METHODS FOR DIRECTED SELF-ASSEMBLY PROCESS/PROXIMITY CORRECTION

A method of fabricating an integrated circuit includes designing an optical photomask for forming a pre-pattern opening in a photosist layer on a semiconductor substrate, wherein the photoresist layer and the pre-pattern opening are coated with a self-assembly material that undergoes directed self-assembly (DSA) to form a DSA pattern. Designing the optical photomask includes using a computing system, inputting a DSA target pattern, and using the computing system, applying a DSA model to the DSA target pattern to generate a first DSA directing pattern. Further, the step of designing the optical photomask includes using the computing system, calculating a residual between the DSA target pattern and the DSA directing pattern, and using the computing system, applying the DSA model to the first DSA directing pattern and the residual to generate a second, updated DSA directing pattern. Generating the second, updated DSA directing pattern includes linearizing a self-consistent field theory equation.
第1圖

100 ⋅ ⋅ ⋅ 計算系統
101 ⋅ ⋅ ⋅ 處理器
102 ⋅ ⋅ ⋅ 系統匯流排
103 ⋅ ⋅ ⋅ 作業系統
104 ⋅ ⋅ ⋅ 應用程式
105 ⋅ ⋅ ⋅ 唯讀記憶體（"ROM"）
106 ⋅ ⋅ ⋅ 隨機存取記憶體（"RAM"）
107 ⋅ ⋅ ⋅ 磁碟配接器
108 ⋅ ⋅ ⋅ 磁碟單元
109 ⋅ ⋅ ⋅ 通訊配接器
110 ⋅ ⋅ ⋅ 使用者介面配接器
111 ⋅ ⋅ ⋅ 顯示配接器
112 ⋅ ⋅ ⋅ 鍵盤
113 ⋅ ⋅ ⋅ 滑鼠
114 ⋅ ⋅ ⋅ 揚聲器
115 ⋅ ⋅ ⋅ 顯示監視器
發明摘要

※ 申請案號：T02131513
※ 申請日：102.9.2
※IPC分類：

【發明名稱】（中文/英文）

定向自組裝製程/鄰近校正之方法

METHODS FOR DIRECTED SELF-ASSEMBLY PROCESS/
PROXIMITY CORRECTION

【中文】

一種積體電路之製造方法，其係包含下列步驟：設計光學光罩用於形成預圖案開口於在半導體基板上的光阻層中，其中該光阻層及該預圖案開口塗上經受定向自組裝(DSA)以形成 DSA 圖案的自組裝材料。設計該光學光罩的步驟包括：使用計算系統，輸入 DSA 目標圖案，以及使用該計算系統，應用 DSA 模型於該 DSA 目標圖案以產生第一 DSA 定向圖案。此外，設計該光學光罩的步驟包括：使用該計算系統，計算該 DSA 目標圖案與該 DSA 定向圖案之間的殘差，以及使用該計算系統，應用該 DSA 模型於該第一 DSA 定向圖案及該殘差以產生第二更新 DSA 定向圖案。產生該第二更新 DSA 定向圖案的步驟包括線性化自洽場理論方程式。
A method of fabricating an integrated circuit includes designing an optical photomask for forming a pre-pattern opening in a photoresist layer on a semiconductor substrate, wherein the photoresist layer and the pre-pattern opening are coated with a self-assembly material that undergoes directed self-assembly (DSA) to form a DSA pattern. Designing the optical photomask includes using a computing system, inputting a DSA target pattern, and using the computing system, applying a DSA model to the DSA target pattern to generate a first DSA directing pattern. Further, the step of designing the optical photomask includes using the computing system, calculating a residual between the DSA target pattern and the DSA directing pattern, and using the computing system, applying the DSA model to the first DSA directing pattern and the residual to generate a second, updated DSA directing pattern. Generating the second, updated DSA directing pattern includes linearizing a self-consistent field theory equation.
【代表圖】
【本案指定代表圖】: 第 (1) 圖。
【本案代表圖之符號簡單說明】:

<table>
<thead>
<tr>
<th>编号</th>
<th>名称</th>
<th>编号</th>
<th>名称</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>計算系統</td>
<td>101</td>
<td>處理器</td>
</tr>
<tr>
<td>102</td>
<td>系統匯流排</td>
<td>103</td>
<td>作業系統</td>
</tr>
<tr>
<td>104</td>
<td>應用程式</td>
<td>105</td>
<td>唯讀記憶體(“ROM”)</td>
</tr>
<tr>
<td>106</td>
<td>隨機存取記憶體(“RAM”)</td>
<td>107</td>
<td>磁碟配接器</td>
</tr>
<tr>
<td>108</td>
<td>磁碟單元</td>
<td>109</td>
<td>通訊配接器</td>
</tr>
<tr>
<td>110</td>
<td>使用者介面配接器</td>
<td>111</td>
<td>顯示配接器</td>
</tr>
<tr>
<td>112</td>
<td>鍵盤</td>
<td>113</td>
<td>滑鼠</td>
</tr>
<tr>
<td>114</td>
<td>揚聲器</td>
<td>115</td>
<td>顯示監視器</td>
</tr>
</tbody>
</table>

【本案若有化學式時，請揭示最能顯示發明特徵的化學式】:

本案無化學式
發明專利說明書
（本說明書格式、順序，請勿任意更動）

【發明名稱】（中文/英文）
定向自組裝製程/鄰近校正之方法
METHODS FOR DIRECTED SELF-ASSEMBLY PROCESS/
PROXIMITY CORRECTION

相關申請案之交互參照

【0001】本申請案為申請於 2012 年 10 月 24 日、標題為“定向自組裝製程/鄰近校正之方法”之美國專利申請案第 13/659,453 號的部份延續案，其內容全部併入本文作參考資料。

【技術領域】

【0002】本揭示內容的具體實施例皆針對積體電路的製造方法。更特別的是，本揭示內容的具體實施例係針對在設計積體電路(IC)時用以定向自組裝製程/鄰近校正(DSA PC)之方法。

【先前技術】

【0003】半導體裝置通常包含形成於基板上方的電路網。該裝置可包含數層的電路配線，以及用來使這些層互相連接及連接至底下任何電晶體的各種互連。一般而言，作爲製程之一部份，形成通孔或接觸孔，其係轉移至另一層然後填滿金屬以形成互連，使得各層的電路相互電氣通訊。形成互連的先前技術方法大致依賴一系列的微影及蝕刻步驟以定義通孔的位置及尺寸，接著定義對應互連的位置及尺寸。為此目的，可使用光阻及硬遮罩。不過，用習知用於量產之光學微影技術(例如，193 奈米乾式及浸潤式微影技術)所形成之特徵的尺寸已到達微影工具的解析度極
限。

【0004】製作有較小關鍵尺寸(CD)、較緊間距及較佳關鍵尺寸均勻度的通孔為未來技術節點的主要挑戰之一；不過，用習知光學微影印製超越22奈米節點的此類通孔圖案預料會有困難，即使用昂貴複雜的雙圖案化製程、解析度增強技術(運算型微影技術)以及嚴格的佈局設計限制亦是如此。可惜，似乎還沒有具有較高解析能力的替代性非光學微影技術（例如電子束微影技術或極紫外線微影技術(EUV)）在不久的未來準備好用於量產。儘管電子束直寫（direct write）微影技術有極高的解析度，然而它是直寫技術而且無法達到使得量產可行的必要晶圓產量水平。EUV微影工具已開發數年；不過，與光源、收聚鏡(collection optic)、遮罩及阻劑有關的許多挑戰仍然存在而且可能使EUV微影技術的任何實際具體實施延遲數年。除了上述與製造通孔或接觸有關之製程問題及限制以外，也應瞭解存在與在諸層內製造積體電路有關的類似挑戰。

【0005】嵌段共聚物(BCP)圖案化由於有可能解決製作有較小尺寸之圖案的問題而已引人注意。在合適的條件下，此類共聚合物相的嵌段分成數個微域(也被稱為“微相分離域”或“域”)以減少總自由能，以及在過程中，形成有不同化學成分的奈米級特徵。嵌段共聚物能夠形成此類特徵故建議它們使用於奈米圖案化，達到可形成有較小關鍵尺寸的特徵之程度，這應該能夠構造出用習知微影技術難以印製的特徵。不過，在沒有來自基板的任何引導下，自組裝嵌段共聚物薄膜中的微域通常在空間上沒有對齊或對準。
【0006】為了解決空間對齊及對準的問題，已有人使用定向自組裝(DSA)。這個方法是組合自組裝與以微影定義之基板的數個方面以控制某些自組裝 BCP 域的空間排列。DSA 技術之一為圖形磊晶技術(graphoepitaxy)，其中用預先予以微影圖案化之基板的地形特徵來引導自組裝。BCP 圖形磊晶技術提供次微影(sub-lithographic)，特徵尺寸比預圖案(prepattern)本身小的自組裝特徵。DSA 目前認為可用來在層內製造互連(例如，使用圖形磊晶方向)與積體電路(例如，使用化學磊晶技術(chemoepitaxy))。

【0007】本揭示內容的具體實施例針對在設計積體電路(IC)時用以定向自組裝製作/鄰近校正(DSA PC)之方法。在設計積體電路時做定向自組裝製作/鄰近校正的目的是要預測 DSA 定向圖案造成在用於生產積體電路之矽晶圖上產生欲 DSA 圖案的形狀(例如，局限阱(confinement well)在圖形磊晶或化學磊晶預圖案中的形狀)。DSA PC 在本技術領域也被稱作 DSA 反問題的解。

【0008】DSA PC 的各種方法為本技術領域所習知。在一個實施例中，H.-S. Philip Wong 等人揭示一種解決 DSA PC 問題的實驗方法，其係針對用 DSA 圖形磊晶技術圖案化之接觸孔的特殊情形。(參考 "Block Copolymer Directed Self-Assembly Enables Sublithographic Patterning for Device Fabrication"，它是 SPIE 先進微影技術 2012 研討會的口頭報告，及發表於 SPIE 先進微影技術 2012 研討會論文集)。此一方法需要建立“符號集”，即小接觸孔陣列的集合，在此每個陣列是用有特定形狀的局限阱進行圖案化。藉由以實驗方式進行參數研究來設計每個局限阱的形狀。對於來自此符號集的每個接觸孔陣列，該研究需要圖案化局限阱的
參數化家族，在每個阱中進行 DSA，測量 DSA 製程的結果以及確定造成所欲接觸孔布位的參數範圍。

【0009】不過，此先前技術方法使 IC 設計限制於預校準接觸孔陣列的有限集合，而且只在圖形磊晶技術的背景下。此外，此一方法需要執行一大堆的實驗測量值。對於相對小的參數集，只要做求解所需的實驗參數化/校準，以及只在有限的範圍內改變。

【0010】在另一實施例中，Chi-Chun Liu 等人揭示一種求解圖形磊晶技術之 DSA PC 問題的計算方法。(參考 SPIE 先進微影技術 2012 研討會論文集的“Progress towards the integration of optical proximity correction and directed self-assembly of block copolymers with graphoepitaxy”)。在此方法中，需要複雜的迭代程序以解開問題。此外，該方法必須與光學鄰近校正(OPC)技術耦合，導致計算成本更高。不過，如同以上所揭示的先前技術實施例，此實施例限於接觸孔陣列，以及只在圖形磊晶技術的背景下。此外，此方法由於本質上是迭代的而有較高的計算成本。

【0011】同樣地，本技術領域亟須有成本效益的簡單方法用於定向自組裝製程/鄰近校正以克服先前技術方法所遭遇的問題。此外，由以下本發明專利標的及隨附申請專利範圍結合附圖及本發明專利標的之背景的詳細說明可明白本發明專利標的其他合意特徵及特性。

【發明內容】

【0012】揭示設計積體電路時用以定向自組裝製程/鄰近校正的方法。在一示範具體實施例中，一種製造積體電路之方法，其係包含下列步驟：設計光學光罩用於形成預圖案開口於半導體
基板上的光阻層中，其中該光阻層及該預圖案開口塗上經受定向自組裝(DSA)的自組裝材料以形成 DSA 圖案。設計該光學光罩的步驟包括：使用計算系統，輸入 DSA 目標圖案，以及使用該計算系統，應用 DSA 模型於該 DSA 目標圖案以產生第一 DSA 定向圖案。此外，設計該光學光罩的步驟包括：使用該計算系統，計算該 DSA 目標圖案與該 DSA 定向圖案之間的殘差，以及使用該計算系統，應用該 DSA 模型於該第一 DSA 定向圖案及該殘差以產生第二更新 DSA 定向圖案。產生該第二更新 DSA 定向圖案的步驟包括線性化自動場理論方程式。

【0013】在另一示範具體實施例中，一種製造積體電路之方法包括：設計光學光罩用於形成預圖案開口於半導體基板上的光阻層中，其中，該光阻層及該預圖案開口塗上經受定向自組裝(DSA)的自組裝材料以形成 DSA 圖案。設計該光學光罩的步驟包括：使用計算系統，輸入 DSA 目標圖案，以及使用該計算系統，應用 DSA 模型於該 DSA 目標圖案以產生第一 DSA 定向圖案。此外，設計該光學光罩的步驟包括：使用該計算系統，計算該 DSA 目標圖案與該 DSA 定向圖案之間的殘差，以及使用該計算系統，計算該殘差的成本函數。更進一步，如果該殘差大於預定值，設計該光學光罩的步驟包括：使用計算系統，應用該 DSA 模型於該第一 DSA 定向圖案及該殘差以產生第二更新 DSA 定向圖案。產生該第二更新 DSA 定向圖案的步驟包括線性化自動場理論方程式。

【0014】本【發明內容】以簡化形式介紹的精選概念會詳述於【實施方式】。本【發明內容】並非旨在識別所主張之標的的關
鍵特徵或基本特徵，也不希望被用來做為決定本發明範疇的輔助內容。

【圖式簡單說明】

【0015】由以下結合附圖的詳細說明可更容易地了解本揭示內容的各個方面。

【0016】第1圖示意圖示根據一些實施例配置而成的計算系統之方塊圖。

【實施方式】

【0017】以下的詳細說明在本質上只是用來示範說明而不是用來限制本發明或本發明的應用及用途。本文使用“示範”的意思是“用來作為例子、實例或圖解說明”。因此，任何描述於本文的“示範”具體實施例不應被認爲它比其他具體實施例更佳或有利。所有描述於下文的具體實施例都是要讓熟諳此技術領域者能夠製造或使用本發明的示範具體實施例而不是限制申請專利範圍所界定的本發明範疇。此外，希望不受【發明所屬之技術領域】、【先前技術】、【發明內容】或【實施方式】中所明示或暗示的理論約束。

【0018】本發明為一種方法，其係設計用以在基板上之光阻層中形成預圖案開口的光學光罩，其中該光阻層與該預圖案開口塗上經受定向自組裝以形成定向自組裝圖案的自組裝材料。如本文所使用的，用語“DSA目標圖案”係指要用自組裝材料形成的所欲定向自組裝圖案。用語“DSA定向圖案”係指形成於光阻層中的預圖案開口，該自組裝材料係沉積於該光阻層上。

【0019】爲了簡潔，在此不詳述與半導體裝置製造有關的習
知技術。此外，描述於本文的各種任務及製程步驟可加入有未詳述於本文之額外步驟或機能的更廣泛程序或製程。特別是，在 DSA 方案的背景下，與沉積及圖案化光阻遮罩以及沉積自組裝材料有關的各種製程步驟為眾所周知，同樣地，為了簡潔起見，在此只簡要地描述該等步驟或完全省略而不提供眾所周知的製程細節。

【0020】本揭示內容大致有關於在設計積體電路時用於定向自組裝製程/鄰近校正的方法。DSA PC(定向自組裝製程/鄰近校正)為一種演算法，其輸入為需要用 DSA 製程製成的 DSA 目標圖案，以及輸出為 DSA 定向圖案(例如，化學磊晶預圖案或圖形磊晶局限阱)。該 DSA PC 演算法使用一種 DSA 模型，其係考慮到 DSA 製造圖案在給定 DSA 定向圖案下的計算。可用以下類似 MATLAB 的僞代碼展現泛用 DSA PC 演算法的一個實施例：

```matlab
function DSA_directing_patterns = DSA_PC(DSA_model, DSA_target_patterns, DSA_parameters)
    DSA_directing_patterns_current(1) = Initialize_DSA_patterns(DSA_model, DSA_target_patterns);
    for iteration = 1:DSA_parameters.n_iterations
        DSA_patterns = apply_DSA_model(DSA_directing_patterns_current(iteration), DSA_model);
        residual = compute_DSA_residual(DSA_patterns, DSA_target_patterns);
        if(cost_function(residual) < DSA_parameters.tolerance)
            DSA_directing_patterns = DSA_directing_patterns_current(iteration);
            return
        else
            DSA_directing_patterns_current(iteration+1) = DSA_PC_update(
                DSA_directing_patterns_current(iteration), DSA_model, DSA_target_patterns, residual);
        end
    end
    disp('DSA PC iterations did not converge');
end
```

【0021】在此實施例中，DSA PC()函數的輸入為 DSA 模型、DSA 目標圖案，及 DSA PC 演算法的參數，以及輸出為 DSA 定向圖案。在此函數內，以迭代方式產生 DSA 定向圖案。圖案在第 3
行初始化，以及在迭代循环(第 5 至 24 行)内运行迭代。在此循环
的每个通过(pass)(每次迭代)，首先应用 DSA 模型于当前定向图案
(第 7 行)以便计算残差(第 10 行，对应至给定定向图案的 DSA 图
案与目标 DSA 图案的差值)。取决于某一成本函数的数值，以及
取决于此残差(第 13 至 23 行)，如果残差的范围充分小的话，当前
定向图案便当作 DSAPC()函数(第 14 至 15 行)的输出来输出，否则
予以更新(第 17 行)供下二个迭代用以便进一步减少对应至残差的
成本函数值。

【0022】用语“目标 DSA 图案”在此用来表示想要用 DSA
程式制作于晶圆上的图案。例如，该等图案可包含线条与空间，
孤立线条，接触孔，及 IC 製造所需的其他特征。可指定目标 DSA
图案为一组多边形或一组平滑曲线。如本文所使用者，t 表示包含
描述目标 DSA 图案之所有参数的阵列。例如，如果 DSA PC 演算
法使用多边形目标图案，t 可为包含目标图案之所有多边形之顶点
之 x，y 座标的阵列。如果 DSA PC 演算法的目标图案表示法为平
滑曲线，其中每条曲线属于某一有限维族(例如，三次样条)，
则阵列 t 係由描述所有目标图案曲线的所有参数组成。

【0023】如用于本文者，d 表示包含描述“DSA 定向图案”
之所有参数的阵列，此图案是要应用如上述用以在基板上之光阻
层中形成预图案开口的光罩，其中光阻层与预图案开口上经受
定向自组装以形成定向自组装图案的自组装材料。与目标图案类
似，定向图案可为一组多边形或一组平滑曲线。

【0024】在计算模拟时，为了计算 DSA 图案的边缘位置，应
用一种 DSA 模型。DSA 模型的一个中间输出可为嵌段共聚物(BCP)
熔體或 BCP 溶液的兩相密度分布，ρₐ(x)與 ρₐ(x)，在此 x 爲空間座標 x，y，z。藉由應用蝕刻模型於 ρₐ(x)及 ρₐ(x)分佈，可得到由 DSA 製程之蝕刻步驟產生的 DSA 特徵之邊緣的形狀。與上述定向及目標圖案的參數化類似，如本文所使用者，p 表示包含描述應用 DSA 模型所產生之 DSA 圖案之所有參數的陣列。

【0025】用 D 表示 DSA 模型，可寫出:

(1) \(p = D(d) \).

【0026】雖然方程式(1)可用作 DSA 模型的符號記法，然而目前已知的 DSA 模型不提供 DSA 圖案參數 p 作爲定向圖案參數 d 的顯函數 (explicit function)。已知 DSA 模型的更逼真形式表達，例如，可爲內隕 DSA 模型:

(1') \(D^{(i)}(p,d) = 0 \),

在此 \(D^{(i)}(p,d) \) 為給定函數或一組泛函 (functionals)。本技術領域習知目前所用的 DSA 模型甚至用變分 DSA 模型更詳細地表達:

(1'') 找出 \(\rho \) 使得 \(D^{(v)}(\rho,d) \) 穩定，然後計算 \(p=p(\rho) \),

在此 \(D^{(v)}(\rho,d) \) 為給定純量函數，例如 BCP 熔體的自由能，\(\rho \) 爲 BCP 參數 (例如，BCP 相的密度，\(\rhoₐ(x) \) 與 \(\rhoₐ(x) \)，BCP 鏈的傳播子，或自洽場公式中的場勢)。在找到對應至給定定向圖案 d 的 BCP 參數 \(\rho \) 之均衡值後，應用處理及蝕刻模型 \(p=p(\rho) \)，可從該等均衡值算出 DSA 圖案參數 p。

【0027】解決出自方程式(1'')之變分問題集的常見方法是藉由使 \(D^{(v)}(\rho,d) \) 對於未知數 \(\rho \) 的偏導數等於零來找到 \(D^{(v)}(\rho,d) \) 的穩定點。此法使方程式(1'')縮減成方程式(1'), 其中:

\(D^{(i)} = D_{\rho}^{(v)} \equiv \partial D^{(v)}/\partial \rho \),

96116 9
除了關係式 \(p = p(\rho) \) 以外。

【0028】定義於方程式(1”)的變分 DSA 模型之一個特殊實施例為自治場理論(Self-Consistent Field Theory; SCFT)。SCFT 為一種 DSA 模型，其係基於找到以下 SCFT 哈密爾頓函數(SCFT Hamiltonian)的穩定點，其係定義成自治場的泛函：

\[
H[w_A, w_B] = \\
\rho_0 \int dx \left[\frac{1}{\chi_{AB}} \left(\frac{w_B - w_A}{2} \right)^2 + \frac{2\chi_w}{\chi_{AB} + 2\kappa} \frac{\rho_w}{\rho_0} - \frac{2\kappa}{\chi_{AB} + 2\kappa} \left(1 - \frac{\rho_w}{\rho_0} \right) \right] \frac{w_A + w_B}{2} \\
- \frac{1}{(\chi_{AB} + 2\kappa)} \left(\frac{w_A + w_B}{2} \right)^2 - 2\chi_w \frac{\rho_w}{\chi_{AB}} \frac{w_B - w_A}{2} \\
- n \ln Q[w_A, w_B].
\]

在此 \(w_A = w_A(x) \) 與 \(w_B = w_B(x) \) 為各自作用於雙嵌段共聚物之相 A 及 B 的未知自治場(勢)，\(n \) 為聚合物分子的總數以及 \(\rho_0 \) 為恆定總密度參數。

【0029】上述哈密爾頓函數(H)假設 BCP 熔體可壓縮，在此用二次懲罰項 \(0.5 \kappa (\rho_A + \rho_B - \rho \neq \rho_0)^2 \) 模擬壓縮率，在此 \(\kappa \) 為壓縮率參數，\(\rho = \rho(x, d) \) 為局限壁的密度式化學磊晶預圖案刷子或墊子的密度，空間座標 \(x \) 與定向圖案參數 \(d \) 的給定函數，以及 \(\rho_\kappa = \rho_\kappa[w_A, w_B] \)，在此 \(K \) 為 A 或者是 B(BCP 相 A 及 B 的密度)，其係自洽場的已知非局部函數。參數 \(\chi_{AB} \) 為以 BCP 相之相互作用為特徵的弗洛里參數(Flory parameter)，\(\chi_w = (\chi_{wA} - \chi_{wB})/2 \) 與 \(\chi_w = (\chi_{wA} + \chi_{wB})/2 \) 為似弗洛里參數，在此 \(\chi_w(K = A \text{ 或 } B) \) 以 BCP 相與壁材料的相互作用為特徵。\(Q[w_A, w_B] \) 為單一高分子鍵配分函數，其係自洽場的已知泛函。

【0030】用平均場逼近，需要尋找提供 SCFT 哈密爾頓函數之鞍點的自治場。對於給定勢場中之雙嵌段 BCP 的傳播子，解佛

【0031】基於哈密爾頓函數的 SCFT 模型用來模擬局域限隔中可壓縮之 BCP 熔體的圖形晶粒 DSA 結果。此一模型也可用來模擬化學晶粒 DSA，使用 $\rho_w(x,d)$ 表示聚合物刷子或交聯聚合物墊子的密度。

【0032】使 SCFT 哈密爾頓函數對於 SCFT 勢場 w_A 及 w_B 的變量等於零以及組合所得之兩個穩定(鞍點)條件產生以下非線性及非局部 SCFT 方程式：

$$
\rho_A[w_A,w_B] + \rho_B[w_A,w_B] - \frac{\rho_0}{(\chi_{AB} + 2\kappa)}(w_A + w_B) = \frac{2\kappa}{\chi_{AB} + 2\kappa} \rho_0 - \frac{2\chi_w + 2\kappa}{\chi_{AB} + 2\kappa} \rho_w(x,d),
$$

$$
\rho_B[w_A,w_B] - \rho_A[w_A,w_B] + \frac{\rho_0}{\chi_{AB}}(w_B - w_A) = \frac{2\chi_w}{\chi_{AB}} \rho_w(x,d),
$$

【0033】在典型的應用中，給出定向圖案 d 的參數與局限壁或化學晶粒預圖案刷子或墊子的對應密度 $\rho_w(x,d)$，以迭代方式解相對於未知函數 $w_A = w_A(x)$ 及 $w_B = w_B(x)$ 的方程式。在找到解後，由佛客-普朗克反應擴散偏微分方程式對於給定 SCFT 勢場中之雙嵌段 BCP 之傳播子的解，可找到 BCP 密度 $\rho_K = \rho_K[w_A,w_B]$ 的均衡分布，在此 K 為 A 或者 B，如 Fredrickson (2006) 所述。

【0034】有些 DSA 方法進一步使用成本函數。成本函數 $C = C(p)$ 爲純量函數，其係量化對應至參數 p 陣列之實際 DSA 圖案與對應至參數 t 陣列之目標圖案之間的鄰近度。由於目標圖案 t 常常是固定的，所以成本函數的標記系統平常省略掉它。
【0035】例如，定義成本函數可首先計算 DSA 圖案與目標圖案在位於目標圖案邊緣之一組預定義評估點的邊緣布置誤差 (EPE)，然後計算成本函數值為評估於這些預定義評估點之 EPE 的平方和。在 DSAPC() 函數的上述示範代碼中，可認為第 10 行所計算的殘差陣列，結構是由評估於該等評估點之 EPE 值組成的陣列。可認為函數 cost_function() 是計算這些 EPE 值之平方和之成本函數的實作。

【0036】DSA 成本函數的另一實施例是基於給定鹼刻製程去保護函數 E之值來的成本函數，它是在 DSA 目標特徵的邊緣評估。去保護函數為 BCP 密度 ρ_α (x)及 ρ_β (x)的函數 E=E(ρ_α, ρ_β)，使得表面 E=0 表示 DSA 圖案的邊緣(用陣列 p 參數化)。該鹼刻製程去保護函數取決於鹼刻製程的參數。

【0037】根據此定義，如果鹼刻製程去保護函數在目標圖案的所有邊緣(而且只在邊緣)等於零以及滿足某些“極性”條件，則 DSA 圖案與目標圖案完全符合。

【0038】去保護函數在目標特徵邊緣之數值的一些範數可用作成本函數。例如，可評估去保護函數在置於目標特徵邊緣上之預定義評估點集合的數值，以及成本函數值可為這些數值的平方和。

【0039】在 DSA 製程的實際實作中，此處理的各種參數會經歷在標稱值附近的隨機變量。這些變量會造成 DSA 製程的結果偏離基於所有 DSA 製程參數之標稱值的預期值，導致最終 DSA 結果的隨機誤差。經受隨機變量的 DSA 製程參數實施例為用來製造定向圖案之光學微影製程的劑量與焦點，BCP 退火製程的參數(例
如，最大温度或退火时间)，以及BCP旋涂制程中影响BCP膜厚的参数，等等。

【0040】为了减少这种随机误差，要求从DSA PC演算法得到产生最稳定之DSA制程的解是有利的，亦即，DSA制程对于参数的上述随机处理变量最不敏感。

【0041】这种DSA PC演算法的一个方法可基于把DSA PC演算法的成本函数改成含有增加其数值的项，用於较敏感之DSA制程。例如，为了减少DSA PC结果对于BCP膜厚变量的敏感性，上述成本函数可包含评估BCP膜厚以标称值为中心之数个数值的残差向量之平方和。

【0042】在以上所引进的符号中，用DSA PC演算法解答的问题可用公式表示为以下的约束最佳化问题：
(2) 找到d使得C(p)最少，以及约束条件为p = D(d)与M(d) ≤ 0。

【0043】在此，可製造性约束M(d) ≤ 0受强制限制条件支配而考虑到用於製造定向图案之制程的限制。例如，如果光学微影制程用来製造定向图案，该等约束可包含定向图案特征间的最小可能距離以及定向图案之特徵的最小尺寸，等等。

【0044】解上述問題的一个实用方法是减化为使用惩罚方法/惩罚函数方法的无约束最佳化问题。例如，对于上述可製造性约束，惩罚函数可为：
(3) G(d) = max(0,M(d))^2

【0045】用給定正惩罚係數s线性组合惩罚函数，以及加到原始成本函数，而产生无约束最小化问题如下：
(4) 找到d使得F(d)为最小，
在此給出經修改之成本函數：

\[(5) \quad F(d) = C(D(d)) + s^T G(d)\]

【0046】懲罰係數 \(s > 0 \) 的角色是違反可製造性約束的懲罰加權因子。如果以迭代方式解問題，可一個迭代接一個地遞增這些懲罰係數，確保可製造性約束在迭代收斂後滿足充分的精度。

【0047】鑑於以上說明，本揭示內容的具體實施例針對 DSA PC 演算法的新穎方法以及有效評估該等演算法所需成本函數之偏導數的方法。

【0048】為了表達該等方法，會使用 DSA PC 問題的公式(4)，其係將原始約束最佳化 DSA PC 問題(2)減化成無約束最佳化問題。這不會限制提出方法的一般性。假使如果更一般的公式(2)為較佳，以下所描述的迭代方法會要求以其他方式考慮到約束條件，例如用射影算子(projection)。

【0049】本文揭示解 DSA PC 問題(2)或(4-5)的迭代方法，其係利用成本函數對於定向圖案 d 之參數的一階或更高階偏導數的智識或估計值。

【0050】在迭代 DSA PC 方法的每個步驟，已知來自前一個 \(n^{th} \) 迭代的定向圖案參數值 \(d^{(n)} \)。基於該等數值以及成本函數及其導數的數值，更新這些參數的數值：

\[d^{(n+1)} = S(d^{(n)}, F, F_d^{(1)}, F_d^{(2)}, \ldots, F_d^{(N)})\]

在此 \(F_d^{(1)} \) 表示成本函數(5)對於定向圖案參數 d 的所有第 i 階偏導數。特別是，\(F_d^{(1)} \) 爲成本函數的梯度，以及 \(F_d^{(2)} \) 爲它的海森矩陣 (Hessian)。

【0051】以下詳述基於導數之迭代 DSA PC 方法的數個重要
家族。

【0052】在一個實施例中，可使用“最陡下降”或梯度下降數學解方法。例如，參考 Jan A. Snyman (2005)的著作：Practical Mathematical Optimization： An Introduction to Basic Optimization Theory and Classical and New Gradient-Based Algorithms。這些方法使用成本函數的梯度以便更新定向圖案參數 d 的數值。在此迭代演算法的每個步驟，更新方向與成本函數之梯度 $F_d^{(1)}$ 相反的 d 值，以便確保收斂至最小值：

$$d^{(n+1)} = d^{(n)} - t_nF_d^{(1)}(d^{(n)})$$

在此 t_n 為方法的參數(通常為正值)。

【0053】這些泛用最佳化方法使用成本函數的梯度及海森矩陣因而大致更快地收斂至成本函數的(局部)最小值。若是 DSA PC 演算法，牛頓迭代的每個步驟可寫成：

$$d^{(n+1)} = d^{(n)} - t_n(F_d^{(2)}(d^{(n)}))^{-1} F_d^{(1)}(d^{(n)})$$

在此 t_n 為方法的參數(通常為正值)以及$(F_d^{(2)}(d^{(n)}))^{-1}$ 為成本函數之海森矩陣的逆 (inverse)，其係評估 n^{th} 迭代的定向圖案 d^{(n)}。

【0054】描述於本文的各種改良及修改可用來解 DSA PC 問題。在一個實施例中，擬牛頓法可用來實現可與牛頓迭代相比的收斂，而不會在每個迭代以外顯方式評估海森矩陣的逆$(F_d^{(2)}(d^{(n)}))^{-1}$。例如，參考 Fletcher, Roger (1987)的著作：Practical methods of optimization (第二版)。在基於導數之迭代最佳化方法的另一實施例中，可使用共軛梯度法。例如，參考 Knyazev, Andrew V.; Lashuk, Ilya (2008): Steepest Descent and Conjugate Gradient Methods with Variable Preconditioning. SIAM Journal on Matrix Analysis and
Applications 29 (4): 1267。

【0055】由於以上所定義的成本函數都基於某一非線性 DSA 殘差的平方和，所以用於非線性最小平方問題的許多方法可用於 DSA PC。特別是，可使用高斯牛頓演算法與雷文柏格-馬括特演算法。例如，參考 Fletcher (1987), supra; Jose Pujol (2007)的著作: The solution of nonlinear inverse problems and the Levenberg-Marquardt method. Geophysics (SEG) 72 (4)。

【0056】在另一具體實施例中，可用 SCFT 方程式中的線性化來發現 DSA PC 問題的解，如上述。這種求解方法可稱為“快速” DSA 模型，因為該等方程式的線性化允許明顯地減少計算時間。例如，典型迭代 DSA PC 演算法需要多次評估演算法的成本函數以及對於設計參數 d(梯度及海森矩陣)的一階及二階導數。如上述，評估成本函數需要應用 DSA 模型至少一次。用有限差分計 算成本函數的一階及二階導數需要多次評估 DSA 模型。也應注意，實務上目前在使用的 DSA 模型為內隱模型，例如以上的方程式(1')及(1''')。結果，DSA 的單一應用需要非線性方程組的迭代解。

【0057】為了改善 DSA PC 演算法的計算效能，目前所述的 具體實施例提供快速有可能近似的 DSA 模型。同樣地，揭示一種 基於上述 SCFT 方程式之線性化的快速 DSA 模型。該方程組由用 於兩個未知 SCFT 場 \(w_A = w_A(x) \) 及 \(w_B = w_B(x) \) 的兩個非線性及非局部方程式組成，其中非線性及非局部性是由 BCP 密度 \(\rho_k = \rho_k[w_A, w_B] \) 對於該等場的非線性及非局部相依性引起，在此 \(K \) 為 A 或者是 B。為了由 SCFT 場的給定分布找出 BCP 密度，需要解兩

$$\mathbf{p} \approx \mathbf{p}^{(0)} + \mathbf{K} \mathbf{w}$$

$$\mathbf{p} = \begin{bmatrix} \rho_A \\ \rho_B \end{bmatrix}, \mathbf{p}^{(0)} = \begin{bmatrix} \rho_A^{(0)} \\ \rho_B^{(0)} \end{bmatrix}$$

在此，$$\mathbf{w} = \begin{bmatrix} w_A \\ w_B \end{bmatrix}$$ 為未知 SCFT 場 $$w_A = w_A(x)$$ 及 $$w_B = w_B(x)$$ 的組合向量，

$$\mathbf{K} = \begin{bmatrix} K_{AA} & K_{AB} \\ K_{BA} & K_{BB} \end{bmatrix}$$

作作用於場之向量的組合線性算子，其中

$$K_{AA}, K_{AB}, K_{BA}, K_{BB}$$ 作作用於指示之 SCFT 場的逼近線性算子。

【0058】如前述，使用 SCFT 方程式的近似線性化，結果為線性化的 SCFT 方程組：$$L \mathbf{w} = r(d)$$。如果算子 $$L$$ 可求逆，對應至設計參數 $$d$$ 之給定向量的 SCFT 相密度分布可寫成：$$\mathbf{p} = \mathbf{p}^{(0)} + \mathbf{K} L^{-1} r(d)$$。

【0059】在另一具體實施例中，以有限差公式方法為基礎用於對定向參數 $$d$$ 之偏導數的方法係應用於成本函數。此方法的一個缺點是對於不同的 $$d$$ 值，它需要多次評估成本函數。由於每個這種評估需要內隱 DSA 模型（例如，$$(1')$$ 或 $$(1'')$$）的解，因此使用有限差公式方法是計算昂貴的。

【0060】在另一具體實施例中，伴隨方程法（adjoint equation method）提供算出成本函數對於定向參數 $$d$$ 之偏導數的計算有效率方法。例如，參考 Austen G. Duffy 的著作：An Introduction to Gradient
Computation by the Discrete Adjoint Method, Technical report, Florida State University (2009), 可得自 http://computationalmathematics.org/topics/files/adjointtechreport.pdf; Michael B. Giles 與 Niles A. Pierce 的著作: An Introduction to the Adjoint Approach to Design, Flow, Turbulence and Combustion, 65(3-4):393-415, 2000。其計算複雜度意味著找出伴隨內隱 DSA 模型(1'), (1'')之問題的單解。伴隨問題的計算複雜度預料大致與原始內隱 DSA 問題 (1') 或 (1'') 的相同。儘管如此，此法提供以有限差分公式為基礎用於成本函數之方法的具吸引力之替代方案，因而後者需要多次求解內隱 DSA 問題 (1') 或 (1'')。

【0061】按照伴隨方程法的表達法，各種具體實施例應用伴隨方程法來計算 DSA PC 成本函數的導數。在一個實施例中，這些方法可基於或使用解析形式的伴隨方程(例如，佛客-普朗克偏微分方程式用於 DSA 自洽場理論模型的伴隨方程)。另一實施例中，該等方法可基於衍生自 DSA 模型之離散形式的伴隨方程。

【0062】此外，用 SCFT 方程式的線性化可進行成本函數導數的評估。SCFT 方程式的線性化形式 (2.1.4.4) 在 DSA PC 演算法中可用來評估成本函數的導數。典型成本函數，例如上式 (4)，為 BCP 相密度的泛函，接著其係取決於設計參數 d，表示如下: \(F(d) = C(\rho) + s^G(d) \)，在此 \(\rho = D(d) \)。G(d) 項是代表由給定約束所致的懲罰，以及以外顯方式提供它和其一階及二階導數 \(G_d^{(1)} \) 及 \(G_d^{(2)} \) (可以外顯方式評估)。取決於 DSA 模型解之項的導數可用上述線性化 SCFT 模型評估，如下: \(C_d^{(1)} = C_p^{(1)} \rho_d = C_p^{(1)} K L^{-1} r_d^{(1)}(d) \)。

【0063】本揭示內容的具體實施例可有利地實作於電腦系統。
上。第 1 圖的方塊圖示意圖示根據一些實施例來配置的計算系統 100。電腦系統 100 也代表本揭示內容的硬體環境。例如，電腦系統 100 可具有用系統匯流排 102 藍合至各種其他組件的處理器 101。

【0064】請參考第 1 圖，作業系統 103 可在處理器 101 上運行，以及提供控制及協調第 1 圖之各種組件的功能。根據本揭示內容實施例之原理的應用程式 104 可與作業系統 103 結合執行，以及提供呼叫及/或指令給作業系統 103，在此呼叫/指令係實施將由應用程式 104 完成的各種功能或服務。

【0065】請參考第 1 圖，唯讀記憶體(“ROM”) 105 可耦合至系統匯流排 102，以及可包含可控制電腦裝置 100 之某些基本功能的基本輸入/輸出系統(“BIOS”)。隨機存取記憶體(“RAM”) 106 及磁碟配接器 107 也可耦合至系統匯流排 102。應注意，軟體組件，包括作業系統 103 及應用程式 104，可載入 RAM 106 中，它可爲電腦系統供執行用的主記憶體。可提供磁碟配接器 107，它可為整合電子驅動界面(“IDE”)或並行進階技術連接(“PATA”)配接器，串列進階技術連接(“SATA”)配接器，小電腦系統介面(“SCSI”)配接器，通用串列匯流排(“USB”)配接器，IEEE 1394 配接器，或與磁碟單元 108(例如，磁盤驅動器)通訊的任何其他適當配接器。

【0066】請參考第 1 圖，電腦系統 100 更可包含耦合至匯流排 102 的通訊配接器 109。通訊配接器 109 可使匯流排 102 與外部網路（未圖示）互連而藉此促進電腦系統 100 與其他相同及/或不同的裝置通訊。
【0067】輸入/輸出（"I/O"）裝置也可經由使用者介面配接器 110 以及顯示配接器 111 連接至電腦系統 100。例如，鍵盤 112、滑鼠 113 及揚聲器 114 可通過使用者介面配接器 110 互連至匯流排 102。通過該等示範裝置中之任一，可提供資料給電腦系統 100。顯示監視器 115 可用顯示配接器 111 連接至系統匯流排 102。在此示範方式中，使用者通過鍵盤 112 及/或滑鼠 113 可提供資料或其他資訊給電腦系統 100，以及經由顯示器 115 及/或揚聲器 114 可得到電腦系統 100 的輸出。應瞭解，上述具體實施例的計算方面可用處理器 101 完成，以及與所用演算法有關的資料可存入例如記憶體 105 或 106 中。

【0068】與先前技術基於模型的 OPC 方法相比，本發明的特別優勢在於它擴展該等方法至 DSA 的領域。DSA PC 具有 OPC 沒有的具體特點，例如，為內隱 DSA 模型（1'）和變分 DSA 模型（1''），基於在目標特徵邊緣之去保護函數值的成本函數，DSA 特定參數之變量考慮到製程敏感度的成本函數。

【0069】儘管在本發明專利標的之以上詳細說明中已提出至少一個示範具體實施例，然而應瞭解，仍存在許多變體。也應瞭解，該或該等示範具體實施例只是實施例，而且不希望以任何方式來限定本發明專利標的之範疇，應用性或組構。然而，以上詳細說明是要讓熟諳此技術領域者有個方便的發展藍圖用來具體實作本發明專利標的的示範具體實施例。應瞭解，描述於示範具體實施例的元件功能及配置可做出不同的改變而不脫離如隨附申請專利範圍所述的本發明範疇。此外，應瞭解，在以上詳細說明中提及與定向自組裝有關的所有參考文獻全部明確地併入本文作為
參考資料。

【符號說明】

【0070】

<table>
<thead>
<tr>
<th>100</th>
<th>計算系統</th>
<th>101</th>
<th>處理器</th>
</tr>
</thead>
<tbody>
<tr>
<td>102</td>
<td>系統匯流排</td>
<td>103</td>
<td>作業系統</td>
</tr>
<tr>
<td>104</td>
<td>應用程式</td>
<td>105</td>
<td>唯讀記憶體（“ROM”）</td>
</tr>
<tr>
<td>106</td>
<td>隨機存取記憶體（“RAM”）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>磁碟配接器</td>
<td>108</td>
<td>磁碟單元</td>
</tr>
<tr>
<td>109</td>
<td>通訊配接器</td>
<td>110</td>
<td>使用者介面配接器</td>
</tr>
<tr>
<td>111</td>
<td>顯示配接器</td>
<td>112</td>
<td>鍵盤</td>
</tr>
<tr>
<td>113</td>
<td>滑鼠</td>
<td>114</td>
<td>揚聲器</td>
</tr>
<tr>
<td>115</td>
<td>顯示監視器</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
申請專利範圍

1. 一種製造積體電路之方法，係包含:

設計光學光罩用於形成預圖案開口於半導體基板上的光阻層中，其中，該光阻層及該預圖案開口塗上經受定向自組裝 (DSA)的自組裝材料以形成 DSA 圖案，以及其中設計該光學光罩之該步驟包括:

使用計算系統，輸入 DSA 目標圖案;

使用該計算系統，應用 DSA 模型於該 DSA 目標圖案以產生第一 DSA 定向圖案;

使用該計算系統，計算該 DSA 目標圖案與該 DSA 定向圖案之間的殘差;以及

使用該計算系統，應用該 DSA 模型於該第一 DSA 定向圖案及該殘差以產生第二更新 DSA 定向圖案，

其中，產生該第二更新 DSA 定向圖案包括線性化自洽場理論方程式。

2. 如申請專利範圍第 1 項所述之方法，其中，輸入該 DSA 目標圖案包括：輸入線條及空間圖案、孤立線條圖案或接觸孔圖案中之一或更多。

3. 如申請專利範圍第 1 項所述之方法，其中，線性化該自洽場理論方程式包括：線性化兩個聯立非線性、非局部方程式。

4. 如申請專利範圍第 3 項所述之方法，其中，線性化該自洽場理論方程式包括線性化下列兩個方程式:

\[
\frac{\rho_d[A,w_A] + \rho_b[A,w_B]}{(\chi_{AB} + 2\kappa)N}(w_A + w_B) = \frac{2\kappa}{\chi_{AB} + 2\kappa} \rho_0 - \frac{2\chi_{AB} + 2\kappa}{\chi_{AB} + 2\kappa} \rho(x,d),
\]
\[\rho_B[w_A, w_B] - \rho_A[w_A, w_B] + \frac{\rho_0}{\chi_{AB} N} (w_B - w_A) = \frac{2\chi_w}{\chi_{AB}} \rho_w(x, d), \]

其中，\(w_A = w_A(x) \) 與 \(w_B = w_B(x) \) 為各自作用於嵌段共聚物之相 A及 B 的未知自洽場(勢)，\(\rho \) 為恆定總密度參數，\(\chi \) 為壓縮率參數，\(\rho_w = \rho_w(x, d) \) 為局限壁的密度或化學磊晶預圖案刷子或墊子的密度以及為空間座標 \(x \) 與定向圖案參數 \(d \) 的函數，\(\rho_A(x) \)與 \(\rho_B(x) \) 為該嵌段共聚物相的密度以及為 \(w_A \) 與 \(w_B \) 的函數，以及 \(\chi_{AB} \) 為以該嵌段共聚物相之相互作用為特徵的弗洛里參數。

5. 如申請專利範圍第 4 項所述之方法，其中，以求解佛克-普朗克反應擴散偏微分方程式來算出 \(\rho_A \) 與 \(\rho_B \) 的值。

6. 如申請專利範圍第 4 項所述之方法，其中，將密度向量 \(\rho \) 線性近似成:

\[\rho \approx \rho^{(0)} + K w, \]

其中，

\[\rho = \begin{bmatrix} \rho_A \\ \rho_B \end{bmatrix}, \rho^{(0)} = \begin{bmatrix} \rho_A^{(0)} \\ \rho_B^{(0)} \end{bmatrix}, \]

為密度的組合向量，

\[w = \begin{bmatrix} w_A \\ w_B \end{bmatrix} \]

為未知自洽場理論(SCFT)場 \(w_A = w_A(x) \) 及 \(w_B = w_B(x) \) 的組合向量，

\[K = \begin{bmatrix} K_{AA} & K_{AB} \\ K_{BA} & K_{BB} \end{bmatrix} \]

為作用於場之向量的組合線性算子，其中 \(K_{AA}, K_{AB}, K_{BA}, K_{BB} \) 為作用於指示之 SCFT 場的逼近線性算子。

7. 如申請專利範圍第 1 項所述之方法，更包括，使用該計算系統，計算該殘差的成本函數。

8. 如申請專利範圍第 7 項所述之方法，其中，計算該成本函數包括：至少部份基於計算該 DSA 定向圖案與該 DSA 目標圖案在
位於該 DSA 目標圖案之兩個或更多邊緣的一組預定義評估點的邊緣布置誤差來計算該成本函數。

9. 如申請專利範圍第 7 項所述之方法，其中，計算該成本函數包括：至少部份基於蝕刻製程去保護函數的數值來計算該成本函數。

10. 如申請專利範圍第 7 項所述之方法，更包括：將該成本函數改成含有增加該成本函數之數值的項，用於越來越敏感的 DSA 製程。

11. 如申請專利範圍第 7 項所述之方法，更包括：計算該成本函數之導數。

12. 如申請專利範圍第 11 項所述之方法，其中，計算該成本函數之該導數包括：使用有限差分公式計算該導數，以計算該成本函數對於該第一 DSA 定向圖案之至少一個參數的偏導數。

13. 如申請專利範圍第 11 項所述之方法，其中，計算該成本函數之該導數包括：使用伴隨方程法計算該導數，以計算該成本函數對於該第一 DSA 定向圖案之至少一個參數的偏導數。

14. 如申請專利範圍第 11 項所述之方法，其中，計算該成本函數之該導數包括：應用經線性化的 SCFT 方程式。

15. 如申請專利範圍第 1 項所述之方法，更包括：施加該光學光罩至在該半導體基板上的該光阻層。

16. 一種製造積體電路之方法，係包含：

設計光學光罩用於形成預圖案開口於半導體基板上的光阻層中，其中，該光阻層及該預圖案開口塗上經受定向自組裝 (DSA)的自組裝材料以形成 DSA 圖案，以及其中設計該光學光
罩之該步驟包括：

使用計算系統，輸入 DSA 目標圖案；

使用該計算系統，應用 DSA 模型於該 DSA 目標圖案以產生第一 DSA 定向圖案；

使用該計算系統，計算該 DSA 目標圖案與該 DSA 定向圖案之間的殘差；

使用該計算系統，計算該殘差的成本函數；以及

如果該殘差大於預定值，使用該計算系統，應用該 DSA 模型於該第一 DSA 定向圖案及該殘差以產生第二更新 DSA 定向圖案，其中產生該第二更新 DSA 定向圖案包括線性化自治場理論方程式。

17. 如申請專利範圍第 16 項所述之方法，其中，該成本函數之至少一個導數為該成本函數的一階導數。

18. 如申請專利範圍第 16 項所述之方法，其中，該成本函數之至少一個導數為該成本函數的二階導數。