01/97039 Al

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

20 December 2001 (20.12.2001) PCT WO 01/97039 Al
(51) International Patent Classification’: GOG6F 11/36 (74) Agents: COZENS, Paul, Dennis et al.; Mathys & Squire,
100 Gray’s Inn Road, London WCIX 8AL (GB).
(21) International Application Number: PCT/IB01/01286
. . . (81) Designated States (national): AE, AG, AL, AM, AT, AT
(22) International Filing Date: 14 June 2001 (14.06.2001) (utility model), AU, AZ, BA, BB, BG, BR, BY, BZ, CA,
. . . CH, CN, CO, CR, CU, CZ, CZ (utility model), DE, DE
(25) Filing Language: English (utility model), DK, DK (utility model), DM, DZ, EC, EE,
.. X . EE (utility model), ES, FI, FI (utility model), GB, GD, GE,
(26) Publication Language: English GH. GM. HR, HU. ID. IL. IN, IS, JP, KE, KG, KP. KR KZ.
(30) Priority Data: LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN,
00401687.9 14 June 2000 (14.06.2000) EP MW, MX, MZ, NO, N, PL, PT, RO, RU, SD, SE, SG, SI,
SK, SK (utility model), SL, TJ, TM, TR, TT, TZ, UA, UG,
(71) Applicant (for all designated States except US): CANAL+ US, UZ, VN, YU, ZA, ZW.
TECHNOLOGIES SOCIETE ANONYME [FR/FR];
34, place Raoul Dautry, F-75906 Paris (FR). (84) Designated States (regional): ARIPO patent (GH, GM,

(72) Inventor; and

(75) Inventor/Applicant (for US only): GUISSOUMA,
Habib [TN/FR]; Canal+ Technologies Société Anonyme,
34, place Raoul Dautry, F-75906 Paris (FR).

KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: REMOTE DEBUGGING IN AN EMBEDDED SYSTEM ENVIRONMENT

M21 M22
¢ ¢
DATA DATA
CODE \stryct| | CODE |stRUCT.
AGENT AGENT
INTERFACE
DEBUGGER | DEBUGGER
CORE TooLs [~MD2

(57) Abstract: A software debugging provides for compiling software modules and a debugger module on a workstation WS. The
obtained executable test file 8 is transferred to an end user system, such as a receiver/decoder IRD, where it is executed. The debugger
module MD, MD2 may output information on commands being executed to a client on the workstation. In one embodiment specific
code containing information of the software modules is included in the debugger module MD. In another embodiment the software
modules register commands and a point of entry to the debugger module MD2.

w0 01/97039 A1 0D 000 0O AR

Published:
— with international search report

before the expiration of the time limit for amending the

claims and to be republished in the event of receipt of
amendments

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

10

15

20

25

30

WO 01/97039 PCT/IB01/01286

-1-

REMOTE DEBUGGING IN AN EMBEDDED SYSTEM ENVIRONMENT

The present invention relates to a method of debugging software.

The development of software generally involves a debugging process before the
software is released for use. The debugging process enables errors to be removed
in the software. Such errors could for example cause the software to interrupt its
execution in an unpredictable way because of faulty commands, or in some cases
even generate erroneous results or result in dangerous operation of machines

controlled by the software.

It is known from software development in UNIX computer environments to insert
debug code in the software code. The debug code usually has no useful function for
the software. It will merely be used in conjunction with the debugging process. The
debug code is deleted from the software once the debugging process is completed.
This reduces the size of the final software code file. ‘

The debug code enables a plurality of debugging functions. The debug code may for
example define marks in the software in order to monitor how the software is
executed or to indicate a halting point at which the execution of the software is to be
halted. The debug code may also enable the return of a value to the user of a

determined variable or memory content.

Once the software code to test and its debug code are ready to test, they may be

compiled to obtain an executable debug file.

A next step in the debugging process involves executing a debugging software in a
UNIX process and the executable debugfile in another UNIX process. The debugging
software allows for example to identify the aforementioned halting points at which the
execution of the executable debug file may be halted or the printing on a screen of
memory content which is or is not affected by the running of the executable debug
file. Other functionalities may be provided.

10

15

20

25

30

WO 01/97039 PCT/IB01/01286

-2.

executable debug file. Other functionalities may be provided.

The debugging software requires information about data structures used in the
software code and during compiling of the code in order to identify these data
structures during the debugging process. Such information may for example be the
size of data structures measured in bits. The debugging software further requires
information about the system on which the compiled software, i.e., the executable
debug file is being executed in order to interact with this system. Such information
may for example be which mechanisms are used by the system to initiate signal
exchanges between the executed software and the system. In a UNIX software
development environment which typically comprises a workstation and a mass
storage medium such as a magnetic hard disk drive, the information required by the

debugger software may easily be stored and retrieved.

Hence the debugger software may interact with the executable debugger file due to
its knowledge of the system. The debugger software may for example cause the
running executable debug file to halt by substituting an appropriate instruction to a
command included in the executable debug file’s program code. In a similar way the
debugger software may cause the running to resume by removing the latter
appropriate instruction and replacing it by the original command of the executable

debug file, and trigger the further execution of the executable debug file.

The debugger software could also cause the executable debug file to be executed
departing from a determined line in the program code. The determined line could for

example be indicated by the user.

Another useful feature of the debugger software is the possibility to modify the value
of memory content, e.g., modifying a value of a variable used by the executable
debug file. This enables simulation of the behaviour of the software being tested for

selected values of the concerned variable.

The software development for an embarked environment, or an end user system

10

15

20

25

30

WO 01/97039 PCT/IB01/01286

-3-

where the software is to be executed by an end user, may require an adapted

debugging process.

An example of an embarked environment is an integrated receiver/decoder (IRD) as
used for receiving and decoding TV signals and other applications, which are
broadcast as a flow of digital data. An IRD comprises a storage in which software
may be stored and a microprocessor for running the software. The IRD further
comprises an operating system as well as appropriate drivers and components. One
difference between an IRD, and embarked environments in general, and a

workstation is that they generally have smaller computing and/or memory capacity.

The software development for such an end user system is typically performed using
a workstation WS. The software code may be prepared with an appropriate editor
and a debugging of the software may be performed on the workstation itself. The
debugging could for example make use of a simulator for executing the software by
simulating the end user system. An inconvenience of this way of debugging is that
a simulation of the end user system is likely not to reflect the exact same behaviour
as the end user system itself. This becomes even more critical if the end user system
is subject to changes in its configuration and the simulator needs to be modified

accordingly.

An aim of at least the preferred embodiments of the present invention is to overcome

the inconveniences of the prior art.

In a first aspect the present invention provides a method of debugging software
comprising at least one software module containing code for implementing at least
one command, said method comprising the steps of creating on a workstation an
executable test file by compiling said at least one software module with a debugger
module, and transferring said executable test file to an end user system for execution
to cause said at least one software module to be debugged using the debugger

module.

10

15

20

25

30

WO 01/97039 PCT/IB01/01286

-4 -

Preferably, during execution of said executable test file, data is exchanged between

said executable test file and software running on the workstation.

Preferably, data transmitted from said debugger module to said workstation during

execution is displayed on a terminal of the workstation.

In one embodiment the debugger module includes information regarding each of said
at least one software module to be debugged. Preferably, said information
comprises a description of the commands and data structure of each of said at least
one software module. Using said information, a command implemented by said at
least one software module may be executed by the debugger module during

debugging.

In an alternative embodiment information provided to the debugger module by each
of said at least one software module is used to debug that module. Said information
may enable the debugger to execute a command implemented by that software
during debugging. Preferably, an agent is included in each of said at least one
software module for use in interfacing with the debugger module. During execution
of said executable test file, each agent may register its associated software module
with the debugger module to enable the debugger module to receive said information
for that software module. Preferably an agent of a first software module has access

to at least one command provided by a second software module.

In another aspect the present invention provides a workstation comprising means
for creating an executable test file by compiling at least one software module
containing code for implementing at least one command with a debugger module,
and means for transferring said executable test file to an end user system for

execution to cause said at least one software module to be debugged usihg the

debugger module.

Preferably the workstation comprises means for exchanging data between said

executable test file and software running on the workstation during execution of said

10

15

20

25

30

WO 01/97039 PCT/IB01/01286

-5-

executable test file. The workstation preferably comprises a terminal for displaying

data transmitted from said debugger module to said workstation.

This aspect of the present invention extends to a system for debugging software
comprising a workstation as aforementioned and an end user system for receiving
and executing the executable test file to cause said at least one software module to

be debugged using the debugger module.

Preferably said end user system comprises a receiver/decoder of a digital broadcast
system. The software may comprise software for a kernel layer of the operating

system of the receiver/decoder.

In another aspect the present invention provides a computer program product
adapted to create an executable test file by compiling at least one software module
containing code for implementing at least one command with a debugger module,
and to transfer said executable test file to an end user system for execution to cause

said at least one software module to be debugged using the debugger module.

Preferably the product is adapted to exchange data with said executable test file

during execution of said executable test file

The present invention also provides a computer program product adapted to carry
out a method as aforementioned, and a computer program adapted to carry out a

method as aforementioned.

The present invention further provides a computer readable medium having stored
thereon a program for compiling at least one software module containing code for
implementing at least one command with a debugger module, and transferring said
executable test file to an end user system for execution to cause said at least one

software module to be debugged using the debugger module.

The present invention further provides a signal tangibly embodying a computer

10

15

20

25

30

WO 01/97039 PCT/IB01/01286

-6-

program for carrying out the method as aforementioned.

The present invention also provides a method of debugging a software comprising

' at least one software module which contains code to implement at least a command,

comprising creating an executable test file by compiling the software module together

with a debugger module.

The term "receiver/decoder" used herein may connote a receiver for receiving either
encoded or non-encoded signals, for example, television and/or radio signals, which
may be broadcast or transmitted by some other means. The term may also connote
a decoder for decoding received signals. Embodiments of such receiver/decoders
may include a decoder integral with the receiver for decoding the received signals,
for example, in a "set-top box", such a decoder functioning in combination with a
physically separate receiver, or such a decoder including additional functions, such

as a web browser, a video recorder, or a television.

The term “embarked environment” includes, inter alia, the environment in which the

software is to be executed by the end user, such as a receiver/decoder.

Features of one aspect may be applied to other aspects; method features may be

applied to the workstation and computer product aspects and vice versa.

Preferred features of the present invention will now be described, purely by way of

example, with reference to the accompanying drawings, in which:-

Figure 1 contains a schematic illustration of a software development environment for

an end user system ;

Figure 2 illustrates logical layers of an end user system environment ;

Figure 3 contains a block diagram illustrating a method to obtain an executable file

for an end user system ;

10

15

20

25

30

WO 01/97039 PCT/IB01/01286

-7-

Figure 4 contains a block diagram illustrating a method to obtain an executable test

file ;

Figure 5 shows a logical build-up of a debugger module;

Figure 6 contains software modules and a debugger module ;
Figure 7 contains other software modules and a debugger module.

Referring to Fig. 1 a software development system for an embarked environment, or
end user system, comprises a workstation WS and, as an example of an end user
system, an integrated receiver/decoder (IRD). As is known from the prior art the
software code may be prepared on the workstation WS using an appropriate editor.
A preliminary debugging of the software may be performed on the workstation WS
itself. The debugging may make use of a simulator for executing the software by
simulating the embarked environment. The software is subsequently transferred to
the IRD where further debugging is done. The IRD is connected to an output device

such as a television TV on which video and audio signals may be rendered.

Referring now to Fig. 2, a schematic representation of the IRD in the form of logical
layers shows a hardware resource layer 1 which corresponds to low level software,
such as drivers, required to make use of the IRD hardware features. The hardware

resource layer 1 is typically provided with the IRD hardware by the IRD manufacturer.

Avirtual machine comprising a system kernel layer 2 and an Advanced Programming
Language APL kernel layer 3 provides an environment for running software written
inthe advanced programming language, such as for example the JAVA ™ |anguage.
The virtual machine may be downloaded to the IRD during the software development

phase for testing or by the manufacturer before the IRD is delivered to customers.

A customised Application Programming Interface APl 4 may be provided to be
executed on top of the virtual machine. The API creates an interface between the

10

15

20

25

30

WO 01/97039 PCT/IB01/01286

-8-

virtual machine and the programmers of application. The APl may be entirely

specified, e.g. by means of an industry standard.

An application layer 5 represents software to be executed by the virtual machine. The
software may for example be an interactive television guide programme which will be
downloaded by the IRD when it is connected to an appropriate source such as a
cable network, a satellite dish receiver or a terrestrial antenna by means of which

digital TV data may be received.

Typically the APL kernel 3 software is developed using the software development

system in Fig. 1.

Referring to Fig. 3 the APL kernel software may comprise one or more modules M1,
M2,MN which is or are subject to a compilation 6 to obtain an executable file 7.
The executable file 7 is downloaded from the workstation WS to the IRD where it may

be executed.

Referring to Fig. 4 the debugging process of the APL kernel software is prepared on
the workstation WS by including a debugger module MD at the compilation 6 of the
APL kernel software in order to obtain an executable test file 8. The executable test

file 8 is downloaded from the workstation WS to the IRD where it may be executed.
During execution of the executable test file 8 typical debugging action such as halting
the execution, returning values of variables, modifying the executable test file 8 and
others may be undertaken as will be explained below.

First preferred embodiment

Software module(s) M1, M2, ... of APL kernel

The software module(s) of the APL kernel is/are designed to offer an Application
Programmer Interface which is specified in the Advanced Programming Language

10

15

20

25

30

WO 01/97039 PCT/IB01/01286

interface.

Generally there may be a plurality of modules which each provide a distinct type of
functionalities, i.e., one module may be dedicated to the handling of a file system in
the virtual machine, another module may be dedicated to communication of signals
from the application to hardware interfaces of the IRD, a further module may provide

access to graphical display features, and so on.

Each software module thus provides code for implementing commands which may
be used, after compilation, in the virtual machine of the IRD to access the
functionalities associated with the module. The software module further provides

data structures associated with the commands.
Debugger module MD

Referring to Fig. 5 a schematic representation of the debugger module MD will be
used to better understand the functionalities associated to it. The representation is

not intended to reflect an actual implementation in code of the debugger module MD.

The debugger module MD comprises specific code represented in boxes labelled
code M1, code M2 ... code MN. This specific code contains information on each
software module to be included in the compilation with the debugger module. More
precisely this specific code may comprise a description of commands and data

structures provided by each module.

The debugger module further comprises code for implementing debugger tools

commands. These debugger tools commands may for example be the following :

. A set of functions for implementing communication with a client of the
debugger module MD, i.e., a software which runs on a workstation such as
WS in Fig. 1 and which enables the display of data outputted by the debugger
module MD to the user or to receive instructions from a user before

10

15

20

25

30

WO 01/97039 PCT/IB01/01286

-10 -
transmitting these to the debugger module MD. This set of functions may
enable formatting and sending a chain of characters;

. A set of functions for handling instructions contained in a command line

inputted from the client;

. A set of functions to control the execution of the executable test file being
debugged;
. A set of functions to handle a configuration of the debugger module, i.e., to

indicate how the debugger module will behave when it encounters errors

during execution of the executable test file being debugged;

Generally speaking the debugger tools comprise commands which are of use for
most or all of the software modules. This enables reduction of the size of the
executable test file because such commands do not have to be implemented in the

individual software modules.

A debugger core of the debugger module MD makes use of the specific code in
boxes Code M1, Code M2, ..., and of the debugger tools to interact with the software
modules M1, M2, ... during debugging and in accordance with instructions received

by a user through the client of the debugger module.

Second preferred embodiment

Software modules M21, M22, ... of APL kernel

Referring to Fig. 6 and similar to what has been described for the first preferred
embodiment, software modules M21 and M22 provide code for implementing
commands which may be used, after compilation, in the virtual machine of the IRD,

and data structures associated to the commands.

Fig. 6 contains a schematic representation of 2 software modules M21 and M22. It
will be clear for a person skilled in the art that only one module or a greater number

of modules may also be used.

10

15

20

25

30

WO 01/97039 PCT/IB01/01286

-11 -

In addition to what has been described for the first preferred embodiment, the
software modules M21 and M22 each comprise an agent code which enable

communication to be established with a debugger module MD2.
Debugger module MD2

In a similar fashion to the debugger module MD described in relation with the first
preferred embodiment, the debugger module MD2 comprises code for implementing

debugger tools commands and a debugger core.

One difference between debugger modules MD2 and MD is that the former does not
necessarily contain code describing the software modules to debug. In other words
the debugger module MD2 taken alone has no information about the software
modules for which it will be used. Instead the debugger module MD2 will make use
of information provided by each software module to debug and contained in the

executable test file after compilation.

As a result the debugger module MD2 has a reduced size as compared to the
debugger module MD. Furthermore the debugger module MD2 does not need to be
updated if a software module to debug is added or deleted from the executable test

file.

The information provided by each software module will make specific commands

implemented by each software module available during debugging.

Debugging with MD2

Similarly as described above for Fig. 4, the software modules M21, M22, ... and the

debugger module MD2 are compiled to obtain the executable test file.

During execution of the executable test file the agents of the software modules M21,

M22, register their respective module at an interface of the debugger module

10

15

20

25

30

WO 01/97039 PCT/IB01/01286

-12.

MD2. The debugger module thereby receives for each software module a point of
entry of the agent, a list of commands that the agent takes in charge and information
concerning online help for using the listed commands. The point of entry indicates
to the debugger module MD2 how it can access the agent. This might for example
be a logical address. This will be required for example whenever the debugger

module MD2 wants to have one of the listed commands executed.

The listed commands allows to access the specific functionalities provided by the
software module. Hence the debugger module MD2 may have access to all
functionalities of the executable test file even if a software module is added at a

further stage of compilation, e.g. if the software needs to be updated.

The debugger module MD2 may transmit to the agent(s) and via the interface a list
of debugging tools and services available and required for the debugging. The
debugging tools and services are similar to the ones described here above for the
debugger module MD. Hence the software module may be accessed by the user by
use of the debugger module’s client and the software module which is incorporated

in the executable test file may return output information to the client.
Sharing of software module commands

In a preferred embodiment and referring to Fig. 7, an agent of a first software module
9may have access to a determined command provided by a second software module
10.

The determined command is listed in a list of commands 11 which comprises
commands that the second software module has submitted previously to the
debugger module 12 by means of its agent and further commands available from the
debugger tools. Using the list of commands 11 the debugger module 12 may have
access to the determined command by the point of entry of the second software
module’s agent. The determined command may however not be implemented directly
by the debugger module as is the case for the debugging tool commands, since the

10

15

20

25

30

WO 01/97039 PCT/IB01/01286

-13 -
corresponding code for it is comprised in the second software module. Instead an

appropriate code redirects calls of the determined command to the agent of the

second software module 10.

Hence the agent of the first software module 9 may call the determined command in
the list of commands 11 through the interface of the debugger module 12. The

debugger module 12 redirects the call to the agent of second software module 10.

Communication between debugger module and client

The exchange of information between the debugger module and the client on the
workstation may be done over a network or a link which connects both. This may for

example be a serial link.

In case the execution of the executable test file is halted, the debugger module
transmit a request for prompt to the client. The client will receive from the user and
send back to the debugger module the command(s) which are inputted e.g. over a

keyboard.

During execution of the executable test file, the debugger module is always ready to

receive messages (e.g. commands) from the client.

On receiving a message the debugger module will determine the agent of the
software module concerned by the message. This may be done e.g. by identifying the
command contained the message. If no agent may be found, the debugger module
returns an error message to the client. If an agent is found then the debugger module

calls a command handling function of the agent.

The command handling function may be divided as follows :

. Identification and testing of arguments in the command ;
. Execution of the command. If there is an action on the embarked environment

10

15

20

25

WO 01/97039 PCT/IB01/01286
-14 -
system then perform this action. If there is a memory content to be read out
then display this memory content ;

. Display result of command ;

. Return an error code to the debugger module.

Once the handling function has been performed and unless the debugger module
resumes the execution of the executable test file, the debugger module transmits a

request for prompt to the client.

In a preferred embodiment it is possible to modify display options of the debugger
module at the prompt. One of these options may correspond to the display of an error
code value at the end of processing a command. Hence it is possible to obtain
information on the success of executing a command and if no success was achieved,

to be informed about the reason of the error.

Each feature disclosed in the description and (where appropriate) the claims and

drawings may be provided independently or in any appropriate combination.

In summary, a software debugging provides for compiling software modules and a
debugger module on a workstation. The obtained executable test file is transferred
to an end user system, such as a receiver/decoder, where it is executed. The
debugger module may output information on commands being executed to a client
on the workstation. In one embodiment specific code containing information of the
software modules is included in the debugger module. In another embodiment the

software modules register commands and a point of entry to the debugger module.

10

15

20

25

30

WO 01/97039 PCT/IB01/01286

-15 -

Claims

A method of debugging software comprising at least one software module

ccontaining code forimplementing at least one command, said method comprising

the steps of creating on a workstation an executable test file by compiling said
at least one software module with a debugger module, and transferring said
executable test file to an end user system for execution to cause said at least

one software module to be debugged using the debugger module.

A method according to Claim 1, wherein, during execution of said executable
test file, data is exchanged between said executable test file and software

running on the workstation.

A method according to Claim 2, wherein data transmitted from said debugger
module to said workstation during execution is displayed on a terminal of the

workstation.

A method according to any preceding claim, wherein the debugger module
includes information regarding each of said at least one software module to

be debugged.

A method according to Claim 4, wherein said information comprises a
description of the commands and data structure of each of said at least one

software module.

A method according to Claim 4 or 5, wherein, using said information, a
command implemented by said at least one software module is executed by

the debugger module during debugging.

A method according to any of Claims 1 to 3, wherein information provided to

the debugger module by each of said at least one software module is used to

10

15

20

25

30

WO 01/97039 PCT/IB01/01286

10.

11.

12.

13.

14.

-16 -

debug that module.

A method according to Claim 7, wherein said information enables the
debugger to execute a command implemented by that software during

debugging.

A method according to Claim 7 or 8, wherein an agent is included in each of
said at least one software module for use in interfacing with the debugger

module.

A method according to Claim 9, wherein, during execution of said executable
test file, each agent registers its associated software module with the
debugger module to enable the debugger module to receive said information

for that software module.

A method according to Claim 9 or 10, wherein an agent of a first software
module has access to at least one command provided by a second software

module.

A workstation comprising means for creating an executable test file by
compiling at least one software module containing code for implementing at
least one command with a debugger module, and means for transferring said
executable test file to an end user system for execution to cause said at least

one software module to be debugged using the debugger module.

A workstation according to Claim 12, comprising means for exchanging data
between said executable test file and software running on the workstation

during execution of said executable test file.

A workstation according to Claim 13, comprising a terminal for displaying data

transmitted from said debugger module to said workstation.

10

15

20

25

30

WO 01/97039 PCT/IB01/01286

15.

16.

17.

18.

19.

20.

21.

22.

-17 -
A workstation according to any of Claims 12 to 14, wherein the debugger

module includes information regarding each of said at least one software

module to be debugged.

A workstation according to Claim 15, wherein said information comprises a
description of the commands and data structure of each of said at least one

software module.

A workstation according to Claim 16, wherein an agent is included in each of
said at least one software module for use in interfacing with the debugger

module.

A workstation according to Claim 17, wherein an agent of a first software
module has access to at least one command provided by a second software

module.

A system for debugging software comprising a workstation according to any
of Claims 12 to 18 and an end user system for receiving and executing the
executable test file to cause said at least one software module to be

debugged using the debugger module.

A system according to Claim 19, wherein said end user system comprises a

receiver/decoder of a digital broadcast system.

A system according to Claim 20, wherein said software comprises software for

a kernel layer of the operating system of the receiver/decoder.

A computer program product adapted to create an executable test file by
compiling at least one software module containing code for implementing at
least one command with a debugger module, and to transfer said executable
test file to an end user system for execution to cause said at least one

software module to be debugged using the debugger module.

10

15

20

25

30

WO 01/97039 PCT/IB01/01286

23.

24.

25.

26.

27.

28.

29.

30.

-18 -

A computer program product according to Claim 22 adapted to exchange data

with said executable test file during execution of said executable test file

A computer program product according to Claim 22 or 23, wherein the
debugger module includes information regarding each of said at least one

software module to be debugged.

A computer program product according to Claim 24, wherein said information
comprises a description of the commands and data structure of each of said

at least one software module.

A computer program product according to any of Claims 22 to 25, wherein an
agent is included in each of said at least one software module for use in

interfacing with the debugger module.

A computer program product according to Claim 26, wherein an agent of a first
software module has access to at least one command provided by a second

software module.

A computer program product adapted to carry out a method according to any
of Claims 1 to 11.

A computer program adapted to carry out a method according to any of Claims
1to 11.

A computer readable medium having stored thereon a program for compiling
at least one software module containing code for implementing at least one
command with a debugger module, and transferring said executable test file
to an end user system for execution to cause said at least one software

module to be debugged using the debugger module.

10

15

20

25

WO 01/97039 PCT/IB01/01286

31.

32.

33.

34.

35.

36.

37.

38.

-19-

A signal tangibly embodying a computer program for carrying out the method

according to any of Claims 1 to 11.

A method of debugging substantially as herein described with reference to the

accompanying drawings.

A system for debugging software substantially as herein described with

reference to the accompanying drawings.

A workstation substantially as herein described with reference to the

accompanying drawings.

A computer program product substantially as herein described with reference

to the accompanying drawings

A computer program substantially as herein described with reference to the

accompanying drawings.

A computer readable medium substantially as herein described with reference

to the accompanying drawings.

A signal tangibly embodying a computer program substantially as herein

described with reference to the accompanying drawings.

WO 01/97039

1/4

PCT/IB01/01286

FIG. 1
WS IRD
TV
FIG. 2 IRD
HARDWARE RESOURCES L
A
SYSTEM KERNEL 0
VIRTUAL |
MAGHINE
APL KERNEL —_3
\
CUSTOMISED AP Y
APPLICATION(S) —~—5

WO 01/97039 PCT/IB01/01286

2/4

FlG. 3
M1
6 /
{
M2 >
M
FIG. 4
M
6 8
(
MD =

VIN

WO 01/97039

3/4

PCT/IB01/01286

//\//D
CODE M1|CODE M2
FIG. 5 | DEBUGGER CORE | DEBUGGER TOOLS
CODE MN
21 M22
9 ¢
DATA DATA
CODE \stryct| | COPE |stRuCT.
AGENT AGENT
R)
I
INTERFACE
FIG. 6
DEBUGGER | DEBUGGER
CORE TooLs [MDZ2

WO 01/97039

4/4

PCT/IB01/01286

12

TOOLS

FIG. 7
9 10
¢ ¢
AGENT AGENT
INTERFACE /
(' [
11
\
DEBUGGER

INTERNATIONAL SEARCH REPORT

Interna! | Application No

PCT/IB 01/01286

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 GO6F11/36

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

IPC 7 GOGF .

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, INSPEC, IBM-TDB

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category © | Citation of document, with indication, where appropriate, of the relevant passages

XP0G0009785
page 4 -page 7

vol. 11, 1986, pages 22-4,1-07,

X KOLE R E: "SOFTWARE DEVELOPMENT AND 1-8,
DEBUGGING IN EMBEDDED SYSTEMS: MAINTAINING 12-16,
THE HIGH-LEVEL VIEW" 19,
ELECTRO,US,ELECTRONIC CONVENTIONS 22-25,
MANAGEMENT. LOS ANGELES, 28-31

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

*A' document defining the general state of the art which is not
considered to be of particular relevance

E earlier document but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

*O' document referring 1o an oral disclosure, use, exhibition or
other means

P document published prior to the international filing date but
later than the priority dale claimed

T later document published afier the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

'Y* document of particular relevance; the claimed invention
cannot be considered to involve an inventive slep when the
document is combined with one or more other such docu-
merr:ts. rSTUCh combination being obvious to a person skilled
in the art.

*&" document member of the same patent family

Date of the actual completion of the international search

15 October 2001

Date of mailing of the international search report

22/10/2001

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL — 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340~3016

Authorized officer

Renault, S

Form PCT/ISA/210 (second sheet) (July 1992)

D e L AL D

Relevant to claim No.

INTERNATIONAL SEARCH REPORT

Inmpplication No

PCT/IB 01/01286

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Citation of document, with indication,where appropriate, of the relevant passages

Relevant to claim No.

X

US 5 630 049 A (CARDOZA W.M. ET AL.)
13 May 1997 (1997-05-13)

abstract
column 4, Tine 49 -column 5, line 2
column 7, 1ine 58 -column 8, line b2
column 22, Tine 13 - line 67

claim 1

EP 0 712 080 A (SUN MICROSYSTEMS INC)
15 May 1996 (1996-05-15)

column 3, line 10 -column 4, 1ine 31
column 5, line 3 —column 9, line 27

US 5 715 387 A (BARNSTIJN MICHAEL A ET
AL) 3 February 1998 (1998-02-03)
abstract

column 2, line 46 -column 3, line 28

1-8,
12-16,
19,
22-25,
28-31

1-31

1-31

Form PCT/ISA/210 {continualion of second sheet) (July 1992)

[P 2 PN -, |

INTERNATIONAL SEARCH REPORT Interna‘| Application No
nformation o ent fam emb:
Information on patent family members PCT/IB 01/01286

Patent document Publication Patent family Publication
cited in search report date member(s) date
US 5630049 A 13-05-1997 NONE
EP 0712080 A 15-05-1996 EP 0712080 Al 15-05-1996
JP 8241201 A 17-09-1996
us 5815712 A 29-09-1998
US 5715387 A 03-02-1998 US 5600790 A < 04-02-1997

Form PCT/ISA/210 (patent tamily annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

