throughout the
different views. The drawings are not necessarily to scale,
emphasis instead being placed upon illustrating the principles
disclosed herein.
0017 FIG. 1 illustrates an example configuration of a net
work environment that includes a security system configured
as disclosed herein.
0018 FIG. 2 illustrates example architecture of the com
puterized device configured with a security system in one
example configuration.
0019 FIG. 3 illustrates a flowchart of a procedure per
formed by the system of FIG. 1 when the probabilistic secu
rity policy re-posturing process defines at least one key event
to be monitored by at least one agent, according to one
embodiment disclosed herein.
0020 FIG. 4 illustrates a flowchart of a procedure per
formed by the system of FIG. 1 when the probabilistic secu
rity policy re-posturing process defines at least one key event
to be monitored by at least one agent, and creates a graphical
model for the at least one key event, according to one embodi
ment disclosed herein.

Sep. 23, 2010

0021 FIG. 5 illustrates a flowchart of a procedure per
formed by the system of FIG. 1 when the probabilistic secu
rity policy re-posturing process creates a graphical model for
the at least one key event, such as a Bayesian network, for use
in detecting the degree of attack on the computer system,
according to one embodiment disclosed herein.
0022 FIG. 6 illustrates a flowchart of a procedure per
formed by the system of FIG. 1 when the probabilistic secu
rity policy re-posturing process observes the at least one key
event, according to one embodiment disclosed herein.
0023 FIG. 7 illustrates a flowchart of a procedure per
formed by the system of FIG. 1 when the probabilistic secu
rity policy re-posturing process infers a degree of attack on
the computer system based on an observation of the at least
one key event in conjunction with a result of an effect the at
least one key event has on the graphical model, according to
one embodiment disclosed herein.

DETAILED DESCRIPTION

0024. Embodiments disclosed herein include a computer
system executing a probabilistic security policy re-posturing
process. The probabilistic security policy re-posturing pro
cess defines a set of key events to be monitored by at least one
agent. The probabilistic security policy re-posturing process
creates a graphical model. Such as a Bayesian Network for the
set of key events. The probabilistic security policy re-postur
ing process observes the set of key events. In one embodi
ment, the set of key events are related to each other. In another
embodiment, the set of key events are not related to each
other. In yet another embodiment, the set of key events have
a causal relationship with each other. The key events are
observed, and inputted into the graphical model. Using the
resulting data, the probabilistic security policy re-posturing
process infers a degree of security attack on the computer
system, and adjusts the security policy accordingly.
0025 Embodiments disclosed herein include a computer
system executing a probabilistic security policy re-posturing
process. The probabilistic security policy re-posturing pro
cess defines at least one key event to be monitored by at least
one agent, and creates a creating a graphical model for the at
least one key event. The probabilistic security policy re-pos
turing process observes the at least one key event, and infers
a degree of attack on the computer system based on an obser
Vation of the at least one key event in conjunction with a result
of an effect the at least one key event has on the graphical
model. The probabilistic security policy re-posturing process
then adjusts a security policy based on an output of the graphi
cal model.
0026 FIG. 1 illustrates an example computer networking
environment 100 suitable for use in explaining example
embodiments disclosed herein. The computer networking
environment 100 includes a computer network 105 such as a
local area network (LAN) that interconnects a security man
agement computer system 115, an edge router 107 and a
plurality of host computer systems 110, each of which oper
ates (e.g., executes, runs, interprets or otherwise performs) a
agent 150 configured as disclosed herein. Each agent 150 is
running an instance of the probabilistic security policy re
posturing process 155. The security management computer
system 115 also operates a management center application
160 that operates as disclosed herein. The edge router 107
couples the network 105 to a wide area network (WAN) 108
such as the Internet that allows communication between the
computer systems 110, 115 and other computers worldwide.

US 2010/02421 11 A1

Note that the management center computer 115 may be iso
lated form the WAN 108 by a firewall that is not shown in this
example.
0027. The host computers 110 may be any type of com
puter system, workstation, server (e.g., web server), personal
computer, laptop, mainframe, personal digital assistant
device, general purpose or dedicated computing device or the
like that operate any type of Software, firmware or operating
system. They may be physically or wirelessly coupled to the
network 105 to support communications. The security agents
150 and management center application 160 operate to
dynamically detect and prevent malicious attacks on the com
puters 110 without requiring the security agents 150 to con
tinuously and periodically download signature or virus defi
nition files. Generally, an administrator 103 installs the
security agents 150 (including the probabilistic security
policy re-posturing process 155) on the computer systems
110 that are to be protected and they are responsible for
enforcing the appropriate security policy on those systems.
0028. The security agents 150 (including the probabilistic
security policy re-posturing process 155) have the ability to
learn what causes security violations such as malicious
attacks by monitoring, analyzing and recording processing
behavior and events of the computer system 110 that occur
prior to the security violation taking place, in order to prevent
such events from occurring in the future. In other words, the
security system disclosed herein inable to monitor and record
processing behavior that results in an undesired processing
operation Such as a process exception, System crash or the like
and is able to analyze recorded processing operations that led
up to undesired operation or problem to identify the root
cause of the failure. Once identified, the security system is
able to prevent that single operation or sequence of process
ing operations identified as the root cause of failure from
executing again on that or other computer system in order to
avoid further security violations and to prevent Such attacks
on other computers. A security agent as disclosed herein can
thus learn of new types of malicious attacks without having
seen processing that causes such attacks in the past, and can
prevent that attack in the future. The ability to learn of pro
cessing associated with a new attack, identify its root cause,
and prevent it from happening in the future can occur without
external input (e.g., virus definition files) being received by a
computer system equipped with the security agent.
0029 Security agent operation as explained herein
includes being preprogrammed with certain known security
violations in a rule-based security policy and preventing them
from happening even a first time. In addition, such processing
also involves recording and post-processing security history
event data that result in a security violation (i.e., that was not
preprogrammed and thus unrecognizable a first time) to iden
tify a root cause (e.g., one or more processing operations or
events) of the security violation within the computer system
in order to prevent it from happening a second time. This can
involve performing a local comparison of several security
histories collected by a agent 150 in a single computer system
110 to identify a common pattern of processing activity that
results in an undesirable processing outcome (i.e., a security
violation). The security agents 150 can also transmit event
and security history information to the management center
115.

0030 The management center 115 acts as a central reposi
tory for all event log records generated by the security agents
150 and provides functions for monitoring and reporting. The

Sep. 23, 2010

management center 115 also correlates event records gener
ated from security agents 150 operating on different com
puter systems 110 for purposes of detecting Suspicious activ
ity in the network.
0031 FIG. 2 illustrates an architecture of a host computer
system 110 configured with a security agent in accordance
with one example embodiment. The security agent compo
nents include a plurality of security interceptors 200-1
through 200-7 including, for example, a network traffic inter
ceptor 200-1, the network application interceptor 200-2, a file
interceptor 200-3, a registry interceptor 200-4, a system call
interceptor 200-5, a buffer overflow interceptor 200-6 and a
data interceptor 200-7. The agent 150 in this example con
figuration also includes an event correlation engine 210, a
security agent user interface 213, and local event manager
214. The event correlation engine 210 stores a security policy
211 that contains rules that are used to instruct the agent 150
to protects the computer 110 on which it operates by inter
preting and enforcing the rules to restrict the operations that
may be performed by that computer 110. An administrator
103 uses the management center application 160 to create and
distribute security policies to each computer system 110 to be
protected.
0032. In one configuration, the network traffic interceptor
200-1 resides between a communications protocol compo
nent 226 (such as a TCP driver), and the network interface
card 224 or other communications interface. The network
traffic interceptor 200-1 looks at packets coming from the
network before they get to the native operating system TCP
stack and can detect malicious operations or instructions such
as a remote computer Scanning the computer system 110.
Such attacks can include, for example, a ping of death attack,
a TCP SYN flood attack, port scanning attacks and so froth.
Other security interceptors 200 can include packet intercep
tors, connection interceptors, file sharing interceptors, data
filter interceptors, registry interceptors, system call intercep
tors, and the like. The interceptors 200 can be installed and
executed by using, for example, windows registry keys that
create dependencies on standard Operating Systems (OS)
dynamically linked libraries (dlls) so that the interceptor dlls
200 are loaded along with the appropriate windows dlls that
they monitor. The interceptors can thus serve as wrappers to
monitor processing operations of all calls made to any spe
cific computer components.
0033. This example configuration also includes several
components that operate within the computer system 110 that
are not part of the security agent architecture itself. In par
ticular, this example configuration includes one or more soft
ware applications 220 that execute within a user space 240
within the computer system 110. The computer system 110
further operates several components in kernel space 242 Such
as one or more device peripheral device drivers 222, a net
work interface driver 224, communications protocol compo
nents 226, and an operating system 228. It is to be understood
that the components 222 through 228 are illustrated as sepa
rate for purposes of description of operations disclosed
herein, and that they may be combined together, such as an
operating system that includes device drivers 222 and com
munication protocol components 226.
0034 Generally, according to operations of embodiments
disclosed herein, the interceptors 200 monitor processing
activities and collect and report event data 212 to the event
correlation engine 210 for the respective standard processing
components 220 through 228 within the user and kernel

US 2010/02421 11 A1

spaces 240 and 242. The event correlation engine 210 stores
the event data within one or more security histories 216.
Event data 212 can include things such as the identification of
new connection requests made to the network interface driver
224, as detected by the network traffic interceptor 200-1. As
another example, the application file interceptor 200-2 can
identify a processing activity Such as an application 220
accessing a particular file via an operating system call and
report this as event data 212 to the event correlation engine
210. There may be other interceptors 200 besides those illus
trated in FIG. 2 and thus the interceptors 201 through 206 are
shown by way of example only. The event correlation engine
210 correlates the event data 212 against the security policy
211 in order to provide an indication to the interceptors 200 of
whether or not the processing activity associated with the
event data should be allowed. The event correlation engine
210 can also instruct the interceptors 200 to collect more or
less event data 212 as needed. By being able to track opera
tions, in the event of an undesirable processing operation, the
behavior of the computer system 110 can be analyzed and the
series of events that took place that lead up the undesirable
processing operation can be "fingerprinted” and marked so
that if they occur again, they can be prevented prior to their
full execution. In addition, by recording traces from multiple
failures and determining a commonality between them, if
several computer systems suffer similar attacks, a common
ality between the attacks can be identified and prevented in
the future, even in situations where the attacking program
morphs its identity or changes it content.
0035. Further details of configurations explained herein
will now be provided with respect to a flow chart of process
ing steps that show the high leveloperations disclosed herein.
0036 FIG. 3 is a flowchart of the steps performed by the
probabilistic security policy re-posturing process 155 when it
defines at least one key event to be monitored by at least one
agent 150.
0037. In step 200, the probabilistic security policy re-pos
turing process 155 defines at least one key event to be moni
tored by at least one agent 150. In an example configuration,
the probabilistic security policy re-posturing process 155
defines a set of key events to be monitored by an agent 150.
The set of key events are defined, for example, with help of
group oftop security experts/analysts. The probabilistic Secu
rity policy re-posturing process 155 hooks key processing
points for both the computer system, and applications execut
ing on the computer system. The processing points are
defined as potential security enforcement points, for example,
invoking another application, modifying the system configu
ration, etc. The processing points can also include detection
points, for example, process exception handling, Buffer
Overflow detection, etc. In an example embodiment, a subset
of these observation points are used to probabilistically deter
mine if an attack on a computer system is in progress or
mal-ware is executing locally on the computer system.
0038. In step 201, the probabilistic security policy re-pos
turing process 155 creates a graphical model for the at least
one key event. In an example configuration, for every key
event defined, the probabilistic security policy re-posturing
process 155 creates a graphical model. Such as a directed
graphical model, that identifies casual relations between the
monitored events. When network is created, initial subjective
probabilities are defined using expert opinions, and available
Supporting statistical data of past attacks on computer sys
tems. In an example configuration, the probability of an attack

Sep. 23, 2010

on the computer system increases (or possibly decreases)
based upon observation of the key events. In an example
embodiment, the graphical model represents a set of events
wherein distinct Subsets are assigned a probability.
0039. In step 202, the probabilistic security policy re-pos
turing process 155 observes the at least one key event. In an
example configuration, the agent 150, executing the probabi
listic security policy re-posturing process 155, monitors
events on the computer system. As events occur, the proba
bilistic security policy re-posturing process 155 identifies key
events that could be an indication of a security attack on the
computer system. In an example configuration, the probabi
listic security policy re-posturing process 155 observes a key
event. Such as an instance of a software application being
installed on the computer system.
0040. In step 203, the probabilistic security policy re-pos
turing process 155 infers a degree of attack on the computer
system, based on an observation of the at least one key event,
in conjunction with a result of an effect the at least one key
event has on the graphical model. In an example configura
tion, the probabilistic security policy re-posturing process
155 observes a set of key events occurring on the computer
system. The key events observed by the probabilistic security
policy re-posturing process 155, can be compiled in
sequence, or compiled as a set of key events, yielding differ
ent probabilities of an attempted attack on the computer sys
tem. For example, the probabilistic security policy re-postur
ing process 155 detects a process exception. The probabilistic
security policy re-posturing process 155 may have assigned
the process exception a probability of for example, five per
cent, within the graphical model. In this example, a process
exception could merely be the result of a poorly written
application. In this same example, the probabilistic security
policy re-posturing process 155 detects code executing from
a buffer. Code executing from a buffer may indicate a buffer
overflow attack, but it could also easily be licensing code
being executed. Thus, the probabilistic security policy re
posturing process 155 assigns code executing from a buffer a
low probability of being an exploit, for example, twenty five
percent. However, when the probabilistic security policy re
posturing process 155 observes both the process exception
and a buffer overflow, the graphical model tabulates these two
occurrences as Suspicious, and assigns the probability of an
attack on the computer system to a higher percentage, for
example ninety percent. In an example embodiment, the
probabilistic security policy re-posturing process 155 identi
fies a threshold associated with an attack on the computer
system. Once the result of the observed key events, in con
junction with the output of the graphical model Surpasses a
specified threshold, the probabilistic security policy re-pos
turing process 155 indicates that an attack on the computer
system is likely.
0041. In step 204, the probabilistic security policy re-pos
turing process 155 adjusts a security policy based on an
output of the graphical model. In an example configuration,
the probabilistic security policy re-posturing process 155
identifies a degree of attack on the compute system based on
observed key events in conjunction with the graphical model.
In response, the probabilistic security policy re-posturing
process 155 modifies the security policy. As the threat of
attack increases, tighter security policies can be employed.
Likewise, as the threat of attack decreases, the security poli
cies can be relaxed.

US 2010/02421 11 A1

0042. In step 205, the probabilistic security policy re-pos
turing process 155 transitions to a new security posture. In an
example configuration, the probabilistic security policy re
posturing process 155 defines security postures. An example
ofa security posture may be, “when an attack on the computer
system is detected, and the result of the graphical model
indicates the probability of an attack exceeds seventy percent,
deny all new network connections”. Thus, when the probabi
listic security policy re-posturing process 155 identifies an
attack on the computer system, the probabilistic security
policy re-posturing process 155 transitions to a new security
posture. That new security posture may tighten or relax the
level of security on the computer system.
0043 FIG. 4 is a flowchart of the steps performed by the
probabilistic security policy re-posturing process 155, when
it defines at least one key event to be monitored by at least one
agent 150, and creates a graphical model for the at least one
key event.
0044. In step 206, the probabilistic security policy re-pos
turing process 155 defines at least one key event to be moni
tored by at least one agent 150. In an example configuration,
the probabilistic security policy re-posturing process 155
defines a set of key events to be monitored by an agent 150.
The probabilistic security policy re-posturing process 155
hooks key processing points for both the computer system
and applications executing on the computer system. In
another example configuration, more than one agent 150 can
monitor the set of key events. Examples of key events are
detailed in sub step 207.
0045. In step 207, the probabilistic security policy re-pos
turing process 155 defines the at least one key event to include
at least one of:
0046 i) a system call
0047 ii) a buffer overflow
0048 iii) an instance of downloaded content
0049 iv) an instance of CPU utilization
0050 V) at least one network connection
0051 vi) a process exception
0052 vii) a system configuration modification
0053 viii) an instance of a new software program instal
lation
0054 ix) an instance of a new service installation
0055 x) a first time instance of a application invocation
0056 xi) an instance of mobile code execution
0057 xii) an instance of at least one root-kit detection
0058 xiii) an instance of memory utilization
0059 xiv) at least one transaction failure and
0060 xv) at least one loss of service.
Other system events can be defined as key events.
0061. In step 208, the probabilistic security policy re-pos
turing process 155 creates a graphical model for the at least
one key event. In an example embodiment, the probabilistic
security policy re-posturing process 155 identifies a set of key
events. The probabilistic security policy re-posturing process
155 then creates a graphical model for the set of key events.
For example, the probabilistic security policy re-posturing
process 155 creates a graphical model that infers an attack is
occurring on the computer system if a process exception, a
buffer overflow, and high CPU utilization occur at the same
time on the computer system.
0062. In step 209, the probabilistic security policy re-pos
turing process 155 assigns a weight to the at least one key
event within the graphical model. In an example embodiment,
the probabilistic security policy re-posturing process 155

Sep. 23, 2010

identifies a set of key events. The probabilistic security policy
re-posturing process 155 then creates a graphical model for
the set of key events, and assigns a weight to each of the key
events within the graphical model. For example, the probabi
listic security policy re-posturing process 155 may assign a
weight of a five percent chance of an attack on the computer
system if the probabilistic security policy re-posturing pro
cess 155 observes an instance of a new software application
installation. The probabilistic security policy re-posturing
process 155 may assign a weight of fifteen percent chance of
an attack on the computer system if the probabilistic security
policy re-posturing process 155 observes high CPU utiliza
tion. The probabilistic security policy re-posturing process
155 may assign a weight of a fifty percent chance of an attack
on the computer system if the probabilistic security policy
re-posturing process 155 observes an instance of a new soft
ware installation, and high CPU utilization on the computer
system. However, the probabilistic security policy re-postur
ing process 155 may only assign a weight of a twenty five
percent chance of an attack on the computer system if the
probabilistic security policy re-posturing process 155
observes an instance of a new software installation, and a
process exception on the computer system.
0063. In step 210, the probabilistic security policy re-pos
turing process 155 identifies a step in a process at which the at
least one key event occurred. In an example embodiment, the
probabilistic security policy re-posturing process 155 creates
a graphical model for the set of key events, and assigns a
weight to each key event, based on the step in the process at
which the key event occurred. For example, a modification to
a system configuration that occurs after a first time invocation
of a software application is more likely to be a security attack
on the computer system than a modification to a system
configuration that occurs before a first time invocation of a
software application. Thus, the probabilistic security policy
re-posturing process 155 identifies the step in the process at
which the key event occurs, and assigns a weight to that key
event (within the graphical model), based on the step in the
process at which the key event occurs.
0064 FIG. 5 is a flowchart of the steps performed by the
probabilistic security policy re-posturing process 155, when
it creates a graphical model for the at least one key event.
0065. In step 211, the probabilistic security policy re-pos
turing process 155 creates a graphical model for the at least
one key event. In an example configuration, for every key
event defined, the probabilistic security policy re-posturing
process 155 creates a graphical model. Such as a directed
graphical model, that identifies casual relations between the
monitored events.
0066. In step 212, the probabilistic security policy re-pos
turing process 155 creates a Bayesian network for use in
detecting the degree of attack on the computer system. In an
example configuration, the probabilistic security policy re
posturing process 155 creates a directed graphical model,
Such as a Bayesian Network to detect a degree of attack on the
computer system. A Bayesian Network is a technique from
the field of artificial intelligence that calculates probability
based on a group of related or influential signs. The probabi
listic security policy re-posturing process 155 identifies a set
of key events, and assigns weights to key event for use with
the Bayesian Network.
0067. As the probabilistic security policy re-posturing
process 155 observes the key events occurring on the com

US 2010/02421 11 A1

puter system, the Bayesian Network is used to compute the
degree of attack on the computer system.
0068 Alternatively, in step 213, the probabilistic security
policy re-posturing process 155 creates at least one subjective
initial probability for each node in a plurality of nodes within
the graphical model. In an example embodiment, the proba
bilistic security policy re-posturing process 155 creates a
graphical model for use in detecting attacks on the computer
system. When network is created, the probabilistic security
policy re-posturing process 155 defines initial subjective
probabilities using expert opinions, and available Supporting
statistical data of past attacks on computer systems. The ini
tial subjective probabilities are defined for each node on the
graphical model defined by the probabilistic security policy
re-posturing process 155.
0069. In step 214, the probabilistic security policy re-pos
turing process 155 adjusts the at least one subjective initial
probability of at least one node within the plurality of nodes,
using at least one statistical datum associated with a previous
security attack. The probability of an attack on the computer
system increases (or possibly decreases) based upon obser
Vation of the key events. Thus, in an example configuration,
the probabilistic security policy re-posturing process 155
adjusts the Subjective initial probabilities using statistical
data associated with previous security attacks on the com
puter system.
0070 FIG. 6 is a flowchart of the steps performed by the
probabilistic security policy re-posturing process 155, when
it observes the at least one key event.
0071. In step 215, the probabilistic security policy re-pos
turing process 155 observes the at least one key event. In an
example configuration, the agent 150, executing the probabi
listic security policy re-posturing process 155, monitors
events on the computer system. As events occur, the proba
bilistic security policy re-posturing process 155 identifies key
events that could be an indication of a security attack on the
computer system. In an example configuration, the probabi
listic security policy re-posturing process 155 observes a key
event, such as an instance of a software application being
installed on the computer system.
0072. In step 216, the probabilistic security policy re-pos
turing process 155 detects the at least one key event is asso
ciated with a set of key events. In an example configuration,
the probabilistic security policy re-posturing process 155
detects a single key event. The probabilistic security policy
re-posturing process 155 then determines the single key event
is associated with a set of key events. The association of the
single key event with the set of key events provides the proba
bilistic security policy re-posturing process 155 with addi
tional information that may help in determining whether an
attackis occurring on the computer system, and may also help
the probabilistic security policy re-posturing process 155
determine the root cause of the attack (if any) on the computer
system.
0073. In step 217, the probabilistic security policy re-pos
turing process 155 identifies the at least one key event is
related to the set of key events. In an example configuration,
the probabilistic security policy re-posturing process 155
detects a single key event, and then determines the single key
event is associated with a set of key events. For example, the
probabilistic security policy re-posturing process 155 detects
an unfamiliar system call (i.e., the single key event), and a
buffer overflow and process exceptions (i.e., a set of key
events). The probabilistic security policy re-posturing pro

Sep. 23, 2010

cess 155 determines that the unfamiliar system call (i.e., the
single key event) is related to the buffer overflow and process
exceptions (i.e., a set of key events) in that the buffer overflow
and process exceptions (i.e., a set of key events) occurred after
the unfamiliar system call (i.e., the single key event) occurred.
Thus, the probabilistic security policy re-posturing process
155 determines a cause and effect between the unfamiliar
system call (i.e., the single key event) and the buffer overflow
and process exceptions (i.e., a set of key events). In one
example embodiment, the set of key events is an ordered set of
key events. In another example embodiment, the set of key
events is an unordered set of key events.
0074 Alternatively, in step 218, the probabilistic security
policy re-posturing process 155 identifies the at least one key
event is not related to the set of key events. In an example
configuration, the probabilistic security policy re-posturing
process 155 detects a single key event, and then determines
the single key event is not associated with a set of key events.
For example, the probabilistic security policy re-posturing
process 155 detects high CPU utilization (i.e., the single key
event), and several network connections (i.e., a set of key
events). The probabilistic security policy re-posturing pro
cess 155 determines that high CPU utilization (i.e., the single
key event) is not related to the instance of several network
connections (i.e., a set of key events). Thus, the probabilistic
security policy re-posturing process 155 determines that
while high CPU utilization (i.e., the single key event) and the
instance of several network connections (i.e., a set of key
events) may potentially be separate instances of an attack on
the computer system, they are not related to the (potentially)
same attack on the computer system.
(0075 Alternatively, in step 219, the probabilistic security
policy re-posturing process 155 observes an order of the set of
key events, the order including a placement of the at least one
key event within the order of the set of key events. In an
example configuration, the probabilistic security policy re
posturing process 155 detects a set of key events occurring.
The probabilistic security policy re-posturing process 155
observes the order in which the key events occurred to deter
mine if the occurrence of those key events indicates an attack
on the computer system. For example, an instance of a first
time invocation of a software application, followed by high
CPU utilization, followed by several strange system calls
could indicate a higher probability of an attack on the com
puter system. However, an instance of high CPU utilization
followed by a first time invocation of a software application
would indicate that the instance of high CPU utilization is an
indication of a lower probability of an attack on the computer
system.
(0076 FIG. 7 is a flowchart of the steps performed by the
probabilistic security policy re-posturing process 155, when
it infers a degree of attack on the computer system.
0077. In step 220, the probabilistic security policy re-pos
turing process 155 infers a degree of attack on the computer
system based on an observation of the at least one key event in
conjunction with a result of an effect the at least one key event
has on the graphical model. In an example configuration, the
probabilistic security policy re-posturing process 155
observes key events, and applies these key events to the
graphical model. The key events are weighted within the
graphical model, and the resulting effect of the key events
determines the degree of attack on the computer system. It is
the combination of the ability to hook and intercept key events
on the computer system and the graphical model (including

US 2010/02421 11 A1

the learning abilities of the graphical model) that provides a
very unique solution to determining the degree of attack on
the computer system.
0078. In step 221, the probabilistic security policy re-pos
turing process 155 utilizes the Bayesian network to infer the
degree of attack on the computer system. In an example
embodiment, the probabilistic security policy re-posturing
process 155 creates a Bayesian network for use in detecting
the degree of attack on the computer system. The probabilistic
security policy re-posturing process 155 creates a Bayesian
Network to detect a degree of attack on the computer system,
identifies a set of key events, and assigns weights to key event
for use with the Bayesian Network. As the probabilistic secu
rity policy re-posturing process 155 observes the key events
occurring on the computer system the Bayesian Network is
used to infer the degree of attack on the computer system.
0079 Alternatively, in step 222, the probabilistic security
policy re-posturing process 155 correlates the degree of
attack to a configurable limit. In an example configuration,
the probabilistic security policy re-posturing process 155
weights each key event within the graphical model to deter
mine a degree of attack on the computer system. The proba
bilistic security policy re-posturing process 155 correlates the
degree of attack to a configurable limit. Such as a percentage
of probability that an attack is occurring on the computer
system.
0080. In step 223, the probabilistic security policy re-pos
turing process 155 initializes the configurable limit of the
degree of attack. In an example embodiment, the probabilistic
security policy re-posturing process 155 initializes the degree
a probability of an attack on the computer system to Zero. As
the probabilistic security policy re-posturing process 155
observes key events, the degree a probability of an attack on
the computer system is modified.
0081 Alternatively, in step 224, the probabilistic security
policy re-posturing process 155 defines the configurable limit
of the degree of attack as a range of configurable limits. In an
example configuration, the probabilistic security policy re
posturing process 155 defines the configurable limit of attack
on the computer system as a bounded limit. In another
example configuration, the probabilistic security policy re
posturing process 155 defines the configurable limit as a
range of configurable limits.
0082 Alternatively, in step 225, the probabilistic security
policy re-posturing process 155 modifies the degree of attack
on the computer system based on the observation of the at
least one key event. In an example configuration, the proba
bilistic security policy re-posturing process 155 observes a set
of key events. Based on the observation of the set of key
events, the probabilistic security policy re-posturing process
155 modifies the degree of attack on the computer system.
The probabilistic security policy re-posturing process 155
can increase or decrease the probability of an attack on the
computer system based on the observation of a single key
event, or a set of key events.
0083. While the system and method have been particularly
shown and described with references to configurations
thereof, it will be understood by those skilled in the art that
various changes in form and details may be made therein
without departing from the scope of the embodiments dis
closed herein encompassed by the appended claims. Accord
ingly, the present embodiments disclosed herein are not
intended to be limited by the example configurations pro
vided above.

Sep. 23, 2010

1.-20. (canceled)
21. A computerized method, comprising:
at a client security agent:

initializing probability settings, based on information
about known types of security attacks and represent
ing an initial level of a security policy;

detecting an occurrence of a key event from a plurality of
key events and collecting event data that represent
effects caused by the occurrence of the key event;

Selecting one or more first rules that take into consider
ation the effects caused by the occurrence of the key
event, and applying the one or more first rules to the
collected event data to compute one or more event
result values;

in response to determining that the one or more event
result values exceeded one or more corresponding
threshold values, modifying the probability settings
to increase the level of the security policy, applying
one or more second rules to the modified probability
settings and determining whether a new type of secu
rity attack has occurred;

wherein the method is performed by one or more proces
SOS.

22. The method of claim 21, wherein the plurality of key
events comprises any of

a system call, a buffer overflow, an instance of downloaded
content, an instance of CPU utilization, at least one
network connection, a process exception, a system con
figuration modification, an instance of a new software
program installation, an instance of a new service instal
lation, a first time instance of a application invocation,
an instance of mobile code execution, an instance of at
least one root-kit detection, an instance of memory uti
lization, at least one transaction failure, and at least one
loss of service.

23. The method of claim 21, wherein applying the one or
more first rules comprises assigning a weight to the key event.

24. The method of claim 21, wherein modifying the prob
ability settings comprises creating a Bayesian network model
configured to detect a degree of attack, and denying an opera
tion of a plurality of operations based, at least in part, on the
modified probability settings.

25. The method of claim 21, wherein detecting the occur
rence of the key event comprises observing an order in which
the key event occurred with respect to other events in the
plurality of key events.

26. A apparatus, comprising:
one or more processors;
a memory, encoded with one or more sequences of instruc

tions, which when executed by the one or more proces
Sors, cause the one or more processors to perform:

initializing probability settings, based on information
about known types of security attacks and representing
an initial level of a security policy;

detecting an occurrence of a key event from a plurality of
key events and collecting event data that represent
effects caused by the occurrence of the key event;

selecting one or more first rules that take into consideration
the effects caused by the occurrence of the key event, and
applying the one or more first rules to the collected event
data to compute one or more event result values;

in response to determining that the one or more event result
values exceeded one or more corresponding threshold
values, modifying the probability settings to increase the

US 2010/02421 11 A1

level of the security policy, applying one or more second
rules to the modified probability settings and determin
ing whether a new type of security attack has occurred.

27. The apparatus of claim 26, wherein the plurality of key
events comprises any of

a system call, a buffer overflow, an instance of downloaded
content, an instance of CPU utilization, at least one
network connection, a process exception, a system con
figuration modification, an instance of a new software
program installation, an instance of a new service instal
lation, a first time instance of a application invocation,
an instance of mobile code execution, an instance of at
least one root-kit detection, an instance of memory uti
lization, at least one transaction failure, and at least one
loss of service.

28. The apparatus of claim 26, wherein the memory is
further encoded with instructions, which when executed,
cause the one or more processors to perform assigning a
weight to the key event.

29. The apparatus of claim 26, wherein the memory is
further encoded with instructions, which when executed,
cause the one or more processors to perform creating a Baye
sian network model configured to detect a degree of attack,
and denying an operation of a plurality of operations based, at
least in part, on the modified probability settings.

30. The apparatus of claim 26, wherein the memory is
further encoded with instructions, which when executed,
cause the one or more processors to perform observing an
order in which the key event occurred with respect to other
events in the plurality of key events.

31. A computer readable storage medium storing one or
more sequences of instructions, which when executed by one
or more processors, cause the one or more processors to
perform:

initializing probability settings, based on information
about known types of security attacks and representing
an initial level of a security policy;

Sep. 23, 2010

detecting an occurrence of a key event from a plurality of
key events and collecting event data that represent
effects caused by the occurrence of the key event;

selecting one or more first rules that take into consideration
the effects caused by the occurrence of the key event, and
applying the one or more first rules to the collected event
data to compute one or more event result values;

in response to determining that the one or more event result
values exceeded one or more corresponding threshold
values, modifying the probability settings to increase the
level of the security policy, applying one or more second
rules to the modified probability settings and determin
ing whether a new type of security attack has occurred.

32. The computer readable storage medium of claim 31,
wherein the plurality of key events comprises any of

a system call, a buffer overflow, an instance of downloaded
content, an instance of CPU utilization, at least one
network connection, a process exception, a system con
figuration modification, an instance of a new software
program installation, an instance of a new service instal
lation, a first time instance of a application invocation,
an instance of mobile code execution, an instance of at
least one root-kit detection, an instance of memory uti
lization, at least one transaction failure, and at least one
loss of service.

33. The computer readable storage medium of claim 31,
further comprising instructions, which when executed, cause
assigning a weight to the key event.

34. The computer readable storage medium of claim 31,
further comprising instructions, which when executed, cause
creating a Bayesian network model configured to detect a
degree of attack, and denying an operation of a plurality of
operations based, at least in part, on the modified probability
Settings.

35. The computer readable storage medium of claim 31,
further comprising instructions, which when executed, cause
observing an order in which the key event occurred with
respect to other events in the plurality of key events.

c c c c c

