PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification © : (11) International Publication Number: WO 00/01170
H04Q 3/00 A2

(43) International Publication Date: 6 January 2000 (06.01.00)

(21) International Application Number: PCT/US99/14376 | (81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,

BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB,

(22) International Filing Date: 24 June 1999 (24.06.99) GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG,

KP, KR,KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK,

MN, MW, MX, NO, NZ, PL, PT, RO, RU;, SD, SE, SG, SI,

(30) Priority Data: SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW,

09/106,879 30 June 1998 (30.06.98) Us ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG,

ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI,

(71) Applicant: SUN MICROSYSTEMS, INC. [US/US]; 901 San FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent
Antonio Road, MS UPALO01-521, Palo Alto, CA 94303 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE,
(US). SN, TD, TG).

(72) Inventors: WOLCZKO, Mario, Iwan;, 580 Arastradero Road
#503, Palo Alto, CA 94306 (US). KNIPPEL, Ross, Charles; | Published

587 Highland Avenue, Half Moon Bay, CA 94019 (US). Without international search report and to be republished
upon receipt of that report.

(74) Agents: GARRETT, Arthur, S.; Finnegan, Henderson,
Farabow, Garrett & Dunner L.L.P., 1300 I Street, N.W.,
Washington, DC 20005-3315 (US) et al.

(54) Title: METHOD, APPARATUS, AND ARTICLE OF MANUFACTURE FOR PROCESSING A VIRTUAL CALL IN A
MULTI-THREADED PROGRAM

(87) Abstract

Methods, systems, and articles of manufacture consistent with the present invention process a virtual call during execution of a
multi-threaded program by ensuring that the steps of patching the virtual call to the appropriate method are performed within a single
instruction cycle. This prevents other threads from executing instructions related to the virtual call in the middle of the patching procedure.
Methods, systems, and articles of manufacture consistent with the present invention identify a target, such as a targeted method and a class
of a receiver object, associated with the virtual call and then determine an address identifier, such as a memory address pointer to the class
of the receiver object. By ensuring that the address identifier is within a restricted address space, a predetermined boundary of the memory
storage device can be used to patch the call to the identified target and patch the address identifier for the identified target to the correct
address identifier within a single instruction cycle.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CcM
CN
Ccu
cz
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FIL
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
TD
TG
TJ
™
TR
TT
UA
UG
Us
UZ
VN
YU
YA

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

WO 00/01170 PCT/US99/14376

METHOD, APPARATUS, AND ARTICLE OF MANUFACTURE FOR
PROCESSING A VIRTUAL CALL IN A MULTI-THREADED PROGRAM

BACKGROUND OF THE INVENTION

A. Field of the Invention

This invention relates to systems for processing a virtual call in a multi-
threaded environment and, more particularly, to systems for processing a virtual call
during execution of a multi-threaded program using a memory storage device having a
predetermined boundary in order to atomically patch the virtual call to an appropriate
method.

B. Description of the Related Art

In object-oriented programming, a "class" provides a template for the creation
of objects. Each class shares certain attributes determined by the class. These attributes
typically include a set of data fields and a set of methods. The data fields hold values for
an object and the methods define operations for manipulating these values of the object.

When a call is made to an object's method, a compiler determines the
appropriate method to use. Sometimes, the compiler can easily do this because the
method called is static, i.e., is bound to a determined definition of the method in a
specific object class. However, when the method is not static (i.e., the method is a virtual
method), binding of the particular method to the specific object class is dynamic and
more complex but provides the object-oriented programmer with a greater degree of
flexibility. In particular, those skilled in the art will realize that using virtual methods
allows a programmer the flexibility to execute completely different methods using the
same virtual call.

A call to a virtual method is typically referred to as a virtual call. When a
virtual call is made, dynamic binding of the virtual call to the appropriate definition of the
target method is performed. One technique for binding a virtual call is to use a
conventional inline cache as described in an article entitled "Efficient Implementation of

the Smalltalk-80 System" by L. Peter Deutsch and Allen M. Schiffman and published by

10

15

20

25

WO 00/01170 PCT/US99/14376

-2
the Association for Computing Machinery (ACM) in 1983. Those skilled in the art will

recognize that in an implementation of a conventional inline cache, a direct call is made
to the last method invoked at a call site. A call site is defined as the location in a program
at which a virtual call is made. The initial state of the call site is to invoke a binding
routine, which determines the appropriate method associated with the virtual call from the
class of a receiver object in the virtual call. The binding method then patches the call
site, which dynamically binds the call to the appropriate method so to invoke the
appropriate method.

In an implementation of an inline cache, the prologue of each virtual method
compares the class of the receiver object to the class last used at that call site. If the
classes do not match, a programmatic branch is taken to the binding routine, which
determines the correct method for the virtual call and then patches the call site
accordingly.

Unfortunately, various problems may be encountered when processing such a
virtual call within a multi-threaded environment. A multi-threaded environment is
essentially a programming environment where a computer program or application, also
referred to as a multi-threaded program, is partitioned into logically independent
nthreads" of control that can execute in parallel. Each thread includes a sequence of
instructions and data used by the instructions to carry out a particular program task.
When employing a computer system with multiple processors, each processor may
execute one or more threads depending upon the number of processors to achieve multi-
processing of the program.

When attempting to patch a virtual call to a method during execution of a
multi-threaded program, problems may occur because another thread may be executing
the same instruction being patched. Furthermore, on some computer architectures,
processing the virtual call to patch the call to the appropriate method can be complicated
and undesirably slow because of the number of items to patch (e.g., the appropriate
method and a large address identifier or pointer) as well as the unspecified amount of

time it takes to propagate to the inline caches on other processors.

10

15

20

25

WO 00/01170 PCT/US99/14376

-3-
One way to resolve this problem is to stop any threads from entering the

sequence of instructions being patched by suspending execution of all threads.
Unfortunately, suspending execution of all threads undesirably affects the performance of
the system by slowing execution of the multi-threaded program as a whole.

Another way to resolve this problem is to perform a conventional "lock out"
sequence related to the call sequence when patching the instructions. While this also
prevents any other thread from interrupting the patching call sequence, it requires a large
overhead of instructions to be executed before and after the locked out patching call
sequence. Thus, such a conventional "lock out" is also undesirable because of the slow
performance of handling a virtual call.

Accordingly, there is a need for a system within a multi-threaded environment
that efficiently processes a virtual call and allows one thread to patch the instructions of

the virtual call while other threads may be safely and quickly executing the instructions.

SUMMARY OF THE INVENTION

Methods, systems, and articles of manufacture consistent with the present
invention overcome the shortcomings of existing virtual call processing techniques by
patching the instructions related to the virtual call within a single instruction cycle so that
the patching process is not interruptible and is atomic. Methods, systems, and articles of
manufacture consistent with the present invention, as embodied and broadly described
herein, identify a target associated with a virtual call. A target is typically a targeted
method defined by a class of receiver object, which is associated with the virtual call.
Next, an address identifier is determined that is associated with the identified target. In
particular, the address identifier may be a pointer to a memory address location within a
restricted address space for maintaining the class of the receiver object. Once the target
has been identified and the address identifier is determined, the virtual call and the
address identifier (more particularly, instructions related to each of these) are placed
within a predetermined boundary of a memory storage device. Once placed within the

predetermined boundary, the virtual call is patched to the target and the contents ofa

10

15

20

25

WO 00/01170 PCT/US99/14376

-4-
memory storage device are patched to a value of the address identifier during a single

instruction cycle.

In accordance with another aspect of the present invention, methods, systems,
and articles of manufacture, as embodied and broadly described herein describe, a virtual
call processing system having a memory storage device having a predetermined boundary
and capable of being updated within a single instruction cycle. The system also includes
a processor coupled to the memory storage device. The processor is capable of updating
the memory storage device within the single instruction cycle and configured to execute
the multi-threaded program. During execution of the multi-threaded program, the
processor is also operative to detect the virtual call, identify a target associated with the
virtual call, and determine an address identifier associated with the target. The address
identifier is within a restricted address space typically maintaining a class of an object
related to the virtual call. The processor is also operative to place the virtual call and the
address identifier within the predetermined boundary of the memory storage device. In
such a configuration, the processor is then operative to, within a single instruction cycle,
patch the virtual call to the target and patch the contents of the memory storage device to
the value of the address identifier. More particularly stated, the processor may atomically
update both a call instruction to reflect the targeted method and update a set instruction to
reflect the value of the address identifier without allowing other threads to execute the
updated call instruction with a non-updated address identifier or vice versa.

In accordance with yet another aspect of the present invention, methods,
systems, and articles of manufacture, as embodied and broadly described herein, describe
a computer-readable medium, which contains instructions for processing a virtual call
during execution of a multi-threaded program. When the instructions are executed, a
target is identified that is associated with the virtual call. Next, an address identifier
associated with the target is identified. The address identifier is within a restricted
address space, typically for maintaining a class of object related to the target. The virtual
call and the address identifier are then placed within a predetermined boundary of a

memory storage device. Thereafter and during a single instruction cycle, the virtual call

10

15

20

25

30

WO 00/01170 PCT/US99/14376

-5-
is patched to the target while the contents of the memory storage device are patched to

reflect the value of the address identifier.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of
this specification, illustrate an implementation of the invention. The drawings and the
description serve to explain the advantages and principles of the invention. In the
drawings,

FIG. 1 is a block diagram of an exemplary computer system with which the
invention may be implemented;

FIG. 2 is a block diagram of a virtual call processing system for use with multi-
threaded programs consistent with an exemplary embodiment of the present invention;
and

FIG. 3 is a flow chart illustrating typical steps performed by the virtual call

processing system consistent with an exemplary embodiment of the present invention.

DETAILED DESCRIPTION

Reference will now be made in detail to an implementation consistent with the
present invention as illustrated in the accompanying drawings. Wherever possible, the
same reference numbers will be used throughout the drawings and the following

description to refer to the same or like parts.

Introduction

In general, methods and systems consistent with the present invention process a
virtual call during execution of a multi-threaded program by ensuring that the steps of
patching the virtual call to the appropriate method are performed within a single
instruction cycle. By doing so, other threads are prevented from undesirably executing
instructions related to the virtual call in the middle of the patching procedure.

In more detail, a target (such as a targeted method and a class of a receiver

object related to the virtual call) is identified. A target is generally defined to be any

10

15

20

25

30

WO 00/01170 PCT/US99/14376

-6-
indication of which method should be executed by the virtual call. In this manner, the

appropriate or targeted method to be "dynamically bound" to the virtual call can be
identified as being defined by the class of the receiver object. Next, an address identifier
(such as a memory address pointer to the class of the receiver object) is determined. The
address identifier is typically defined to be a pointer to the class of the receiver object,
which defines the targeted method. If the definition of the targeted method is maintained
within a restricted address spacé, the size of the address identifier can be advantageously
reduced. Furthermore, by maintaining the object classes within such a restricted address
space, the number of instructions required for patching the virtual call can also be
advantageously reduced. Thus, by ensuring that the address identifier is within the
restricted address space, a predetermined boundary of the memory storage device can be
used to patch the call to the identified target and patch the address identifier for the
identified target to the correct address identifier within a single instruction cycle.

Those skilled in the art can appreciate that performing the patching process in a
single, atomic (functionally uninterruptable) operation limits the ability of other threads
to execute the same instructions in the midst of being patched. Accordingly, one thread
can effectively and efficiently patch the code at the call site while other threads may be
safely executing it without the opportunity of an erroneous execution of a virtual call (i.e.,

execution of the virtual method using an incorrect definition of the method).

Computer Architecture

Figure 1 depicts an exemplary data processing system 100 suitable for
practicing methods and implementing systems consistent with the present invention.
Referring now to Fig. 1, data processing system 100 includes a computer system 110
connected to a network 170, such as a Local Area Network, Wide Area Network, or the
Internet.

Computer system 110 contains a main memory 120, a secondary storage device
130, a central processing unit (CPU) 140, an input device 150, and a video display 160,
each of which are electronically coupled to the other parts of computer system 110. Main

memory 120 contains an operating system 128, a virtual machine (VM) 122, and a multi-

10

15

20

25

30

WO 00/01170 PCT/US99/14376

-7-
threaded program 124. An exemplary VM 122 for purposes of this description is a

Java™ Virtual Machine (JVM), which is part of the Java™ runtime environment
included in the Java™ software development kit (JDK). The JDK is available from Sun
Microsystems of Palo Alto, California. In general, the JVM acts like an abstract
computing machine, receiving instructions from programs (such as multi-threaded
program 124) in the form of bytecodes. A bytecode is essentially a compiled format for a
general purpose program, such as a program written in the Java™ programming
language. Once the instructions or bytecodes have been received, the JVM interprets
these bytecodes by dynamically converting them into a form for execution, such as object
code, and executes them.

This execution scheme for programs, such as programs written in the Java™
programming language, facilitates the platform independent nature of the JVM. Further
details on the JVM can be found in a number of texts, including Lindholm and Yellin,

The Java Virtual Machine Specification, Addison-Wesley, 1997, which is hereby

incorporated by reference.

An inline cache 126 implements a more generally described memory storage
device. Such a memory storage device has a predetermined boundary and is capable of
updating information stored within the predetermined boundary in a single instruction
cycle. In an exemplary embodiment consistent with the present invention, computer
system 110 is implemented using a SPARC™ computer architecture. Those skilled in the
art will recognize that the SPARC™ computer architecture from Sun Microsystems of
Palo Alto, California is designed such that, from a memory addressing and address space
perspective, all updates to a double-word address space (8 bytes) aligned on a 8-byte
address boundary will be atomic. More generally stated, all reads and writes within a
predetermined boundary (such as the double-word address space) of such a memory
storage device are guaranteed to be functionally indivisible, uninterruptable and nearly
simultaneous. Further details regarding the SPARC™ computer architecture can be
found in a number of texts, including the SPARC™ V9 Reference Manuals available
from SPARC International of Menlo Park, California, which are hereby incorporated by

reference.

10

15

20

25

30

WO 00/01170 PCT/US99/14376

-8-
Although the memory storage device, such as inline cache 126, is shown as

part of main memory 120, other implementations consistent with the present invention
may allow the memory storage device to be a separate device. An example of such a
separate device includes a dedicated register or any other computer-readable medium
capable of maintaining datum and being updated within a single instruction cycle.
Additionally, one skilled in the art will appreciate that although one implementation
consistent with the present invention is described as being practiced in conjunction with a
JVM, systems and methods consistent with the present invention may also be practiced in
an environment other than a Java™ environment.

Furthermore, one skilled in the art will appreciate that all or part of systems
and methods consistent with the present invention may be stored on or read from other
computer-readable media, such as secondary storage devices, like hard disks, floppy
disks, and CD-ROM,; a carrier wave received from the Internet; or other forms of ROM or
RAM. Finally, although specific components of data processing system 100 have been
described, one skilled in the art will appreciate that a data processing system suitable for
use with the exemplary embodiment may contain additional or different components,

such as multiple processors and a variety of input/output devices.

Virtual Call Processing System

Figure 2 is a block diagram of a virtual call processing system consistent with
the principles of the present invention. Referring now to Figs. 1 and 2, the virtual call
processing system is used in a multi-threaded environment, such as when multi-threaded
program 124 is being executed by CPU 140. As shown in Fig. 2, multi-threaded program
124 consists of multiple threads 200, 202, and 204. Utilizing VM 122, such as the JVM,
or a facility of operating system 128, such as "WINDOWS NT" or "WINDOWS 95"
distributed by Microsoft Corporation of Redmond, Washington or "SOLARIS"
distributed by Sun Microsysten-ls of Palo Alto, California, CPU 140 concurrently executes
threads 200, 202, and 204.

During execution of one of the threads 200, CPU 140 (utilizing VM 122)

detects that a call is made to a virtual method (i.e., a virtual call). Upon detection, CPU

10

15

20

25

WO 00/01170 PCT/US99/14376

-9-
140 typically compiles the virtual call to turn the bytecodes of the virtual call into a

machine readable and executable form of instructions. Typically, the instructions include
a call to a binding routine 205, a delay slot, and additional instructions setting the value of
a memory storage device, such as inline cache 126, with an address identifier.

CPU 140 calls binding routine 205, which is part of VM 122, essentially to
determine what is really meant to be called (the target) and then to patch the virtual call to
the target and to patch the contents of inline cache 126 with the address identifier. If it is
ensured that the class definitions are maintained within a restricted address space, the size
of the address identifier can be minimized. In this manner, call 210 and address identifier
212 related instructions cleverly fit within a predetermined boundary of inline cache 126.
Thus, by fitting within the predetermined boundary, the instructions are updated in a
single instruction cycle in a nearly simultaneous manner.

The predetermined boundary is selected based on how much memory can be
read or written to atomically or, more generally stated, within a single instruction cycle.
In the preferred embodiment, CPU 140 is capable of atomically updating (reading or
writing to) a double-word boundary (a predetermined boundary) of inline cache 126 (a
memory storage device). In this configuration, CPU 140 is then capable of nearly
simultaneously updating the cail instruction to the targeted method and updating the
address identifier related instruction (set instruction) to the correct pointer value related to
the class defining the targeted method. Thus, call 210 and address identifier 212 related
instructions can be updated or patched within a single instruction cycle after being placed
within the double-word boundary of inline cache 126.

Once both the call and the address identifier contents of inline cache 126 have
been patched, the virtual call can then be properly executed by thread 200. In this
manner, the risk of a mismatched condition is avoided without the need to halt execution
of all of the other threads 202, 204.

In an example, CPU 140 detects virtual call 1 from thread 200. This virtual
call has a receiver object X and a targeted method F as part of the virtual call. Those

skilled in the art will be familiar with virtual calls and virtual methods, including receiver

10

15

20

25

30

WO 00/01170 PCT/US99/14376

-10 -
objects and targeted methods, consistent with object-oriented programming languages,

such as the Java™ programming language.

In order to avoid unnecessarily and repeatedly binding the same definition of a
specific method, such as method F, to a virtual call targeting the same method, an
embodiment consistent with the present invention first determines whether the class of
the receiver object is the same as the class of the last receiver object used. If the classes
are the same, then there is no need to patch the instructions and the virtual call to method
F can be executed using the definition of method F from the class of the last receiver
object. However, if the classes are not the same, it is necessary to call binder routine 205
and determine which definition of method F to use for this virtual call.

When binder routine 205 is called, binder routine 205 looks to the call site or
location within executing thread 200 from which the virtual call was made. Next, binder
routine 205 identifies the target of the virtual call from the receiver object in the virtual
call. More specifically, binder routine 205 looks for the class of receiver object X and
determines the appropriate definition of targeted method F from this class. Additionally,
binder routine 205 determines an address identifier associated with the target and within a
restricted address space. In an embodiment using a SPARC™ computer architecture, the
pointer is a 32-bit value. However, by using the restricted address space. the low order 10
bits of this pointer (i.e., the class address) will be zero and can be omitted from
consideration and further processing. As a result, the number of instructions required to
set the value of the address identifier to the correct value is reduced. In the example, an
exemplary value for the address identifier associated with virtual call 1 is 2000.

At this point, traditional virtual call processing systems would be required to
take multiple instruction cycles to patch the call instruction and the instructions which set
the contents of inline cache 126. However, in accordance with the principles of the
present invention, the patching process is specifically designed to update a virtual call
within a single instruction cycle. In the example, CPU 140 is able to patch the virtual call
to be a call instruction for the targeted method F as defined by class X and to patch the
address identifier setting instruction to the value 2000 (i.e., a pointer to the class X) using

a double-word boundary of inline cache 126. Finally, CPU 140 is able to execute the

10

15

20

25

WO 00/01170 PCT/US99/14376

-11 -
virtual call using the patched instructions to properly identify the targeted method F and

execute it.

In another virtual call, such as virtual call 2, the targeted method is still method
F but the receiver object associated with the virtual call is object Y instead of object X.
Thus, in order for virtual call 2 to be properly processed, the definition of method F as
defined in the class of receiver object Y must be bound or patched to the virtual call
without allowing other threads 202, 204 to interrupt the patching process. Binder routine
205 is called again to identify that the target includes targeted method F as defined in the
class of receiver object Y and to determine that the address identifier for the class of
object Y is 3000. Thus, the instruction to call method F is atomically patched or updated
while the instruction to set the contents of the inline cache is patched or updated to reflect

an address identifier value of 3000 instead of 2000 for method F.

Virtual Call Process

Further details on steps of an exemplary method in accordance with the present
invention for processing a virtual call will now be explained with reference to the flow
chart of Fig. 3. Referring now to Figs. 1-3, the method 300 begins at step 305 when a call
to a virtual method is detected. VM 122 executes the prologue of the detected virtual call
(step 310) to determine whether the class of the virtual call's receiver object is the same as
the last receiver object. If so, then patching of the virtual call can easily be accomplished
at step 315. At step 315, the virtual call is essentially patched and executed using the
definition of the targeted method from the class of the last receiver object before
returning to step 305. In other words, binder routine 205 need not be called in this
situation because the last call to the targeted method used the same definition.

However, if the class of the virtual call's receiver object is not the same as the
last receiver object, binder routine 205 is called (step 320) to patch the virtual call to the
correct method. Steps 325-335 generally describe the process the binder routine uses to

patch the virtual call.

10

15

20

25

WO 00/01170 PCT/US99/14376

-12-
At step 325, a target is identified from the receiver object in the virtual call.

The target is typically a targeted method defined by a class of a receiver object, which is
associated with the virtual call.

Next, an address ideﬁtiﬁer (such as a pointer to a memory address location) is
identified at step 330. It is desirable to maintain the class of the targeted method within a
restricted address space in order to minimize the size or length of the address identifier.
In the exemplary embodiment, if the class of the targeted method is aligned on a kilobyte
boundary within a larger address space, the lower bits of the address identifier become
zero and can be disregarded. Thus, the number of instructions required to set the contents
of inline cache 126 to the correct value of the address can be reduced so that the call
instruction and the set instruction can fit within an atomically updatable part of memory,
such as within a double-word boundary of inline cache 126.

Traditionally, there are two or more instructions required to set the value of
inline cache 126 to the correct address identifier. In an embodiment using a SPARC™
computer architecture, these instructions include a set instruction and an add instruction.
However, when the size of the address identifier is small enough, the add instruction may
be advantageously omitted and patching the virtual call can be accomplished by updating
just two instructions: the call instruction and the set instruction.

At step 332, the instructions related to the virtual call are placed within the
predetermined boundary of the memory storage device. In more detail, the call
instruction associated with the virtual call and the set instruction associated with the
address identifier are each placed within a predetermined boundary of the memory storage
device, such as inline cache 126. In the exemplary embodiment, the predetermined
boundary is selected because it is the largest datum that a conventional SPARC™
computer architecture guarantees will be atomically read or written. Those skilled in the
art will realize that other combinations of restricted address space and predetermined
boundaries will be possible with different implementations of the present invention.

At step 335, the patching process occurs. In general, the call is patched to the

targeted method and the contents of the inline cache (e.g., the set instruction) are patched

10

15

20

25

30

WO 00/01170 PCT/US99/14376

-13 -
to the correct address identifier value during a single instruction cycle of CPU 140. In

this manner, CPU 140 atomically updates the pair of instructions.

Finally, at step 340, the virtual call has been dynamically bound to the correct
definition of the targeted method and the virtual call may be executed. As aresult, call is
made directly to the targeted method using the patched contents of inline cache 126 to
identify and execute the targeted method before returning to step 340 to detect the next

virtual call.

Conclusion

Methods and systems consistent with the present invention process a virtual
call during execution of a multi-threaded program by identifying a target from the virtual
call, determining an address identifier associated with the target, and atomically patching
the instructions for executing and identifying the target. This is typically accomplished
by maintaining class definitions for the target within a restricted address space and using
a memory storage device, such as inline cache 126, that is capable of being updated
within a single instruction cycle of CPU 140. One of the advantages to processing a
virtual call in this manner is that it can be performed during execution of a multi-threaded
program without the problems associated with mismatched definitions for the targeted
method. Furthermore, methods and systems consistent with the present invention
advantageously allow one thread to patch the virtual call's code while other threads are
safely executing it.

Finally, systems consistent with the present invention are applicable when
executing multi-threaded programs written in all computer programming languages,
including Java, Smalltalk-80, and C++.

The foregoing description of an implementation of the invention has been
presented for purposes of illustration and description. It is not exhaustive and does not
limit the invention to the precise form disclosed. Modifications and variations are
possible in light of the above teachings or may be acquired from practicing of the
invention. For example, the described implementation includes software but the present

invention may be implemented as a combination of hardware and software or in hardware

WO 00/01170 PCT/US99/14376

-14 -
alone. The invention may be implemented with both object-oriented and non-object-

oriented programming systems. The scope of the invention is defined by the claims and

their equivalents.

10

15

20

25

30

WO 00/01170 PCT/US99/14376

-15-
WHAT IS CLAIMED IS

1. A method for processing a virtual call during execution of a multi-
threaded program, comprising the steps of:
identifying a target associated with the virtual call;
determining an address identifier associated with the target;
placing the virtual call and the address identifier within a predetermined
boundary of a memory storage device; and
patching the virtual call to the target while patching a contents of the

memory storage device to the address identifier within a single instruction cycle.

2. The method of claim A1, wherein the determining step includes
determining the address identifier to be a pointer to a memory address location within an

restricted address space.

3. The method of claim A2, wherein the identifying step includes
identifying the target to be a targeted method defined by a class of an object, the object
being associated with the virtual call; and

wherein the determining step further includes determining the address

identifier to be associated with the class of the object.

4, The method of claim A3 further comprising the step of executing the
patched virtual call using the patched contents of the memory storage device to identify

and execute the targeted method.

5. The method of claim A1, wherein the patching step is executed by one
of a plurality of threads in the multi-threaded program and includes patching the virtual
call to the target while nearly simultaneously patching the contents of the memory storage
device to the value of the address identifier such that the rest of the threads cannot

interrupt patching the virtual call and patching the contents of the memory storage device.

10

15

20

25

WO 00/01170 PCT/US99/14376

-16 -
6. The method of claim A5, wherein the patching step includes patching

the virtual call to a targeted method defined by an object, which is associated with the
target, while nearly simultaneously patching the contents of the memory storage device to

the value of the address identifier, which is associated with a class of the object.

7. The method of claim A6, wherein the placing step further includes
placing a call instruction related to the virtual call and a set instruction related to the
address identifier as a pair of instructions within a double word boundary on the memory
storage device as the predetermined boundary; and

wherein the patching step further includes atomically updating the pair
of instructions such that the call instruction is patched to the targeted method and the set

instruction is patched to the address identifier.

8. The method of claim A7 further comprising, prior to the step of
identifying the target, maintaining a class of an object associated with the target within a

restricted address space in order to minimize the length of the address identifier.

9. A computer system for processing a virtual call during execution of a
multi-threaded program, comprising:
a memory storage device having a predetermined boundary and capable
of being updated within a single instruction cycle; and
a processor coupled to the memory storage device, capable of updating
the memory storage device within the single instruction cycle, configured to execute the
multi-threaded program, and operative to
detect the virtual call during execution of the multi-threaded
program,
identify a target associated with the virtual call,
determine an address identifier associated with the target, the

address identifier being within a restricted address space,

10

15

20

25

30

WO 00/01170 PCT/US99/14376

-17-
place the virtual call and the address identifier within the

predetermined boundary of the memory storage device, and
patch the virtual call to the target and patch a contents of the
memory storage device to a value of the address identifier during execution of a single

instruction cycle of the processor.

10. The system of claim B1, wherein the processor is further operative to
determine the address identifier to be a pointer to a memory address location within the

restricted address space.

11. The system of claim B2, wherein the processor is further operative to
identify the target to be a targeted method defined by a class of an object, the object being
associated with the virtual call; and

wherein the processor is further operative to determine the address

identifier to be associated with the class of the object.

12. The system of claim B3, wherein the processor is further operative to
execute the patched virtual call using the patched contents of the memory storage device

to identify and execute the targeted method.

13. The system of claim B1, wherein the processor is further operative to
execute one of a plurality of threads in the multi-threaded program in order to patch the
virtual call and patch the contents of the memory storage device in a nearly simultaneous
manner such that the rest of the threads being executed by the processor cannot interrupt
the patch of the virtual call by the processor and the patch of the contents of the memory

storage device by the processor.

14. The system of claim B5, wherein the processor is further operative to
update the virtual call to be a call instruction to a targeted method defined by an object,

which is associated with the target, while nearly simultaneously updating the contents of

10

15

20

25

30

WO 00/01170 PCT/US99/14376

-18 -
the memory storage device to the value of the address identifier, which is associated with

a class of the object.

15. The system of claim B6, wherein the processor is further operative to:
place a call instruction related to the virtual call within a double word
boundary on the memory storage device as the predetermined boundary;
place a set instruction related to the address identifier within a double
word boundary on the rﬁemory storage device; and
atomically updating the call instruction to the targeted method while

updating the set instruction to the value of the identified address identifier.

16. The system of claim B1, wherein the memory storage device maintains
the class of the object within the restricted address space in order to minimize the length

of the address identifier.

17. A computer-readable medium containing instructions for processing a
virtual call during execution of a multi-threaded program, which when the instructions
are executed, comprise the steps of:

identifying a target associated with the virtual call;

determining an address identifier associated with the target, the address
identifier being within a restricted address space;

placing the virtual call and the address identifier within a predetermined
boundary of a memory storage device; and

patching the virtual call to the target while patching a contents of the

memory storage device to the address identifier within a single instruction cycle.

18. The computer-readable medium of claim C1, wherein the determining
step includes determining the address identifier to be a pointer to a memory address

location within the restricted address space.

10

15

20

25

WO 00/01170 PCT/US99/14376

-19-
19. The computer-readable medium of claim C2, wherein the identifying

step includes identifying the target to be a targeted method defined by a class of an object,
the object being associated with the virtual call; and
wherein the determining step further includes determining the address

identifier to be associated with the class of the object.

20. The computer-readable medium of claim C3 further comprising the step
of executing the patched virtual call using the patched contents of the memory storage

device to identify and execute the targeted method.

21. The computer-readable medium of claim C1, wherein the patching step
is executed by one of a plurality of threads in the multi-threaded program and includes
patching the virtual call to the target while nearly simultaneously patching a contents of
the memory storage device to the value of the address identifier such that the rest of the
threads cannot interrupt patching the virtual call and patching the contents of the memory

storage device.

22. The computer-readable medium of claim C5, wherein the placing step
further includes placing a call instruction and a set instruction within a double word
boundary on the memory storage device as the predetermined boundary; and

wherein the patching step further includes atomically updating the call
instruction to a targeted method while updating the set instruction to reflect the value of
the address identifier, the targeted method being defined by an object associated with the
target.

23. The computer-readable medium of claim C6 further comprising, prior
to the step of identifying the target, maintaining a class of the object within a restricted

address space in order to minimize the length of the address identifier.

WO 00/01170 1/3 PCT/US99/14376

120
- 130
124
Multi-Threaded | |)
Program
9 122 Secondary Storage
Virtual) Device
Machine
Inline Cache 126
N
Operating /128 140
System -—
CPU
Main Memory
160 150
Video Display Input Device
170
NETWORK

FIG. 1

PCT/US99/14376

WO 00/01170 2/3
Multi-Threaded Program ~ 124
(\ 202
(‘ 200 Thread
Thread
- virtual call 1
- virtual call 2 | (‘ 204
- virtual call 3
Thread

/‘ 122

[126

Inline Cache

210

Binder Routine 205
N v
@ 140

CPU

/

(patch to target) [

Call
ATOMIC UPDATE
Virtual Machine

212

pointer)

Address Identifier
(patch to comect K|

_

FIG. 2

3/3 PCT/US99/14376

< START) - -300

/305 , (318

Execute virtual call
using definition of
method from class of
last receiver object

WO 00/01170

A 4
Detectacalito a

virtual method —
(i.e., a virtual call)

4

310

Class of
receiver object

same as class of last
receiver object?

320
Call Binder Routine)

Identify target from the \325

receiver object in the virtual call

y

330
Determine address identifier '

332

Place call & address identifier J
related instructions within

predetermined boundary of
memory storage device

335

4
Within a single instruction J
cycle, patch call to the
identified target and patch
contents of inline cache
(address identifier instruction)
to the value of the address
identifier

y

Make call directly to targeted r\)
method using patched contents

of inline cache to identify and F I G 3

execute the targeted method

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

