(54) 发明名称
Tat 与人野生型 P53 融合蛋白在毕赤酵母中的表达

(57) 摘要
本发明涉及一种融合蛋白质的制备，特别是涉及蛋白转导结构域 (Tat) 与人野生型 P53 融合蛋白 (Tat-p53) 的制备，以及纯化 Tat-p53 融合蛋白的方法。
1. 一种集天然 Tat 与人野生型 P53 的特性于一体的 Tat-P53 融合蛋白, 其特征在于: 所述融合蛋白包括与天然 Tat 氨基酸残基序列相同的区域和与人野生型 P53 氨基酸残基序列相同的另一区域, 或上述二区的功能同等物。

2. 根据权利要求 1 所述的集 Tat 与野生型 P53 的特性于一体的 Tat-P53 融合蛋白, 其特征在于: 所述与天然 Tat 氨基酸残基序列同源的区域位于融合蛋白的 N- 末端, 所述与人野生型 P53 氨基酸残基序列同源的另一区域位于融合蛋白的 C- 末端。

3. 根据权利要求 1 所述的集 Tat 与野生型 P53 的特性于一体的 Tat-P53 融合蛋白, 其特征在于: 所述与天然 Tat 氨基酸残基序列同源的区域位于融合蛋白的 C- 末端, 所述与人野生型 P53 氨基酸残基序列同源的另一区域位于融合蛋白的 N- 末端。

4. 编码权利要求 1-3 中任意一项限定的融合蛋白的 DNA 序列。

5. 携带权利要求 4 中所述 DNA 序列的重组表达载体。

6. 含权利要求 5 所述 DNA 的细菌、酵母、动物细胞和植物细胞等, 其中优选的是酵母细胞, 更优选的是毕赤酵母, 最优选的是毕赤酵母 X-33。
Tat 与人野生型 P53 融合蛋白在毕赤酵母中的表达

技术领域：
[0001] 本发明涉及一种融合蛋白的制备，特别是涉及蛋白导结构域 (Tat) 与人野生型 P53 融合蛋白 (Tat-p53) 的制备，以及纯化 Tat-p53 融合蛋白的方法。

背景技术：
[0002] 人类 P53 基因位于 17p13.1 染色体，全长 16 ～ 20kb，由 11 个外显子和 10 个内含子组成，是研究得最广泛，最深入的抑癌基因，也是迄今发现的与肿瘤相关性最高的基因。P53 基因编码产物即为 P53 蛋白，是一种核酸蛋白，由 393 个氨基酸组成，分子量为 43.7KDa。由于富含大量脯氨酸，在 SDS-PAGE 中显示的分子量为 53KDa，故命名为 P53，沿袭至今。P53 分为野生型和突变型，野生型 P53 (wild-type P53, wtP53) 是细胞中最重要的肿瘤抑制剂，在细胞生长过程中，以“分子警察”的身份监控细胞内 DNA 的状态，阻止受损 DNA 继续复制，抑制细胞恶性增殖，通过诱导生长停滞或细胞凋亡来抑制肿瘤细胞生长，维持细胞正常生长，保证遗传物质的稳定性。突变型 P53 是一种异常蛋白，能与人组织的各种病毒蛋白、热休克蛋白等结合成稳定的复合物，或通过突变、重排、丢失等形式失活，DNA 损伤不能被修复，细胞遗传物质不稳定，导致细胞恶性增殖。P53 基因是体内最重要的抑癌因子之一，人类恶性肿瘤中有一半以上存在 P53 基因的突变和缺失，它的结构改变和功能异常可能是这些肿瘤发生发展的重要环节之一。P53 蛋白是一种磷酸化蛋白，半衰期短，只有 20 ～ 30min，在正常细胞的细胞核中几乎检测不到。

[0004] 近年来发现一种蛋白导结构域 (Tat)，Tat 蛋白是人类免疫缺陷病毒 I 型 (HIV-I) 的反式激活因子，它是一种正调控蛋白，可以很大程度地提高 HIV-I 基因组的复制和转录水平，还能调节基因以及细胞的行为。作为新发现的一种蛋白导结构域，Tat 蛋白能高效地介导与其共价连接的 DNA、多肽、蛋白质等分子进入几乎所有所有的组织和细胞，甚至可以通过血脑屏障，转导效率高且对细胞几乎没有损伤，并且能保持蛋白的生物活性。Tat 融合蛋白系统被认为是一种很有前途的高效运载工具，在基础医学研究和临床治疗方面都有着非常广阔的应用前景。Tat 蛋白可以引导多种多肽和蛋白质进入几乎所有的靶细胞，这即是 Tat 蛋白的转导作用，又称为内化作用。Tat 蛋白的转导作用主要依赖于多肽或蛋白质的浓度，而不同于一般的通道、受体、内吞作用的的入胞方式。因此具有这一功能，Tat 可被用来作为介导外源蛋白通过细胞膜的运载工具，因此日益受到人们的重视。Tat 介
导的蛋白转导过程不依赖于转运蛋白和受体，也不需要能量，即使在4℃下仍然可以顺利进行。目前，推测这一过程和蛋白转导域中酸性氨基酸（精氨酸和赖氨酸）的存在有关，这些氨基酸带有很强的正电荷，可能通过直接与带负电荷的细胞膜脂类相互作用而介导穿膜过程。这也使得其可以导入几乎所有的细胞，甚至还可以通过血脑屏障。近来，应用这一技术已成功将分子量约15～120KD的数十种融合蛋白导入细胞内。操作中只需将与Tat-PTD融合的分子直接加入到组织培养介质中，15min内细胞内可达到最大浓度，且每个细胞内的蛋白浓度近乎相同。由此，应用Tat转导外源蛋白既可以通过控制作用时间精确控制细胞内的蛋白浓度，通常20～200μmol/L的蛋白终浓度即可产生生物学表型。因此，与将蛋白引入细胞的传统方法如微注射、穿孔蛋白及脂质体法等相比，Tat-PTD介导的蛋白转导有着显著的优越性。目前，对Tat蛋白能够有效的介导基因、多肽、蛋白质以及一些其他物质进入细胞的机制还不是很清楚。相关研究推测，它以低亲和力与细胞上的受体相结合，通过破坏细胞质膜，以非内吞途径转导外源物质进入细胞内部。

【0005】本发明获得的Tat-p53融合蛋白可通过Tat介导野生型p53蛋白进入细胞发挥作用，既不影响p53蛋白的活性，又可避免通过载体导入p53到细胞内引起的不安全因素，为肿瘤的治疗开辟了一个全新的设计思路与途径。

【0006】毕赤酵母表达系统作为近新发展起来的新型表达系统具有很多显著优点：（1）高表达，由于表达载体利用特有的AOX1启动子，是目前最强、调控机制最严格的启动子之一，用甲醇可以严格地调控表达。（2）高稳定，表达质粒能在性组的特定位点以单拷贝或多拷贝的形式稳定整合，完备的发酵方法，可以高密度连续培养，其转化子能够非常稳定地表达外源蛋白质，产量高。（3）高分泌，将白蛋白信号肽用于毕赤酵母表达载体，具有很好的分泌效果，大量外源蛋白被分泌到培养基中，而酵母本身只分泌少量蛋白，这样有利于产品的分离。（4）对表达的外源蛋白进行信号序列的加工、蛋白质折叠、二硫键形成、某些脂质的加入、糖基化等翻译后修饰，更接近于哺乳动物细胞。（5）遗传背景清楚，生长繁殖迅速，工艺简单，生产成本低，适用于工业化生产。基于上述原因，我们选择适用于大规模工业化生产的毕赤酵母重组工程Tat-p53融合蛋白真核表达体系。

发明内容：

【0007】本发明旨在用分子克隆的方法制备一种蛋白转导结构域（Tat）与人野生型P53的融合蛋白，使P53突破细胞膜而进入细胞内发挥作用。

【0008】本发明的一个目的是提供一种集Tat与人野生型P53的特性于一体的Tat-p53融合蛋白。

【0009】本发明的Tat与人野生型P53融合蛋白是包括与天然Tat序列相同区域和与人野生型P53序列相同的另一区域。

【0010】在本发明的融合蛋白中，可以是与天然Tat同源的区域位于融合蛋白的N-端，与人野生型P53同源的区域位于融合蛋白的C-端；也可以是与天然Tat同源的区域位于融合蛋白的C-端，与人野生型P53同源的区域位于融合蛋白的N-端。

【0011】本发明的另一目的是提供编码本发明融合蛋白的DNA序列。

【0012】包括与天然Tat氨基酸残基序列相同的区域和与人野生型P53氨基酸残基序列相同的区域构成的融合蛋白的DNA序列。
说明书

[0013] 本发明的又一个目的是提供用于表达本发明融合蛋白的 DNA 构建体，该构建体包括 pPICZa 质粒、pET 系列载体、pcDNA3.1 质粒等。

[0014] 本发明的另一个目的是提供用于表达本发明融合蛋白编码基因的宿主。

[0015] 本发明的宿主可以是被重组表达载体或重组表达载体的一部分转化，含有本发明融合蛋白编码基因的细菌、酵母、动物细胞或植物细胞；其中优选的是酵母，更优选的是毕赤酵母，最优选的是毕赤酵母 X-33。

[0016] 本发明将 Tat 与人野生型 P53 融合，所形成的融合蛋白既保留了 Tat 能高效地介导与共价连接的多肽、蛋白质等分子跨膜组织和细胞的功能，又保留了野生型 P53 抑制肿瘤的活性。因此本发明的融合蛋白既可以通过 Tat 介导 P53 突破细胞膜而进入细胞内，又可以使进入细胞内的 P53 具有抑制肿瘤的活性。

[0017] 编码天然 Tat 与编码人野生型 P53 的多聚核苷酸可以用本领域周知的方法，如 PCR、RT-PCR 方法，人工合成的方法和构建筛选 cDNA 文库的方法等获得，用作 PCR 模板和用于构建 cDNA 文库的 mRNA 或 cDNA 可来源于任何含有相应 mRNA 或 cDNA 的细胞、细胞及文库等。也可以用人工合成的方法获得，人工合成时可选用宿主偏爱的密码子，这样可以提高产物的表达。若需要可采用本领域周知的方法对多聚核苷酸进行突变、缺失、插入和与其它多聚核苷酸连接等。编码天然 Tat 与编码人野生型 P53 的多聚核苷酸的融合，在保持各自阅读框不变的前提下，可以用本领域周知的各种方法，如通过 PCR 的方法，在编码序列的两侧引入限制性内切酶位点，通过酶切产生粘性末端，或直接人工合成基因时引入适当的粘性末端，编码天然 Tat 与编码人野生型 P53 的多聚核苷酸的粘性末端用 DNA 连接酶连接，从而获得编码融合蛋白的基因。如果需要可在本发明的融合蛋白基因两侧引入多聚核苷酸，引入的多聚核苷酸含有限制性内切酶识别位点。可用本领域公知的方法将含编码融合蛋白序列的基因序列克隆到各种表达载体中去。所用标准的分子克隆过程见 J. 萨姆布鲁克等《分子克隆试验指南》第三版，科学出版社，2002) 的叙述。

[0018] 许多表达载体和其对应的宿主可以从公司购得，如酵母表达载体 pPICZa, pPIC9, pHIL-s1 (Invitrogen Corp, San Diego, California, USA.) 等。优选的方法是将编码本发明中的融合蛋白或多肽的核苷酸序列克隆至酵母表达载体，本发明的巴斯德毕赤酵母表达载体可以是胞内表达的，也可以是分泌表达的。这些载体都包括一个由 0.9kb 的 5′ 醇氧化酶操纵子 (AOX1) 序列片段和约 0.3kb 的转录终止基因的 3′ 序列组成的表达盒，用于方便编码目的蛋白的基因整合至酵母染色体和控制目的基因的表达，分泌型表达载体可以是 pPIC9, pPIC9k, pHIL-S1, pPICZ α , pYAM75P6E6 等；胞内表达的载体可以是 pHIL-D2, pA0815, pPIC3k, pPICZ, pHWO10E121, pGAPZ, pGAPZ α 等。本发明优选的是 pPICZ α 。

[0019] 表达融合蛋白的宿主可以是酵母、细菌、动物细胞、植物细胞等，本发明优选的是酵母。融合蛋白或多肽可以存在于宿主细胞内，也可以是从宿主中分泌出来，优选的是从宿主细胞中分泌出来。本发明优选的信号肽是白蛋白信号肽。编码融合蛋白的核酸序列，可以插入至宿主染色体，或以游离质粒形式存在。

[0020] 得到携带融合蛋白基因的重组表达载体后，可使用通常的方法，如：锂盐法、PEG 法、原生质球法和电穿孔法等方法转化宿主细胞。其中，本发明优选的转化方法是电穿孔法。成功转化的细胞，即含有本发明 DNA 构建体的细胞，可通过人们熟知的技术加以鉴定，如收集并裂解细胞，提取 DNA，然后用 PCR 方法鉴定。或者，细胞培养上清或细胞破碎液中的
蛋白可用抗人 p53 抗体检测。
[0021] 可以通过培养含有本发明 DNA 构建体的宿主，如重组酵母、重组细菌、重组动物细胞、转基因动植物等，生产本发明的融合蛋白。具体的培养方法，可以使用摇瓶或生物反应器等，生产时优选的是生物反应器。培养基应能提供菌体（或细胞）生长和产物表达所需的物质，包括氮源、碳源、pH 调节成分等，培养基配方应根据不同培养对象，通过试验获得。培养可分为两个阶段，第一阶段主要用于菌体（或细胞）生长，第二阶段主要用于产物的合成。
[0022] 可以用各种蛋白分离的方法自含有本发明 DNA 构建体的细菌或细胞培养物中分离、纯化融合蛋白，如盐析、有机溶剂沉淀、超滤、液相层析等技术及这些技术的组合。其中液相层析可以用分子筛、亲和、离子交换、疏水、反相等层析技术。
[0023] 进一步的生物学实验表明，按照本发明方法制备的融合蛋白 Tat-p53 对肝癌细胞 HepG2、乳腺癌细胞 SKOV3 的增殖有明显的抑制作用，促进其凋亡。
[0024] 本发明中的融合蛋白可以有各种衍生物，这些衍生物可以是单一局限于其不同形式的盐，修饰后产物等。如在多肽的氨基、羧基、羟基、巯基上再进行修饰。所用的修饰剂可以是但不局限于聚乙二醇，葡萄糖等。
[0025] 本发明中的融合蛋白及其衍生物可以单独使用，优选的为与一个或多个药学上可接受的载体一起组成药物制剂。药物载体一般应与融合蛋白相容且不易对受体自身有害，典型的载体为水、盐水、糖类、醇类或氨基酸，它们须无菌且无致热原。药物制剂可通过本领域已知的方法制备。这些方法包括将融合蛋白与一种或多种辅助成分混合的步骤。优选的药物制剂包括含水的液体制剂和含水囊低于 10%或不含水的冻干制剂。这些制剂可以含有缓冲剂，盐类，小分子糖类等。
[0026] 本发明中的融合蛋白及其衍生物或其药物组合物可以通过任何已知的方法，包括注射（如皮下或肌肉）、静脉输注、透皮、吸入、口服等方法给药。优选的方法为静脉输注或注射给药。治疗包括在一段时间内使用单一剂量或复合剂量。
[0027] 下面结合具体实施例对本发明作进一步说明。

附图说明
[0028] 图 1P53 基因克隆的琼脂糖凝胶电泳图谱：泳道 1 为 DL2000 为 DNA 分子量标识物；泳道 2 为扩增的 PCR 产物。
[0029] 图 2 真核表达重组质粒 pPICZ a-C-Tat-p53 酶切消化产物琼脂糖凝胶电泳图谱：泳道 1 为重组质粒 pPICZ a-C-Tat-P53；泳道 2 为重组质粒 pPICZ a-C-Tat-P53 消化产物；DL2000 为 DNA 分子量标识物。
[0030] 图 3 重组质粒 pPICZ a-C-Tat-p53PCR 转移酵母菌 DNA 的 PCR 鉴定电泳图谱：DL2000 为 DNA 分子量标识物；泳道 1 为 pPICZ a-C 转化的酵母菌基因组 DNA 的 PCR 产物；泳道 2 未转化的 X-33 酵母菌基因组 DNA 的 PCR 产物；泳道 3～11 为不同酵母菌转化子基因组 DNA 的 PCR 产物。
[0031] 图 4SDS-PAGE 电泳筛选融合蛋白 Tat-p53 最佳诱导时间图谱：BM 为宽分子量蛋白 Marker；泳道 1～7 分别为筛选出的高表达转化子经甲醇诱导 24h，48h，72, 96h，120h，144h，168h 后的电泳图谱。
具体实施方式

[0036] 以下借助实施例描述本发明的最佳实施方式。这些实施例旨在进一步举证阐明本发明，而不是以任何方式限制本发明公知权利要求的范围。

[0037] 本发明利用基因工程方法对人野生型P53基因全长cDNA与近年来发现的一种蛋白转导结构域(Tat)融合。Tat能高效地介导与其共价连接的多肽、蛋白质等分子跨膜导入几乎所有的组织和细胞，转导效率很高而且对细胞没有损伤，并保持蛋白的生物活性。将其插入到真核表达载体pPICZαC的多克隆位点上，构建了pPICZαC-Tat-p53重组体，将其稳定转染毕赤酵母经甲醇诱导表达能表达Tat-p53融合蛋白，经离子交换层析纯化获得了Tat-p53融合蛋白，纯化的Tat-p53融合蛋白可溶于水，并可在-20°C长期保存。

[0038] 实施例1：Tat-P53基因的克隆

[0039] 1. RNA的制备：

[0040] 取肝脏组织放入液氮中速冻。使用Trizol试剂（Invitrogen Corp. San Diego, California, USA.），一步法方法提取肝组织的RNA。具体步骤如下：

[0041] 1) 取出冷冻的小块肝脏组织放入盛有液氮的研钵中，将其研磨至粉末状。

[0042] 2) 将破碎的组织移入1.5ml无RNA酶EP管中，加入约1ml Trizol。

[0043] 3) 加入200μ1氯仿，剧烈振荡摇匀，室温下放置30s。

[0044] 4) 4°C离心（12 000r/min）5min。

[0045] 5) 将上清液小心转移到另一个无RNA酶的EP管中。

[0046] 6) 加入等体积异丙醇，室温放置5min。

[0047] 7) 4°C离心（12 000r/min）5min，弃上清。

[0048] 8) 加入70%乙醇1ml洗涤沉淀两次，4°C离心（12 000r/min）5min。

[0049] 9) 室温下空气蒸发残存乙醇。

[0050] 10) 将总RNA沉淀溶于50μl DEPC水中，而后进行RNA的分析与定量。

[0051] 11) 取1μl样品稀释100倍后经紫外分光光度计测定OD260和OD280，计算其浓度和纯度。

[0052] RNA含量按下面公式计算：
RNA（μg/ml）= 40×OD₂₅₀×稀释倍数
OD₂₅₀/OD₂₈₀ = 1.8 ~ 2.0 表示纯度合格
12. 琼脂糖凝胶电泳观察 RNA 的完整性。
1.2 Tat-P53 基因的克隆（RT-PCR 法）
取如上提取的人肝脏组织总 RNA 1 μg，按如下比例建立逆转录 (RT) 反应体系：
人肝脏组织总 RNA 1 μg；10×RNA PCR 缓冲液 2 μl；MgCl₂(25mmol/L)4 μl；RNA 酶抑制剂（40U/μl）0.5 μl；dNTPs（各 10mmol/L）2 μl；AMV 逆转录酶（200U/μl）1 μl；0.1μm oligo dT(20pmol/μl)1 μl；无 RNA 酐灭菌水加入至终体积 20 μl。于 PCR 仪上 50℃反应 30min，
然后 94℃2min 灭活逆转录酶，合成 cDNA 后，按照如下比例建立 PCR 反应体系：
上述 cDNA 反应液 20 μl；MgCl₂(25mmol/L)6 μl；10×LA PCR 缓冲液 8 μl；上游引物：
5′-tcgcgaggtctgttcgtgatacggtagaaagagcggtcacaacgtaggctgtagcgcggcagtctc-ag-3′（包含 P53 前端序列，全部 Tat 序列以及部分白蛋白信号肽序列）(SEQ ID NO: 1),1μl(20pmol/μl)；下游引物：
5′-cggatctacctcagtcgctgagccg-3′（包含末端 P53 序列及酶切位点 Kpn I）
(SEQ ID NO:2),1 μl (20pmol/μl)；Takara LA Taq(5U/μl) 1 μl；;灭菌超纯水至终体积
100 μl。PCR 反应条件是：94℃5min；94℃30s, 60℃30s, 72℃1min；94℃30s，53℃30s，
72℃1min，共 16 个循环；72℃5min。以上述 PCR 产物为模板进行第二步 PCR 反应，应用上游引物：5′-ggttcgtaaacgatgtaagctgtacacattatattcgtacactggtttttgcagcgggtcgactt-3′（包含另一部分白蛋白信号肽序列，酶切位点 Bst B I）(SEQ ID NO:3)
,1 μl (20pmol/μl)；下游引物：5′-cggatctacctcagtcgctgagccg-3′（SEQ ID NO:2）,PCR 反应条件是：94℃5min；94℃30s, 60℃30s, 72℃1min；94℃30s，53℃30s，72℃1min，共 16 个循环；72℃5min。取 PCR 反应产物 5 μl，在 1%琼脂糖凝胶中电泳检查扩增结果，并用 DNA
分子量标准检查特异性扩增条带大小（图 1）。
1.3 PCR 产物的纯化
用 DOPSYN 琼脂糖凝胶 DNA 纯化回收试剂盒 V3.0 纯化回收，操作步骤严格按说明书进行。
实施例 2：毕赤酵母分泌型表达载体 Tat-P53-pPICZ α 表达载体的构建
2.1 Tat-P53-pPICZ α 表达载体的构建
用 Bst B I 和 Kpn I 消化上述切胶回收的 PCR 产物 Tat-P53 和载体 pPICZ α ,琼脂
糖凝胶电泳定量后,16℃连接过夜。连接反应体系如下；目的基因 0.1 ~ 0.3pmol ;酶切后的
载体 pPICZ α 0.03pmol ;10× 连接缓冲液 1 μl；T4DNA 连接酶 (350U/μl) 1 μl；灭菌超纯
水至终体积 10 μl。
将连接产物与感受态细胞 XL1-blue 轻轻混匀,常规方法转化。取 200 μl 已转化的大肠杆菌细胞涂布于含 Zeocin（25 μg/ml）的低盐 LB 琼脂平板上，37℃培养箱培养 12 ~
16h。挑取不同的克隆，于 LB 液体培养基中培养过夜，而后，提取质粒，以 Bst B I 和 Kpn I
双酶切鉴定（图 2）。
选取酶切鉴定正确的克隆,用质粒快速提取试剂盒提取质粒。进行 DNA 序列测定。
测序结果显示插入 pPICZ α 载体中的序列如下：ttcagaaacgatgaagtgggttaacattatattccccgttcccgttattt
说明

实施例 3 : Tat-P53 融合蛋白质持酶体表达体系的建立及筛选

3. 1 Tat-P53-pPICZ α 表达载体转化毕赤酵母

取测序正确的培养菌液，按质粒提取试剂盒说明书提取质粒 DNA 并用琼脂糖凝胶电泳法进行定量分析。取 20 ~ 25 μg 表达载体 Tat-P53-pPICZ α 经 SacI 酶消化（线性化）后，用酚 / 氯仿抽提并用乙醇沉淀。线性化的质粒用 10 μl 超纯水溶解后置于冰上备用。

3. 2 质粒转化

取 0.2 cm 电转化杯中进行电转化。取 50 ~ 100 μl 转化后的菌液涂布于含 Zeocin (100 μg/ml) 的YPD 平板上，28℃培养箱培养 2 ~ 3d，观察转化子的生长状况。

3. 3 PCR 方法筛选 Tat-p53-pPICZ α 载体转化菌株

离心回收 9 个不同菌体，用煮 - 冻 - 煮法提取酶母基因组 DNA 做 PCR 鉴定。用 5’ A0X1 (5′-gacctggcctcattgagaac-3′) (SEQ ID NO : 6) 和 3’ A0X1 (5′-gaaatggcctcattgagac-3′) (SEQ ID NO : 7) 为引物进行 PCR 反应。PCR 反应条件为 : 94℃ 2min ; 94℃ 30s, 60℃ 30s, 72℃ 90s, 30 个循环 ; 72℃ 10min ; 扩增产物进行 1% 琼脂糖凝胶电泳，观察是否得到预期
大小的基因片段。（图 3）

【0077】实施例 4：Tat-p53 融合蛋白的表达和纯化

【0079】取上述鉴定结果阳性的克隆接种于 10ml BMMY（pH6.0）培养基中，30℃震荡培养 24h，至 OD_{600} 达到 2.0～6.0 时收集细胞。用等体积（10ml）BMMY（pH6.0）重悬细胞沉淀，30℃震荡培养，诱导表达。诱导过程中，每 24h 补充一次甲醇至终浓度 0.5%，同时补充灭菌超纯水，使发酵液总体积保持不变。在培养的第 0、24、48、72、96、120、144 和 168 小时等时间点各取 0.5ml 发酵液，离心取上清用于蛋白质分析（SDS-PAGE, Western Blot 等）。

【0080】分别取不同工程菌液用于 SDS-PAGE 分析，在凝胶分析系统观察电泳结果，筛选高表达量的 Tat-p53 程菌。

【0081】4.2 确定毕赤酵母分泌表达 Tat-p53 的最佳诱导时间

【0082】（1）选择高表达 Tat-p53 工程菌接种于 10ml BMMY 培养基中，28℃震荡培养 24h，至 OD_{600} 达 2.0～6.0 收集细胞；

【0083】（2）等体积（10ml）BMMY 重悬细胞沉淀，30℃震荡培养，诱导表达。在诱导过程中，每 24h 补充一次甲醇至终浓度 0.5%，同时补充灭菌二蒸水，使发酵液总体积保持不变；

【0084】（3）在培养 0h、24h、48h、72h、96h、120h、144h、168h 时间点各取 1ml 发酵液，离心菌体，上清用于蛋白分析；

【0085】（4）SDS-PAGE 确定最佳诱导时间为 120h（图 4）。

【0086】 4.3 筛选毕赤酵母分泌表达 Tat-p53 的最佳 pH 值

【0087】（1）选取 Tat-p53 表达量较高的毕赤酵母工程菌，在 10ml YPD 培养基中 28℃、225r/min 振荡培养 24h；

【0088】（2）将扩增的毕赤酵母工程菌接种于 100ml BMMY 中，pH 值为 6.0、28℃、225r/min 振荡培养 30h 左右，使其 OD_{600} = 5。此做法的优点是：使酵母扩增的起始条件相同，为以后确定诱导最佳 pH 值奠定基础；

【0089】（3）室温离心（3000r/min）5min，弃去上清，加入前述未加缓冲液的 BMMY 9ml，按上述的量加入 1mol/L Na_{2}HPO_{4} 和 0.5mol/L 柠檬酸配制成不同 pH 值的 BMMY，30℃、225r/min 振荡培养，诱导过程中每 24h 补充一次甲醇至终浓度 0.5%，同时补充灭菌蒸馏水，使发酵液总体积保持不变；

【0090】表 2.1 不同 pH 的 Na_{2}HPO_{4}- 柠檬酸缓冲液配方
说明书记

<table>
<thead>
<tr>
<th>pH 值</th>
<th>1 mol/L Na₂HPO₄ (μl)</th>
<th>0.5mol/L 柠檬酸 (μl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0</td>
<td>20</td>
<td>980</td>
</tr>
<tr>
<td>3.5</td>
<td>158.5</td>
<td>841.5</td>
</tr>
<tr>
<td>4.0</td>
<td>285</td>
<td>715</td>
</tr>
<tr>
<td>4.5</td>
<td>385.5</td>
<td>614.5</td>
</tr>
<tr>
<td>5.0</td>
<td>467.5</td>
<td>532.5</td>
</tr>
<tr>
<td>5.5</td>
<td>536</td>
<td>464</td>
</tr>
<tr>
<td>6.0</td>
<td>630</td>
<td>370</td>
</tr>
<tr>
<td>6.5</td>
<td>714</td>
<td>286</td>
</tr>
<tr>
<td>7.0</td>
<td>823</td>
<td>177</td>
</tr>
</tbody>
</table>

[0091] (4) 取诱导第 4d 各个 pH 值样品上清，进行 SDS-PAGE，确定毕赤酵母分泌表达 Tat-p53 的最佳 pH 值为 7.0（图 5）。

[0092] 实施例 5：Tat-p53 融合蛋白的纯化

[0093] 5.1 Tat-p53 融合蛋白摇瓶水平表达

[0094] 1) 冻存的 Tat-p53 毕赤酵母工程菌在 YPD 琼脂板上（含 Zeocin 100 μg/ml）划线，28°C 培养箱内倒置培养 48h ~ 72h；

[0095] 2) 至菌落长到 2mm 左右，挑取单克隆菌落加入到 10ml BMGY 培养液中，28°C、225r/m 摇荡培养 16 ~ 24h；

[0096] 3) 将上述培养物加到 2L BMGY 培养液中，228°C、225r/m 摇荡培养 36h 左右。

[0097] 4) 加入终浓度为 0.5% 的甲醇，28°C、225r/m 摇荡培养。在诱导过程中，每 24h 补充一次甲醇至终浓度 0.5%，同时补充灭菌二蒸水，使发酵液总体积保持不变；

<table>
<thead>
<tr>
<th>Purification</th>
<th>Total protein (mg)</th>
<th>Tat-p53 (mg)</th>
<th>Recovery (%)</th>
<th>Purity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supernatant</td>
<td>261</td>
<td>104</td>
<td>-</td>
<td>40</td>
</tr>
<tr>
<td>Q Sepharose XL</td>
<td>90</td>
<td>74</td>
<td>71</td>
<td>82</td>
</tr>
<tr>
<td>Vivaflow 200</td>
<td>79</td>
<td>69</td>
<td>66</td>
<td>87</td>
</tr>
</tbody>
</table>

[0099] 5) 甲醇诱导培养 72h 时，3000r/m，4°C 离心，收集上清用于蛋白纯化。

[0100] 5.2 重组 Tat-p53 融合安白离子交换层析纯化

[0101] 1) 用 1M NaOH 将收集的发酵液调 PH 至 7.0

[0102] 2) 用 Na₂HPO₄-NaH₂PO₄ 缓冲液 62.5 mM 稀释到 3 倍

[0103] 3) Q Sepharose XL 柱料约 180ml，用 Na₂HPO₄-NaH₂PO₄ 缓冲液平衡，上样，流速每分
钟小于等于 10ml。

4) 洗脱，用 0.4MNaCl 洗脱然后用 0.7MNaCl 洗脱
5) 组分经超滤后，浓缩为 200ml，电导 0.3 左右，留部分定量。
6) 经 SDS-PAGE，凝胶分析系统观察结果 (图 5)。

Bradford 法计算纯化回收率为 66%，纯度为 87%。经阴离子交换层析及超滤纯化后获得高纯度融合蛋白。

Western blot 工程菌表达纯化后标本有明显的棕色条带，说明 Tat-p53 可以与 p53 抗体特异性结合。（图 7）

【0110】实施例 6: 重组 Tat-p53 融合蛋白的生物学活性和应用

【0111】1 Tat-p53 融合蛋白对癌细胞的增殖抑制作用

【0112】供试细胞: 肝癌 HepG2、宫颈癌 HeLa 及乳腺癌 SKOV3 均为本室保存。

【0113】分别消化上述供试细胞，调整浓度至 2000 个 /孔，种 96 孔板，37℃、5% CO2，饱和湿
度培养。镜下观察细胞数达 50% 左右时，按终浓度 80μg/ml、60μg/ml、40μg/ml、20μg/ml、10μg/ml、5μg/ml、2μg/ml 加 Tat-p53 融合蛋白，每个浓度 3 个平行孔，空白对照加等
体积培养液，继续按上述条件培养，72 小时后每孔每孔加 20μl MTT（5mg/ml），相同条件继续培
养 4 小时，去培养液，每孔加入 DMSO150μl，震荡 10 分钟充分溶解孔内沉淀物，492nm
波长检测各孔 OD 值。结果统计学处理。

【0114】结果见表 1、表 2:

表 1MTT 检测 wtP53 融合蛋白的细胞增殖抑制作用结果

<table>
<thead>
<tr>
<th>细胞</th>
<th>空白</th>
<th>2μg/ml</th>
<th>5μg/ml</th>
<th>10μg/ml</th>
<th>20μg/ml</th>
<th>40μg/ml</th>
<th>60μg/ml</th>
<th>80μg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKOV3</td>
<td>2.274</td>
<td>2.092</td>
<td>1.612</td>
<td>1.527</td>
<td>1.350</td>
<td>0.968</td>
<td>0.655</td>
<td>0.669</td>
</tr>
<tr>
<td>2.031</td>
<td>2.031</td>
<td>1.721</td>
<td>1.393</td>
<td>1.449</td>
<td>1.097</td>
<td>0.841</td>
<td>0.651</td>
<td></td>
</tr>
<tr>
<td>Hela</td>
<td>2.459</td>
<td>2.271</td>
<td>2.224</td>
<td>2.196</td>
<td>2.116</td>
<td>2.040</td>
<td>1.991</td>
<td>1.864</td>
</tr>
<tr>
<td>2.060</td>
<td>2.254</td>
<td>2.243</td>
<td>2.122</td>
<td>2.092</td>
<td>2.025</td>
<td>1.999</td>
<td>1.891</td>
<td></td>
</tr>
<tr>
<td>HepG2</td>
<td>1.775</td>
<td>1.624</td>
<td>1.664</td>
<td>1.520</td>
<td>1.387</td>
<td>1.116</td>
<td>0.932</td>
<td>0.640</td>
</tr>
<tr>
<td>1.844</td>
<td>1.774</td>
<td>1.659</td>
<td>1.518</td>
<td>1.396</td>
<td>1.198</td>
<td>0.930</td>
<td>0.656</td>
<td></td>
</tr>
<tr>
<td>1.764</td>
<td>1.656</td>
<td>1.650</td>
<td>1.528</td>
<td>1.379</td>
<td>1.195</td>
<td>0.852</td>
<td>0.646</td>
<td></td>
</tr>
</tbody>
</table>

【0118】表 2wtP53 融合蛋白的细胞增殖抑制作用结果（抑制率）
<table>
<thead>
<tr>
<th>细胞</th>
<th>空白 2μg/ml</th>
<th>5μg/ml</th>
<th>10μg/ml</th>
<th>20μg/ml</th>
<th>40μg/ml</th>
<th>60μg/ml</th>
<th>80μg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKOV3细胞</td>
<td>12.9%</td>
<td>24.8%*</td>
<td>33.1%</td>
<td>37.9%</td>
<td>56.4%*</td>
<td>65.7%**</td>
<td>70.9%**</td>
</tr>
<tr>
<td>Hela细胞</td>
<td>5.73%</td>
<td>6.4%</td>
<td>9.6%</td>
<td>11.7%</td>
<td>14.6%</td>
<td>16.4%*</td>
<td>21.4%</td>
</tr>
<tr>
<td>HepG2细胞</td>
<td>6.1%</td>
<td>7.6%</td>
<td>15.2%*</td>
<td>22.7%*</td>
<td>34.8%*</td>
<td>49.6%*</td>
<td>63.9%**</td>
</tr>
</tbody>
</table>

*P < 0.05 **P < 0.01

细胞生长抑制率（%） = \frac{\text{对照组细胞}OD\text{值} - \text{加药组细胞}OD\text{值}}{\text{对照组细胞}OD\text{值}} \times 100%

由细胞增殖实验结果表 1、2 可以看出，重组 Tat-p53 融合蛋白对 HepG2、SKOV3 细胞的增殖有明显的抑制作用。

6.2 Tat-p53 融合蛋白对癌细胞的促进凋亡作用

1) 分别消化 HepG2 细胞和 SKOV3 细胞，调整细胞密度至 2×10^5 个/ml，种于 6 孔板中，每孔 2ml 细胞悬液，37℃、5% CO_2、饱和湿度过夜培养后加药，加入 Tat-p53 融合蛋白，终浓度 40μg/ml，加药后继续培养 48 小时，未加药组作为对照组。

2) 消化并收集细胞，用冷 PBS 洗两次后用 1×Annexin V Binding Buffer 重悬，加入 5μl FITC Annexin V 和 PI，25℃避光孵育 15 分钟，操作严格按照 FITC Annexin V Kit (BD Biosciences) 说明上进行。

3) 加入 400μl 1×Annexin V Binding Buffer 后上机 (Epics XL，Beckman Coulter) 结果应用 Expo32 ADC XL 4Color 和 CXP Analysis (Beckman) 进行分析。结果表明：与未加药组相比，HepG2 和 SKOV3 加药组有明显的细胞凋亡，其中 SKOV3 加药组培养 48 小时细胞凋亡率达到 43%，Tat-p53 融合蛋白的转导能够促进 HepG2 细胞和 SKOV3 细胞的凋亡（图 8）。

13
<110> 吉林百泰科技有限责任公司

<120> Tat与人野生型P53融合蛋白在毕赤酵母中的表达

<140>

<141>

<160> 7

<210> 1

<211> 74

<212> DNA

<213> 人工序列

<220>

<223> 根据特定核苷酸序列设计的PCR扩增引物。

<400> 1

TCGCGAGGTGTGTGTTCGATACGGAATAGAACGTCGAGAAGAGTACCGCGTATGGAGGAGGAGTCGAG

<210> 2

<211> 25

<212> DNA

<213> 人工序列

<220>

<223> 根据特定核苷酸序列设计的PCR扩增引物。

<400> 2

CAGGTACCTCAGTCTGAGTCAGGCC

<210> 3

<211> 80

<212> DNA

<213> 人工序列

<220>

<223> 根据特定核苷酸序列设计PCR扩增引物。

<400> 3

GGTTGCAGAACGATGACAAGATGTAACCTTATTTTATCTTTCTTTCTTTCTTTTAGCTCGGGTT

ATTGCAGAGGTGTGTTTCGAT

<210> 4

<211> 1296

<212> DNA

<213> 人工序列

<220>

<223> Tat-P53核苷酸序列。

<400> 4
序 列 表

TTGAAAAGGATGAAGGTTAACTTTTATTTCCTTCTTTTTCTTTATTCTGCTGGCTTTAATTC
CTGTTTGCGATACGTTGAAGAAGACCCGCTGACACCTGAGTGAGGGATGATCTGACCGATATTCT
AGCGTGAGGCCCCCTCTGAGTACGGAAGACTATGTTTAGGAAACTACTTTGCTGAAAACCTAGT
CCTGCACCTACCCGCGCCCGCCGCTACCGAACTGCTGACCGCGGTCGCTGTGACCGGCCCTAG
GCAAGCTCCTTACACGGCGGCGGCTGGGCTCCGGGCTGCTACCTGCTGCTGCTGCTGGCCCTCTC
AAACCTACAGGCGCTAGTTTGGCCTCTTCTTCATTTAGGCTGACTCTGTCGACTGTTACT
TGCACGTACTCCCTGCTCACCACAAAGATGTTTGGCCACAGACGCTGTTCTGGGTGACGCTGTT
GATTCCACACCCCCGCACCGCTGCGGCGCCACATGCTCAAGCAGTCAGCAAGCATAG
ACGAGGTTGGTGGAGGCGCTGCCGCAACCATTAGGCGGCTGCTGACAGATGCTGACGCGCCAC
CATCTATCCCAGTAGGGAGATTATTGCATGCGGATATTGGATGAGACAAACACTTTTCGACATAGT
GTGTGGTGCTCCTATAGCCGCGCTAGGTGGCTCTGACGTCGTACCCGATCCACTACGATGCTG
AACAGTTCTCTGTCGAGGGGCGCGATAGACCGGAGCCACCTCCTACCTACCCACCTAGAGACGACTCC
GATCTGAGGCGTGGGCTGTTTGGCTTGTGCTGCTGGAGGAGACCGGCGACA
GAGAACAGAAATATGTCGGCGAAGAGAAAGAGGAGCGCCAGCAGCTGCTGGGCTGCCGCGAGCA
CTGGCGCAAACAACACAGCGCTCCCTCACCAGCTGCGGCTGCCAGGAGAGAATTTATTTCAAG
CAGATCCGGTGCTGGAGCGCCTCTCCAGATGCTGACGGGCTGAGAATGAGGCGCTTTGGAATCAGGATGCC
CAGCAGGGAAGGAGAAGGGGGGAGCAGGCAGGCGCTACCTAGAGCAGCTGCAAGGAGGACGACTGCT
ACCTCACCAGAATGAGCAGAGAGGAGGCGCCTGACCTAGA

<210> 5
<211> 404
<212> 氨基酸
<213> 人工序列
<220>
<223> Tat-P53氨基酸序列。
<400> 5
YGRKKRRQRRRMEEPQDSVSPEPPLSQETFSDLWKLLPENNVLSPLSQAMDDLMPLSPDIEQWFTEDPGPDEAPRMPEAAPVAPAAPAPPAAPAPASWPPLSSVPSQKTYQGSGYFGRFLFGHSGTAKSVSTCSYPSALNKMFCQLAKTCPQLWVDSTTPPMPGTRVAMAIYKQSSQHMTEVVERRCPHERCSDSGDGLPPQHLIRVEGNLRVEYLDSDRTFRHSVPPYEPPEVPVSCTTH YosemiteCMSSCMGGMNRRPLTIITLESSGNLGLRNSFCLRVCACPGRDRTSEEENLRKKGEPHHELPGGSTKRAFLPNNTSSSPQPKKPLDGEYFTLQIRGRERFERMFRELNEALELELKDAQAGKES
PGGSRAHSSHLKSKQGQSTSRHKLMFKTEGPDS
d

<210> 6
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 根据特定核苷酸序列设计PCR扩增引物。
<400> 6
GACTGGTTCAATTGACAAGC
d

<210> 7
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 根据特定核苷酸序列设计PCR扩增引物。
<400> 7
GCAAATGGCATTCGTACCC
图 6

图 7
图8