
US 2013 0084.999A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2013/0084999 A1

Costa (43) Pub. Date: Apr. 4, 2013

(54) GAME CENTERED ON BUILDING Publication Classification
NONTRIVAL COMPUTER PROGRAMS

(51) Int. Cl.
(71) Applicant: Jason Churchill Costa, New York, NY A63F 9/24 (2006.01)

(US) (52) U.S. Cl.
USPC .. 463/43

(72) Inventor: ds Churchill Costa, New York, NY (57) ABSTRACT
A game in which playerS modify a nontrivial computer pro
gram. Players with competing objectives are given the option

(21) Appl. No.: 13/645,507 of appending instructions (6) to the program, as well as per
forming special actions (5) Such as inserting, deleting, or
moving instructions. As the players modify the program, the

(22) Filed: Oct. 4, 2012 program executes, modifying variables and potentially mov
ing players closer to or further from their objectives. In addi
tion to serving as a Source of enjoyment, the game may be
used in an educational context to teach and reinforce com

(60) Provisional application No. 61/542,812, filed on Oct. puter programming concepts such as conditional branching,
4, 2011. looping, and multithreading.

Related U.S. Application Data

(s) : (s) When the game begins, this is the :
first instruction in the program.

e Sats the value of to one

its g the structii
that will execute ext,

O Change the sign off

e ... 5
e -

6 ---

:
: ERecrement x by Keep in mind RADE ANDS O itat frnay be negative. thus this

instruction hay increasex. e
|< x = x - i.
S. 4

() If its ess than 2, enter the iaop
below (inder:ed), and centinue to :
loop as long as that remains true.

k while (i < 2)

Patent Application Publication Apr. 4, 2013 Sheet 1 of 7 US 2013/0084999 A1

When the game begins, this is the
first instruction in the program.

Sets the value of to one.

9 i F ------, - 4

Ports to the instruction
aw execute text

INSERT

() Decrement x by i. Keep in mind
that i may be negative, thus this

instruction may increase x,

if i is less than 2, enter the loop
below (indented), and continue to
loop as long as that remains true.

while (i < 2)

Patent Application Publication Apr. 4, 2013 Sheet 2 of 7 US 2013/0084999 A1

- - - - - - -

Patent Application Publication Apr. 4, 2013 Sheet 3 of 7 US 2013/0084999 A1

iFmin (i+15)

i=min (i+15)

Patent Application Publication Apr. 4, 2013 Sheet 4 of 7 US 2013/0084999 A1

10
c

3 ~ N
NE while (i.<2)
M V

N

X E X --

i = -abs (i)

x = x + 1

Patent Application Publication Apr. 4, 2013 Sheet 5 of 7 US 2013/0084999 A1

Patent Application Publication Apr. 4, 2013 Sheet 6 of 7 US 2013/0084999 A1

while (i>-2)

i=max (i-1, -5)

Patent Application Publication Apr. 4, 2013 Sheet 7 of 7 US 2013/0084999 A1

is 801

- 802

i = 1
D while (i.<2)

x F x + i.
803

851 -

852.

FIG. 8 o

US 2013/0O84999 A1

GAME CENTERED ON BUILDING
NONTRIVAL COMPUTER PROGRAMS

BACKGROUND

0001. This invention relates to the field of games, and
specifically that of games employing computer programming
concepts. Some existing games employ language from the
domain of computer programming and attempt to replicate
Some aspects of real life computer programming. This cat
egory of game can provide both enjoyment and educational
opportunities. However, these games may not offer an expe
rience that is as rich, engaging, and educational as possible.
0002 U.S. Pat. No. 6,135,451 to Kholodov (2000)
describes a game in which players advance through a com
puter program, but the program is fixed, and advancement
through the program is dictated by a die roll.
0003 U.S. Pat. No. 5,078.403 to Chernowski (1992)
describes a game that uses words and phrases from computer
programming in its naming conventions. Such as “program'.
“storage area”, “byte’, and I/O. However, the concept of a
“program’ that appears in this game is neither executable nor
modifiable.
0004 U.S. Pat. No. 4.258,922 to Landry (1981) describes
a game in which operations are performed on binary digits.
Again, no concept of a modifiable computer program exists.
0005. The game RoboRally published by Wizards of the
Coast (1994) allows players to create a simple program that
controls the actions of a game piece representing a robot.
While this game does feature user-modifiable computer pro
grams, the programs are extremely limited in Scope. They are
of limited length (5 instructions), and are limited to simple
linear execution. That is to say, no control flow concepts Such
as branching or looping are introduced.

SUMMARY

0006. The game described herein is one in which users
modify a computer program that executes as the users are
modifying it. The program is represented by movable instruc
tions (which could be implemented as cards or tiles in a
physical embodiment) and can become arbitrarily complex,
limited only by the number of instructions available. The
program can employ programming constructs such as condi
tional branching, looping, and multithreading.
0007. The players have competing objectives tied to the
values of variables that are modified as the program executes.
Each player attempts to modify the program, or otherwise
alter the State in which it is executing, in order to accomplish
his or her objective. In order to be successful at the game,
players must think like a computer programmer and find ways
to make the program accomplish the user's goal.

DRAWINGS

0008 FIG. 1 depicts samples of cards or tiles used in a
physical embodiment of the game.
0009 FIG. 2 depicts a possible starting configuration for
the game.
0010 FIG.3 depicts the execution of a simple sequence of
instructions.

0011 FIGS. 4A and 4B depict the execution of an “if
block when the relevant condition is true (4A) and when the
relevant condition is false (4B).
0012 FIG.5 depicts the execution of a “while' block.

Apr. 4, 2013

(0013 FIG. 6 depicts the composition of “if and “while'
blocks, creating a nested program structure.
0014 FIG. 7 depicts the execution of multiple instruction
pointers.
(0015 FIG. 8 depicts an electronic embodiment of the
game.

DETAILED DESCRIPTION OF DRAWINGS

0016 FIG. 1 shows elements of a physical embodiment of
the game Such as a card game. Variable counters (1, 2) are
used to update and display the current values of named vari
ables. (In a card game embodiment, a small object Such as a
coin would be placed on each counter card to indicate the
current value of the variable represented by the counter.) A
next instruction pointer (3) is included in order to indicate the
next instruction to be executed. (In a card game embodiment,
the next instruction pointer would be positioned to literally
point at the next instruction.) A dedicated first instruction (4)
may be included with the game in order to simplify the pro
cess of starting a new game. Special actions (5) are tokens
(cards in a card game embodiment) that allow the player in
possession of the token to perform a special action that the
player would ordinarily not be allowed to take. The three
sample special actions in the diagram allow the bearer to
insert an instruction into the middle of an existing program,
trade hands with an opponent, and introduce a new next
instruction pointer, respectively. Instructions (6) are the mov
able components that make up the computer programs that are
central to the game. The three sample instructions have the
effect of negating the variable “i’, subtracting the value of the
variable “i’ from the variable'x'', and beginning a while-loop
conditional on the variable “i' being less than two, respec
tively.
0017 FIG. 2 depicts a possible starting configuration for
the game. Variable counters (1, 2) are initialized to a starting
value (which is the value Zero in this embodiment), depicted
as a large black dot. In a card game embodiment of the game,
this would be accomplished by placing an object such as a
coin on each variable counter card. The first instruction (4) is
placed in the field of play to begin the program. The next
instruction pointer (3) points to the first instruction to indicate
that it is the next instruction to be executed. The empty space
(7) below the program is where the next instruction will be
added, unless a special action is used to add an instruction to
a different location.
0018 FIG. 3 depicts the execution of a simple, linear
sequence of instructions (6). When the first instruction, bear
ing the text “i-1, is executed, the variable counter represent
ing “i” (2) is set to the value of positive one, and the next
instruction pointer (3) is moved to point to the next instruc
tion. When the second instruction, bearing the text “i-i', is
executed, the variable counter representing 'i' (2) is negated,
meaning that its value is modified from positive one to nega
tive one, and the next instruction pointer (3) is moved to point
to the next instruction. When the third instruction, bearing the
text "x=x-i', is executed, the value of the variable 'i' is
subtracted from the value of the variable “x”, resulting in the
counter representing “x' (1) being set to the value of positive
one, and the next instruction pointer (3) is moved to point to
the empty space below the last instruction (7). At this point,
the next instruction pointer cannot advance until either an
instruction is added to the program, or a special action is
played which alters the location of the next instruction
pointer.

US 2013/0O84999 A1

0019 FIG. 4A depicts the layout of an “if block, and the
sequence of instructions executed when the relevant condi
tion is true. An “if instruction (8) is followed by an indented
block of instructions (9), in this case consisting of two
instructions. Additional instructions (not indented) may fol
low the “if block, as is the case in this example. For the
purposes of this example, assume that the variable counters
representing “x' (1) and “i” (2) are initially set to Zero and
positive one, respectively. When the “if instruction (8) is
executed, the condition contained within parentheses, i.e.
“i>0, is evaluated. Because the condition is true, the next
instruction pointer (3) is moved to the indented block (9) and
points to the instruction immediately under the “if instruc
tion. When the first indented instruction, bearing the text
“i-min(i+1.5), is executed, the variable counter representing
“i” (2) is incremented from positive one to positive two, and
the next instruction pointer (3) is moved to point to the next
instruction. When the second indented instruction, bearing
the text “i-i', is executed, the variable counter representing
“i” (2) is negated, meaning that its value is modified from
positive two to negative two, and the next instruction pointer
(3) is moved to point to the next instruction, i.e. the instruction
below which is not indented. When the last instruction, bear
ing the text "x=x-i', is executed, the value of the variable 'i'
is subtracted from the value of the variable “x”, resulting in
the counter representing “x' (1) being set to the value of
positive two.
0020 FIG. 4B depicts the same “if block that appears in
FIG. 4A, but shows the sequence of instructions executed
when the relevant condition is false. For the purposes of this
example, assume that the variable counters representing “X”
(1) and “i” (2) are initially set to Zero and negative one,
respectively. When the “if instruction (8) is executed, the
condition contained within parentheses, i.e. “i>0, is evalu
ated. Because the condition is false, the next instruction
pointer (3) skips the indented block (9) and is moved to point
to the next instruction at the same level of indentation as the
“if instruction (8). When that last instruction, bearing the
text "XX-i', is executed, the value of the variable 'i' is
subtracted from the value of the variable “x”, resulting in the
counter representing “x' (1) being set to the value of positive
O

0021 FIG. 5 depicts the execution of a “while block. A
“while' instruction (10) is followed by an indented block of
instructions (11), in this case consisting of two instructions.
Additional instructions (not indented) may follow the
“while' block, as is the case in this example. When the
“while' instruction (10) is executed, the condition contained
within parentheses, i.e. “i-2, is evaluated. As with an “if
instruction: if the condition is true, the next instruction
pointer (3) is moved to the indented block (11) and points to
the instruction immediately under the “while' instruction; if
the condition is false, the next instruction pointer (3) skips the
indented block (11) and is moved to point to the next instruc
tion at the same level of indentation as the “while' instruction
(10). Unlike an “if block, however, when the last indented
instruction is executed, the next instruction pointer (3) is
moved back to point to the “while' instruction (10).
0022 FIG. 6 depicts the composition of “if and “while'
blocks, creating a nested program structure. “If instructions
(8) and “while' instructions (10) require that the instruction
below be indented by an additional level of indentation,
regardless of the number of existing levels of indentation.
There is no limit on the number of levels of indentation; both

Apr. 4, 2013

if instructions (8) and “while' instructions (10) can be
included within indented “if and “while' blocks. Also shown
are an “else' instruction (12), which if present must appear at
the same level of indentation as an “if instruction (8), and a
“break' instruction (13) which if present must appear within
a “while' block. The movement of the next instruction pointer
(3) is determined by composing the rules that apply to “if and
“while blocks.
0023 FIG. 7 depicts the execution of multiple instruction
pointers. An embodiment may allow for the existence of
multiple next instruction pointers. In this illustration, two
next instruction pointers (3) and (14) have different priorities,
indicated by a number appearing on each. In order to advance
these pointers, firstly the higher priority next instruction
pointer (3) would be handled: the instruction to which it
pointed would be evaluated, and then it would move accord
ing to the rules for advancing pointers, in this case moving to
a “while' instruction above the instruction just executed.
Secondly the lower priority next instruction pointer (14)
would be handled: the instruction to which it pointed would
be evaluated, and then it would move according to the rules
for advancing pointers, in this case moving to the instruction
just below the instruction just executed.
0024 FIG. 8 depicts an electronic embodiment of the
game. A mobile device (850) displays the current program
(851) and the current player's available instructions and spe
cial actions (852). Variable counters (801, 802) display the
current values of named variables. A next instruction pointer
(803) indicates the next instruction to be executed. In an
electronic implementation, the empty space below the exist
ing program (807) can be explicitly visually represented.

REFERENCE NUMERALS

(0025 (1) variable counter (for the variable “x”)
(0026 (2) variable counter (for the variable “i')
0027 (3) next instruction pointer
0028 (4) example first instruction used to start the game
0029 (5) example special actions
0030 (6) example instructions
0031 (7) empty space below computer program
0032 (8) “if instruction
0033 (9) block indented below “if instruction
0034 (10) “while' instruction
0035 (11) block indented below “while' instruction
0036 (12) "else' instruction
0037 (13) “break” instruction
0038 (14) secondary next instruction pointer
0039 (801) variable counter (for the variable “x”)
0040 (802) variable counter (for the variable “i')
0041 (803) next instruction pointer
0042 (807) empty space below computer program
0043 (850) mobile electronic device
0044 (851) view of current computer program
0045 (852) view of current player's available set of
instructions and special actions

DESCRIPTION AND OPERATION OF FIRST
EMBODIMENT

0046. The description below explains one embodiment of
the invention: a card game in which two competing players
take turns modifying the same computer program until one of
them achieves his or her objective. One player, “Positive', has
the goal of setting the variable “x”, represented by a variable

US 2013/0O84999 A1

counter (1), to the value of positive five. The other player,
“Negative', has the goal of setting the variable “x' to the
value of negative five.
0047. Types of Cards
0048. This embodiment of the game is played with a spe
cial deck of cards, plus marker pieces (such as coins) placed
on variable counter cards (1, 2) in order to represent a vari
able's current value. The cards fall into three categories. It
makes sense to use a different color scheme for the faces of
each category, to make them easily distinguishable. The cat
egories are described below:
0049 Start Cards are the cards used to begin the game:
variable counters (1, 2), a next instruction pointer (3), and a
first instruction (4). The first instruction, also an Instruction
Card, is used to start the game.
0050. Instruction Cards represent instructions that make
up the common program. There are two types of instruction
cards: Assignments, which modify the value of a variable, and
Control Flow Instructions, which affect the movement of the
next instruction pointer (3). FIG. 1 includes depictions of
sample Instructions (6).
0051 Special Action Cards allow the bearer to perform a
special action Such as modifying the program. The bearer
must expend either one or two actions (explained below),
depending on the card, in order to play it. FIG. 1 includes
depictions of sample Special Action Cards (5).
0052 Beginning the Game
0053. The first instruction (4) (the Instruction Card bear
ing the text “i-1) is placed on the gaming table, and the next
instruction pointer card (3) is placed to its left. As the game is
played, additional Instruction Cards will be placed on the
table below the first instruction, and this chain of cards will be
referred to as “the program'. The two variable counter cards,
“x' (1) and “i” (2), are placed to the right of the first instruc
tion (4), and a coin is placed at the Zero position on each
counter card to indicate the current value of that variable. All
of the remaining cards (Instruction Cards and Special Action
Cards) are shuffled, and each player is randomly assigned a
different sign, “Positive' or “Negative', indicating the direc
tion in which they are attempting to move the variable “x'.
Player “Negative' is dealt four cards and plays the odd num
bered turns (first turn, third turn, fifth turn, etc.). Player “Posi
tive' is dealt five cards and plays the even numbered turns
(second turn, fourth turn, etc.). The initial setup is depicted in
FIG 2.
0054 Turn Sequence
0055. On a player's turn he or she takes two actions, and
then advances the next instruction pointer(s) (in numbered
order if more than one pointer exists). The key concept of
advancing a next instruction pointer is explained later. The
player may choose from five types of actions:
0056 1. Play an Instruction Card
0057 The player places an Instruction Card from his hand
on the table at the bottom of the program (beneath the last
card), adding to the existing program. If the card above is a
Control Flow Instructions such as an “if” or “while' instruc
tion, the new card must be placed at an indent. (A downward
arrow might appear on Control Flow Instructions indicating
where to align the left side of the next card.) Otherwise, the
card may be placed at any level of indentation between that of
the first instruction and that of the card above. Two special
Instruction Cards must adhere to additional rules: an "else'
card must match a preceding 'if, and a “break' card can only
be played within a while loop (explained later).

Apr. 4, 2013

0058 2. Play a Special Action Card
0059 Special Action Cards allow the player to do some
thing other than adding an instruction to the end of the pro
gram. Examples of special actions include adding or remov
ing Instruction Cards from the program, introducing a new
next instruction pointer, and trading hands with one’s oppo
nent. The face of each Such card contains text explaining the
action.

0060. The Special Action Cards labeled “Insert”, “Move”,
and “Delete' can be applied to any Instruction Card in the
program as long as (A) no next instruction pointer points to
the card being moved or deleted, and (B) the rules governing
the relative positions of instructions, described above, can be
satisfied simply by adjusting indentations. (As an example of
a modification after which the rules could not be satisfied
simply by adjusting indentations: in the case of a matching
“if and "else' instruction pair, the deletion of the “if instruc
tion would leave an “else' instruction with no matching "if,
and thus such a deletion would not be allowed.) Following the
modification, the player slides cards up or down so that each
card sits below its predecessor (next instruction pointers
travel with the card to which they originally pointed). Then
the player makes any indentation adjustments required to
avoid violating indentation rules, working from the top of the
program downward. If a next instruction pointer pointed to
the space below the program, then an instruction moved into
the empty space will be pointed to and will execute during the
“Advance Next Instruction Pointers’ phase.
0061. The Special Action Cards labeled “Set Next” and
“New Thread can be used to position a next instruction
pointer at any Instruction Card, regardless of what conditions
appear above it. (But that next instruction pointer does not
advance or execute during the Advance Next Instruction
Pointers’ phase of the current turn.)
0062 Powerful Special Action Cards such as “Set Next'
require the player to spend both actions in order to play the
card. (This requirement is indicated on the card itself.)
0063. After a Special Action Card is played, it and any
card removed from the program as a result of the action are
deposited into a “discard pile'.
0064 3. Draw a Card (if Permitted)
0065. If the player's hand contains less than five cards, he
or she may draw a new card. If the deck is empty, the discard
pile is reshuffled to become the new deck.
0066 4. Discard a Card
0067. The player may discard a card. (Drawing a replace
ment card is a separate action.)
0068
0069. A player can opt to use an action to advance any one
(not all) next instruction pointers. This is in addition to the
advancement of pointers that must occurat the end of the turn.
When multiple next instruction pointers are in play, this
action can be used to e.g. advance a lower priority next
instruction pointer (labeled with a number indicating lower
priority) before a higher priority next instruction pointer
advances naturally.
(0070) Ending the Game
(0071. The game ends when the value of the variable “x”
(1) reaches or exceeds the value positive five (in which case
player “Positive’ wins), or negative five (in which case player
“Negative’ wins). Entering this state immediately ends the
game.

5. Advance any Next Instruction Pointer

US 2013/0O84999 A1

0072 Executing the Program (Advancing the Next
Instruction Pointers)
0073. The most fundamental concept in the game is that of
advancing a next instruction pointer, or in other words execut
ing the current program. Unless the next instruction pointer
points to the empty space below the program (7), this is done
by (A) executing (performing the action described on) the
Instruction Card pointed to by the next instruction pointer,
and (B) moving the next instruction pointer to point to the
next instruction to be executed. This is often the following
instruction, but not always. A simple sequence of instructions
is depicted in FIG. 3.
0074. In this example, advancing the next instruction
pointer (3) consists of executing the instruction to which it
points, and then sliding it down to the next card. Advancing it
three times results in executing the instruction “i-1 (setting
the value of “i” (2) to positive one), then executing the instruc
tion “i=-i' (setting the value of “i” (2) to negative one), and
lastly executing "x=x-i” (setting the value of “x' (1) to posi
tive one). This leaves the next instruction pointer pointing to
the empty space (7) just below the last card in the program.
Once the next instruction pointer is pointing to this empty
space, it ceases to advance until either a new instruction is
played into the empty space, or a special action has the effect
of moving the next instruction pointer to point to an instruc
tion.

0075)
0076 An “if card represents a conditional: a special
instruction that affects the flow of control. If the condition that
appears in parentheses after the “if is true, then when the next
instruction pointer advances, its next stop is the instruction
indented under the “if card. This procession is illustrated in
FIG. 4A.

0077. If the condition is false, however, then the set of
cards indented below the “if (known as the “if block) is
skipped. The next instruction pointer advances as if the
indented instructions did not exist, as shown in FIG. 4B.
0078. The "else' card is a special card that can only follow
an “if at the same indentation. The next instruction pointer
advances from the "else' card to the card indented under it
only if the preceding “if cards condition is false.
0079 While Loops
0080. A “while card represents another type of instruc
tion that affects the flow of control. As with an “if card, the
cards indented beneath the “while' cardare only visited if the
condition in parentheses is true. Unlike in an “if block,
however, at the end of a closed “while’ block, the next
instruction pointer returns to the “while' card at the top of the
loop. This procession is illustrated in FIG. 5.
0081. If the last card in the indented block (11) is an
Assignment (as must be the case if any cards exist later in the
program at the same indentation as or to the left of the “while'
card), then the “while' block is a “closed while loop, and
from the last card in the block the next instruction pointer
advances to the “while' card above. Otherwise, the loop is
“open’ and the next instruction pointer advances to the empty
space below the last card.
0082. The “break' card is a special card that can only
occur in a while loop. From the “break' card, the next instruc
tion pointer advances to the same card that would have been
advanced to from the “while' card above had its condition
been false.

Conditionals

Apr. 4, 2013

0083. Nested Control Flow
I0084. When an “if” or a “while” are played indented
beneath another “if” or “while', they are said to be “nested”.
An example of nesting is shown in FIG. 6. Nesting enables the
construction of complex computer programs, and allows the
number of levels of indentation to grow arbitrarily large.
I0085. Next Instruction Summary
I0086. In summary, when advancing a next instruction
pointer: if the next instruction pointer points to the space
below the program (7), nothing happens; otherwise the next
instruction visited after executing any instruction other than
“break” is determined by the indentation of the card below it.
0087 Same indentation: Advance to the card below.
I0088 Greater indent (to the right): If the relevant condi
tion is true (false in the case of an "else'), advance to the
instruction indented below the current instruction. Otherwise,
advance as if the instructions in the indented block did not
exist.
I0089 Lesser indent (to the left): If the current instruction
is contained in a while loop, advance to the (most inner)
“while' card above. Otherwise, advance to the card below.
0090 No cards below: If the current instruction is an
Assignment and is contained within a while loop, then
advance to the “while' card above. Otherwise, advance to the
empty space below the last card in the program, even if this
means proceeding past an “if” or “while' card whose condi
tion is false.
(0091 Multiple Threads (Multiple Next Instruction Point
ers)
0092. In most modern computer systems, and in this game,

it is possible for multiple next instruction pointers to simul
taneously execute the same program, and to interact with each
other. These are known as “threads', and Special Action
Cards can introduce new threads. In this game, each next
instruction pointer is labeled with a priority number indicat
ing its priority relative to other next instruction pointers;
higher priority next instruction pointers execute before lower
priority next instruction pointers. If two next instruction
pointers point to the same instruction, position the cards Such
that each arrow's priority number is visible. FIG. 7 depicts a
scenario in which multiple threads advance. First the next
instruction pointer labeled “NEXT (1) (3) executes (the
instruction labeled “imax(i-1-5)'), and then advances (up
to the instruction labeled “while(i>-2)). Then the next
instruction pointer labeled “NEXT (3) (14) executes (the
instruction labeled "x=x-1), and then advances (to the
instruction labeled “ i=max(i-1-5)').

DESCRIPTION AND OPERATION OF
ALTERNATE EMBODIMENT

0093. The description below explains an alternate
embodiment of the invention: an electronic game in which
two competing players take turns modifying the same com
puter program until one of them achieves his or her objective.
(As in the first embodiment, one player, “Positive', has the
goal of setting the variable “x' to the value of positive five.
The other player, “Negative', has the goal of setting the
variable “x' to negative five.) Such an electronic game could
be implemented as a mobile device game, a computer game,
or a web-based game, but the description below and the
drawing FIG. 8 focus in particular on a mobile device game.
0094. Objects and Visual Representations
0.095 This embodiment of the game is played on a mobile
device (850). As in the first embodiment, variable counters

US 2013/0O84999 A1

(801, 802) display each variable's current value. Instructions
are arranged to represent a computer program (851), and a
next instruction pointer (803) indicates the next instruction to
be executed. As in the first embodiment, each player has at his
or her disposal a set of playable objects (852) consisting of
instructions and special actions.
0096. Beginning the Game
0097. As in the first embodiment, the arrangement of
instructions known as “the program” (851) initially consists
of only a single instruction bearing the text “i=1, pointed to
by the next instruction pointer (803). As the game is played,
players add additional instructions to the program, extending
it. Variable counters (801, 802) are initialized to zero and
display their current value. Each player is randomly assigned
a different sign, “Positive' or “Negative', indicating the
direction in which they are attempting to move the variable
“x'. Each player is then allocated playable objects (852),
instructions and special actions, randomly drawn from a pre
determined set. Player “Negative' is allocated four objects
and plays the odd numbered turns (first turn, third turn, fifth
turn, etc.). Player"Positive' is allocated five objects and plays
the even numbered turns (second turn, fourth turn, etc.).
0098 Turn Sequence
0099. On a player's turn he or she takes two actions, after
which the game automatically advances the next instruction
pointer(s) (in numbered orderifmore than one pointer exists).
The rules governing how a next instruction pointer advances
are the same as those explained in the description of the first
embodiment. The player may choose from five types of
actions:
0100) 1. Play an Instruction
0101 The player drags an instruction from his set of
objects (852) into the empty space at the bottom of the pro
gram (807), adding to the existing program. If the instruction
above is a Control Flow Instruction such as an “if” or “while'
instruction, the new instruction must be placed at an indent.
(A downward arrow might be used as a visual cue to indicate
the indentation requirement.) Otherwise, the instruction may
be placed at any level of indentation between that of the top
instruction and that of the instruction above. Two special
instructions must adhere to additional rules: an "else' instruc
tion must match a preceding “if”, and a “break' instruction
can only be played within a while loop (explained in the
description of the first embodiment).
0102 2. Play a Special Action
0103 Special Actions allow the player to do something
other than adding an instruction to the end of the program.
Examples of special actions include adding or removing
instructions from the program, introducing a new next
instruction pointer, and trading sets of objects with one's
opponent. Briefly tapping a special action will display addi
tional text on the screen explaining the action. Pressing and
holding one's finger on a special action will cause the action
to be played, potentially prompting the user to do something
to further specify the action. For example if the special action
were a “Move' action, the user would then be required to drag
an instruction from one location in the program to a different
location in the program.
0104. The Special Actions labeled “Insert”, “Move', and
"Delete' can be applied to any instruction in the program as
long as (A) no next instruction pointer points to the instruc
tion being moved or deleted, and (B) the indentation rules
described above can be satisfied simply by adjusting inden
tations. Following the modification, the game automatically

Apr. 4, 2013

slides instructions up or down so that each instruction sits
below its predecessor (next instruction pointers travel with
the instruction to which they originally pointed). The game
also makes any indentation adjustments required to avoid
violating indentation rules, working from the top of the pro
gram downward. The game may dynamically rearrange
instructions as the user drags an instruction to a new location,
in order to illustrate to the user the effect of dropping the
instruction at a particular location.
0105. The Special Actions labeled “Set Next” and “New
Thread can be used to position a next instruction pointer at
any instruction, regardless of what conditions appearabove it.
(But that next instruction pointer is not automatically
advanced or executed at the end of the current turn.)
0106 Note that powerful Special Actions require the
player to spend both actions in order to play the action (indi
cated visually on the representation of the special action).
0107 3. Draw a New Playable Object (if Permitted)
0.108 If the player is in possession of less than five play
able objects, he or she may draw a new object.
0109 4. Discard an Object
0110. The player may discard an instruction or special
action. (Drawing a replacement is a separate action.)
0111 5. Advance any Next Instruction Pointer
0112 A player can opt to use an action to advance any one
(not all) next instruction pointers. This is in addition to the
advancement of pointers that automatically occurs at the end
of the turn.
0113 Ending the Game
0114. The game ends when the value of the variable “x'
(801) reaches or exceeds the value positive five (in which case
player “Positive’ wins), or negative five (in which case player
“Negative’ wins). Entering this state immediately ends the
game.
0115 Execution of the Program (Advancing the Next
Instruction Pointers)
0116. In this embodiment, next instruction pointers
advance as they do in the first embodiment. Unless the next
instruction pointer points to the empty space below the pro
gram (807), the instruction pointed to is executed, and then
the pointer moves to point to the next instruction to be
executed. As in the first embodiment, conditionals can cause
the next instruction pointer to skip blocks of instructions,
while loops can cause the instruction pointer to move up
rather than down, and Such constructs can be nested within
each other. Also as with the first embodiment, special actions
can introduce new next instruction pointers, each with a
unique priority number. Unlike in the first embodiment, how
ever, in this embodiment, next instruction pointers are
advanced automatically by the game itself.

1. A game, with the following features:
moveable representations of computer instructions (such

as assignment instructions, conditional instructions, and
looping instructions), whether physical or virtual, that
may be arranged to define a computer program, and

a system, whether manual or automated, for executing the
computer program

2. The game of claim 1 wherein one or more modifiable
counters are used to record the current values of variables
used in the computer program.

3. The game of claim 2 wherein players have the option of
appending instructions from an available set of instructions to
an existing program.

US 2013/0O84999 A1

4. The game of claim 3 wherein players have the option of
taking actions from an available set of special actions such as
inserting instructions into the middle of the program, deleting
instructions, moving instructions, or directly modifying the
values of variables

5. The game of claim 4 wherein the instructions, counters,
and special actions are implemented as physical cards com
prising a deck of cards.

6. The game of claim 4 implemented as an application
running on a computer system wherein the instructions,
counters, and special actions are depicted visually on the
SCC.

7. The game of claim 4 implemented as an application
running on a mobile device wherein the instructions,
counters, and special actions are depicted visually on the
SCC.

8. The game of claim 4 implemented as a web application,
wherein the implementation of the game exists on a web
server and players play the game on devices remotely con
nected to the web server.

9. The game of claim 4 wherein the actions of the players
and the execution of the program occur in a consistent,

Apr. 4, 2013

ordered sequence, i.e. players take turns and program execu
tion is triggered by player actions.

10. The game of claim 4 wherein the actions of the players
and the execution of the program are not synchronized, i.e.
execution of the program is not suspended while a player is
deciding upon his or her next move.

11. The game of claim 4 wherein the instructions and
special actions available to each player are determined by
chance, for example by drawing such options from a deck of
cards.

12. The game of claim 4 wherein the instructions or special
actions available to each player are drawn from a predefined
Set.

13. The game of claim 4 wherein the program is executed
as a multithreaded program, i.e. multiple pointers point to a
next instruction.

14. The game of claim 4 wherein the set of available
instructions includes the ability to perform a function call,
and multiple counters are used to store values for a single
named variable, allowing simulated program to effect a call
stack.

