(54) Title: PYRIMIDINE DERIVATIVES FOR THE TREATMENT OF ASTHMA, COPD, ALLERGIC RHINITIS, ALLERGIC CONJUNCTIVITIS, ATOPIC DERMATITIS, CANCER, HEPATITIS B, HEPATITIS C, HIV, HPV, BACTERIAL INFECTIONS AND DERMATOSIS

(57) Abstract: The present invention provides compounds of formula (1) wherein R^1, R^2, R^3 and R^4 are as defined in the specification, and pharmaceutically acceptable salts thereof, as well as processes for their preparation, pharmaceutical compositions containing them and their use in therapy.

$$
\text{NH}_2
\begin{array}{c}
R^1 \\

R^2 \\

R^3 R^4
\end{array}
$$

(21) International Application Number: PCT/SE2008/051334

(22) International Filing Date: 21 November 2008 (21.11.2008)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
- 0702577-8 22 November 2007 (22.11.2007) SE

(72) Inventors: BAKEWELL, Stephen [GB/GB]; AstraZeneca R & D Charnwood, Bakewell Road, Loughborough Leicestershire LE1 5RH (GB).

(75) Inventor/Applicants (for US only): BENNETT, Nicholas, J. [GB/GB]; AstraZeneca R & D Charnwood, Bakewell Road, Loughborough Leicestershire LE1 5RH (GB). MCINALY, Thomas [GB/GB]; AstraZeneca.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(19) World Intellectual Property Organization

(43) International Publication Date 28 May 2009 (28.05.2009)

(10) International Publication Number WO 2009/067081 A1

R & D Charnwood, Bakewell Road, Loughborough Leicestershire LE1 5RH (GB).

MCINALLY, Thomas [GB/GB]; AstraZeneca R & D Charnwood, S-151 85 Sodertalje (SE).

(26) Publication Language: English

(51) International Patent Classification:
- C07D 239/48 (2006.01)
- C07D 923/49 (2006.01)
- A61K 31/005 (2006.01)
- A61K 31/005 (2006.01)
- A61P 11/00 (2006.01)
- A61P 11/00 (2006.01)
- A61P 17/00 (2006.01)
- A61P 27/14 (2006.01)
- A61P 31/00 (2006.01)
- A61P 31/00 (2006.01)

(74) Agent: ASTRAZENECA AB; AstraZeneca Intellectual Property, S-151 85 Sodertalje (SE).
The present invention relates to pyrimidine derivatives, processes for their preparation, pharmaceutical compositions containing them and their use in therapy.

The immune system is comprised of innate and acquired immunity, both of which work cooperatively to protect the host from microbial infections. It has been shown that innate immunity can recognize conserved pathogen-associated molecular patterns through toll-like receptors (TLRs) expressed on the cell surface of immune cells. Recognition of invading pathogens then triggers cytokine production (including interferon alpha (IFNα)) and upregulation of co-stimulatory molecules on phagocytes, leading to modulation of T cell function. Thus, innate immunity is closely linked to acquired immunity and can influence the development and regulation of an acquired response.

TLRs are a family of type I transmembrane receptors characterized by an NH2-terminal extracellular leucine-rich repeat domain (LRR) and a COOH-terminal intracellular tail containing a conserved region called the Toll/IL-1 receptor (TIR) homology domain. The extracellular domain contains a varying number of LRR, which are thought to be involved in ligand binding. Eleven TLRs have been described to date in humans and mice. They differ from each other in ligand specificities, expression patterns, and in the target genes they can induce.

Ligands which act via TLRs (also known as immune response modifiers (IRMS)) have been developed, for example, the imidazoquinoline derivatives described in US Patent No. 4689338 which include the product Imiquimod for treating genital warts, and the adenine derivatives described in WO 98/01448 and WO 99/28321.

This patent application describes a class of pyrimidine derivatives having immuno-modulating properties that act via TLR7 which are useful in the treatment of viral or allergic diseases and cancers.
In accordance with the present invention, there is therefore provided a compound of formula (I)

\[
\begin{array}{c}
\text{NH}_2 \\
\text{R}^1 \text{R}^2 \text{R}^3 \text{R}^4 \\
\end{array}
\]

wherein

- \(R^1 \) represents Q-C \(_6\) alkyl, Q-C \(_6\) alkoxy or Q-C \(_6\) alkylthio;
- \(R^2 \) represents either

\[
\begin{array}{c}
\text{X}^1 \\
\text{R}^7 \\
\end{array}
\]

or

\[
\begin{array}{c}
\text{Z}^1 \\
\text{X}^2 \\
\text{Y}^1 \\
\text{A} \\
\text{R}^9 \\
\end{array}
\]

- \(R^3 \) represents a hydrogen atom or a Q-C\(_3\) alkyl group;
- \(R^4 \) represents,

(i) C3-C8 cycloalkyl, Ci-Cg alkyl, C2-Cg alkenyl or C2-Cg alkynyl, each of which may be optionally substituted by one or more substituents independently selected from halogen, hydroxyl, Ci-Cg alkoxy, Ci-Cg alkylthio and C3-C6 cycloalkyl, or

(ii) a group

\[
\begin{array}{c}
\text{(R)}^q \\
\text{(CH}_2\text{)}^m\text{-OH} \\
\end{array}
\]
in which m is 1 or 2, q is 0, 1 or 2 and each R independently represents a halogen atom or a hydroxyl, methyl, cyano, trifluoromethyl, $S(O)_j$-methyl or methoxy group;

X^1 represents an oxygen or sulphur atom or a group NH or CH$_2$;

X^2 and X^4 each independently represent a bond or an oxygen or sulphur atom;

R and R^{5a} each independently represent a hydrogen atom or a Q-C$_3$ alkyl group;

R^6 represents a C$_i$-C$_g$ alkyl group optionally substituted by one or more substituents independently selected from halogen, cyano, hydroxy, C$_1$-C$_3$ alkoxy, methylsulphonyl, methylthiazolyl and NR$_{10}$R$_{11}$, or R^6 represents a saturated heterocyclic ring optionally substituted by Ci-C$_6$ alkyl;

j is 1 or 2;

each R^7 independently represents a hydrogen or halogen atom or a hydroxyl, methyl, cyano, halomethoxy or methoxy group;

Z^1 represents a C$_2$-C$_g$ alkyne or C$_3$-C$_8$ cycloalkyne group;

X^3 represents NR$_{12}$, >N-COR$_{12}$, CONR$_{12}$, NR$_{12}$CO, SO$_2$NR$_{12}$, >N-SO$_2$R$_{12}$, NR$_{12}$SO$_2$,

NR$_{12}$CONR$_{13}$ or NR$_{13}$CONR$_{12}$, S(0)$_p$ or O;

p is 0, 1 or 2;

Y represents a single bond or Ci-C$_g$ alkyne;

A represents a monocyclic or bicyclic C$_g$-C$_Q$ aryl or a monocyclic or bicyclic C$_5$-C$_1$ heteroaryl group containing 1 to 3 ring heteroatoms;

R^8 represents a Q-C$_6$ alkyl group optionally substituted by one or more substituents independently selected from halogen, cyano, hydroxy, thiol, C$_1$-C$_3$ alkyl,

C$_1$-C$_3$ hydroxyalkyl, C$_1$-C$_3$ haloalkyl, C$_1$-C$_3$ alkoxy, C$_1$-C$_3$ haloalkoxy,

C$_1$-C$_3$ alkylthio, Q-C$_3$ alkylsulfonyl or Q-C$_3$ alkylsulfmyl;
R10 and R11 each independently represent hydrogen, C\textsubscript{i} - C\textsubscript{6} alkyl or C3-C6 cycloalkyl, or R10 and R11 together with the nitrogen atom to which they are attached form a 4- to 7-membered saturated heterocyclic ring which may optionally contain a further ring heteroatom selected from oxygen, S(O)\textsubscript{4} or NR36, the heterocyclic ring being optionally substituted by Q-C\textsubscript{6} alkyl (which is itself optionally substituted by Q-C\textsubscript{6} alkoxy) or di-Ci-C\textsubscript{6} alkyamino;

R12 represents a hydrogen atom, a 3- to 8-membered saturated or unsaturated heterocyclic ring comprising at least one ring group O, S(O)\textsubscript{4}, N or NR14, a Ci-C\textsubscript{6} alkyl group or C3-C6 cycloalkyl group, the latter two groups being optionally substituted by one or more substituents independently selected from NR15, R16 and R17, or

R12 is a Ci-C\textsubscript{6} alkylene which may be linked to a carbon atom within a C\textsubscript{2} - C\textsubscript{g} alkylene group Z1 so as to form a saturated 4- to 7-membered nitrogen-containing ring;

R14, R22 and R35 each independently represent a hydrogen atom, CO\textsubscript{2}R18, S(O)\textsubscript{w}R18, COR19, or a Q-C\textsubscript{6} alkyl, C2-C6 alkenyl, C2-C6 alkynyl or C3-C8 cycloalkyl group, each of which may be optionally substituted by one or more substituents independently selected from halogen, cyano, OR20 and NR20, R21;

R15 and R16 each independently represent a hydrogen atom, a 3- to 8-membered saturated heterocyclic ring comprising at least one ring group O, S(O)\textsubscript{2}, or NR22, Ci-C\textsubscript{g} alkyl or C3-C6 cycloalkyl, the latter two groups being optionally substituted by one or more substituents independently selected from halogen, cyano, S(O)\textsubscript{a} R23, OR24, CO2R24, OC(O)R24, SO\textsubscript{2}NR24 R25, CONR24 R25, NR24 R25, NR24 SO\textsubscript{2} R26, NR24 COR25, or a 3- to 8-membered saturated heterocyclic ring comprising at least one ring group O, S(O)\textsubscript{t}, or NR25, or

R15 and R16 together with the nitrogen atom to which they are attached form a 3- to 8-membered saturated heterocyclic ring comprising a ring nitrogen atom and optionally one
or more further ring heteroatoms independently selected from nitrogen, oxygen, sulphur and sulphonyl, the heterocyclic ring being optionally substituted by one or more
substituents independently selected from halogen, cyano, S(O)\(^{\sim}\)R, OR\(^{\sim}\), CO2R\(^{\sim}\),
COR\(^{\sim}\), OCN, SO2NR\(^{\sim}\)R, CONR\(^{\sim}\)R, NR\(^{\sim}\)S(O)\(^{\sim}\)R, SO2R\(^{\sim}\), N\(^{\sim}\)R\(^{\sim}\)COR\(^{\sim}\),

5 Ci-C\(_6\) haloalkyl, C3-C8 cycloalkyl, Ci-C\(_6\) alkyl, aryl and heteroaryl, the latter four groups
being optionally substituted by one or more substituents independently selected from
halogen, cyano, S(O)\(_i\)R\(_{30}\), 0 R\(_{30}\), CO2R\(_{30}\), SO2NR\(_{30}\)R\(_{31}\), CONR\(_{30}\)R\(_{31}\) and NR\(_{30}\)R\(_{31}\);
R\(^{17}\) represents halogen, cyano, C1-C3 haloalkoxy, CO\(_2\)R\(_{32}\), S(O)\(_i\)R\(_{32}\), OR\(_{32}\),
SO2NR\(_{32}\)R\(_{34}\), CONR\(_{32}\)R\(_{34}\), NR\(_{32}\)SO2R\(_{33}\), NR\(_{32}\)CO2R\(_{33}\), NR\(_{32}\)COR\(_{34}\) or a
10 3- to 8-membered saturated heterocyclic ring comprising a ring group NR\(_{35}\);
a, b, d, f, g, h, t, v, w and z each independently represent o. 1 or 2;
R\(^{18}\), R\(^{26}\), R\(^{29}\) and R\(^{33}\) each independently represent a C\(_1\)-C\(_6\) alkyl or C3-C6 cycloalkyl
group;
R\(^{13}\), R\(^{19}\), R\(^{20}\), R\(^{21}\), R\(^{23}\), R\(^{24}\), R\(^{25}\), R\(^{27}\), R\(^{28}\), R\(^{30}\), R\(^{31}\), R\(^{32}\) and R\(^{34}\) each independently
represent a hydrogen atom or a Ci-C\(_6\) alkyl or C3-C6 cycloalkyl group; and
R\(^{36}\) represents a hydrogen atom or a Q-C3 alkyl group;
or a pharmaceutically acceptable salt thereof.

In the context of the present specification, unless otherwise stated, an alkyl, alkenyl or
alkynyl substituent group or an alkyl, alkenyl or alkyenyl moiety in a substituent group
may be linear or branched. Examples of Ci-C\(_g\) alkyl groups/moieties include methyl,
ethyl, propyl, 2-methyl-1-propyl, 2-methyl-2-propyl, 2-methyl-1-butyl, 3-methyl-1-butyl,
2-methyl-3-butyl, 2,2-dimethyl-1-propyl, 2-methyl-pentyl, 3-methyl-1-pentyl, 4-methyl-1-pentyl,
2-methyl-2-pentyl, 3-methyl-2-pentyl, 4-methyl-2-pentyl, 2,2-dimethyl-1-butyl,
3,3-dimethyl-1-butyl, 2-ethyl-1-butyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl,
neopentyl, n-hexyl, n-heptyl and n-octyl. Examples OfC\(_2\)-C\(_g\) alkenyl
groups/moieties include ethenyl, propenyl, 1-butene, 2-butene, 1-pentenyl, 1-hexenyl,
1-heptenyl, 1-octenyl, 1,3-butadienyl, 1,3-pentadienyl, 1,4-pentadienyl and 1,4-
hexadienyl. Examples of C₂-C₈ alkynyl groups/moieties include ethynyl, 1-propynyl, 2-propynyl (propargyl) or 2-butynyl.

Similarly, an alkylene group/moiety may be linear or branched. Examples of C₁-C₆ alkylene groups/moieties include methylene, ethylene, n-propylene, n-butylene, n-pentylen, n-hexylene, 1-methylethylene, 2-methylethylene, 1,2-dimethylethylene, 1-ethylethylene, 2-ethylethylene, 1-, 2- or 3-methylpropylene and 1-, 2- or 3-ethylpropylene. A C₃-C₈ cycloalkyl(ene) group is a cyclopropyl(ene), cyclobutyl(ene), cyclopentyl(ene), cyclohexyl(ene), cycloheptyl(ene) or cyclooctyl(ene) group. A C₁-C₆ haloalkyl or C₁-C₈ haloalkoxy substituent group/moiety will comprise at least one halogen atom, e.g., one, two, three, four or five halogen atoms, examples of which include trifluoromethyl, trifluoromethoxy or pentafluoroethyl. A C₁-C₆ hydroxyalkyl substituent group/moiety will comprise at least one hydroxyl group, e.g., one, two, three or four hydroxyl groups, examples of which include -CH₂OH, -CH₂CH₂OH, -CH₂CH₂CH₂OH and -CH(CH₂OH)₂. An unsaturated (heterocyclic) ring will be partially or fully unsaturated. The alkyl groups in a di-C₁-C₆ alkylamino group may be the same or different. When R⁻¹ represents a C₁-C₆ alkyl group optionally substituted by NR⁻¹⁻¹ where R⁻¹ and R⁻¹ together with the nitrogen atom to which they are attached form an optionally substituted 4- to 7-membered saturated heterocyclic ring which may optionally contain a further ring heteroatom selected from oxygen, S(O)ₖ or NR⁻¹, it will be appreciated that the ring may be attached to the alkyl chain via any suitable ring atom, whether a carbon atom or a heteroatom. The same comment applies to the 3- to 8-membered saturated or unsaturated heterocyclic ring defined in R⁻¹², and the heterocyclic rings defined in R⁻¹⁵, R⁻¹⁶ and R⁻¹⁷.

An aryl group/moiety may contain from 6 to 10 carbon atoms and may be monocyclic or polycyclic (e.g., bicyclic or tricyclic) in which the two or more rings are fused.
Heterocyclic groups are rings which may be saturated, partially unsaturated or unsaturated, and contain from 3 to 20 atoms, at least one and suitably from 1 to 4 atoms are heteroatoms selected from oxygen, sulphur and nitrogen. Rings may be monocyclic, fused, bridged, or spiro bicyclic heterocyclic ring system(s). Monocyclic heterocyclic rings contain from about 3 to 12 ring atoms, with from 1 to 5 heteroatoms selected from N, O, and S, and suitably from 3 to 7 member atoms, in the ring. Bicyclic heterocycles contain from 7 to 17 member atoms, suitably 7 to 12 member atoms, in the ring. Bicyclic heterocycles contain from about 7 to about 17 ring atoms, suitably from 7 to 12 ring atoms. Bicyclic heterocyclic(s) rings may be fused, spiro, or bridged ring systems.

Examples of heterocyclic groups which are saturated or partially saturated include cyclic ethers (oxiranes) such as ethyleneoxide, tetrahydrofuran, dioxane, and substituted cyclic ethers. Heterocycles containing nitrogen include, for example, azetidine, pyrrolidine, piperidine, piperazine, tetrahydrotriazine, tetrahydropyrazole, and the like. Typical sulfur containing heterocycles include tetrahydrothiophene, dihydro-1,3-dithiol-2-yl, and hexahydrothiopin-4-yl. Other heterocycles include dihydro-oxathiol-4-yl, tetrahydro-oxazolyl, tetrahydro-oxadiazolyl, tetrahydrodioxazolyl, tetrahydro-oxathiazolyl, hexahydrotriazinyl, tetrahydro-oxazinyl, morpholinyl, thiomorpholinyl, tetrahydropyrimidinyl, dioxolanyl, octahydrobenzofuranyl, octahydrobenzimidazolyl, and octahydrobenzothiazolyl. For heterocycles containing sulfur, the oxidized sulfur heterocycles containing SO or SO₂ groups are also included. Examples include the sulfoxide and sulfone forms of tetrahydrothiophene. A suitable value for a heterocyclic group which bears 1 or 2 o xo or thioxo substituents is, for example, 2-oxopyrrolidinyl, 2-thioxopyrrolidinyl, 2-oxoimidazolidinyl, 2-thioxoimidazolidinyl, 2-oxopiperidinyl, 2,5-dioxopyrrolidinyl, 2,5-dioxoimidazolidinyl or 2,6-dioxopiperidinyl.

Heterocyclic groups which are aromatic in nature are referred to as "heteroaryl" groups. These groups are aromatic mono-, bi-, or polycyclic heterocyclic ring incorporating one or more (for example 1-4) heteroatoms selected from N, O, and S. The term heteroaryl includes both monovalent species and divalent species. Examples of heteroaryl groups include furyl, pyrrolyl, thietyl, oxazolyl, isoxazolyl, imidazolyl, pyrazolyl, thiazolyl, isothiazolyl, oxadiazolyl, thiazadiazolyl, triazolyl, tetrazolyl, pyridyl, pyridazinyl,
pyrimidinyl, pyrazinyl, 1,3,5-triazenyl, benzofuranyl, indolyl, isoindolyl, benzothienyl, benzoxazolyl, benzimidazolyl, benzothiazolyl, benzothiazolyl, indazolyl, pyridinyl, indazolyl, purinyl, thieno[2,3-b]furanyl, 2H-furo[3,2-b]-pyranyl, 5H-pyrido[2,3-d]-o-oxazinyl, lH-pyrazolo[4,3-d]-oxazolyl, 4H-imidazo[4,5-d]thiazolyl, pyrazino[2,3-d]pyridazinyl, imidazo[1,2-b][1,2,4]triazinyl. "Heteroaryl" also covers ring systems wherein at least one ring is an aromatic ring containing 1 or more heteroatoms selected from O, S and N and one or more of the other rings is a non-aromatic, saturated or partially unsaturated ring optionally containing one or more heteroatoms selected from O, S and N, for example 1,2,3,4-tetrahydro-1,8-naphthyridinyl, 1,2,3,4-tetrahydropyrido[2,3-b]pyrazinyl and 3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazinyl.

For the avoidance of doubt, it should be understood that the definitions of the heterocyclic rings in formula (I) are not intended to include unstable structures or any 0-0, O-S or S-S bonds and that a substituent, if present, may be attached to any suitable ring atom.

When any chemical moiety or group in formula (I) is described as being optionally substituted, it will be appreciated that the moiety or group may be either unsubstituted or substituted by one or more of the specified substituents. It will be appreciated that the number and nature of substituents will be selected so as to avoid sterically undesirable combinations.

Fig. IA is an X-ray powder diffraction pattern of 4-(Dimethylamino)butyl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate, monosaccharin salt.

Fig. 1B is a table listing the 2Θ(2 theta) values and d-spacings corresponding to the peaks shown in the X-ray diffraction pattern of Fig. IA.

R represents Ci-Cg, preferably C1-C4, alkyl (e.g. methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl or n-hexyl), C1-C6, preferably Q-C4, alkoxy (e.g.
methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, tert-butoxy, n-pentoxy or n-hexoxy), or C1-C6, preferably C1-C4, alkylthio (e.g. methylthio, ethylthio, n-propylthio, isopropylthio, n-butylthio, isobutylthio, tert-butylthio, n-pentylthio or n-hexylthio).

In an embodiment of the invention, R represents a C1-Cg alkyl group, particularly methyl group.

In an embodiment of the invention, R represents a hydrogen atom.

In an embodiment of the invention, R represents a C3-C8, preferably C3-C6, cycloalkyl, Ci-Cg, preferably C4-C8 or C5-C7, alkyl, C2-Cg, preferably C4-C7, alkenyl or C2-Cg, preferably C4-C7, alkynyl group, each of which may be optionally substituted by one or more substituents (e.g. one, two, three or four substituents) independently selected from halogen (e.g. fluorine, chlorine, bromine or iodine), hydroxy, Q-C, preferably C1-C4, alkoxy, Ci-Cg, preferably C1-C4, alkylthio and C3-C6, preferably C5-C6, cycloalkyl.

In another embodiment, R represents Ci-Cg alkyl group, in particular a C4-C7 alkyl group which is optionally substituted by a hydroxy group.

In one embodiment of the invention, R represents a group (Ia).

In an embodiment of the invention, X represents a sulphur atom or, in particular, CH2. X preferably represents a bond or an oxygen atom.

In one embodiment, X represents a bond.

R preferably represents a hydrogen atom.

R represents a Ci-Cg, preferably C1-C4, alkyl (e.g. methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl or n-hexyl) group optionally substituted by one or
more substituents (e.g. one, two, three or four substituents) independently selected from halogen, cyano, hydroxyl, C1-C3 alkoxy, methylsulphonyl, methylthiazolyl and NR\(^{10}\)R\(^{11}\), or R\(^{6}\) represents a saturated heterocyclic ring, e.g. a 5- to 6-membered saturated heterocyclic ring such as piperidine, optionally substituted by Ci-C\(_6\), preferably C1-C4, alkyl, in particular methyl.

In one aspect R\(^{6}\) represents a Q-C\(_{6}\), preferably Q-C4, alkyl (e.g. methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl or n-hexyl) group optionally substituted by one or more substituents (e.g. one, two, three or four substituents) independently selected from halogen (e.g. fluorine, chlorine, bromine or iodine), cyano, hydroxyl, C1-C3 alkoxy and NR\(^{10}\)R\(^{11}\). In another aspect, R\(^{6}\) represents a Ci-C\(_g\) alkyl group, particularly methyl group. In still another aspect, R\(^{6}\) represents a Ci-C\(_g\) alkyl group substituted by NR\(^{10}\)R\(^{11}\).

Each R\(^{7}\) independently represents a hydrogen or halogen (e.g. fluorine, chlorine, bromine or iodine) atom or a hydroxyl, methyl, cyano, halomethoxy or methoxy group. In one aspect, j is 1 and R\(^{7}\) represents hydrogen, hydroxyl, fluorine or methoxy.

R\(^{10}\) and R\(^{11}\) each independently represent hydrogen, Ci-C\(_6\), preferably Ci-C4, alkyl (e.g. methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl or n-hexyl) or C3-C6, preferably C5-C6, cycloalkyl, or R\(^{10}\) and R\(^{11}\) together with the nitrogen atom to which they are attached form a 4- to 7-membered, preferably 5- to 6-membered, saturated heterocyclic ring which may optionally contain a further ring heteroatom selected from oxygen, S(O)\(_{\nu}\) or NR\(^{36}\), the heterocyclic ring being optionally substituted by Ci-C\(_g\), preferably Q-C4, alkyl (which is itself optionally substituted by Q-C\(_{6}\), preferably Q-C4, alkoxy, e.g. methoxy or ethoxy) or di-Ci-C\(_g\) alkylamino (e.g. dimethylamino).

In one aspect R\(^{10}\) and R\(^{11}\) each independently represent hydrogen, Q-C\(_{6}\), preferably C\(_1\)-C4, alkyl (e.g. methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl or n-hexyl) or C3-C6, preferably C5-C6, cycloalkyl, or R\(^{10}\) and R\(^{11}\) together with the nitrogen atom to which they are attached form a 4- to 7-membered, preferably 5- to 6-
membered, saturated heterocyclic ring which may optionally contain a further ring heteroatom selected from oxygen, S(O)\textsubscript{y} or NR\textsubscript{36}.

In another aspect, R10 and R11 each represent a methyl group, or R10 and R11 together with the nitrogen atom to which they are attached form a 5- to 6-membered, saturated heterocyclic ring which may optionally contain a further ring heteroatom selected from oxygen, S(O)\textsubscript{y} or NR\textsubscript{36}, the heterocyclic ring being optionally substituted by C1-C2 alkyl (which is itself optionally substituted by methoxy) or dimethylamino.

In a further aspect, R10 and R11 each represent a methyl group, or R10 and R11 together with the nitrogen atom to which they are attached form a 6-membered saturated heterocyclic ring containing a further ring heteroatom selected from oxygen or NR\textsubscript{36}.

In an alternative embodiment, R2 represents a group (Ib).

Z1 represents a C2-C6, preferably C2-C4, alkyene or C3-C8, preferably C5-C6, cycloalkylene group. In one aspect, Z1 represents a linear C2-C6 alkyene, in particular a linear C3-C4 alkyene, group.

In one aspect, X3 represents NR12, >N-COR12, NR12CO or >N-SO\textsubscript{2}R12.

Y1 represents a single bond or a Q-C\textsubscript{6}, preferably Q-C4, alkyene group. In one aspect, Y1 represents a Ci-C\textsubscript{6} alkyene, particularly methylene, group.

X4 preferably represents a bond or an oxygen atom.

In one embodiment, X4 represents a bond.

R5a preferably represents a hydrogen atom.

A represents a monocyclic or bicyclic C\textsubscript{6}-C\textsubscript{10} aryl or a monocyclic or bicyclic C\textsubscript{5}-C\textsubscript{12} heteroaryl group containing 1 to 3 ring heteroatoms independently selected from nitrogen, oxygen and sulphur. In one aspect, A represents a phenyl ring.

R8 represents a Q-C\textsubscript{g}, preferably Q-C4, alkyl (e.g. methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl or n-hexyl) group optionally substituted by one or
more substituents (e.g. one, two, three or four substituents) independently selected from halogen (e.g. fluorine, chlorine, bromine or iodine), cyano, hydroxyl, NR10, R11 and C1-C3 alkoxy.

In one aspect, R8 represents a Q-C\textsubscript{6} alkyl group, particularly methyl group.

When n is 1 or 2, each R9 independently represents halogen (e.g. fluorine, chlorine, bromine or iodine), cyano, hydroxy, thiol, Q-C\textsubscript{3} alkyl (e.g. methyl or ethyl), C1-C3 hydroxyalkyl (e.g. hydroxymethyl), C1-C3 haloalkyl (e.g. trifluoromethyl), C1-C3 alkoxy (e.g. methoxy or ethoxy), C1-C3 haloalkoxy (e.g. trifluoromethoxy), Ci-C3 alkylthio (e.g. methylthio or ethylthio), Ci-C3 alkylsulfonyl (e.g. methylsulfonyl) or Ci-C3 alkylsulfinyl (e.g. methylsulfinyl).

In one aspect, n is 0.

R12 represents a hydrogen atom, a 3- to 8-, particularly 5- to 8-membered saturated or unsaturated heterocyclic ring comprising at least one ring group (e.g. one, two, three or four ring groups independently selected from) O, S(O)\textsubscript{t}, N or NR14, a Ci-C\textsubscript{6}, preferably C1-C4, alkyl (e.g. methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl or n-hexyl) group or C3-C6, preferably C5-C6, cycloalkyl group, the latter two groups being optionally substituted by one or more substituents (e.g. one, two or three substituents) independently selected from NR15, R16 and R17, or

R12 is a Ci-C\textsubscript{6} alkylene which may be linked to a carbon atom within a C2-C6 alkylene group Z1 so as to form a saturated 4- to 7-membered nitrogen-containing ring.

In one embodiment of the invention, R12 represents a hydrogen atom, a 5- or 6-membered saturated or unsaturated heterocyclic ring comprising one or two ring groups independently selected from N and NR14, or a Q-C\textsubscript{6}, preferably Q-C4, alkyl group optionally
substituted by one or more substituents (e.g. one, two or three substituents) independently selected from $\text{NR}^{15} \text{R}^{16}$ and R^{17}.

In a further embodiment, R^{12} represents a hydrogen atom, a 5-membered unsaturated heterocyclic ring comprising two ring groups independently selected from N and NR^{14}, or a C1-C3 alkyl group optionally substituted by $\text{NR}^{15} \text{R}^{16}$ or R^{17}.

In an embodiment of the invention, R^{14} represents a C1-Cg alkyl group, particularly methyl group.

R^{15} and R^{16} each independently represent a hydrogen atom, a 3- to 8-membered saturated heterocyclic ring comprising at least one ring group O, S(O)_{2} or NR^{22}, Q-C^{6}, preferably Q-C^{4}, haloalkyl, C^{3}-C^{8}, preferably N-membered nitrogen, R^{16} a substituted heterocyclic ring comprising at least one ring group O, S(O)_{2} or NR^{22}, 1-C^{4}, alkyl (e.g. methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl or n-hexyl) group or C3-C6, preferably C5-C6, cycloalkyl group, the latter two groups being optionally substituted by one or more substituents (e.g. one, two, three or four substituents) independently selected from halogen (e.g. fluorine, chlorine, bromine or iodine), cyano, $\text{S(O)}_{2} \text{R}^{23}$, OR^{24}, $\text{CO}_{2} \text{R}^{24}$, $\text{OC(O)}_{2} \text{R}^{24}$, $\text{SO}_{2} \text{NR}^{24} \text{R}^{25}$, $\text{CONR}^{24} \text{R}^{25}$, $\text{NR}^{24} \text{R}^{25}$, $\text{NR}^{24} \text{SO}_{2} \text{R}^{26}$, $\text{NR}^{24} \text{COR}^{25}$, or a 3- to 8-membered saturated heterocyclic ring comprising at least one ring group O, S(O)_{2} or NR^{25}, or R^{15} and R^{16} together with the nitrogen atom to which they are attached form a 3- to 8-membered saturated heterocyclic ring comprising a ring nitrogen atom and optionally one or more (e.g. one, two or three) further ring heteroatoms independently selected from nitrogen, oxygen, sulphur and sulphonyl, the heterocyclic ring being optionally substituted by one or more substituents (e.g. one, two, three or four substituents) independently selected from halogen (e.g. fluorine, chlorine, bromine or iodine), cyano, S(O)^{27}, OR^{27}, $\text{CO}_{2} \text{R}^{27}$, COR^{27}, $\text{OC(O)}_{2} \text{R}^{27}$, $\text{SO}_{2} \text{NR}^{27} \text{R}^{28}$, $\text{CONR}^{27} \text{R}^{28}$, $\text{NR}^{27} \text{COR}^{28}$, Q-C^{6}, preferably Q-C^{4}, haloalkyl, C_{3}-C_{8}, preferably...
C3-C6, cycloalkyl, C1-C6, preferably Q-C4, alkyl, aryl and heteroaryl, the latter four groups being optionally substituted by one or more substituents (e.g. one, two, three or four substituents) independently selected from halogen, cyano, S(O)JR 3 0 , OR 3 0 , CO2R 3 0 , SO2NR3V 1 , CONR3V 1 and NR3V 1.

In an embodiment of the invention, R 15 and R 16 each independently represent a hydrogen atom or a Ci-C 6 , preferably C1-C4, alkyl group optionally substituted by one or more substituents (e.g. one, two, three or four substituents) independently selected from halogen, cyano, S(O)R 2 3 , OR 2 4 , CO2R 2 4 , OC(O)R 2 4 , SO2NR2V 4 , CONR2V 4 , NR2V 4 , NR2SO2R25, or a 3- to 8-membered saturated heterocyclic ring comprising at least one ring group O, S(O)4, or NR 25 .

In another embodiment, R 15 and R 16 each independently represent a Ci-Cg, preferably C1-C4, more preferably Ci-C 2 , alkyl group optionally substituted by OR 24 .

In an alternative embodiment, R 15 and R 16 together with the nitrogen atom to which they are attached form a 3- to 8-, particularly 5- to 7-membered saturated heterocyclic ring comprising a ring nitrogen atom and optionally one or more (e.g. one, two or three) further ring heteroatoms independently selected from nitrogen, oxygen, sulphur and sulphonyl, the heterocyclic ring being optionally substituted by one or more substituents (e.g. one, two, three or four substituents) independently selected from halogen (e.g. fluorine, chlorine, bromine or iodine), cyano, OR 27 , CO2R 27 , COR 27 , Q-C 6 , preferably Q-C4, alkyl and aryl, the latter two groups being optionally substituted by one or more substituents (e.g. one, two, three or four substituents) independently selected from halogen, cyano, S(O)JR 3 0 , OR 3 0 , CO2R 3 0 , SO2NR3V 3 1 , CONR3V 3 1 and NR3V 3 1.
In a further embodiment, \(R^{15} \) and \(R^{16} \) together with the nitrogen atom to which they are attached form a 5- to 7-membered saturated heterocyclic ring comprising a ring nitrogen atom and optionally a second ring nitrogen or oxygen atom, the heterocyclic ring being optionally substituted by \(\text{OR}^{27} \), \(\text{CG}_{2}\text{R}^{27} \), \(\text{COR}^{27} \), \(\text{Q-C3} \) alkyl or phenyl, the latter two groups being optionally substituted by \(\text{S(O)OR}^{30} \) or \(\text{NR}^{30} \text{R}^{31} \).

In an embodiment of the invention, \(R^{17} \) represents \(\text{CO2R}^{32} \).

\(R^{18} \), \(R^{26} \), \(R^{29} \) and \(R^{33} \) each independently represent a \(\text{Ci-Cg} \), preferably \(\text{C1-C4} \), alkyl (e.g. methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl or n-hexyl) group or \(\text{C3-C6} \), preferably \(\text{C5-C6} \), cycloalkyl group.

\(R^{13} \), \(R^{19} \), \(R^{20} \), \(R^{21} \), \(R^{23} \), \(R^{24} \), \(R^{25} \), \(R^{27} \), \(R^{28} \), \(R^{30} \), \(R^{31} \), \(R^{32} \) and \(R^{34} \) each independently represent a hydrogen atom or a \(\text{Ci-C6} \), preferably \(\text{C1-C4} \), alkyl (e.g. methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl or n-hexyl) group or \(\text{C3-C6} \), preferably \(\text{C5-C6} \), cycloalkyl group.

In an embodiment of the invention,

\(R^{1} \) represents methyl;

\(R^{2} \) represents either

\[
\begin{align*}
\text{[Diagram (la)]}
\end{align*}
\]

or

\[
\begin{align*}
\text{[Diagram (lb)]}
\end{align*}
\]
3. **R** represents a hydrogen atom;

4. **R** represents a C4-C7 alkyl group optionally substituted by a hydroxyl group;

5. **X** represents CH2;

6. **X** represents a bond or an oxygen atom;

7. **R** represents an alkyl group optionally substituted by a hydroxyl group;

8. **X** represents a hydrogen atom;

9. **R** represents a C1-Cg alkyl group optionally substituted by NR10R11;

10. **j** is 1;

11. **R** represents a hydrogen or halogen (particularly fluorine) atom or a methoxy group;

12. **Z** represents a C3-C4 alkylene;

13. **X** represents NR12, >N-COR12, NR12CO or >N-SO2R12;

14. **Y** represents methylene;

15. **X** represents a bond or an oxygen atom;

16. **R** represents a hydrogen atom;

17. **A** represents a monocyclic or bicyclic C6-Cio aryl (particularly phenyl) group;

18. **R** represents methyl;

19. **n** is 0;

20. **R**10 and **R**11 each represent a methyl group, or **R**10 and **R**11 together with the nitrogen atom to which they are attached form a 6-membered saturated heterocyclic ring containing a further ring heteroatom selected from oxygen or NR36;

21. **R**12 represents a hydrogen atom, a 5-membered unsaturated heterocyclic ring comprising two ring groups independently selected from N and NR14, or a C1-C3 alkyl group optionally substituted by NR15R16 or **R**17;

22. **R**14 represents methyl;

23. **R**15 and **R**16 each independently represent a Ci-C2 alkyl group optionally substituted by OR24, or
R15 and R16 together with the nitrogen atom to which they are attached form a 5- to 7-membered saturated heterocyclic ring comprising a ring nitrogen atom and optionally a second ring nitrogen or oxygen atom, the heterocyclic ring being optionally substituted by OR27, CO2R27, COR27, Ci-C3 alkyl or phenyl, the latter two groups being optionally substituted by S(O)\textsubscript{f}R30 or NR30R31;

R17 represents CO2R32; and

R24, R27, R30, R31 and R32 each independently represent a hydrogen atom or a methyl group.

In another embodiment of the invention,

R1 represents methyl;

R2 represents either

\begin{align*}
\text{(Ia)} & \quad \text{or} \\
\text{(Ib)} &
\end{align*}

R3 represents a hydrogen atom;

R4 represents a C4-C7 alkyl group optionally substituted by a hydroxyl group;

X1 represents a sulphur atom or CH2;

X2 represents a bond or an oxygen atom;

R5 represents a hydrogen atom;
R^6 represents a C_1-C_6 alkyl group optionally substituted by hydroxyl, methylsulphonyl, methylthiazolyl or $NR^{10}R^{11}$, or R^6 represents a 5- to 6-membered saturated heterocyclic ring optionally substituted by C_1-C_6 alkyl;

j is 1;

R^7 represents a hydrogen or halogen (particularly fluorine) atom or a hydroxyl or methoxy group;

Z^1 represents a C_3 alkylene;

X^3 represents NR^{12}, $>N-COR^{12}$, $NR^{12}CO$ or $>N-SO_2R^{12}$;

Y^1 represents methylene;

X^4 represents a bond or an oxygen atom;

R^{5a} represents a hydrogen atom;

A represents a monocyclic or bicyclic Cg-Qo aryl (particularly phenyl) group;

R^8 represents methyl;

n is 0;

R^{10} and R^{11} each represent a methyl group, or R^{10} and R^{11} together with the nitrogen atom to which they are attached form a 5- or 6-membered saturated heterocyclic ring optionally containing a further ring heteroatom selected from oxygen, $S(O)$ or NR^{36}, the heterocyclic ring being optionally substituted by Ci-Cg alkyl (which is itself optionally substituted by Ci-Cg alkoxy) or di-Ci-Cg alkylamino;

v is 2;

R^{12} represents a hydrogen atom, a 5- or 6-membered saturated or unsaturated heterocyclic ring comprising one or two ring groups independently selected from N and NR^{14}, or a $C1$-$C3$ alkyl group optionally substituted by $NR^{15}R^{16}$ or R^{17};

R^{14} represents methyl;
R^{15} and R^{16} each independently represent a Q-C$_2$ alkyl group optionally substituted by
OR24, or
R^{15} and R^{16} together with the nitrogen atom to which they are attached form a 5- to 7-
membered saturated heterocyclic ring comprising a ring nitrogen atom and optionally a
second ring nitrogen or oxygen atom, the heterocyclic ring being optionally substituted by
OR27, CO$_2$R27, COR27, C$_i$-C$_3$ alkyl or phenyl, the latter two groups being optionally
substituted by S(O)$_1$R30 OrNR30R31;

fis 2;

R^{17} represents CO$_2$R32 or S(O)$_g$R32;

g is 0; and

R^{24}, R27, R30, R31 and R32 each independently represent a hydrogen atom or a methyl
group.

Examples of compounds of the invention include:

Methyl 2-((3-(2-Amino-4-methyl-6-(pentylamino)pyrimidin-5
yl)propy lamino)methyl)phenyl)acetate,

Methyl 2-(4-(3-(2-amino-4-methyl-6-(penty lamino)pyrimidin-5
yl)propylamin o)methyl)phenyl)acetate,

Methyl 2-((3-(N-(3-(2-amino-4-methyl-6-(penty lamino)pyrimidin-5-yl)propyl)-2-
(dimethylamino)acetamido)methyl)phenyl)acetate,

Methyl 2-(4-((N-(3-(2-amino-4-methyl-6-(penty lamino)pyrimidin-5-yl)propyl)-2-
(dimethylamino)acetamido)(methyl)phenyl)acetate,

(Methyl 1-((3-(2-amino-4-methyl-6-(penty lamino)pyrimidin-5-yl)propyl)(3-(2-
methoxy-2-oxoethyl)benzyl)amino)-2-oxoethyl)pyrrolidine-2-carboxylate,

Methyl 2-((3-(2-amino-4-methyl-6-(penty lamino)pyrimidin-5-yl)propyl)-2-(4-
methylpiperazin-1-yl)acetamido)methyl)phenyl)acetate,

Methyl 2-(3-(N-(3-(2-amino-4-methyl-6-(penty lamino)pyrimidin-5-yl)propyl)-2-(4-
hydroxy piperidin-1-yl)acetamido)(methyl)phenyl)acetate,

Methyl 2-(3-((2-(4-acetyl-1,4-diaze pian-1-yl)-N-(3-(2-amino-4-methyl-6-
penty lamino)pyrimidin-5-yl)propyl)acetamido)(methyl)phenyl)acetate,
Methyl 2-(3-((N-(3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propyl)-2-(4-(3-(dimethylamino)propyl)piperazin-1-yl)acetamido)methyl)phenyl)acetate,
Methyl 2-(3-((N-(3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propyl)-2-(2-hydroxyethyl)(methyl)amino)acetamido)methyl)phenyl)acetate,
Methyl 4-((3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propyl)(3-(2-methoxy-2-oxoethyl)benzyl)amino)-4-oxobutanoate,
Methyl 2-(3-((N-(3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propyl)-4-(dimethylamino)butanamido)methyl)phenyl)acetate,
Methyl 2-(3-((N-(3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propyl)-1-methyl-1H-imidazole-4-sulfonamido)methyl)phenyl)acetate,
Methyl 2-(3-((4-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)butylamino)methyl)phenyl)acetate,
(S)-Methyl 2-(4-((3-(2-amino-4-(1-hydroxyheptan-3-ylamino)-6-methylpyrimidin-5-yl)propylamino)methyl)phenyl)acetate,
(S)-Methyl 2-(4-((N-(3-(2-amino-4-(1-hydroxyheptan-3-ylamino)-6-methylpyrimidin-5-yl)propyl)-2-(dimethylamino)acetamido)methyl)phenyl)acetate,
Methyl 2-(3-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate,
Methyl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)-3-methoxyphenyl)acetate,
Methyl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)-3-fluorophenyl)acetate,
Methyl 2-(4-(2-(3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propylamino)-2-oxoethyl)phenyl)acetate,
Methyl 2-(3-(2-(3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propylamino)-2-oxoethyl)phenyl)acetate,
Methyl 2-(3-((3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propylamino)methyl)phenoxy)acetate,
Methyl 2-(4-((N-(3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propyl)-2-(3-(4-(methylsulfonyl)phenyl)piperidin-1-yl)acetamido)methyl)phenyl)acetate,
Methyl 2-(4-((N-(3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propyl)-2-morpholinoacetamido)methyl)phenyl)acetate,
Methyl 2-(4-((N-(3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propyl)-2-(4-phenylpiperidin-1-yl)acetamido)methyl)phenyl)acetate,
Methyl 2-(4-((N-(3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propyl)-2-(piperidin-1-yl)acetamido)methyl)phenyl)acetate,
(S)-Methyl 2-(4-((2-amino-4-(1-hydroxypentan-2-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetate,
(S)-Methyl 2-(4-((2-amino-4-(1-hydroxyheptan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetate,
(S)-Methyl 2-(4-((2-amino-4-(1-hydroxyhexan-2-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetate,
(S)-Methyl 2-(4-((2-amino-4-(1-hydroxyheptan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-fluorophenyl)acetate,
Methyl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate,
2-Morpholinoethyl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate,
2-(Dimethylamino)ethyl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate,
3-(Dimethylamino)propyl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate,
2-(4-Methylpiperazin-1-yl)ethyl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate,
Methyl 2-(3-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)-4-hydroxyphenyl)acetate,
Methyl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)-3-methoxyphenoxy)acetate,
Methyl 2-(4-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)phenyl)acetate,

(S)-Methyl 2-(3-(2-amino-4-((1-hydroxyhexan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)-4-fluorophenyl)acetate,

(S)-Methyl 2-(4-((2-amino-4-(1-hydroxypentan-2-ylamino)-6-methylpyrimidin-5-yl)methyl)phenyl)acetate,

(S)-Methyl 2-(4-((2-amino-4-(1-hydroxyhexan-2-ylamino)-6-methylpyrimidin-5-yl)methyl)phenyl)acetate,

(S)-Methyl 2-(4-((2-amino-4-(1-hydroxyhexan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-fluorophenyl)acetate,

Methyl 2-(4-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetate,

(S)-Methyl 2-(4-((2-amino-4-(1-hydroxyhexan-2-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-fluorophenyl)acetate,

(S)-Methyl 2-(4-((2-amino-4-(1-hydroxyhexan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetate,

(S)-Methyl 2-(4-((2-amino-4-(1-hydroxyhexan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)phenyl)acetate,

(S)-Methyl 2-(4-((2-amino-4-(1-hydroxyheptan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)phenyl)acetate,

Methyl 2-(4-((N-(3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propyl)-1-methylpiperidine-4-carboxamido)methyl)phenyl)acetate,

Methyl 2-(4-((N-(3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propyl)-2-(methylthio)acetamido)methyl)phenyl)acetate,

(S)-Methyl 2-(4-((2-amino-4-(2-hydroxybutylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetate,

Methyl 2-(3-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)-4-methoxyphenyl)acetate,

3-(Dimethylamino)-2,2-dimethylpropyl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate,

3-(4-Methylpiperazin-1-yl)propyl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate,
4-(Dimethylamino)butyl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate,
3-Morpholinopropyl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate,
1-Methylpiperidin-4-yl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate,
 (1-Methylpiperidin-4-yl)methyl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate,
 4-(Pyrrolidin-1-yl)butyl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate,
 (1-(2-Methoxyethyl)piperidin-4-yl)methyl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate,
 4-(4-Methylpiperazin-1-yl)butyl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate,
 4-(4-(Dimethylamino)piperidin-1-yl)butyl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate,
 2-(1-Methylpiperidin-4-yl)ethyl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate,
 Piperidin-4-ylmethyl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate,
 4-(4-(Dimethylamino)piperidin-1-yl)butyl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate,
 (1-Methylpiperidin-4-yl)methyl 2-(4-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)phenyl)acetate,
 (S)-4-(Dimethylamino)butyl 2-(4-((2-amino-4-(1-hydroxypentan-2-ylamino)-6-methylpyrimidin-5-yl)methyl)phenyl)acetate,
 (S)-(1-Methylpiperidin-4-yl)methyl 2-(4-((2-amino-4-(1-hydroxypentan-2-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetate,
 (1-Methylpiperidin-4-yl)methyl 2-(4-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetate,
4-(Pyrrolidin-1-yl)butyl 2-(4-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetate,
(S)-(1-Methylpiperidin-4-yl)methyl 2-(4-((2-amino-4-(1-hydroxyhexan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-fluorophenyl)acetate,
(S)-Methyl 2-(4-((2-amino-4-(1-hydroxyhexan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-hydroxyphenyl)acetate,
(S)-(1-Methylpiperidin-4-yl)methyl 2-(4-((2-amino-4-(1-hydroxyhexan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-hydroxyphenyl)acetate,
Methyl 2-(4-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-3-hydroxyphenyl)acetate,
(S)-4-(Pyrrolidin-1-yl)butyl 2-(4-((2-amino-4-(1-hydroxyhexan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-hydroxyphenyl)acetate,
(S)-(1-Methylpiperidin-4-yl)methyl 2-(4-((2-amino-4-(1-hydroxyhexan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-hydroxyphenyl)acetate,
4-(Pyrrolidin-1-yl)butyl 2-(4-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-3-hydroxyphenyl)acetate,
(S)-Methyl 2-(3-((2-amino-4-(1-hydroxypentan-2-ylamino)-6-methylpyrimidin-5-yl)methyl)-4-methoxyphenyl)acetate,
(S)-(1-Methylpiperidin-4-yl)methyl 2-(4-((2-amino-4-(2-hydroxybutylamino)-6-methylpyrimidin-5-yl)methyl)phenyl)acetate,
4-(Pyrrolidin-1-yl)butyl 2-(4-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)phenyl)acetate,
(l-Methylpiperidin-4-yl)methyl 2-(3-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-4-methoxyphenyl)acetate,
4-(Pyrrolidin-1-yl)butyl 2-(3-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate,
(l-Methylpiperidin-4-yl)methyl 2-(3-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate,
(S)-4-(Dimethylamino)butyl 2-(4-((2-amino-4-(1-hydroxyhexan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-fluorophenyl)acetate,
(S)-4-(4-Methylpiperazin-1-yl)butyl 2-(4-((2-amino-4-(1-hydroxyhexan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-fluorophenyl)acetate,
(S)-Methyl 2-(4-((2-amino-4-(1-hydroxypentan-2-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-hydroxyphenyl)acetate,
2-Hydroxyethyl 2-(4-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetate,
4-(4-(Dimethylamino)piperidin-1-yl)butyl 2-(4-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetate,
4-Hydroxybutyl 2-(4-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetate,
3-(Methylsulfonyl)propyl 2-(4-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetate,
3-Hydroxypropyl 2-(4-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetate,
(S)-4-(Dimethylamino)butyl 2-(4-((2-amino-4-(1-hydroxyhexan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)phenyl)acetate,
(1-Methylpiperidin-4-yl)methyl 2-(4-((2-amino-4-(butylamino)-6-methylpyrimidin-5-ylthio)phenyl)acetate,
4-(Pyrrolidin-1-yl)butyl 2-(4-((2-amino-4-(butylamino)-6-methylpyrimidin-5-ylthio)phenyl)acetate,
4-(Dimethylamino)butyl 2-(3-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-4-methoxyphenyl)acetate,
Methyl 2-(3-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-4-methoxyphenyl)acetate,
Methyl 2-(3-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-4-hydroxyphenyl)acetate,
(S)-2-(1-Methylpiperidin-4-yl)ethyl 2-(4-((2-amino-4-(1-hydroxyhexan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-fluorophenyl)acetate,
2-(4-Methylthiazol-5-yl)ethyl 2-(4-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetate,
(1-Methylpiperidin-4-yl)methyl 2-(4-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-3-hydroxyphenyl)acetate,
4-(Dimethylamino)butyl 2-(4-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-3-hydroxyphenyl)acetate,
or pharmaceutically acceptable salts thereof.
It should be noted that each of the chemical compounds listed above represents a particular and independent aspect of the invention.

The present invention further provides a process for the preparation of a compound of formula (I) or a pharmaceutically acceptable salt thereof as defined above which comprises

(a) when R^2 represents a group of formula (Ia), reacting a compound of formula (II)

$$
\text{R}^1 \text{NH}_2
\begin{array}{c}
\text{R}^1 \\
\text{R}^3 \text{R}^4
\end{array}
\begin{array}{c}
\text{X}^1 \\
\text{X}^2
\end{array}
\begin{array}{c}
\text{R}^5 \\
\text{COOH}
\end{array}
(\text{II})
$$

wherein $j, X^1, X^2, R^1, R^3, R^4, R^5$ and R^7 are as defined in formula (I), with a compound of formula (III), R^6-OH, where R^6 is as defined in formula (I); or

(b) when R^2 represents a group of formula (Ib), reacting a compound of formula (IV)

$$
\text{R}^1 \text{NH}_2
\begin{array}{c}
\text{R}^1 \\
\text{R}^3 \text{R}^4
\end{array}
\begin{array}{c}
\text{X}^1 \\
\text{X}^3 \text{X}^4
\end{array}
\begin{array}{c}
\text{COOH} \\
\text{A} \\
\text{R}^5a
\end{array}
\begin{array}{c}
(R^9)_n \\
\text{(IV)}
\end{array}
$$
wherein \(n, A, X^3, X^4, Y^1, Z^1, R^1, R^3, R^4, R^5a \) and \(R^9 \) are as defined in formula (I), with a compound of formula (V), \(R^8\)-OH, where \(R^8 \) is as defined in formula (I); or

(c) when \(R^2 \) represents a group of formula (Ib) in which \(X^3 \) represents NH and \(Y^1 \) represents \(\text{Ci-C}_6 \) alkyne, reacting a compound of formula (VI)

![Chemical Structure VI](image)

wherein \(R^1, R^3, R^4 \) and \(Z^1 \) are as defined in formula (I), with a compound of formula (VII)

![Chemical Structure VII](image)

wherein \(Y^2 \) represents \(-(\text{Ci-C}_5\text{alkyl})j\)-CH0, \(j \) is 0 or 1, and \(A, n, X^4, R^5a, R^8 \) and \(R^9 \) are as defined in formula (I);

and optionally after (a), (b) or (c) carrying out one or more of the following procedures:

- converting a compound of formula (I) into another compound of formula (I)
- removing any protecting groups
- forming a pharmaceutically acceptable salt.

Process (a) may be carried out under acidic conditions in the presence of, for example, hydrochloric or sulphuric acid and the appropriate alcohol of formula (III) as solvent. Alternatively, the reaction may be carried out by activation of the formula (II) acid with a coupling agent such as PyBop (benzotriazol-1-yloxytripyrrolidinophosphonium hexafluorophosphate) or HATU (O-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate) in an organic solvent such as N-methylpyrrolidone, \(N,N-\)
dimethylformamide, acetonitrile or tetrahydrofuran, usually in the presence of a suitable base (e.g. triethylamine, Hunig's base) at a temperature, for example, in the range from 0 to 50°C.

Process (b) may be carried out in an analogous manner to process (a).

Process (c) may conveniently be carried out in the presence of a suitable reducing agent (e.g. sodium triacetoxyborohydride) in an organic solvent such as 1-methyl-2-pyrrolidinone, 1,2-dichloroethane or tetrahydrofuran at a temperature, for example, in the range from 0 to 150°C. Alternatively, an imine intermediate can be pre-formed by stirring the compounds of formulae (VI) and (VII) in a suitable solvent such as tetrahydrofuran, optionally in the presence of an acid, such as acetic acid, at a temperature, for example, in the range from room temperature to 150°C. A reducing agent, such as sodium borohydride, can then be added to give a compound of formula (I) when \(R \) represents a group of formula (Ib).

A compound of formula (IV) may be prepared by reacting a compound of formula (VI) with a compound of formula (Vila) in which the substituents have the meanings defined in formula (VII), using process (c) above

\[
\begin{align*}
\text{Y} & \quad \text{A} \quad \text{X}^4 \quad \text{COOH} \\
\text{(R)} & \quad \text{R}^5a
\end{align*}
\]

(VIIa).

Alternatively, compounds of formula (IV) may be prepared by dealkylating a corresponding compound of formula (I) according to techniques known in the art.

Compounds of formula (II) in which \(X^1 \) represents \(\text{CH}_2 \), \(X^2 \) represents a bond and \(R^5 \) represents a hydrogen atom may be prepared as described in the following reaction scheme.
1 in which j, R^1, R^3, R^4 and R^7 are as defined in formula (II), Et represents an ethyl group, LG represents a leaving group and R^{40} represents a Ci-Cg alkyl group.

Compounds of formula (C) may be prepared by reacting a compound of formula (B) with a base, such as sodium hydride, in a suitable solvent such as tetrahydrofuran or N,N-dimethylformamide at a temperature, for example, from 0°C to room temperature (20°C), followed by addition of a compound of formula (A). The reaction is then preferably heated at a temperature, for example, from 50°C to 100°C, optionally in the presence of an additive such as potassium iodide.

Compounds of formula (D) may be prepared by reacting a compound of formula (C) with guanidine or guanidine carbonate in a suitable solvent such as methanol or ethanol at a temperature, for example, in the range from 50°C to 150°C.

Compounds of formula (E) may be prepared by reacting a compound of formula (D) with phosphorous oxychloride, at a temperature, for example, from 50°C to 110°C.
Compounds of formula (F) may be prepared by reacting a compound of formula (E) with excess of an amine of formula $R_3R_4\cdot NH$, in a suitable solvent such as butanol or 1,2-dioxane at a temperature, for example, from 50°C to 150°C. Alternatively, the reaction can be performed in a microwave at a temperature, for example, from 50°C to 200°C.

Compounds of formula (G) may be prepared by reacting a compound of formula (F) with a reducing agent, such as lithium aluminium hydride, in a suitable solvent such as tetrahydrofuran at a temperature, for example, from 0°C to 60°C.

Compounds of formula (H) may be prepared by reacting a compound of formula (G) with a chlorinating agent, such as thionyl chloride, in a suitable solvent such as dichloromethane at a temperature, for example, from 0°C to 50°C.

Compounds of formula (J) may be prepared by reacting a compound of formula (H) with a cyanide salt, such as potassium cyanide, in a suitable solvent such as dimethylsulfoxide or NH_iV-dimethylformamide (or a mixture of both solvents) at a temperature, for example, from room temperature to 50°C.

Compounds of formula (I) may be prepared by reacting a compound of formula (J) with an alkali base, such as potassium hydroxide, in a suitable solvent such as methanol or ethanol and water at a temperature, for example, from 50°C to 100°C.

Alternatively the order of the steps in reaction scheme I may be changed, for example, a compound of formula (E) can be subjected to steps (v) to (vi) then displaced by an amine $R_3R_4\cdot NH$ as in step (iv).

In reaction scheme I, compounds of formula (A) may be prepared easily using known techniques. For example, a compound of formula (A), designated (Av) in which LG represents a leaving group, R_4^{40} represents a C_6C alkyl group, j is 1 and R_7^7 is hydroxyl protected by a protecting group P_1^1.
may be prepared by the following route:

Compounds of formula (Aii) may be prepared by reacting a compound of formula (Ai) with an alkylating agent of formula, P1LG, where LG is a leaving group and P1 represents a suitable hydroxyl-protecting group such as methyl or benzyl, in the presence of a base such as potassium carbonate, in a suitable solvent such as tetrahydrofuran or N,N-dimethylformamide at a temperature, for example, from room temperature to 100°C.

Compounds of formula (Aiii) may be prepared by reacting a compound of formula (Aii) with a reducing agent, for example, diisobutyaluminium hydride (DIBAL-H) in a suitable solvent such as tetrahydrofuran at a temperature, for example, from -60°C to room temperature.

Compounds of formula (Aiv) may be prepared by carbonylating a compound of formula (Aiii) in the presence of an alcohol, R40OH. The reaction may be performed in a carbonylator under a pressure of carbon monoxide (1-5 bar) with a palladium catalyst, such as dichloro[1,l'-bis(diphenylphosphino)ferrocene]Pd (II) dichloromethane adduct, at a temperature from 30°C to 150°C.
Compounds of formula (Av), where LG is a chloride leaving group, may be prepared by reacting a compound of formula (Aiv), with a chlorinating agent, such as thionyl chloride, in a suitable solvent such as dichloromethane at a temperature, for example, from 0°C to 50°C.

Compounds of formula (F) can also be prepared by reaction of a compound of formula (VIII) with excess of an amine of formula R3R4NH, where R^1, R^3, R^4, R^7 and R^{40} are as defined above and R^{41} is defined as a C1–C6 alkyl or a phenyl ring substituted by one or more Q-C6 alkyl groups.

![Chemical structure](image)

(VIII)

The reaction may be carried out in a suitable solvent such as butanol or 1,2-dioxane at a temperature, for example, from 50°C to 150°C. Alternatively, the reaction can be performed in a microwave at a temperature, for example, from 50°C to 200°C.

A compound of formula (VIII) may be prepared by reacting a compound of formula (D) with a compound of formula (IX), $41\text{RSO}_2\text{Cl}$. The reaction may be carried out in a suitable solvent, such as DCM, and a base such as triethylamine or Hunigs base at a temperature, for example, from 0°C to 50°C.

A compound of formula (J) may also be prepared by reaction of a compound of formula (Villa) with an amine of formula $R_3R_4\text{NH}$.
in which the substituents have the meanings defined above. A compound of formula (Villa) may be prepared from a compound of formula (VIIIb) using the schemes and reaction conditions above.

A compound of formula (VIIIb) may be prepared according to reaction scheme 1 steps (i) and (ii) by substituting the compound of formula (A) with a compound of formula (VIIIc) in which LG represents a leaving group, P represents a hydroxyl-protecting group and j and R^7 are as defined in formula (VIIIb), followed by removal of the hydroxyl-protecting group P.

Compounds of formula (C) can also be prepared by reduction of a compound of formula (X)

wherein j, R^1, R^7 and R^40 are as defined above. The reaction may be carried out with a catalyst such as palladium on carbon under a hydrogen atmosphere (1-20 bar) in a suitable solvent such as ethanol at a temperature, for example, from 20°C to 100°C.
A compound of formula (X) can be prepared by reaction of a compound of formula (B) with a compound of formula (XI)

\[
\text{O} \quad \text{CO}_2\text{R}^{40}
\]

\[(XI)\]

wherein \(j\), \(R^7\) and \(R^{40}\) are as defined above. The reaction may be carried out in the presence of acetic acid and piperidine in a suitable solvent such as toluene at a temperature, for example, from 500\(^\circ\)C to 1500\(^\circ\)C.

Compounds of formula (J) may also be prepared as described in the following reaction scheme 1a:
Compounds of formula (c) may be prepared by a Heck reaction between a compound of formula (b) and a compound of formula (a) where Hal = bromine or iodine and \(R^1 \) and \(R^7 \) are as defined in reaction scheme 1. The reaction may be carried out using a palladium catalyst, such as Pd(OAc)\(_2\) or Pd-1, a base such as sodium hydrgencarbonate or dicyclohexylmethylamine, and tetrabutylammonium chloride or bromide. The reaction is performed in a suitable solvent such as tetrahydrofuran or dimethylacetamide at a temperature, for example, from 50\(^\circ\)C to 150\(^\circ\)C.

Compounds of formula (d) may be prepared by reacting a compound of formula (c) with guanidine or guanidine carbonate in a suitable solvent such as methanol or ethanol at a temperature, for example, in the range from 50\(^\circ\)C to 150\(^\circ\)C.

Compounds of formula (e), where LG is a leaving group such as halogen or an alkylsulphonyl or benzylsulphonyl group, may be prepared by reacting a compound of formula (d) with phosphorous oxychloride, at a temperature, for example, from 50\(^\circ\)C to 110\(^\circ\)C. Alternatively a compound of formula (e) may be prepared by reacting a compound of formula (d) with, for example, an alkylsulphonyl chloride. The reaction is conveniently carried out in a solvent, such as dichloromethane, in the presence of a base such as triethylamine or Hunigs base at a temperature, for example, from 0\(^\circ\)C to 50\(^\circ\)C.

Compounds of formula (J) may be prepared by reacting a compound of formula (e) with excess of an amine of formula \(R_3^1 R_4^1 \text{NH} \), in a suitable solvent such as butanol or 1,2-dioxane at a temperature, for example, from 50\(^\circ\)C to 150\(^\circ\)C. Alternatively, the reaction can be performed in a microwave at a temperature, for example, from 50\(^\circ\)C to 200\(^\circ\)C.

Compounds of formula (a) are commercially available or may be prepared easily using known techniques. For example, a compound of formula (a), designated (av), in which Hal is iodine, \(j \) is 1 and \(R^7 \) is hydroxyl protected by a protecting group \(P^1 \) (e.g. methyl, ethyl or benzyl)
may be prepared using the route below.

Compounds of formula (aii) may be prepared by reacting a compound of formula (ai) with a reducing agent, for example, borane-tetrahydrofuran complex, in a suitable solvent such as tetrahydrofuran at a temperature, for example, from room temperature to 80°C.

Compounds of formula (aiii) may be prepared by reacting a compound of formula (aii) with an alkylating agent of formula, P^1LG, where LG is a leaving group and P^1 is a hydroxyl-protecting group, in the presence of a base such as potassium carbonate, in a suitable solvent such as tetrahydrofuran or N,N-dimethylformamide, at a temperature, for example, from room temperature to 100°C.

Compounds of formula (aiv), where LG is a chloride leaving group, may be prepared by reacting a compound of formula (aiii), with a chlorinating agent, such as thionyl chloride, in a suitable solvent such as dichloromethane at a temperature, for example, from 0°C to 50°C.

Compounds of formula (av) may be prepared by reacting a compound of formula (aiv) with a cyanide salt, such as potassium cyanide, in a suitable solvent such as
dimethylsulfoxide or N,N'-dimethylformamide (or a mixture of both solvents) at a temperature, for example, from room temperature to 50°C.

A compound of formula (I), where R^2 represents a group of formula (Ia) in which X^1 represents CH2, X^2 represents a bond and R^5 represents a hydrogen atom, may be prepared by reacting a compound of formula (f)

$$
\begin{array}{c}
\text{NH}_2 \\
\text{R}^1 \\
\text{LG} \\
\text{R}^7
\end{array}
$$

in which LG represents a leaving group and R^1, R^6 and R^7 are as defined in formula (I), with an amine of formula R_3R_4NH in which R^3 and R^4 are as defined in formula (I), in a suitable solvent such as 1,4-dioxane at a temperature, for example, from 50°C to 150°C. Alternatively, the reaction can be performed in a microwave at a temperature, for example, from 50°C to 200°C.

A compound of formula (f) may be prepared according to reaction scheme 1a above, starting with a compound of formula (cI).

$$
\begin{array}{c}
\text{R}^1 \\
\text{OMe} \\
\text{R}^7
\end{array}
$$

A compound of formula (cI) may be prepared according to reaction scheme 1a step (i) using an appropriate aromatic bromide or iodide (g), or from a compound (h) or (j) using the methods hereinbefore described:
A compound of formula (C) in reaction scheme 1 may also be prepared using Heck chemistry as above with a compound of formula (k):

![Chemical structure](image)

Compounds of formula (J) in reaction scheme Ia may also be prepared from a compound of formula (e) where LG is chloro, by a palladium catalysed coupling reaction with a protected amino-alcohol of formula (Pₙ),

![Chemical structure](image)

The reaction may be performed in a suitable solvent such as 1,4-dioxane with a palladium catalyst formed from palladium acetate and 9,9-dimethyl-4,5-bis(diphenylphosphino) xanthene and a base such as potassium carbonate. The reaction may be performed at a temperature, for example, from 50°C to 150°C.

A compound of formula (II) in which X¹ represents a sulphur atom may be prepared by reacting a compound of formula (XII) with a compound of formula (XIII) or (XIIIa) in which j, R¹, R⁷ and R⁴₀ are as defined above, and then by following the steps in reaction scheme 1 from formula (D), or the compound of formula (II) may be prepared from the
compound of formula (XIIIb) in which j, R¹ and R⁷ are as defined above, following reaction scheme 1 steps (vi)-(vii), (iii)-(iv) and then (viii).

\[
\begin{align*}
\text{(XII)} & \quad \text{(XIII)} & \quad \text{(XIIIa)} & \quad \text{(XIIIb)} \\
\end{align*}
\]

The reaction may be carried out in a suitable solvent, such as ethylene glycol, and a base such as potassium carbonate at a temperature, for example, from 80°C to 200°C.

A compound of formula (II) in which X¹ represents an oxygen atom may be prepared by reacting a compound of formula (XIV) with a compound of formula (XV), where R⁴² represents a suitable leaving group and j, R¹, R⁷ and R⁴⁰ are as defined above, and then by following the steps in reaction scheme 1 from formula (C)

\[
\begin{align*}
\text{(XIV)} & \quad \text{(XV)} \\
\end{align*}
\]

The reaction may be carried out in a suitable solvent, such as tetrahydrofuran, and a base such as potassium carbonate at a temperature, for example, from 20°C to 100°C.

A compound of formula (II) in which X¹ represents a group NH may be prepared by reacting a compound of formula (XVI) with a compound of formula (XVII) where and j, R¹, R⁷ and R⁴⁰ are as defined above, then by following the steps in reaction scheme 1 from formula (C). The benzyl protecting group may be removed by hydrogenation at a convenient step in the route.
The reaction may be carried out in a suitable solvent, such as toluene, and a catalyst such as rhodium acetate at a temperature, for example, from 50°C to 150°C.

Compounds of formula (VI) in which Z represents a linear C3-C6 alkylene group may be prepared according to the following reaction scheme 2 in which PG represents a nitrogen-protecting group and R, R, and R are as defined in formula (I).

Compounds of formula (L) may be prepared by reacting a compound of formula (K) with excess of an amine of formula R₃N₄NH where R and R are as defined above, in a suitable solvent such as butanol or 1,2-dioxane at a temperature, for example, from 50°C to 150°C. Alternatively the reaction can be performed in a microwave at a temperature, for example, from 50°C to 200°C.
Compounds of formula (M) may be prepared by reacting a compound of formula (L) with iodine in the presence of a base such as sodium hydroxide, in a suitable organic solvent such as dichloromethane and with water. The reaction is preferably performed at a temperature, for example, from 50°C to 150°C.

Compounds of formula (N) may be prepared by reacting a compound of formula (M) with a compound of formula (XVIII), HC=C(CH₂)₄-N-PG, where PG is a nitrogen-protecting group. The reaction may be carried out in the presence of a palladium catalyst such as tetrakis(triphenylphosphine)palladium (0), copper(I) iodide and a base such as triethylamine. The reaction may be carried out in a suitable solvent, such as tetrahydrofuran, at a temperature, for example, from 50°C to 150°C.

Compounds of formula (P) may be prepared by the reduction of a compound of formula (N) under hydrogenation conditions. The reaction may be carried out with a catalyst such as palladium on carbon under a hydrogen atmosphere (1-20 bar) in a suitable solvent such as ethanol at a temperature, for example, from 20°C to 100°C.

Compounds of formula (VI) may be prepared by removing the nitrogen-protecting group from a compound of formula (P) according to techniques known in the art.

Alternatively the order of the steps in scheme 2 may be changed as follows:

\[
\begin{align*}
\text{(M)} & \xrightarrow{\text{(iii)}} \text{(I)} \xrightarrow{\text{(i)}} \text{(N)} \\
\end{align*}
\]

Scheme 3
Compounds of formula (P) may also be prepared according to reaction scheme 4, where LG is a leaving group and R\(^1\) and PG are as defined above.

![Scheme 4](attachment://Scheme_4.png)

Compounds of formula (Q) and (R) can be prepared in a similar method as shown above.

A compound of formula (S) can be prepared from a compound of formula (R) by activation of the hydroxyl group. When LG represents chlorine the reaction may be performed by reacting a compound of formula (R) with phosphorous oxychloride, at a temperature, for example, from 50°C to 110°C. Alternatively when LG represents OSO\(^{4-}\) as defined in formula (VIII), a compound of formula (R) may be reacted with a compound of formula \(^{4-}\)RSO\(_2\)Cl. The reaction may be carried out in a suitable solvent, such as dichloromethane, and a base such as triethylamine or Hunigs base at a temperature, for example, from 0°C to 50°C.

Compounds of formula (P) may be prepared by reacting a compound of formula (S) with excess of an amine of formula \(R^3R^4NH\) where \(R^3\) and \(R^4\) are as defined above, in a suitable solvent such as butanol or 1,2-dioxane at a temperature, for example, from 50°C to 150°C. Alternatively the reaction can be performed in a microwave at a temperature, for example, from 50°C to 200°C.

Compounds of formulae (III), (V), (VI), (VII), (Vila), (VII), (Villa), (VIIIb), (VIIIc), (IX), (X), (XI), (XII), (XIII), (XIIIa), (XIIIb), (XIV), (XV), (XVI), (XVII), (XVIII) and further compounds of formula (II) are either commercially available, are well known in the literature or may be prepared easily using known techniques.
Compounds of formula (I) may be converted to other compounds of formula (I) using conventional methods. For example, a compound of formula (I) in which R² represents a group of formula (Ib) and X³ is NH can be converted to a corresponding compound of formula (I) in which X³ is >NSC>2R¹2 by reaction with a compound of formula R¹2SO₂Cl.

The reaction is suitably carried out in an organic solvent such as dichloromethane or acetonitrile, in the presence of a base such as pyridine or triethylamine. Temperatures in the range from 0°C to 100°C are suitably employed.

Further, a compound of formula (I) in which R² represents a group of formula (Ib) and X³ is NH can be converted to a corresponding compound of formula (I) in which X³ is >NCOR¹² by reaction with a compound of formula R¹⁹COCl. The reaction is suitably carried out in an organic solvent such as dichloromethane or acetonitrile, in the presence of a base such as pyridine or triethylamine. Temperatures in the range from 0°C to 80°C are suitably employed. Alternatively, the reaction may be carried out by activation of an acid of formula R¹²CO₂H with a coupling agent such as HATU or PyBOP in an organic solvent such as iV-methylpyrrolidinone, N,N'-dimethylformamide, acetonitrile or tetrahydrofuran usually in the presence of a suitable base (e.g. triethylamine, Hunigs base) at a temperature, for example, in the range from 0°C to 50°C.

Still further, a compound of formula (I) in which R² represents a group of formula (Ib) and X³ is NH can be converted to a corresponding compound of formula (I) in which X³ is >NCOCH₂NR¹⁵R¹⁶ by reaction with chloroacetyl chloride followed by an amine of formula R¹⁵R¹⁶NH. The first stage is suitably carried out in an organic solvent such as dichloromethane or acetonitrile, with one equivalent of chloroacetyl chloride.

Temperatures in the range from 0°C to 30°C are suitably employed. In the second stage the reaction is suitably carried out in an organic solvent such as dichloromethane or acetonitrile, with excess of an amine R¹⁵R¹⁶NH. Temperatures in the range from 0°C to 100°C are suitably employed.
A compound of formula \((I)\), where \(R^2\) represents a group of formula \((Ib)\) and \(X^3\) represents \(N\)\(N\)\(RR\)\(122\) \(C\)\(COO\) or \(N\)\(N\)\(RR\)\(122\) \(S\)\(O\)\(2\), may be prepared by reacting a compound of formula \((XIX)\) with a compound of formula \((XX)\).

where \(R^{50}\) represents \(SO_2\)\(LG\)\(^2\) or \(CO\)\(LG\)\(^2\), \(LG\)\(^2\) is a suitable leaving group such as chlorine and the remaining substituents are as defined in formula \((I)\). The reaction is suitably carried out in an organic solvent such as dichloromethane or acetonitrile, in the presence of a base such as pyridine or triethylamine. Temperatures in the range from \(0^\circ C\) to \(80^\circ C\) are suitably employed. Alternatively when \(R^{50} = CO_2H\), the reaction may be carried out by activation with a coupling agent such as HATU, \(T_3P\) (1-propanephosphonic acid cyclic anhydride) or PyBOP in an organic solvent such as \(iV\)-methylpyrrolidinone, \(\Lambda\)\(\Lambda\)\(N\)-dimethylformamide, acetonitrile or tetrahydrofuran usually in the presence of a suitable base (e.g. triethylamine, Hunigs base) at a temperature, for example, in the range from \(0^\circ C\) to \(50^\circ C\).

A compound of formula \((IV)\) where \(R^2\) represents a group of formula \((Ib)\) and \(X^3\) represents \(N\)\(R\)\(^{12}\)\(CO\) or \(N\)\(R\)\(^{12}\)\(SO_2\), may be prepared by reaction of a compound of formula \((XIX)\) with a compound of formula \((XXI)\) using similar conditions to those above.

A compound of formula \((XIX)\) may be prepared by reacting a compound of formula \((VI)\) with an aldehyde or ketone under standard reductive amination conditions.
A compound of formula (II) where R^2 represents a group of formula (XXII) may be prepared by reacting a compound of formula (XXIII) with a compound of formula (XXIV)

$$\text{R}^4 \text{R}_2 \text{R}_3 \text{R}_4 \text{CO}_2 \text{H} \quad \text{NH}_2 \quad \text{R}^1 \text{R}^2 \text{R}^3 \text{R}_4 \text{OH} \quad \text{R}^4 \text{R}_2 \text{R}_3 \text{R}_4 \text{CO}_2 \text{H}$$

(XXII) (XXIII) (XXIV)

where R^{43} is H or methyl and R^1, R^3, R^4 are as defined above. The reaction may be carried out under acid conditions, for example, in aqueous hydrochloric acid at elevated temperature.

A compound of formula (XXIII) may be prepared according to scheme 5:

$$\text{Cl} \quad \text{Cl} \quad \text{Cl} \quad \text{Cl} \quad \text{Cl} \quad \text{Cl} \quad \text{Cl} \quad \text{Cl}$$

(A1) (A2) (A3) (A4)

Scheme 5

A compound of formula (A2) may be prepared by reacting a compound of formula (A1) with an amine of formula $R_2 R^4 N\text{H}$. The reaction may be carried out in the presence of a base such as triethylamine in an organic solvent such as methanol. Temperatures in the range of 50-100°C are preferred.

A compound of formula (A3), where R^1 is methyl, may be prepared by reacting a compound of formula (A2) with tetramethylstannane. The reaction may be carried out in the presence of a catalyst such as Pd(PPh$_3$)$_4$ in an organic solvent such as dimethylformamide. Temperatures in the range of 50-120°C are preferred. A compound of formula (A3), where R^1 is alkoxy or alkylthiol, may be prepared by reacting a compound of formula (A2) with the appropriate alcohol, or alkylthiol in the presence of a base such as sodium hydride.
A compound of formula (A4) may be prepared by reacting a compound of formula (A3) with a reducing agent such as sodium borohydride. The reaction may be carried out in an organic solvent such as methanol at a temperature in the range of 0-50°C.

A compound of formula (I) where R^2 represents a group of formula (Ia), wherein X^1 is CH$_2$ and X^2 is O may be prepared by reacting a compound of formula (XXV) with a compound of formula (XXVI)

where LG3 is a leaving group such as chlorine, bromine or mesylate and R^1, R^3, R^4, R^5, R^6 and R^7 are as defined in formula (I). The reaction may be carried out in the presence of a base such as potassium carbonate in an organic solvent such as dimethylformamide at a temperature in the range from 20-100°C.

A compound of formula (XXV) may be prepared according to scheme 6 below:
where \(j, R_1, R_3, R_4 \) and \(R_7 \) are as defined above and \(P' \) is hydrogen or a protecting group.

Compounds of formula (B2) may be prepared by reacting a compound of formula (B1) with guanidine or guanidine carbonate in a suitable solvent such as methanol or ethanol at a temperature, for example, in the range from 50°C to 150°C.

Compounds of formula (B3) may be prepared in two steps by reacting a compound of formula (B2) with a compound of formula \(^{41}RSO_2Cl\), followed with an amine of formula \(R_3R_4NH \). The first step may be carried out in a suitable solvent, such as DCM, and a base such as triethylamine or Hunigs base at a temperature, for example, from 0°C to 50°C. The second step may be carried out in a suitable solvent such as butanol or 1,2-dioxane at a temperature, for example, from 50°C to 150°C. Alternatively the reaction can be performed in a microwave at a temperature, for example, from 50°C to 200°C.

A compound of formula (I) where \(R^3 \) represents a group of formula (Ib), wherein \(X^3 \) is \(NR^{12}CONR^{13} \) or \(NR^{13}CONR^{12} \) may be prepared by reacting a compound of formula (XXVII) with a compound of formula (XXVIII)

\[
\text{(XXVII)}
\]

\[
\text{(XXVIII)}
\]

where \(R^{51} \) is defined as \(Cl-C(O)NR^{12}/R^{13} \) and \(n, R^1, R^3, R^4, R^{12}, R^{13}, Z^1, Y^1, A, X^4, R^9, R^{5a} \) and \(R^8 \) are as defined above. The reaction may be carried out in a suitable solvent, such as dichloromethane, and a base such as triethylamine or Hunigs base at a temperature, for example, from 0°C to 50°C.
A compound of formula (I) where R^2 represents a group of formula (Ib) may be prepared from a compound of formula (XXIX) or (XXX) using the same methods as in scheme 1 and the enabling chemistry above. This route is suitable, for example, where X^3 in formulae (XXIX) and (XXX) is $S(O)_p$ or O.

Compounds of formulae (XIX), (XX), (XXI), (XXII), (XXIII), (XXIV), (XXV), (XXVI), (XXVII), (XXVIII), (XXIX) and (XXX) are either commercially available, are well known in the literature or may be prepared easily using known techniques.

It will be appreciated by those skilled in the art that in the processes of the present invention certain functional groups such as phenol, hydroxyl or amino groups in the reagents may need to be protected by protecting groups. Thus, the preparation of the compounds of formula (I) may involve, at an appropriate stage, the removal of one or more protecting groups.

The compounds of formula (I) above may be converted to a pharmaceutically acceptable salt thereof, preferably an acid addition salt such as a hydrochloride, hydrobromide, benzenesulphonate (besylate), saccharin (e.g. monosaccharin), trifluoroacetate, sulphate,
phosphate, acetate, fumarate, maleate, tartrate, lactate, citrate, pyruvate, succinate, oxalate, l-hydroxy-2-napthoate (xinafoate), methanesulphonate or toluenesulphonate salt.

Compounds of formula (I) are capable of existing in stereoisomeric forms. It will be understood that the invention encompasses the use of all geometric and optical isomers (including atropisomers) of the compounds of formula (I) and mixtures thereof including racemates. The use of tautomers and mixtures thereof also form an aspect of the present invention. Enantiomerically pure forms are particularly desired.

The compounds of formula (I) and their pharmaceutically acceptable salts have activity as pharmaceuticals, in particular as modulators of toll-like receptor (especially TLR7) activity, and thus may be used in the treatment of:

1. respiratory tract: obstructive diseases of the airways including: asthma, including bronchial, allergic, intrinsic, extrinsic, exercise-induced, drug-induced (including aspirin and NSAID-induced) and dust-induced asthma, both intermittent and persistent and of all severities, and other causes of airway hyper-responsiveness; chronic obstructive pulmonary disease (COPD); bronchitis, including infectious and eosinophilic bronchitis; emphysema; bronchiectasis; cystic fibrosis; sarcoidosis; farmer's lung and related diseases; hypersensitivity pneumonitis; lung fibrosis, including cryptogenic fibrosing alveolitis, idiopathic interstitial pneumonias, fibrosis complicating anti-neoplastic therapy and chronic infection, including tuberculosis and aspergillosis and other fungal infections; complications of lung transplantation; vasculitic and thrombotic disorders of the lung vasculature, and pulmonary hypertension; antitussive activity including treatment of chronic cough associated with inflammatory and secretory conditions of the airways, and iatrogenic cough; acute and chronic rhinitis including rhinitis medicamentosa, and vasomotor rhinitis; perennial and seasonal allergic rhinitis including rhinitis nervosa (hay fever); nasal polyposis; acute viral infection including the common cold, and infection due to respiratory syncytial virus, influenza, coronavirus (including SARS) and adenovirus;

2. skin: psoriasis, atopic dermatitis, contact dermatitis or other eczematous dermatoses, and delayed-type hypersensitivity reactions; phyto- and photodermatitis; seborrhoeic dermatitis, dermatitis herpetiformis, lichen planus, lichen sclerosus et atrophicca, pyoderma gangrenosum, skin sarcoid, discoid lupus erythematosus, pemphigus, pemphigoid,
epidermolysis bullosa, urticaria, angioedema, vasculitides, toxic erythemas, cutaneous
eosinophilias, alopecia areata, male-pattern baldness, Sweet's syndrome, Weber-Christian
syndrome, erythema multiforme; cellulitis, both infective and non-infective;
panniculitis; cutaneous lymphomas, non-melanoma skin cancer and other dysplastic
lesions; drug-induced disorders including fixed drug eruptions;
3. eyes: blepharitis; conjunctivitis, including perennial and vernal allergic conjunctivitis;
iritis; anterior and posterior uveitis; choroiditis; autoimmune, degenerative or inflammatory
disorders affecting the retina; ophthalmitis including sympathetic ophthalmitis; sarcoidosis;
infections including viral, fungal, and bacterial;
4. genitourinary: nephritis including interstitial and glomerulonephritis; nephrotic
syndrome; cystitis including acute and chronic (interstitial) cystitis and Hunner's ulcer;
acute and chronic urethritis, prostatitis, epididymitis, oophoritis and salpingitis; vulvo-
vaginitis; Peyronie's disease; erectile dysfunction (both male and female);
5. allograft rejection: acute and chronic following, for example, transplantation of
kidney, heart, liver, lung, bone marrow, skin or cornea or following blood transfusion; or
chronic graft versus host disease;
6. other auto-immune and allergic disorders including rheumatoid arthritis, irritable
bowel syndrome, systemic lupus erythematosus, multiple sclerosis, Hashimoto's
thyroiditis, Graves' disease, Addison's disease, diabetes mellitus, idiopathic
thrombocytopenic purpura, eosinophilic fasciitis, hyper-IgE syndrome, antiphospholipid
syndrome and Sazary syndrome;
7. oncology: treatment of common cancers including prostate, breast, lung, ovarian,
pancreatic, bowel and colon, stomach, skin and brain tumors and malignancies affecting
the bone marrow (including the leukaemias) and lymphoproliferative systems, such as
Hodgkin's and non-Hodgkin's lymphoma; including the prevention and treatment of
metastatic disease and tumour recurrences, and paraneoplastic syndromes; and,
8. infectious diseases: virus diseases such as genital warts, common warts, plantar warts,
hepatitis B, hepatitis C, herpes simplex virus, molluscum contagiosum, variola, human
immunodeficiency virus (HIV), human papilloma virus (HPV), cytomegalovirus (CMV),
varicella zoster virus (VZV), rhinovirus, adenovirus, coronavirus, influenza, para-
influenza; bacterial diseases such as tuberculosis and mycobacterium avium, leprosy; other
infectious diseases, such as fungal diseases, chlamydia, Candida, aspergillus, cryptococcal
meningitis, Pneumocystis carinii, cryptosporidiosis, histoplasmosis, toxoplasmosis, trypanosome infection and leishmaniasis.

Thus, the present invention provides a compound of formula (I) or a pharmaceutically-acceptable salt thereof as hereinbefore defined for use in therapy.

In a further aspect, the present invention provides the use of a compound of formula (I) or a pharmaceutically acceptable salt thereof as hereinbefore defined in the manufacture of a medicament for use in therapy.

In the context of the present specification, the term "therapy" also includes "prophylaxis" unless there are specific indications to the contrary. The terms "therapeutic" and "therapeutically" should be construed accordingly.

Prophylaxis is expected to be particularly relevant to the treatment of persons who have suffered a previous episode of, or are otherwise considered to be at increased risk of, the disease or condition in question. Persons at risk of developing a particular disease or condition generally include those having a family history of the disease or condition, or those who have been identified by genetic testing or screening to be particularly susceptible to developing the disease or condition.

In particular, the compounds of the invention (including pharmaceutically acceptable salts) may be used in the treatment of asthma, COPD, allergic rhinitis, allergic conjunctivitis, atopic dermatitis, cancer, hepatitis B, hepatitis C, HIV, HPV, bacterial infections and dermatosis.

The invention still further provides a method of treating, or reducing the risk of, a disease or condition comprising or arising from abnormal cell growth (e.g. a cancer), which method comprises administering to a patient in need thereof a therapeutically effective amount of a compound of formula (I) or a pharmaceutically acceptable salt thereof as hereinbefore defined.
The invention also provides a method of treating, or reducing the risk of, an obstructive airways disease or condition (e.g. asthma or COPD) which comprises administering to a patient in need thereof a therapeutically effective amount of a compound of formula (I) or a pharmaceutically acceptable salt thereof as hereinbefore defined.

For the above-mentioned therapeutic uses the dosage administered will, of course, vary with the compound employed, the mode of administration, the treatment desired and the disorder indicated. For example, the daily dosage of the compound of the invention, if inhaled, may be in the range from 0.05 micrograms per kilogram body weight (µg/kg) to 100 micrograms per kilogram body weight (µg/kg). Alternatively, if the compound is administered orally, then the daily dosage of the compound of the invention may be in the range from 0.01 micrograms per kilogram body weight (µg/kg) to 100 milligrams per kilogram body weight (mg/kg).

The compounds of formula (I) and pharmaceutically acceptable salts thereof may be used on their own but will generally be administered in the form of a pharmaceutical composition in which the formula (I) compound/salt (active ingredient) is in association with a pharmaceutically acceptable adjuvant, diluent or carrier. Conventional procedures for the selection and preparation of suitable pharmaceutical formulations are described in, for example, "Pharmaceuticals - The Science of Dosage Form Designs", M. E. Aulton, Churchill Livingstone, 1988.

Depending on the mode of administration, the pharmaceutical composition will preferably comprise from 0.05 to 99 %w (per cent by weight), more preferably from 0.05 to 80 %w, still more preferably from 0.10 to 70 %w, and even more preferably from 0.10 to 50 %w, of active ingredient, all percentages by weight being based on total composition.

The present invention also provides a pharmaceutical composition comprising a compound of formula (I) or a pharmaceutically acceptable salt thereof as hereinbefore defined, in association with a pharmaceutically acceptable adjuvant, diluent or carrier.
The invention further provides a process for the preparation of a pharmaceutical composition of the invention which comprises mixing a compound of formula (I) or a pharmaceutically acceptable salt thereof as hereinbefore defined with a pharmaceutically acceptable adjuvant, diluent or carrier.

The pharmaceutical compositions may be administered topically (e.g. to the skin or to the lung and/or airways) in the form, e.g., of creams, solutions, suspensions, heptfluoroalkane (HFA) aerosols and dry powder formulations, for example, formulations in the inhaler device known as the Turbuhaler®; or systemically, e.g. by oral administration in the form of tablets, capsules, syrups, powders or granules; or by parenteral administration in the form of a sterile solution, suspension or emulsion for injection (including intravenous, subcutaneous, intramuscular, intravascular or infusion); or by rectal administration in the form of suppositories.

Dry powder formulations and pressurized HFA aerosols of the compounds of the invention (including pharmaceutically acceptable salts) may be administered by oral or nasal inhalation. For inhalation, the compound is desirably finely divided. The finely divided compound preferably has a mass median diameter of less than 10 micrometres (µm), and may be suspended in a propellant mixture with the assistance of a dispersant, such as a Cg-C20 fatty acid or salt thereof, (for example, oleic acid), a bile salt, a phospholipid, an alkyl saccharide, a perfluorinated or polyethoxylated surfactant, or other pharmaceutically acceptable dispersant.

The compounds of the invention may also be administered by means of a dry powder inhaler. The inhaler may be a single or a multi dose inhaler, and may be a breath actuated dry powder inhaler.

One possibility is to mix the finely divided compound of the invention with a carrier substance, for example, a mono-, di- or polysaccharide, a sugar alcohol, or another polyol. Suitable carriers are sugars, for example, lactose, glucose, raffinose, melezitose, lactitol, maltitol, trehalose, sucrose, mannitol; and starch. Alternatively the finely divided
compound may be coated by another substance. The powder mixture may also be dispensed into hard gelatine capsules, each containing the desired dose of the active compound.

Another possibility is to process the finely divided powder into spheres which break up during the inhalation procedure. This spheronized powder may be filled into the drug reservoir of a multidose inhaler, for example, that known as the Turbuhaler® in which a dosing unit meters the desired dose which is then inhaled by the patient. With this system the active ingredient, with or without a carrier substance, is delivered to the patient.

For oral administration the compound of the invention may be admixed with an adjuvant or a carrier, for example, lactose, saccharose, sorbitol, mannitol; a starch, for example, potato starch, corn starch or amylopectin; a cellulose derivative; a binder, for example, gelatine or polyvinylpyrrolidone; and/or a lubricant, for example, magnesium stearate, calcium stearate, polyethylene glycol, a wax, paraffin, and the like, and then compressed into tablets. If coated tablets are required, the cores, prepared as described above, may be coated with a concentrated sugar solution which may contain, for example, gum arabic, gelatine, talcum and titanium dioxide. Alternatively, the tablet may be coated with a suitable polymer dissolved in a readily volatile organic solvent.

For the preparation of soft gelatine capsules, the compound of the invention may be admixed with, for example, a vegetable oil or polyethylene glycol. Hard gelatine capsules may contain granules of the compound using either the above-mentioned excipients for tablets. Also liquid or semisolid formulations of the compound of the invention may be filled into hard gelatine capsules.

Liquid preparations for oral application may be in the form of syrups or suspensions, for example, solutions containing the compound of the invention, the balance being sugar and a mixture of ethanol, water, glycerol and propylene glycol. Optionally such liquid preparations may contain colouring agents, flavouring agents, saccharine and/or carboxymethylcellulose as a thickening agent or other excipients known to those skilled in art.
The compounds of the invention (that is, compounds of formula (I) and pharmaceutically acceptable salts thereof) may also be administered in conjunction with other compounds used for the treatment of the above conditions.

The invention therefore further relates to combination therapies wherein a compound of the invention or a pharmaceutical composition or formulation comprising a compound of the invention is administered concurrently or sequentially or as a combined preparation with another therapeutic agent or agents, for the treatment of one or more of the conditions listed.

The anti-cancer treatment defined hereinbefore may be applied as a sole therapy or may involve, in addition to the compound of the invention, conventional surgery or radiotherapy or chemotherapy. Such chemotherapy may include one or more of the following categories of anti-tumour agents:—

(i) other antiproliferative/antineoplastic drugs and combinations thereof, as used in medical oncology, such as alkylating agents (for example cis-platin, oxaliplatin, carboplatin, cyclophosphamide, nitrogen mustard, melphalan, chlorambucil, busulphan, temozolomide and nitrosoureas); antimetabolites (for example gemcitabine and antifolates such as fluoropyrimidines like 5-fluorouracil and tegafur, raltitrexed, methotrexate, cytosine arabinoside, and hydroxyurea); antitumour antibiotics (for example anthracyclines like adriamycin, bleomycin, doxorubicin, daunomycin, epirubicin, idarubicin, mitomycin-C, dactinomycin and mithramycin); antimitotic agents (for example vinca alkaloids like vincristine, vinblastine, vindesine and vinorelbine and taxoids like taxol and taxotere and polokinase inhibitors); and topoisomerase inhibitors (for example epipodophyllotoxins like etoposide and teniposide, amsacrine, topotecan and camptothecin);

(ii) cytosstatic agents such as antioestrogens (for example tamoxifen, fulvestrant, toremifene, raloxifene, droloxifene and idoxyfene), antiandrogens (for example bicalutamide, flutamide, nilutamide and cyproterone acetate), LHRH antagonists or LHRH agonists (for example goserelín, leuprrelín and buserelín), progestogens (for example megestrol acetate), aromatase inhibitors (for example as anastrozole, letrozole, vorazole and exemestane) and inhibitors of 5α-reductase such as finasteride;
(iii) anti-invasion agents (for example c-Src kinase family inhibitors like 4-(6-chloro-2,3-
methylenedioxyanilino)-7- [2-(4-methylpiperazin- 1-yl)ethoxy]-5-tetrahydropyran-4-
yloxyquinazoline (AZD0530; International Patent Application WO 01/94341) and N-(2-
chloro-6-methylphenyl)-2- {6-[4-(2-hydroxyethyl)piperazin- 1-yl]-2-methylpyrimidine-4-
ylamino]thiazole-5-carboxamide (dasatinib, BMS-354825; J. Med. Chem., 2004, 47, 6658-
6661), and metalloproteinase inhibitors like marimastat, inhibitors of urokinase plasminogen activator receptor function or antibodies to Heparanase);

(iv) inhibitors of growth factor function: for example such inhibitors include growth factor antibodies and growth factor receptor antibodies (for example the anti-erbB2 antibody trastuzumab [Herceptin™], the anti-EGFR antibody panitumumab, the anti-erbB1 antibody cetuximab [Erbitux, C225] and any growth factor or growth factor receptor antibodies disclosed by Stern et al. Critical reviews in oncology/haematology, 2005, Vol. 54, ppl 1-
29); such inhibitors also include tyrosine kinase inhibitors, for example inhibitors of the epidermal growth factor family (for example EGFR family tyrosine kinase inhibitors such as N-(3-chloro-4-fluorophenyl)-7-methoxy-6-(3-morpholinopropoxy)quinazolin-4-amine (gefitinib, ZD 1839), N-(3-ethynylphenyl)-6,7-bis(2-methoxyethoxy)quinazolin-4-amine (erlotinib, OSI-774) and 6-acrylamido-N-(3-chloro-4-fluorophenyl)-7-(3-
morpholinopropoxy)-quinazolin-4-amine (CI 1033), erbB2 tyrosine kinase inhibitors such as lapatinib, inhibitors of the hepatocyte growth factor family, inhibitors of the platelet-
derived growth factor family such as imatinib, inhibitors of serine/threonine kinases (for example Ras/Raf signalling inhibitors such as farnesyl transferase inhibitors, for example sorafenib (BAY 43-9006)), inhibitors of cell signalling through MEK and/or AKT kinases, inhibitors of the hepatocyte growth factor family, c-kit inhibitors, abl kinase inhibitors, IGF receptor (insulin-like growth factor) kinase inhibitors; aurora kinase inhibitors (for example AZD1 152, PH739358, VX-680, MLN8054, R763, MP235, MP529, VX-528 AND AX39459) and cyclin dependent kinase inhibitors such as CDK2 and/or CDK4 inhibitors;

(v) antiangiogenic agents such as those which inhibit the effects of vascular endothelial growth factor, [for example the anti-vascular endothelial cell growth factor antibody bevacizumab (Avastin™) and VEGF receptor tyrosine kinase inhibitors such as 4-(4-
bromo-2-fluoroanilino)-6-methoxy-7-(1-methylpiperidin-4-ylmethoxy)quinazoline (ZD6474; Example 2 within WO 01/32651), 4-(4-fluoro-2-methylindol-5-yl)-6-
methoxy-7-(3-pyrrolidin-1-ylpropoxy)quinazoline (AZD2171; Example 240 within WO 00/47212), vatalanib (PTK787; WO 98/35985) and SU1 1248 (sunitinib; WO 01/60814), compounds such as those disclosed in International Patent Applications WO97/22596, WO 97/30035, WO 97/32856 and WO 98/13354 and compounds that work by other mechanisms (for example linomide, inhibitors of integrin αvβ3 function and angiostatin));

(vi) vascular damaging agents such as Combretastatin A4 and compounds disclosed in International Patent Applications WO 99/02166, WO 00/40529, WO 00/41669, WO 01/92224, WO 02/04434 and WO 02/08213;

(vii) antisense therapies, for example those which are directed to the targets listed above, such as ISIS 2503, an anti-ras antisense;

(viii) gene therapy approaches, including for example approaches to replace aberrant genes such as aberrant p53 or aberrant BRCA1 or BRCA2, GDEPT (gene-directed enzyme pro-drug therapy) approaches such as those using cytosine deaminase, thymidine kinase or a bacterial nitroreductase enzyme and approaches to increase patient tolerance to chemotherapy or radiotherapy such as multi-drug resistance gene therapy; and

(ix) immunotherapy approaches, including for example ex-vivo and in-vivo approaches to increase the immunogenicity of patient tumour cells, such as transfection with cytokines such as interleukin 2, interleukin 4 or granulocyte-macrophage colony stimulating factor, approaches to decrease T-cell anergy, approaches using transfected immune cells such as cytokine-transfected dendritic cells, approaches using cytokine-transfected tumour cell lines and approaches using anti-idiotypic antibodies.

Furthermore, for the treatment of the inflammatory diseases COPD, asthma and allergic rhinitis the compounds of the invention may be combined with agents such as tumour necrosis factor alpha (TNF-alpha) inhibitors such as anti-TNF monoclonal antibodies (for example Remicade, CDP-870 and adalimumab) and TNF receptor immunoglobulin molecules (such as Enbrel); non-selective cyclo-oxygenase COX-1/COX-2 inhibitors whether applied topically or systemically (such as piroxicam, diclofenac, propionic acids such as naproxen, flubiprofen, fenoprofen, ketoprofen and ibuprofen, fenamates such as mefenamic acid, indomethacin, sulindac, azapropazone, pyrazolones such as phenylbutazone, salicylates such as aspirin), COX-2 inhibitors (such as meloxicam, celecoxib, rofecoxib, valdecoxib, lumarocoxib, parecoxib and etoricoxib);
glucocorticosteroids (whether administered by topical, oral, intramuscular, intravenous, or intra-articular routes); methotrexate, lefunomide; hydroxychloroquine, d-penicillamine, auranofin or other parenteral or oral gold preparations.

The present invention still further relates to the combination of a compound of the invention and a leukotriene biosynthesis inhibitor, 5-lipoxygenase (5-LO) inhibitor or 5-lipoxygenase activating protein (FLAP) antagonist such as; zileuton; ABT-761; fenleuton; tepoxalin; Abbott-79175; Abbott-85761; aN-(5-substituted)-thiophene-2-alkylsulfonamide; 2,6-di-tert-butylphenolhydrazones; a methoxytetrahydropyrans such as Zeneca ZD-2138; the compound SB-210661; a pyridinyl-substituted 2-cyanonaphthalene compound such as L-739,010; a 2-cyanoquinoline compound such as L-746,530; or an indole or quinoline compound such as MK-591, MK-886, and BAY x 1005.

The present invention further relates to the combination of a compound of the invention and a receptor antagonist for leukotrienes (LTB4, LTC4, LTD4, and LTE4) selected from the group consisting of the phenothiazin-3-Is such as L-651,392; amidino compounds such as CGS-25019c; benzoxalamines such as ontazolast; benzene-carboximidamides such as BIIL 284/260; and compounds such as zafirlukast, ablukast, montelukast, pranlukast, verlukast (MK-679), RG-12525, Ro-245913, iralukast (CGP 45715A), and BAY x 7195.

The present invention still further relates to the combination of a compound of the invention and a phosphodiesterase (PDE) inhibitor such as a methylxanthanine including theophylline and aminophylline; a selective PDE isoenzyme inhibitor including a PDE4 inhibitor an inhibitor of the isoform PDE4D, or an inhibitor of PDE5.

The present invention further relates to the combination of a compound of the invention and a histamine type 1 receptor antagonist such as cetirizine, loratadine, desloratadine, fexofenadine, acrivastine, terfenadine, astemizole, azelastine, levocabastine, chlorpheniramine, promethazine, cyclizine, or mizolastine; applied orally, topically or parenterally.
The present invention still further relates to the combination of a compound of the invention and a gastroprotective histamine type 2 receptor antagonist.

The present invention further relates to the combination of a compound of the invention and an antagonist of the histamine type 4 receptor.

The present invention still further relates to the combination of a compound of the invention and an alpha-1/alpha-2 adrenoceptor vasoconstrictor sympathomimetic agent, such as propylhexedrine, phenylephrine, phenylpropanolamine, ephedrine, pseudoephedrine, naphazoline hydrochloride, oxymetazoline hydrochloride, tetrahydrozoline hydrochloride, xylometazoline hydrochloride, tramazoline hydrochloride or ethylnorepinephrine hydrochloride.

The present invention further relates to the combination of a compound of the invention and an anticholinergic agent including muscarinic receptor (M1, M2, and M3) antagonists such as atropine, hyoscine, glycopyrrolate, ipratropium bromide, tiotropium bromide, oxitropium bromide, pirenzepine or telenzepine.

The present invention still further relates to the combination of a compound of the invention together with a beta-adrenoceptor agonist (including beta receptor subtypes 1-4) such as isoprenaline, salbutamol, formoterol, salmeterol, terbutaline, orciprenaline, bitolterol mesylate, and pirbuterol.

The present invention further relates to the combination of a compound of the invention and a chromone, such as sodium cromoglycate or nedocromil sodium.

The present invention still further relates to the combination of a compound of the invention together with an insulin-like growth factor type I (IGF-I) mimetic.

The present invention still further relates to the combination of a compound of the invention and a glucocorticoid, such as flunisolide, triamcinolone acetonide,
beclomethasone dipropionate, budesonide, fluticasone propionate, ciclesonide or mometasone furoate.

The present invention still further relates to the combination of a compound of the invention together with an inhibitor of matrix metalloproteases (MMPs), i.e., the stromelysins, the collagenases, and the gelatinases, as well as aggrecanase; especially collagenase-1 (MMP-1), collagenase-2 (MMP-8), collagenase-3 (MMP-13), stromelysin-1 (MMP-3), stromelysin-2 (MMP-IO), and stromelysin-3 (MMP-1 1) and MMP-9 and MMP-12.

The present invention still further relates to the combination of a compound of the invention together with modulators of chemokine receptor function such as antagonists of CCR1, CCR2, CCR2A, CCR2B, CCR3, CCR4, CCR5, CCR6, CCR7, CCR8, CCR9, CCR10 and CCR11 (for the C-C family); CXCR1, CXCR2, CXCR3, CXCR4 and CXCR5 (for the C-X-C family) and CX3CR1 for the C-X3-C family.

The present invention still further relates to the combination of a compound of the invention together with a cytokine or modulator of cytokine function, including alpha-, beta-, and gamma-interferon; interleukins (IL) including IL1 to 15, and interleukin antagonists or inhibitors, including agents which act on cytokine signalling pathways.

The present invention still further relates to the combination of a compound of the invention together with an immunoglobulin (Ig) or Ig preparation or an antagonist or antibody modulating Ig function such as anti-IgE (omalizumab).

The present invention further relates to the combination of a compound of the invention and another systemic or topically-applied anti-inflammatory agent, such as thalidomide or a derivative thereof, a retinoid, dithranol or calcipotriol.

The present invention further relates to the combination of a compound of the invention together with an antibacterial agent such as a penicillin derivative, a tetracycline, a macrolide, a beta-lactam, a fluoroquinolone, metronidazole, an inhaled aminoglycoside; an
antiviral agent including acyclovir, famciclovir, valaciclovir, ganciclovir, cidofovir,
amantadine, rimantadine, ribavirin, zanamavir and oseltamivir; a protease inhibitor such as
indinavir, nelfinavir, ritonavir, and saquinavir; a nucleoside reverse transcriptase inhibitor
such as didanosine, lamivudine, stavudine, zalcitabine or zidovudine; or a non-nucleoside
reverse transcriptase inhibitor such as nevirapine or efavirenz.

In a further aspect the present invention provides a combination (for example for the
treatment of COPD, asthma or allergic rhinitis) of a compound of formula (I) or a
pharmaceutically acceptable salt thereof as hereinbefore defined and one or more agents
independently selected from:

- a non-steroidal glucocorticoid receptor (GR-receptor) agonist;
- a selective β2 adrenoceptor agonist (such as metaproterenol, isoproterenol,
isoprenaline, albuterol, salbutamol, formoterol, salmeterol, terbutaline,
 orciprenaline, bitolterol mesylate, pirbuterol or indacaterol);
- a phosphodiesterase inhibitor (such as a PDE4 inhibitor);
- a protease inhibitor (such as a neutrophil elastase or matrix metalloprotease MMP-
 12 inhibitor);
- a glucocorticoid;
- an anticholinergic agent;
- a modulator of chemokine receptor function (such as a CCR1 receptor antagonist);
 and
- an inhibitor of kinase function (such as the kinases p38 or IKK).

The invention also provides a pharmaceutical product comprising, in combination, a
preparation of a first active ingredient which is a compound of formula (I) or a
pharmaceutically acceptable salt thereof as hereinbefore defined, and a preparation of a
second active ingredient which is

- a non-steroidal glucocorticoid receptor (GR-receptor) agonist;
- a selective β2 adrenoceptor agonist;
- a phosphodiesterase inhibitor;
- a protease inhibitor;
• a glucocorticoid;
• an anticholinergic agent;
• a modulator of chemokine receptor function; or
• an inhibitor of kinase function;

for simultaneous, sequential or separate use in therapy.

In another aspect, the invention provides a kit comprising a preparation of a first active ingredient which is a compound of formula (I) or a pharmaceutically acceptable salt thereof as hereinbefore defined, and a preparation of a second active ingredient which is

• a non-steroidal glucocorticoid receptor (GR-receptor) agonist;
• a selective β2 adrenoceptor agonist;
• a phosphodiesterase inhibitor;
• a protease inhibitor;
• a glucocorticoid;
• an anticholinergic agent;
• a modulator of chemokine receptor function; or
• an inhibitor of kinase function;

and instructions for the simultaneous, sequential or separate administration of the preparations to a patient in need thereof.

The present invention will be further explained by reference to the following illustrative examples.

Unless otherwise stated reactions were run under nitrogen and organic solutions were dried over magnesium sulphate. RPHPLC means reversed phase preparative HPLC using Waters Symmetry C8, Xterra, XBridge or Phenomenex Gemini columns using acetonitrile and either aqueous ammonium acetate, ammonia, formic acid or trifluoroacetic acid as buffer where appropriate. Column chromatography was carried out on silica gel. Treating with SCX means the mixture was absorbed on SCX and eluted with an appropriate solvent such as methanol or acetonitrile then the free base product eluted with aqueous ammonia/methanol.
The following abbreviations are used in the Examples:

EtOAc ethyl acetate
DCM dichloromethane
NMP iV-methylpyrrolidinone
NBS iV-bromosuccinimide
DMF N,N-dimethylformamide
DMSO dimethylsulfoxide
THF tetrahydrofuran
MeOH methanol
EtOH ethanol
TFA trifluoroacetic acid
HCl hydrogen chloride
K2CO3 potassium carbonate
NaHCO3 sodium hydrogen carbonate
TEA triethylamine
MeCN acetonitrile
Pd/C palladium on carbon
T3P 1-propanephosphonic acid cyclic anhydride
DMAP 4-dimethylaminopyridine
PS-TBD polystyrene bound 1,5,7-triazabicyclo[4.4.0]dec-5-ene
MTBE tert-butyl methyl ether
DIBAL-H diisobutylaluminium hydride
Pd-1 18 l,r-Bis(di-tert-butylphosphino)ferrocenepalladium(II) chloride
KOH potassium hydroxide
sat. saturated
aq. aqueous
Et2O diethylether
DMA N,N-dimethylacetamide
TMS-Cl trimethylsilylchloride
cone. concentrated
rt room temperature
h hours
min minutes
M molar

MS mass spectrometry
PyBop Benzotriazol- 1-yloxytripyrrolidinophosphonium hexafluorophosphate
HATU O-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate
APCI atmospheric chemical ionisation method
ESI electron spray ionisation method
NMR nuclear magnetic resonance

Instrument Details:

- XRPD - PANalytical CubiX PRO machine in 0-0 configuration over the scan range 2° to 40° 20 with 100-second exposure per 0.02° increment. The X-rays were generated by a copper long-fine focus tube operated at 45kV and 40mA. The wavelength of the copper X-rays was 1.5418 Å. Data was collected on zero background holders on which ~2mg of the compound was placed. The holder was made from a single crystal of silicon, which had been cut along a non-diffracting plane and then polished on an optically flat finish. The X-rays incident upon this surface were negated by Bragg extinction.

Example 1
Methyl 2-(3-((3-(2-Amino-4-methyl-6-(pentylamino)pyrimidin-5
yl)propylamino)methyl)phenyl)acetate
(i) 6-Methyl-N4-pentylpyrimidine-2,4-diamine

2-Amino-4-chloro-6-methylpyrimidine (10g) and pentylamine (20ml) were combined in dioxane (10OmL) and refluxed for 42h. The solvents were evaporated, the product taken up in DCM, washed with water, sat. sodium bicarbonate solution, brine, dried, and the solvent evaporated to give the subtitle compound 8.3g.

LC-MS m/z 195 ESI

(ii) 5-Iodo-6-methyl-N4-pentylpyrimidine-2,4-diamine

A solution of iodine (11.92g) in DCM (30OmL) was added to a stirred mixture of the product from step (i) (8.3g) and sodium hydroxide (3.42g) in water (20OmL). The reaction mixture was stirred at rt overnight. The organic layer was separated and washed with sodium metabisulfate solution, then brine. The combined organic layers were dried, and the solvent evaporated under reduced pressure. The product was purified by chromatography eluting with DCM:MeOH; 95:5 to give the subtitle compound 11g.

LC-MS m/z 321 ESI

(iii) tert-Butyl 3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)prop-2-ynylcarbamate

tert-Butyl prop-2-ynylcarbamate (12lg) was dissolved in THF (5OmL), briefly purged with nitrogen then copper(I) iodide (0.298g) was added. The reaction mixture was stirred for 30min then the product from step (ii) (5g), tetrakis(triphenylphosphine)palladium(0) (0.903g) and TEA (1OmL) were added. The reaction mixture was heated at 70°C for 20h then cooled to rt. The organic layer was washed with water and brine and the solvent evaporated under reduced pressure. The residue was taken up in MeOH and purified via SCX resin. The product was further purified by chromatography eluting with DCM:MeOH 95:5 to give the subtitle compound 3.7g.

LC-MS m/z 348 ESI

(iv) tert-Butyl 3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propylcarbamate

The product from step (iii) (3.7g) was dissolved in EtOH (10OmL) then 5% Pd/C (300mg) was added. The reaction mixture was hydrogenated at 3bar for 16h. The catalyst was removed by filtration and the solvent evaporated to give the subtitle compound 3.8g.
LC-MS m/z 352 ESI

(v) 5-(3-Aminopropyl)-6-methyl-N4-pentylpyrimidine-2,4-diamine
The product from step (iv) (3.8g) was dissolved in DCM (100mL) and TFA (35 mL) and the reaction mixture stirred at rt for 16h. The solvent was evaporated and the residue taken up in MeOH. The product was purified via SCX resin to give the subtitle compound 2.3g.

1H NMR (DMSO-jo): δ 6.79 - 6.71 (m, 1H), 5.51 - 5.44 (m, 2H), 3.27 - 3.19 (m, 4H), 2.38 - 2.28 (m, 2H), 2.04 (s, 3H), 1.57 - 1.36 (m, 4H), 1.33 - 1.18 (m, 4H), 0.87 (t, 3H)

LC-MS m/z 252 ESI

(vi) Methyl 2-(3-(3-(2-Ammo-4-methyl-6-(pentylammo)pyrimidin-5-yl)propylamino)methyl) phenyl)acetate
The product from step (v) (1g) was dissolved in THF (30mL) then acetic acid (0.239g, 0.23ml) and methyl 2-(3-formylphenyl)acetate (0.709g) were added followed by MeOH (0.5mL). The reaction mixture was stirred at rt for 72h then sodium borohydride (0.1506g) was added. After 2h a further portion of sodium borohydride (0.0452g) was added and the reaction mixture stirred for 16h. A further portion of sodium borohydride (0.1506g) was added and stirred for 2h. The reaction mixture was poured into saturated sodium bicarbonate solution and extracted with EtOAc. The solvents were evaporated and the product was purified by chromatography eluting with DCM:MeOH 97:3 to 80:20 to give the title compound 0.5g.

1H NMR (DMSO-Jo): δ 7.31 - 7.18 (m, 3H), 7.12 (d, IH), 6.54 (t, IH), 5.48 (d, 2H), 3.65 (d, 4H), 3.60 (s, 3H), 3.27 - 3.17 (m, 2H), 2.49 - 2.44 (m, 2H), 2.35 (t, 2H), 2.05 (s, 3H), 1.55 - 1.39 (m, 4H), 1.29 - 1.16 (m, 4H), 0.84 (t, 3H)

LC-MS m/z 414 ESI

Example 2
Methyl 2-(4-(3-(2-ammo-4-methyl-6-(pentylammo)pyrimidin-5-yl)propylamino)methyl)phenyl)acetate
The product from Example 1 step (v) (0.3g) and methyl 2-(4-formylphenyl)acetate (0.213g) were combined in THF (20mL), acetic acid (0.072g) was added and the reaction mixture stirred at rt for 16h. Sodium borohydride (0.0677g) and MeOH (3 drops) were added and the reaction mixture stirred for 72h. The solvents were evaporated and the product dissolved in MeOH and purified by RPHPLC to give the title compound 0.3g.

1H NMR (DMSO-D6): δ 7.28 (d, 2H), 7.19 (d, 2H), 6.58 - 6.54 (m, 1H), 5.50 - 5.45 (m, 2H), 3.64 (s, 3H), 3.61 (d, 2H), 3.29 (s, 4H), 3.25 - 3.18 (m, 2H), 2.47 - 2.40 (m, 2H), 2.38 - 2.30 (m, 2H), 2.05 (s, 3H), 1.54 - 1.39 (m, 4H), 1.28 - 1.18 (m, 3H), 0.85 (t, 3H)

LC-MS m/z 414 ESI

Example 3

Methyl 2-(3-((N-(3-(2-ammo-4-methyl-6-(pentylammo)pyrimidm-5-yl)propyl)-2-(dimethylamino)acetamido)methyl)phenyl)acetate

(i) Methyl 2-(3-((N-(3-(2-ammo-4-methyl-6-(pentylammo)pyrimidm-5-yl)propyl)-2-chloroacetamido)methyl)phenyl)acetate

The product from Example 1 (0.1g) was dissolved in MeCN (10mL) and chloroacetyl chloride (0.027g) was added. The reaction mixture was stirred for 16h and the solvents evaporated to give the subtitle compound which was used without further purification.
(ii) Methyl 2-(3-((N-(3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propyl)-2-(dimethylamino)acetamido)methyl)phenyl)acetate

The product from step (i) (0.1g) was dissolved in MeOH and dimethylamine (2M in MeOH, 0.61ml) was added. The reaction mixture was stirred for 72h at rt, the solvents were evaporated and the residue purified by RPHPLC to give the title compound 24mg.

\[^1H \text{NMR (DMSO-}d_6): \delta \ 7.35 - 7.21 \text{ (m, IH), 7.21 - 7.03 (m, 3H), 6.21 - 6.09 (m, IH), 5.54 - 5.47 (m, 2H), 4.46 (s, IH), 3.67 (s, IH), 3.63 (s, 5H), 3.59 (s, 4H), 3.30 - 3.21 (m, 2H), 3.05 - 3.02 (m, 2H), 2.30 - 2.19 (m, 2H), 2.16 (d, 6H), 2.02 (s, 2H), 1.98 (s, IH), 1.66 - 1.54 (m, IH), 1.54 - 1.42 (m, 3H), 1.34 - 1.19 (m, 2H), 0.86 (t, 3H) \]

LC-MS m/z 499 ESI

Example 4

Methyl 2-(4-((N-(3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propyl)-2-(dimethylamino)acetamido)methyl)phenyl)acetate

The title compound was prepared by the method of Example 3 using the product from Example 2 and the appropriate amine.

\[^1H \text{NMR (DMSO-J6): } \delta 7.22 \text{ (dd, 2H), 7.17 - 7.11 (m, 2H), 6.20 - 6.11 (m, IH), 5.53 - 5.47 (m, 2H), 4.45 (s, 2H), 3.65 (d, 2H), 3.60 (s, 3H), 3.27 - 3.20 (m, 2H), 3.04 (s, 2H), 2.30 - 2.20 (m, 2H), 2.19 - 2.13 (m, 7H), 2.02 (s, 2H), 1.99 (s, IH), 1.64 - 1.54 (m, IH), 1.53 - 1.42 (m, 3H), 1.33 - 1.19 (m, 5H), 0.86 (t, 3H) \]

LC-MS m/z 499 ESI

Examples 5 - 10 were prepared using the method of Example 3 and the appropriate amine.
Example 5

(S)-Methyl 1-((2-(3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propyl)(3-(2-methoxy-2-oxoethyl)benzyl)amino)-2-oxoethyl)pyrrolidine-2-carboxylate

\[
\begin{align*}
\text{H NMR } & \text{DMSO-} J_6 \text{ @90°C; } \delta 7.33 - 7.19 \text{ (m, IH), 7.19 - 7.03 (m, 3H), 5.80 - 5.70 (m, IH), 5.21 - 5.12 (m, 2H), 3.68 - 3.51 (m, 6H), 3.45 - 3.21 (m, 5H), 2.98 - 2.92 (m, 6H), 2.33 - 2.22 (m, 2H), 2.00 (s, 4H), 1.84 - 1.71 (m, 3H), 1.59 - 1.45 (m, 4H), 1.34 - 1.22 (m, 6H), 0.86 (t, 3H)
\end{align*}
\]

Example 6

Methyl 2-((3-((N-(3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propyl)-2-(4-methylpiperazin-1-yl)acetamido)methyl)phenyl)acetate

\[
\begin{align*}
\text{H NMR } & \text{DMSO-} J_6 \text{ @90°C; } \delta 7.34 - 7.19 \text{ (m, IH), 7.19 - 7.03 (m, 3H), 5.84 - 5.75 (m, IH), 5.20 - 5.11 (m, 2H), 3.61 (s, 4H), 3.36 - 3.23 (m, 4H), 3.08 (s, 2H), 2.98 - 2.93 (m,}
\end{align*}
\]
Example 7
Methyl 2-(3-((N-(3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propyl)-2-(4-hydroxypiperidin-1-yl)acetamido)methyl)phenyl)acetate

\[
\begin{align*}
\text{H NMR DMSO-} & : \delta \text{ 7.30 - 7.04 (m, 4H), 5.81 - 5.75 (m, 1H), 5.17 (s, 2H), 4.14 (s, 1H), 3.64 - 3.58 (m, 5H), 3.50 - 3.37 (m, 1H), 3.37 - 3.22 (m, 4H), 3.07 (s, 2H), 2.98 - 2.95 (m, 2H), 2.69 - 2.62 (m, 2H), 2.33 - 2.24 (m, 2H), 2.18 - 2.08 (m, 2H), 2.01 (s, 3H), 1.72 - 1.45 (m, 6H), 1.43 - 1.21 (m, 6H), 0.86 (t, 3H)
\end{align*}
\]

LC-MS m/z 555 ESI

Example 8
Methyl 2-((3-(2-acetyl-1,4-diazepan-1-yl)-N-(3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propyl)acetamido)methyl)phenyl)acetate
H NMR DMSO-₆: δ 7.40 - 7.02 (m, 4H), 6.23 - 6.13 (m, 1H), 5.57 - 5.46 (m, 2H), 4.68 - 4.44 (m, 2H), 3.71 - 3.62 (m, 4H), 3.60 (s, 4H), 3.48 - 3.36 (m, 4H), 3.30 - 3.23 (m, 5H), 2.68 (s, 3H), 2.33 (s, 3H), 2.31 - 2.19 (m, 2H), 2.04 - 1.92 (m, 4H), 1.52 - 1.42 (m, 2H), 1.32 - 1.19 (m, 6H), 0.89 - 0.82 (m, 3H)

LC-MS m/z 596 ESI

Example 9

Methyl 2-(3-((N-(3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)popyl)-2-(4-(3-(dimethylamino)propyl)piperazin-1-yl)acetamido)methyl)phenyl)acetate

H NMR DMSO-₆: δ 7.37 - 6.98 (m, 4H), 6.23 - 6.08 (m, 1H), 5.57 - 5.44 (m, 2H), 4.66 (s, 1H), 4.47 (s, 1H), 3.70 - 3.56 (m, 5H), 3.42 - 3.34 (m, 2H), 3.29 - 3.21 (m, 4H), 3.11 - 2.99 (m, 2H), 2.40 - 2.14 (m, 12H), 2.10 (s, 5H), 2.09 - 1.97 (m, 3H), 1.69 - 1.38 (m, 6H), 1.34 - 1.18 (m, 5H), 0.93 - 0.77 (m, 3H)
LC-MS m/z 625 ESI

Example 10
Methyl 2-((3-((N-(3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propyl)-2-((2-hydroxyethyl)(methyl)amino)acetamido)methyl)phenyl)acetate

\[
\text{\textbf{\text{\textit{}}}H NMR DMSO-\text{\textbf{\textit{}}} J_6 : \delta 7.37 - 6.99 (m, 4H), 6.22 - 6.09 (m, 1H), 5.59 - 5.44 (m, 2H), 4.69 (s, 1H), 4.56 - 4.32 (m, 3H), 3.69 - 3.56 (m, 5H), 3.27 - 3.21 (m, 4H), 3.20 - 3.14 (m, 2H), 2.29 - 2.18 (m, 5H), 2.01 (d, 4H), 1.64 - 1.42 (m, 5H), 1.34 - 1.14 (m, 5H), 0.86 (t, 3H)
\]

LC-MS m/z 529 ESI

Example 11
Methyl 4-((3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propyl)(3-(2-methoxy-2-oxoethyl)benzyl)amino)-4-oxobutanoate
The product from Example 1 (61mg), mono-methyl succinate (23.4mg) and TEA (0.062 ml) were dissolved in DCM (15ml) then HATU (61.7mg) was added. The resulting solution was stirred at rt for 16h. The solvents were evaporated, the residue was taken up in MeOH and the crude product was purified by RPHPLC to afford the title compound as a colorless gum 32mg.

\[
{^1}H \text{NMR DMSO-}d_6: \delta 7.36 - 7.02 (m, 4H), 6.24 - 6.09 (m, 1H), 5.55 - 5.46 (m, 2H), 4.63 - 4.42 (m, 2H), 3.71 - 3.51 (m, 8H), 3.29 - 3.19 (m, 4H), 2.71 - 2.62 (m, 2H), 2.32 - 2.17 (m, 2H), 2.00 (s, 3H), 1.60 - 1.42 (m, 4H), 1.34 - 1.18 (m, 5H), 0.89 - 0.80 (m, 4H)
\]

LC-MS m/z 528 ESI

Example 12
Methyl 2-(3-((N-(3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propyl)-4-(dimethylamino)butanamido)methyl)phenyl)acetate
To a stirred DCM (15mL) solution of the product from Example 1 (58mg), 4-(dimethylamino)butyric acid hydrochloride (28.2mg) and TEA (0.059mL) was added HATU (58.7mg) under nitrogen. The resulting solution was stirred at rt for 16h. The solvent was evaporated and the residue was taken up in MeOH and the crude product purified by RPHPLC to afford the title compound 5mg.

\[
1^1\text{H NMR DMSO-}\text{J}^6: 57.37 - 7.21 (m, 1H), 7.19 - 7.10 (m, 1H), 7.08 - 7.03 (m, 2H), 6.22 - 6.11 (m, 1H), 5.54 - 5.46 (m, 2H), 4.59 - 4.44 (m, 2H), 3.70 - 3.61 (m, 2H), 3.60 (s, 3H), 3.29 - 3.20 (m, 2H), 2.39 - 2.30 (m, 2H), 2.30 - 2.14 (m, 4H), 2.09 (s, 4H), 2.04 (s, 2H), 1.99 (s, 3H), 1.72 - 1.57 (m, 2H), 1.57 - 1.42 (m, 4H), 1.33 - 1.18 (m, 6H), 0.86 (t, 3H)
\]

LC-MS m/z 527 ESI

Example 13

Methyl 2-3-(N-(3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propyl)methylsulfonamido)methyl)phenyl)acetate

\[
\begin{align*}
\text{NH}_2 \\
\text{N} \\
\text{S} \text{O} \\
\text{NH} \\
\text{N} \\
\text{O} \\
\text{C} \\
\end{align*}
\]

To a stirred solution of the product from Example 1 (70mg) dissolved in DCM was added methanesulfonyl chloride (16µl) and TEA (28.3µl) under nitrogen. The resulting solution was stirred at rt for 16h. The solvents were evaporated, the residue redissolved in MeOH and the crude product was purified by RPHPLC to afford the title compound 32mg.

\[
1^1\text{H NMR DMSO-}\text{J}^6: 5.73 - 7.27 (m, 1H), 7.23 - 7.15 (m, 3H), 6.14 - 6.07 (m, 1H), 5.52 - 5.47 (m, 2H), 4.30 (s, 2H), 3.67 (s, 2H), 3.58 (s, 2H), 3.28 - 3.20 (m, 2H), 3.19 -
\]
Example 14

Methyl 2-(3-((N-(3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propyl)-1-methyl-1H-imidazole-4-sulfonamido)methyl)phenyl)acetate

To a stirred solution of the product from Example 1 (80mg) dissolved in DCM (5mL) was added 1-methylimidazole-4-sulfonyl chloride (38.4mg) and TEA (0.032mL) under nitrogen. The resulting solution was stirred at rt for 16h, the solvents were evaporated and the residue redissolved in MeOH and the crude product purified by RPHPLC to afford the title compound 69mg.

\[\text{1H NMR DMSO-} \delta \text{ 7.83 - 7.81 (m, 1H), 7.78 - 7.76 (m, 1H), 7.33 - 7.10 (m, 4H),} \]
\[6.07 - 6.02 (m, 1H), 5.48 (s, 2H), 4.28 (s, 2H), 3.71 (s, 3H), 3.64 (s, 2H), 3.58 (s, 3H), \]
\[3.25 - 3.11 (m, 4H), 2.14 - 2.07 (m, 2H), 1.85 (s, 3H), 1.49 - 1.39 (m, 2H), 1.40 - 1.17 (m, 6H), 0.85 (t, 3H) \]

LC-MS m/z 558 ES+

Example 15

Methyl 2-(4-((N-(3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propyl)-2-(2-methoxyethyl)(methyl)amino)acetamido)methyl)phenyl)acetate
The title compound was prepared by the method of Example 3 using the product from Example 2 and N-(2-methoxyethyl)methylamine.

\(^1\)H NMR DMSO-\(\text{d}_6\); \(\delta\) 7.27 - 7.10 (m, 4H), 6.18 - 6.10 (m, 1H), 5.54 - 5.46 (m, 2H), 4.67 (s, 1H), 4.45 (s, 1H), 3.67 - 3.61 (m, 2H), 3.59 (s, 3H), 3.41 (t, 1H), 3.29 - 3.20 (m, 8H), 3.16 (s, 1H), 3.12 (s, 1H), 2.59 - 2.53 (m, 1H), 2.30 - 2.17 (m, 5H), 2.01 (d, 3H), 1.62 - 1.41 (m, 4H), 1.33 - 1.18 (m, 5H), 0.86 (t, 3H)

LC-MS m/z 543 ESI

Example 16

Methyl 2-(3-((N-(3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propyl)-3-(dimethylamino)propanamido)methyl)phenyl)acetate

The product from Example 1 (80mg) and 3-(dimethylamino)propanoic acid hydrochloride (45mg) were combined in DCM (5mL) then TEA (73mg) and HATU (101mg) were added. The reaction mixture was stirred at rt for 16h. The solvents were evaporated, the residue dissolved in MeOH and purified by RPHPLC to give the title compound 32mg.
\(^1H \text{NMR DMSO-}^6: \delta \ 7.37 - 7.02 \text{ (m, 4H)}, \ 6.24 - 6.11 \text{ (m, IH)}, \ 5.55 - 5.45 \text{ (m, 2H)}, \ 4.62 - 4.39 \text{ (m, 2H)}, \ 3.69 - 3.62 \text{ (m, 2H)}, \ 3.59 \text{ (s, 4H)}, \ 3.27 - 3.18 \text{ (m, 4H)}, \ 2.47 - 2.34 \text{ (m, 2H)}, \ 2.30 - 2.20 \text{ (m, 2H)}, \ 2.13 \text{ (s, 3H)}, \ 2.08 - 1.95 \text{ (m, 6H)}, \ 1.57 - 1.44 \text{ (m, 4H)}, \ 1.32 - 1.19 \text{ (m, 5H)}, \ 0.86 \text{ (t, 3H)} \)

LC-MS m/z 513 ESI

Example 17

Methyl 2-((3-((4-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)butylamino)methyl)phenyl)acetate

(i) Benzyl 4-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)but-3-ynylcarbamate

Benzyl but-3-ynylcarbamate (0.666g) was dissolved in THF (20 mL), briefly purged with nitrogen and copper(I) iodide (0.042g) was added. The reaction mixture was stirred for 30 min, the product from example 1 step (ii) (0.7g), tetrakis(triphenylphosphine) palladium(O) (0.126g) and TEA (5mL) were added. The reaction mixture was heated to 70°C for 16h. The reaction mixture was cooled to rt and the organic layer washed with water and brine. The organic layer was evaporated under reduced pressure, MeOH added and the solid filtered off. The filtrate was purified via SCX resin then further purified by chromatography eluting with DCM:MeOH (95:5) to give the subtitle compound 0.4g. LC-MS m/z 396 ESI

(ii) 5-(4-Aminobutyl)-6-methyl-N4-pentylpyrimidine-2,4-diamine

The product from step (i) (0.2 g) was dissolved in EtOH (20mL) then 5% Pd/C (100mg) in EtOH (5mL) was added. The reaction mixture was hydrogenated at 4 bar overnight. The catalyst was filtered off then 20% Pd(OH)\(_2\)/C (100 mg) in EtOH (5ml) was added and the
reaction mixture hydrogenated at 4bar for 3h. The catalyst was filtered off and the solvents evaporated to give the subtitle compound 0.06g.

LC-MS m/z 266 ESI

(iii) Methyl 2-(3-((4-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)butylamino)methyl)phenyl)acetate
To the product of step (ii) (0.06g), methyl 2-(3-formylphenyl)acetate (0.0403g) and acetic acid (0.0136g) in THF (10mL) was added sodium triacetoxyborohydride (0.1 102g). The reaction mixture was stirred for 72h, the solvents were evaporated and the residue dissolved in MeOH, acidified and purified via SCX resin, then RPHPLC to give the title compound 6mg.

LC-MS m/z 428 ESI

Example 18

(S)-Methyl 2-(4-((3-(2-amino-4-(1-hydroxyheptan-3-ylamino)-6-methylpyrimidin-5-yl)propylamino)methyl)phenyl)acetate

(i) (E)-tert-Butyl hept-2-enoate
To a solution of valeraldehyde (5.8Ig) in THF (100mL) was added tert-butoxycarbonylmethylenetriphenylphosphorane (25.4g) and the reaction mixture stirred for 16h at rt. The solvents were evaporated, the residue slurried in diethyl ether and filtered. The filtrate was evaporated and the residue purified by chromatography eluting with 3% EtOAc in isohexane to give the subtitle compound 8.5g.

1H NMR (CDCl₃); δ 6.86 (dt, IH), 5.73 (dt, IH), 2.25 - 2.09 (m, 2H), 1.47 (s, 9H), 1.47 - 1.27 (m, 4H), 0.90 (t, 3H)
(ii) (S)-tert-Butyl 3-(benzyl((S)-l-phenylethyl)amino)heptanoate
n-Butyllithium (2.5M in hexanes, 27.66ml) was added to a stirred solution of (S)-N-
benzyl-1-phenylethanamine (15.59g) in THF (150mL) at -78°C. The reaction mixture was
stirred for 30 mins then the product from step (i) (8.5 g) in THF (50 mL) was added and
the reaction mixture stirred for 2h at -78°C. The mixture was quenched with sat. NH₄Cl
solution and warmed to rt. The product was partitioned between EtOAc and water, the
organic phase was washed with water, dried, and evaporated. The residue was purified by
column chromatography eluting with 5% EtOAc in isohexane to give the subtitle
compound 12.7g.

1H NMR (CDCl₃); δ 7.49 - 7.15 (m, 10H), 3.87 - 3.70 (m, 2H), 3.48 (d, 1H), 3.35 - 3.21
(m, IH), 1.99 - 1.78 (m, 2H), 1.53 (s, 3H), 1.39 (s, 9H), 1.36 - 1.14 (m, 6H), 0.88 (t, 3H)
LC-MS m/z 396 ESI

(iii) (S)-3-(BenzyI((S)-l-phenylethyl)amino)heptanoic acid
The product from step (ii) (12 g) was dissolved in DCM (40mL) and TFA (2 mL) and the
reaction mixture stirred for 24h. The solvents were evaporated to give the subtitle
compound 17g.
LC-MS m/z 340 ESI

(iv) (S)-3-(BenzyI((S)-l-phenylethyl)amino)heptan-l-ol
The product from step (iii) (12 g) was dissolved in THF (120mL) and borane-
tetrahydrofuran complex (IM in THF, 132.3ml) added dropwise. The reaction mixture was
stirred at rt overnight then MeOH was added followed by 2M HCl (20mL). The mixture
was evaporated and the residue taken up in MeOH and purified via SCX resin and the
residue was further purified via column chromatography eluting with 10-20% EtOAc in
isohexane to give the subtitle compound 6g.

1H NMR (CDCl₃); δ 7.45 - 7.13 (m, 10H), 4.00 - 3.91 (m, IH), 3.85 (d, IH), 3.69 (d, IH),
3.56 - 3.43 (m, IH), 3.27 - 3.15 (m, IH), 2.84 - 2.71 (m, IH), 2.61 (s, IH), 1.77 - 1.63
(m, IH), 1.55 (s, 2H), 1.47 - 1.20 (m, 8H), 0.93 (t, 3H)
LC-MS m/z 326 ESI

(v) (S)-3-Aminoheptan-l-ol
A solution of the product from step (iv) (5g) and 5% Pd/C (0.5g) in EtOH (25mL) was
gydrogenated under 5bar at rt for 5 days. A further portion of 5% Pd/C (1.5g) was added,
and the reaction mixture hydrogenated under 5 bar at rt for a further 1 day. The reaction
mixture was filtered and the solvent evaporated to give the subtitle compound 1.8g.

1H NMR (CDCl₃): δ 3.89 - 3.74 (m, 2H), 2.94 - 2.84 (m, 1H), 2.79 - 2.41 (m, 3H), 1.70 -
1.60 (m, 1H), 1.55 - 1.38 (m, 2H), 1.39 - 1.19 (m, 5H), 0.96 - 0.83 (m, 3H)

(vi) tert-Butyl 3-(2-amino-4-chloro-6-methylpyrimidin-5-yl)prop-2-ynylcarbamate
tert-Butyl prop-2-ynylcarbamate (3.1 g), 4-chloro-5-ido-6-methylpyrimidin-2-amine
(1.8g) and bis(triphenylphosphine)palladium(II) chloride (0.469g) were combined in TEA
(100mL). The reaction mixture was purged with nitrogen gas for 3min then copper(I)
iodide (0.254g) added. The resulting mixture was stirred at 70°C for 16h, then cooled to rt
and filtered. The filtrate was washed with water and brine, dried and the solvents
evaporated. The crude material was dissolved in MeOH (20mL), acidified with acetic acid
(1 mL) and purified by SCX and further purified by chromatography eluting 10% MeOH
and 0.25% Ammonia (7N) in DCM to afford the subtitle compound 0.93g.

1H NMR DMSO-d₆: δ 7.33 (s, 2H), 4.01 - 3.93 (m, 1H), 3.30 (s, 2H), 2.35 (s, 3H), 1.40
(s, 9H)

LC-MS m/z 297 ESI

(vii) (S)-tert-Butyl 3-(2-amino-4-(1-hydroxyheptan-3-ylamino)-6-methylpyrimidin-5-
yl)prop-2-ynylcarbamate
The product from step (vi) (200mg) and the product from step (v) (177mg) were combined
in butan-1-ol (5mL) and reacted in a CEM Microwave, at 120 °C for Ih. The solvents were
evaporated, and the crude product was purified by chromatography, eluting with 5%
MeOH in EtOAc to afford the subtitle compound 170mg.

LC-MS m/z 392 ESI

(viii) (S)-tert-Butyl 3-(2-amino-4-(1-hydroxyheptan-3-ylamino)-6-methylpyrimidin-5-
yl)propylcarbamate
The product from step (vii) (100 mg) and Pd/C (30 mg) in EtOH (5 mL) were hydrogenated under 3 bar at rt for 16 h. The catalyst was filtered off and the solvent evaporated to give the subtitle compound 76 mg.

LC-MS m/z 396 ESI

(ix) (S)-3-(2-Amino-5-(3-aminopropyl)-6-methylpyrimidin-4-ylamino)heptan-1-ol

The product from step (viii) (76 mg) was dissolved in DCM (5 mL) and TFA (5 mL) and the mixture stirred at rt for 1 h. The solvent was evaporated and the crude material dissolved in MeOH (5 mL) and purified by SCX. The product was dissolved in THF (10 mL) then lithium hydroxide (12.2 mg) in water (5 mL) was added. The reaction mixture was heated to reflux for 1 h, the solvents were evaporated and the crude product purified by RPHPLC to afford the subtitle product 40 mg.

LC-MS m/z 297 ESI

(x) (S)-Methyl 2-(4-((3-(2-amino-4-(l-hydroxyheptan-3-ylamino)-6-methylpyrimidin-5-yl)propyl)-2-(dimethylamino)acetamido)methyl)phenyl)acetate

To a solution of the product from step (ix) (57 mg) in THF (5 mL) was added (4-formylphenyl)acetic acid methyl ester (51 mg) and acetic acid (0.011 mL). The resulting mixture was stirred for 5 h, sodium triacetoxyborohydride (90 mg) was added and the resulting solution stirred at rt for 16 h. TEA (0.013 mL) was added and the reaction mixture stirred for a further 2 h. The solvents were evaporated, the residue redissolved in MeOH and purified by RPHPLC to afford the title compound 2.7 mg.

\[^1H \text{NMR DMSO-}d_6: \delta 7.28 \text{ (d, 2H), 7.20 \text{ (d, 2H), 6.09 - 6.03 \text{ (m, 1H), 5.53 \text{ (s, 2H), 4.53 -}} } \\
\text{4.43 \text{ (m, 1H), 4.19 - 4.09 \text{ (m, 1H), 3.64 \text{ (s, 3H), 3.61 \text{ (s, 2H), 3.42 - 3.35 \text{ (m, 2H), 3.30 -}}}} \\
\text{3.28 \text{ (m, 2H), 2.40 - 2.31 \text{ (m, 2H), 2.06 \text{ (s, 3H), 1.70 - 1.58 \text{ (m, 2H), 1.56 - 1.39 \text{ (m,}} \text{ }} \\
\text{4H), 1.31 - 1.18 \text{ (m, 5H), 0.84 \text{ (s, 3H)}} \]

LC-MS m/z 458 ESI

Example 19

(S)-Methyl 2-(4-((N-(3-(2-amino-4-(l-hydroxyheptan-3-ylamino)-6-methylpyrimidin-5-yl)propyl)-2-(dimethylamino)acetamido)methyl)phenyl)acetate
The product from Example 18 (5.7mg) was dissolved in acetonitrile (2mL) and chloroacetyl chloride (0.991 µL) added. The reaction mixture was stirred at rt for 16h. The solvent was evaporated and dimethylamine (2M in MeOH, 0.010mL) in MeOH (1mL) was added. The reaction mixture was stirred for 5h, then more dimethylamine (2M in MeOH, 0.010mL) added and the reaction mixture stirred for a further 16h. A further aliquot of dimethylamine (0.039mL) was added and the reaction mixture stirred for 16h. The solvents were evaporated and the residue purified by RPHPLC to afford the title compound 1.5mg.

\[\text{H NMR DMSO-}^6 \text{ @90°C: } \delta 7.21 \text{ (d, 2H), 7.14 \text{ (d, 2H), 5.48 - 5.42 \text{ (m, 1H), 5.19 \text{ (s, 2H), 3.60 \text{ (s, 5H), 3.49 - 3.38 \text{ (m, 2H), 3.36 - 3.25 \text{ (m, 2H), 3.06 \text{ (s, 2H), 2.99 - 2.95 \text{ (m, 2H), 2.33 - 2.28 \text{ (m, 2H), 2.18 \text{ (s, 6H), 2.02 \text{ (s, 3H), 1.72 - 1.46 \text{ (m, 6H), 1.33 - 1.20 \text{ (m, 6H), 0.84 \text{ (t, 3H)}}} } } } } } } \)

LC-MS m/z 543 ESI

Example 20

Methyl 2-(3-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate

(i) [3-(2-Amino-4-hydroxy-6-methyl-pyrimidin-5-ylmethyl)]-benzoic acid ethyl ester

Guanidine carbonate (2.71g) was added to a stirred solution of 3-(2-ethoxycarbonyl-3-oxo-butyl)-benzoic acid methyl ester (2.12g) in EtOH (40mL). The reaction mixture was heated to reflux for 6h and allowed to cool. The solvent was evaporated under reduced pressure
and the residue suspended in water (3OmL). The resulting precipitate was collected by filtration and the solid suspended in EtOAc (3OmL). The solid was collected by filtration to give the subtitle compound as a colourless solid 2.12g that was used without further purification.

\[\text{1H NMR DMSO-}^6\text{J} : \delta 7.77 - 7.73 \text{ (m, 2H), 7.46 - 7.36 \text{ (m, 2H), 6.50 (s, 2H), 4.29 (q, 2H), 3.70 (s, 2H), 2.01 (s, 3H), 1.30 (t, 3H)} \]

(ii) [3-(2-Amino-4-chloro-6-methyl-pyrimidin-5-ylmethyl)]-benzoic acid ethyl ester

The product from step (i) (1.9g) was added to phosphorous oxychloride (3OmL) and the mixture was heated at 100°C for 15h. The mixture was allowed to cool and the phosphorous oxychloride evaporated under reduced pressure. The residue was diluted with water (10mL) and the pH of the mixture was adjusted to pH ~7 using sodium bicarbonate. The mixture was then heated at 50°C for 2h and the aqueous was extracted with EtOAc. The combined organic phase was dried and evaporated under reduced pressure to give the subtitle compound as a pale yellow solid 1.65g that was used without further purification.

\[\text{1H NMR DMSO-}^6\text{J} : \delta 7.80 \text{ (d, 1H), 7.71 (s, 1H), 7.49 - 7.34 \text{ (m, 2H), 6.92 (s, 2H), 4.30 (q, 2H), 4.04 (s, 2H), 2.21 (s, 3H), 1.30 (t, 3H)} \]

(iii) [3-(2-Amino-4-methyl-6-pentylamino-pyrimidin-5-ylmethyl)]-benzoic acid ethyl ester

Pentylamine (2.5mL) was added to a stirred solution of the product from step (ii) (1.65g) in NMP (3mL). The mixture was heated at 150°C for 15h and allowed to cool. The solution was diluted with EtOAc (5OmL) and saturated aqueous NaHCO\textsubscript{3} (5OmL) added. The aqueous phase was separated and the organic phase washed with water, dried and evaporated under reduced pressure. The residue was purified by chromatography eluting with 2% to 5% MeOH in DCM to give the subtitle compound as an orange solid. 0.7g.

\[\text{1H NMR DMSO-}^6\text{J} : \delta 7.79 - 7.71 \text{ (m, 2H), 7.45 - 7.32 \text{ (m, 2H), 6.36 (s, 1H), 5.78 (s, 2H), 4.29 (q, 2H), 3.82 (s, 2H), 3.29 - 3.22 \text{ (m, 2H), 2.01 (s, 3H), 1.49 - 1.38 \text{ (m, 2H), 1.28 - 1.07 \text{ (m, 4H), 0.79 (t, 3H)} }} \]

(iv) [3-(2-Amino-4-methyl-6-pentylamino-pyrimidin-5-ylmethyl)-phenyl]-methanol
A solution of the product from step (iii) (0.7g) in THF (10mL) was added to a solution of lithium aluminium hydride (IM in THF, 4.1 mL) in THF (10mL) at 0°C. The mixture was stirred at rt for 2h, sodium sulfate decahydrate (10g) was added and the suspension stirred for 1h. The suspension was filtered and the filtrate diluted with saturated aq ammonium chloride (20mL). The aqueous phase was separated and the organic phase dried and evaporated under reduced pressure to give the subtitle compound 0.60g, which was used without further purification.

\[^1H \text{ NMR DMSO-}d_6: \delta 7.19 \text{ (t, IH), 7.12 - 7.05 (m, 2H), 6.97 (d, IH), 6.34 - 6.27 (m, IH), 5.81 (s, 2H), 5.15 - 5.08 (m, IH), 4.43 (d, 2H), 3.73 (s, 2H), 3.26 (q, 2H), 2.03 (s, 3H), 1.45 (quintet, 2H), 1.28 - 1.10 (m, 4H), 0.82 (t, 3H) } \]

(v) 5-(3-Chloromethyl-benzyl)-6-methyl-N4-pentyl-pyrimidine-2,4-diamine

Thionyl chloride (0.17mL) was added to a stirred solution of the product from step (iv) (0.60g) in DCM (10mL) at rt. The mixture was stirred for 1h and the solvent evaporated under reduced pressure to give the subtitle compound as a yellow oil 0.62g that was used without further purification.

\[^1H \text{ NMR DMSO-}d_6: \delta 8.03 - 7.94 (m, IH), 7.50 (s, 2H), 7.34 - 7.26 (m, 3H), 7.21 (s, IH), 7.13 (d, IH), 4.72 (s, 2H), 3.87 (s, 2H), 3.37 (q, 2H), 2.20 (s, 3H), 1.47 (quintet, 2H), 1.26 - 1.17 (m, 2H), 1.15 - 1.06 (m, 2H), 0.80 (t, 3H) \]

(vi) [3-(2-Amino-4-methyl-6-pentylamino-pyrimidin-5-ylmethyl)-phenyl]-acetonitrile

Potassium cyanide (0.61g) was added to a stirred solution of the product from step (v) (0.62g) in DMSO (5mL) and DMF (5mL) and the mixture stirred at rt for 1h. The reaction mixture was diluted with saturated aqueous NaHCO₃ (10mL) and the aqueous phase was extracted with EtOAc. The combined organic phase was washed with water, dried and evaporated under reduced pressure to give the subtitle compound as a yellow oil 0.59g that was used without further purification.

\[^1H \text{ NMR DMSO-}d_6: \delta 7.27 \text{ (t, IH), 7.15 - 7.04 (m, 3H), 6.17 (t, IH), 5.66 (s, 2H), 3.97 (s, 2H), 3.75 (s, 2H), 3.24 (q, 2H), 2.01 (s, 3H), 1.49 - 1.39 (m, 2H), 1.27 - 1.09 (m, 4H), 0.82 (t, 3H) } \]
(vii) Methyl 2-(3-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate

A 5M aqueous solution of potassium hydroxide (5mL) was added to a stirred solution of the product from step (vi) (0.59 g) in MeOH (10mL). The mixture was stirred at 65°C for 15h and allowed to cool. The organic solvent was removed under reduced pressure and the aqueous phase acidified to pH 7 with concentrated HCl. The aqueous phase was extracted with EtOAc and the combined organic phase dried and evaporated under reduced pressure. The residue was dissolved in MeOH (10mL) and concentrated sulfuric acid (5mL) added. The mixture was heated at 70°C for 2h and allowed to cool. The mixture was poured into saturated aqueous NaHCO₃ (30mL) and the aqueous phase extracted with EtOAc. The combined organic phase was dried and evaporated under reduced pressure. The residue was purified by chromatography eluting with 5% MeOH in DCM to give the title compound 0.24g.

1H NMR DMSO-δ: 7.36 (s, 1H), 7.23 (t, 1H), 7.11 - 6.98 (m, 3H), 6.77 (s, 2H), 3.79 (s, 2H), 3.62 (s, 2H), 3.59 (s, 3H), 3.30 - 3.26 (m, 2H), 2.12 (s, 3H), 1.47 (quintet, 2H), 1.29 - 1.06 (m, 4H), 0.81 (t, 3H)

LC-MS m/z 357 ESI

Example 21
Methyl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)-3-methoxyphenyl)acetate

(i) Methyl 4-(2-(ethoxycarbonyl)-3-oxobutyl)-3-methoxybenzoate
Sodium hydride (60% in mineral oil; 1.45g) was added portionwise over 10min to a solution of ethyl acetoacetate (4.4mL) in THF (60mL) at 0°C. The resulting suspension
was stirred at 0°C for 10 min and a solution of methyl 4-(bromomethyl)-3-methoxybenzoate (7.5 g) in THF (40 mL) added portionwise over 10 min. The mixture was warmed to 70°C and stirred for 15 h. The mixture was allowed to cool and then poured cautiously into ice/water (300 mL) and stirred for 30 min. The aqueous phase was extracted with EtOAc and the combined organic phase was dried, filtered, and evaporated to afford crude product. The reaction was repeated on an identical scale and the two batches of crude product were combined and purified by chromatography eluting with 20-30% EtOAc in isohexane to give the subtitle compound as a colorless oil 14.7 g.

1H NMR DMSO-\(\text{J}_6\) : \(\delta\) 7.48 (dd, 1H), 7.45 (d, 1H), 7.24 (d, 1H), 4.05 (q, 2H), 3.95 (dd, 1H), 3.86 (s, 3H), 3.84 (s, 3H), 3.10 (dd, 1H), 3.00 (dd, 1H), 2.17 (s, 3H), 1.09 (t, 3H)

(ii) Methyl 4-(((2-amino-4-hydroxy-6-methylpyrimidin-5-yl)methyl)-3-methoxybenzoate

Guanidine carbonate (8.73 g) was added in one portion to a solution of the product from step (i) (14.7 g) in MeOH (200 mL). The resulting mixture was stirred at 65°C for 16 h and allowed to cool. The precipitate was collected by filtration and suspended in water (50 mL). The solid was collected by filtration, washed with MeOH (20 mL) and EtOAc (20 mL) to give the subtitle compound as a colourless solid 8.60 g that was used without further purification.

1H NMR DMSO-\(\text{J}_6\) : \(\delta\) 10.78 (s, 1H), 7.46 (d, 2H), 7.45 (s, 2H), 6.98 (d, 1H), 6.34 (s, 2H), 3.89 (s, 3H), 3.83 (s, 3H), 3.61 (s, 2H), 1.93 (s, 3H)

LC-MS m/z 304 ESI

(iii) Methyl 4-(((2-amino-4-chloro-6-methylpyrimidin-5-yl)methyl)-3-methoxybenzoate

The product from step (ii) (8.6 g) was added to phosphorous oxychloride (50 ml) and the resulting suspension stirred at 100°C for 15 h. The reaction mixture was allowed to cool and the phosphorous oxychloride evaporated under reduced pressure. The residue was diluted with water (100 mL) and the suspension adjusted to pH 7 with NaHCO\(_3\). The mixture was heated at 50°C for 1 h and allowed to cool. The solid was collected by filtration, washed with water, EtOAc and dried under vacuum to give the subtitle compound 9.05 g.
1H NMR DMSO-d_6 : δ 7.50 (s, 1H), 7.49 (d, 1H), 6.90 (s, 2H), 6.81 (d, 1H), 3.92 (s, 3H), 3.90 (s, 3H), 3.84 (s, 2H), 3.59 (s, 2H), 3.25 - 3.19 (m, 2H), 1.98 (s, 3H), 1.43 (quintet, 2H), 1.30 - 1.10 (m, 4H), 0.82 (t, 3H).

(iv) Methyl 4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)-3-methoxybenzoate

Pentylamine (7.2mL) was added to a solution of the product from step (iii) (5g) in NMP (80mL). The resulting solution was stirred at 150°C for 15h. The reaction mixture was allowed to cool, diluted with EtOAc and washed with water and brine. The organic phase was dried and evaporated under reduced pressure. The residue was suspended in diethyl ether (20mL) and the solid was collected by filtration to give the subtitle compound as a colourless solid 1.2g that was used without further purification.

1H NMR DMSO-d_6 : δ 7.48 (d, 1H), 7.45 (dd, 1H), 6.81 (d, 1H), 6.07 (t, 1H), 5.68 (s, 2H), 3.92 (s, 3H), 3.83 (s, 3H), 3.68 (s, 2H), 3.25 - 3.20 (m, 2H), 1.93 (s, 3H), 1.47 - 1.38 (m, 2H), 1.27 - 1.08 (m, 4H), 0.81 (t, 3H)

LC-MS m/z 374 ESI

(v) (4-((2-Amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)-3-methoxyphenyl)methanol

A solution of the product from step (iv) (2.4g) in THF (50mL) was added portionwise over 10min to a stirred solution of lithium aluminum hydride (IM in THF; 12.89mL) in THF (50mL) at 0°C under nitrogen. The resulting mixture was stirred at 0°C for 10min and then at rt for 1h. EtOAc (20mL) was added portionwise over 10min and the resulting mixture stirred for a further 20min. The mixture was added portionwise to 2M NaOH (300mL) and stirred for 30min. The resulting suspension was filtered through a pad of celite and the resulting biphasic filtrate separated. The aqueous phase was extracted with EtOAc (20mL) and the combined organic phase was dried, filtered and evaporated. The crude product was purified by chromatography, eluting with 5 to 10% MeOH in DCM, to afford the subtitle compound as a colorless gum 0.94g.

1H NMR DMSO-d_6 : δ 6.94 (s, 1H), 6.75 (d, 1H), 6.66 (d, 1H), 6.03 - 5.96 (m, 1H), 5.67 (s, 2H), 5.10 (t, 1H), 4.44 (d, 2H), 3.84 (s, 3H), 3.59 (s, 2H), 3.25 - 3.19 (m, 2H), 1.98 (s, 3H), 1.43 (quintet, 2H), 1.30 - 1.10 (m, 4H), 0.82 (t, 3H)
Thionyl chloride (0.239mL) was added portionwise to a solution of the product from step (v) (0.94g) in DCM (20mL) under nitrogen. The resulting solution was stirred at rt for 1h. The solvent was evaporated under reduced pressure to give the subtitle compound as a colourless gum 0.99g that was used without purification.

\[\text{H NMR DMSO-J}_6 : \delta 7.88 \text{ (t, 1H), 7.46 \text{ (s, 2H), 7.10 \text{ (d, 1H), 6.92 \text{ (dd, 1H), } 6.79 \text{ (d, 1H), 4.73 \text{ (s, 2H), 3.86 \text{ (s, 3H), 3.69 \text{ (s, 2H), 3.38 - 3.33 \text{ (m, 2H), 2.11 \text{ (s, 3H), 1.48 \text{ (quintet, 2H), 1.30 - 1.11 \text{ (m, 4H), 0.83 \text{ (t, 3H)}}}}}}}} \]

LC-MS m/z 363 ES+

Potassium cyanide (0.53g) was added to a solution of the product from step (vi) (0.99g) in DMSO (10mL) and DMF (10mL) under nitrogen. The resulting mixture was stirred at rt for 20h and diluted with saturated aqueous NaHCO\textsubscript{3} (50mL). The mixture was extracted with EtOAc and the combined organic phase was washed with water and brine, dried, filtered and evaporated. The crude product was purified by chromatography, eluting with 5% MeOH in DCM to afford the subtitle compound as an orange solid 0.6g.

\[\text{H NMR DMSO-J}_6 : \delta 6.97 \text{ (d, 1H), 6.80 \text{ (dd, 1H), 6.70 \text{ (d, 1H), 6.10 \text{ (t, 1H), 5.75 \text{ (s, 2H), 3.96 \text{ (s, 2H), 3.86 \text{ (s, 3H), 3.60 \text{ (s, 2H), 3.25 - 3.20 \text{ (m, 2H), 1.96 \text{ (s, 3H), 1.43 \text{ (quintet, 2H), 1.28 - 1.10 \text{ (m, 4H), 0.82 \text{ (t, 3H)}})}}}}}} \]

A 5M aqueous solution of potassium hydroxide (5mL) was added to a solution of the product from step (vii) (0.60g) in MeOH (10mL). The resulting mixture was stirred at 65°C for 15h. The mixture was allowed to cool and the solvent evaporated under reduced pressure. The resulting aqueous mixture was neutralised with 2M HCl and extracted with
EtOAc. The combined organic phase was dried, filtered and evaporated to give the subtitle compound as a colourless solid 0.329g that was used without further purification.

\(^1\)H NMR DMSO-\(\delta \) \(6.88\) (d, IH), \(6.70\) (dd, IH), \(6.64\) (d, IH), \(6.30\) - \(6.21\) (m, IH), \(5.99\) (s, 2H), \(3.83\) (s, 3H), \(3.59\) (s, 2H), \(3.49\) (s, 3H), \(3.27\) - \(3.18\) (m, 2H), \(1.98\) (s, 3H), \(1.44\) (quintet, 2H), \(1.30\) - \(1.09\) (m, 4H), \(0.82\) (t, 3H)

(ix) Methyl 2-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)-3-methoxyphenyl)acetate

The product from step (vii) (0.329g) was added in one portion to a mixture of sulfuric acid (2ml) and MeOH (4mL). The resulting solution was stirred at \(70^\circ\)C for 2h. The mixture was allowed to cool and poured into saturated aqueous NaHCO\(_3\) (20mL). The aqueous was extracted with EtOAc and the combined organic phase was dried, filtered and evaporated. The crude product was purified by RPHPLC to afford a colourless gum that was triturated with hexane (5mL). The solid was collected by filtration to give the title compound as a colorless solid 0.089g.

\(^1\)H NMR DMSO-\(\delta \) \(6.89\) (d, IH), \(6.70\) (dd, IH), \(6.64\) (d, IH), \(5.98\) (t, IH), \(5.63\) (s, 2H), \(3.84\) (s, 3H), \(3.61\) (s, 2H), \(3.59\) (s, 3H), \(3.58\) (s, 2H), \(3.26\) - \(3.18\) (m, 2H), \(1.97\) (s, 3H), \(1.43\) (quintet, 2H), \(1.29\) - \(1.10\) (m, 4H), \(0.82\) (t, 3H)

LC-MS m/z 387 ESI

Example 22

Methyl 2-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)-3-fluorophenyl)acetate

(i) Methyl 4-((ethoxycarbonyl)-3-oxobutyl)-3-fluorobenzoate

Sodium hydride (60% dispersion in mineral oil; 2.45g) was added portionwise over 10min to a solution of ethyl acetoacetate (7.5mL) in THF (60 mL) at \(0^\circ\)C under nitrogen. The resulting mixture was stirred at \(0^\circ\)C for 10min and a solution of methyl 4-(bromomethyl)-
3-fluorobenzoate (12.1g) in THF (40mL) added over 10min. The mixture was heated to 65°C for 15h and allowed to cool. The mixture was poured cautiously into ice/water (300mL) and the aqueous extracted with EtOAc. The combined organic phase was dried, filtered and evaporated. The crude product was purified by chromatography eluting with 10 to 20% EtOAc in isohexane to give the subtitle compound as a colorless oil 11.10g.

1H NMR DMSO-6: δ 7.73 (d, 1H), 7.64 (d, 1H), 7.46 (dd, 1H), 4.11 - 4.00 (m, 2H), 3.86 (s, 3H), 3.65 - 3.58 (m, 1H), 3.22 - 3.04 (m, 2H), 2.22 (s, 3H)

(ii) Methyl 4-((2-amino-4-hydroxy-6-methylpyrimidin-5-yl)methyl)-3-fluorobenzoate

Guanidine carbonate (6.86g) was added to a stirred solution of the product from step (i) (11.1g) in MeOH (200mL). The resulting mixture was stirred at 70°C for 15h. The mixture was allowed to cool to rt and the resulting precipitate collected by filtration. The solid was suspended in water (50mL), collected by filtration and washed with MeOH to give the subtitle compound as a colourless solid 6.60g that was used without further purification.

1H NMR DMSO-6: δ 10.83 (s, 1H), 7.68 (d, 1H), 7.63 (d, 1H), 7.23 (dd, 1H), 6.39 (s, 2H), 3.85 (s, 3H), 3.70 (s, 2H), 2.00 (s, 3H)

LC-MS m/z 292 ESI

(iii) Methyl 4-((2-amino-4-chloro-6-methylpyrimidin-5-yl)methyl)-3-fluorobenzoate

The product from step (ii) (6.6g) was added to phosphorous oxychloride (40ml) under nitrogen. The resulting mixture was stirred at 90°C for 15h. The phosphorous oxychloride was evaporated under reduced pressure and the residue cautiously diluted with water (50mL). The aqueous phase was neutralised with NaHCO₃ and heated at 50°C for 1h. The mixture was allowed to cool and the precipitate was collected by filtration. The solid was suspended in MeCN (40mL) and collected by filtration to give the subtitle compound as a cream solid 3.70g that was used without further purification.

1H NMR DMSO-6: δ 7.72 (d, 1H), 7.69 (d, 1H), 7.08 (dd, 1H), 6.95 (s, 2H), 4.02 (s, 2H), 3.85 (s, 3H), 2.22 (s, 3H)

LC-MS m/z 310 ESI
Methyl 4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)-3-fluorobenzoate

Pentylamine (5.82mL) was added to a solution of the product from step (iii) (3.1g) in dioxane (50mL). The resulting mixture was stirred at 100°C for 50h. The mixture was allowed to cool and then the solvent was evaporated under reduced pressure. The crude product was purified by flash silica chromatography eluting with 2 to 5% MeOH in DCM to give the subtitle compound as a yellow solid 1.52g.

1H NMR DMSO-đ: δ 7.70 - 7.63 (m, 2H), 6.95 (dd, 1H), 6.31 (t, 1H), 5.75 (s, 2H), 3.84 (s, 3H), 3.80 (s, 2H), 3.28 - 3.20 (m, 2H), 1.94 (s, 3H), 1.51 - 1.36 (m, 2H), 1.31 - 1.10 (m, 4H), 0.81 (t, 3H)

(v) 4-((2-Amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)-3-fluorophenyl)methanol

A solution of the product from step (iv) (1.52g) in THF (30mL) was added portionwise to a stirred solution of lithium aluminium hydride (1M in THF; 8.43 mL) in THF (30 mL) at 0°C under nitrogen. The resulting mixture was stirred at rt for 2h. EtOAc (10mL) was added cautiously to the reaction mixture and the mixture added portionwise to 2M NaOH (100mL). The mixture was stirred for 30min and the aqueous solution was extracted with EtOAc. The combined organic phase was dried, filtered and evaporated. The crude product was purified by chromatography eluting with 2 to 5% MeOH in acetonitrile to give the subtitle compound as a yellow oil 0.85g.

1H NMR DMSO-đ: δ 7.22 - 6.90 (m, 2H), 6.79 (s, 1H), 6.28 (s, 2H), 5.36 - 5.09 (m, 1H), 4.47 (s, 2H), 4.11 (s, 1H), 3.72 (s, 2H), 3.29 - 3.12 (m, 2H), 1.97 (s, 3H), 1.57 - 1.39 (m, 2H), 1.37 - 1.15 (m, 4H), 0.94 - 0.78 (m, 3H)

(vi) 5-(4-(Chloromethyl)-2-fluorobenzyl)-6-methyl-N4-pentylpyrimidine-2,4-diamine

Thionyl chloride (0.224mL) was added to a solution of the product from step (v) (0.85g) in DCM (15mL) under nitrogen. The resulting mixture was stirred at rt for 2h. The reaction mixture was evaporated to dryness under reduced pressure to give the subtitle compound as a yellow solid 0.85g that was used without purification.
\[^1H\text{NMR DMSO-}^6_D: \delta\ 12.24\ (s,\ IH),\ 8.02\ (t,\ IH),\ 7.46\ (s,\ 2H),\ 7.30\ (dd,\ IH),\ 7.17\ (dd,\ IH),\ 6.96\ (dd,\ IH),\ 4.74\ (s,\ 2H),\ 3.83\ (s,\ 2H),\ 3.39 - 3.32\ (m,\ 2H),\ 2.14\ (s,\ 3H),\ 1.54 - 1.41\ (m,\ 2H),\ 1.32 - 1.08\ (m,\ 4H),\ 0.82\ (t,\ 3H) \]

(vii) 2-(4-((2-Amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)-3-fluorophenyl)acetonitrile

Potassium cyanide (0.473g) was added to a stirred solution of the product from step (vi) (0.85g) in DMSO (10mL) and DMF (10mL). The mixture was stirred at rt for 15h, diluted with EtOAc, washed with saturated NaHCO\textsubscript{3} solution, saturated brine dried, filtered and evaporated. The crude product was purified by chromatography eluting with 0 to 5% MeOH in DCM to afford the subtitle compound as a yellow solid 0.530g.

\[^1H\text{NMR DMSO-}^6_D: \delta\ 7.17\ (d,\ IH),\ 7.06\ (d,\ IH),\ 6.83\ (dd,\ IH),\ 6.34 - 6.25\ (m,\ IH),\ 5.76\ (s,\ 2H),\ 4.01\ (s,\ 2H),\ 3.72\ (s,\ 2H),\ 3.27 - 3.22\ (m,\ 2H),\ 1.95\ (s,\ 3H),\ 1.45\ (quintet,\ 2H),\ 1.30 - 1.11\ (m,\ 4H),\ 0.83\ (t,\ 3H) \]

(viii) 2-(4-((2-Amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)-3-fluorophenyl)acetic acid

A 5M aqueous solution of potassium hydroxide (3.10mL) was added to a solution of the product of step (vii) (0.53g) in MeOH (6mL). The mixture was stirred at 65°C for 15h and allowed to cool. The solvent was evaporated under reduced pressure and the resulting aqueous solution adjusted to pH ~7 with cone. HCl. The aqueous phase was extracted with DCM and EtOAc, the combined organic phase was evaporated under reduced pressure to give the subtitle compound as a colourless solid 0.547g.

\[^1H\text{NMR DMSO-}^6_D: \delta\ 7.08\ (dd,\ IH),\ 6.95\ (dd,\ IH),\ 6.80\ (dd,\ IH),\ 6.52 - 6.42\ (m,\ IH),\ 3.74\ (s,\ 2H),\ 3.55\ (s,\ 2H),\ 3.28 - 3.24\ (m,\ 2H),\ 2.03\ (s,\ 3H),\ 1.50 - 1.43\ (m,\ 2H),\ 1.29 - 1.11\ (m,\ 4H),\ 0.83\ (t,\ 3H) \]

(ix) Methyl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)-3-fluorophenyl)acetate

Sulfuric acid (3ml) was added to a solution of the product from step (viii) (0.54g) in MeOH (6mL). The mixture was heated to 70°C for 2h and allowed to cool. The mixture
was diluted with cold water (1OmL) and the pH adjusted to ~7 using NaHCO₃. The aqueous phase was extracted with EtOAc and the combined organic phase was dried, filtered and evaporated. The crude product was purified by RPHPLC to afford the title compound as a colourless solid 0.08g.

1H NMR DMSO-Δ₆: δ 7.08 (d, 1H), 6.95 (d, 1H), 6.76 (dd, 1H), 6.25 (t, 1H), 5.70 (s, 2H), 3.70 (s, 3H), 3.66 (s, 2H), 3.60 (s, 2H), 3.27 - 3.22 (m, 2H), 1.95 (s, 3H), 1.45 (quintet, 2H), 1.29 - 1.11 (m, 4H), 0.83 (t, 3H)

LC-MS m/z 375 ESI

Example 23

Methyl 2-(4-(2-(3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propylamino)-2-oxoethyl)phenyl)acetate

(i) {4-[2-[(3-[2-Amino-4-methyl-6-(pentylamino)pyrimidin-5-yl]propyl]amino)-2-oxoethyl]phenyl}acetic acid

A solution of T₃P (1.591ml, 1.57M in THF) was added to a mixture of the product from example 1 step (v) (0.2g), TEA (0.333ml) and 2,2'-((1,4-phenylene)diacetic acid (0.463g) in THF (15mL) and the mixture stirred at rt overnight. The reaction was diluted with EtOAc, washed with water, dried and evaporated under reduced pressure. Used crude in next step.

LC-MS m/z 428 APCI+

(ii) Methyl 2-(4-(2-(3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propylamino)-2-oxoethyl)phenyl)acetate

The product from step (i) was dissolved in MeOH (20mL) then a solution of HCl in dioxane (4M, 0.3ml) was added and stirred overnight. Solvent was removed and the residue purified by RPHPLC to afford the title compound, 0.032g.
Example 24

Methyl 2-(3-(2-(3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propylamino)-2-oxoethyl)phenyl)acetate

The title compound was prepared using the method of example 23.

\[
\begin{align*}
\text{H NMR } & \text{DMSO-J}_6: \delta 8.05 - 7.98 \text{ (m, IH), 7.28 - 7.21 \text{ (m, IH), 7.16 - 7.09 \text{ (m, 3H), } } \\
& 6.18 - 6.13 \text{ (m, IH), 5.52 - 5.47 \text{ (m, 2H), 3.64 \text{ (s, 2H), 3.60 - 3.58 \text{ (m, 3H), 3.39 \text{ (s, 2H), } } } \\
& 3.29 - 3.22 \text{ (m, 2H), 3.12 - 3.04 \text{ (m, 2H), 2.30 - 2.22 \text{ (m, 2H), 1.97 \text{ (s, IH), 1.53 - 1.41 \text{ (m, 4H), 1.35 - 1.19 \text{ (m, 4H), 0.86 \text{ (t, 3H) }}} } } \\
\text{LC-MS m/z 442 multimode+ }
\end{align*}
\]

Example 25

Methyl 2-((3-(2-amino-4-methyl-6-((pentylamino)pyrimidin-5-yl)propylamino)methyl)phenoxy)acetate

The product from example 1 step (v) (0.2g) was dissolved in THF (10mL) then methyl 2-(3-formylphenoxy)acetate (0.154g) was added and stirred at rt overnight. Sodium borohydride (0.030 lmg) was added and stirred for 3hr. The reaction was quenched with
water and extracted with EtOAc, dried and solvent removed under reduced pressure. The residue was purified by RPHPLC to afford the title compound 0.038g.

1H NMR DMSO-d_6: δ 6.98 - 6.89 (m, 2H), 6.82 - 6.72 (m, 1H), 6.67 - 6.58 (m, 1H), 5.61 - 5.52 (m, 2H), 4.81 - 4.70 (m, 2H), 3.71 - 3.67 (m, 3H), 3.68 - 3.65 (m, 2H), 3.27 - 3.18 (m, 2H), 2.48 - 2.41 (m, 2H), 2.38 - 2.31 (m, 2H), 2.07 - 2.04 (m, 3H), 1.57 - 1.42 (m, 4H), 1.30 - 1.17 (m, 4H), 0.85 (t, 3H)

LC-MS m/z 429 multimode+

Example 26

Methyl 2-(4-((N-(3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propyl)-2-(3-(4-(methylsulfonyl)phenyl)piperidin-1-yl)acetamido)methyl)phenyl)acetate

The title compound was prepared by the method of example 3 using the product from example 2 and the appropriate amine.

1H NMR DMSO-d_6: δ 7.88 - 7.79 (m, 2H), 7.56 - 7.47 (m, 2H), 7.27 (d, 1H), 7.21 - 7.15 (m, 2H), 7.14 - 7.08 (m, 1H), 6.21 - 6.11 (m, 1H), 5.50 (s, 2H), 4.77 - 4.59 (m, 1H), 4.56 - 4.35 (m, 1H), 3.70 - 3.56 (m, 5H), 3.29 - 3.19 (m, 3H), 3.17 (s, 3H), 3.14 - 3.04 (m, 1H), 2.86 - 2.78 (m, 2H), 2.77 - 2.63 (m, 1H), 2.38 - 2.07 (m, 4H), 2.05 - 1.93 (m, 2H), 1.85 - 1.54 (m, 5H), 1.55 - 1.40 (m, 5H), 1.32 - 1.18 (m, 5H), 0.84 (sextet, 3H)

LC-MS m/z 693 multimode+

Example 27

Methyl 2-(4-((N-(3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propyl)-2-morpholinoacetamido)methyl)phenyl)acetate
The title compound was prepared by the method of example 3 using the product from example 2 and the appropriate amine.

1H NMR DMSO-d_6: δ 7.29 - 7.08 (m, 4H), 6.23 - 6.11 (m, 1H), 5.56 - 5.44 (m, 2H), 4.64 (s, 1H), 4.47 (s, 1H), 3.68 - 3.63 (m, 2H), 3.60 (s, 3H), 3.56 - 3.45 (m, 4H), 3.30 - 3.21 (m, 4H), 3.11 (s, 1H), 3.05 (s, 2H), 2.41 - 2.30 (m, 4H), 2.02 (s, 2H), 1.98 (s, 1H), 1.66 - 1.57 (m, 1H), 1.52 - 1.43 (m, 3H), 1.33 - 1.19 (m, 5H), 0.88 - 0.82 (m, 3H)

LC-MS m/z 541 multimode+

Example 28

Methyl 2-(4-((N-(3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propyl)-2-(4-phenylpiperidin-1-yl)acetamido)methyl)phenyl)acetate

The title compound was prepared by the method of example 3 using the product from example 2 and the appropriate amine.

1H NMR DMSO-d_6: δ 7.34 - 7.09 (m, 9H), 6.23 - 6.12 (m, 1H), 5.54 - 5.46 (m, 2H), 4.71 (s, 1H), 4.48 (s, 1H), 3.70 - 3.62 (m, 2H), 3.59 (s, 2H), 3.29 - 3.22 (m, 4H), 3.18 - 3.05 (m, 2H), 2.94 - 2.75 (m, 2H), 2.38 - 2.18 (m, 3H), 2.17 - 1.97 (m, 5H), 1.79 - 1.42 (m, 8H), 1.33 - 1.18 (m, 5H), 0.90 - 0.79 (m, 3H)

LC-MS m/z 615 multimode+

Example 29
Methyl 2-(4-((N-(3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propyl)-2-(piperidin-l-yl)acetamido)methyl)phenyl)acetate

The title compound was prepared by the method of example 3 using the product from example 2 and the appropriate amine.

1H NMR DMSO-d_6: δ 7.28 - 7.07 (m, 4H), 6.16 (t, 1H), 5.50 (d, 2H), 4.68 (s, 1H), 4.46 (s, 1H), 3.68 - 3.57 (m, 4H), 3.28 - 3.13 (m, 5H), 3.07 - 2.95 (m, 2H), 2.37 - 2.25 (m, 6H), 2.05 - 1.94 (m, 3H), 1.66 - 1.38 (m, 7H), 1.39 - 1.18 (m, 7H), 0.86 (t, 3H)

LC-MS m/z 539 multimode+

Example 30

(S)-Methyl 2-(4-((2-amino-4-(1-hydroxypentan-2-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetate

(i) (4-((2-Amino-4-chloro-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)methanol

A solution of diisobutylaluminium hydride (1M in hexanes, 5.44mL) was added over 10min to a suspension of the product from example 2 step (iii) (0.5g) in THF (10mL) at O°C. The mixture was allowed to warm to rt and stirred for 1h. EtOAc (10mL) was added cautiously and then the reaction mixture was added to ice/water (100mL). The mixture was stirred for 30min and then diluted with EtOAc (50mL). The organic phase was separated and the aqueous was extracted with EtOAc. The combined organic phase was dried, filtered and evaporated to afford the subtitle compound, 0.39g.
1H NMR (DMSO-d6); δ 6.96 (s, 1H), 6.84 (s, 2H), 6.78 (d, 1H), 6.58 (d, 1H), 5.13 (t, 1H), 4.45 (d, 2H), 3.83 (s, 3H), 3.81 (s, 2H), 2.15 (s, 3H)

(ii) 4-Chloro-5-(4-(chloromethyl)-2-methoxybenzyl)-6-methylpyrimidin-2-amine
Thionyl chloride (0.12mL) was added to a solution of the product from step (i) (0.39g) in DCM (10mL) at 0°C. The reaction mixture was stirred at rt for 1h and then the solvent was evaporated under reduced pressure to give the subtitle compound (0.40g) which was used without purification.

1H NMR DMSO-J₆: δ 7.09 (1H, s), 6.92 (1H, d), 6.66 (1H, d), 4.72 (2H, s), 3.92 - 3.73 (5H, m), 2.17 (3H, s)

(iii) 2-(4-((2-Amino-4-chloro-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetonitrile
Potassium cyanide (0.17g) was added to a stirred solution of the product from step (ii) (0.40g) in DMSO (5mL) and DMF (5mL). The mixture was stirred at rt for 15h, diluted with water and then extracted with EtOAc. The combined organic phase was dried, filtered and evaporated to give the subtitle compound, 0.20g.

1H NMR (DMSO-d6); δ 6.98 (1H, d), 6.86 (2H, s), 6.83 (1H, dd), 6.66 (1H, d), 3.98 (2H, s), 3.85 (3H, s), 3.82 (2H, s), 2.16 (3H, s)

(iv) (S)-2-(4-(2-Amino-4-(1-hydroxypentan-2-ylammo)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetonitrile
(S)-2-Aminopentan-1-ol (0.136g) was added to a solution of the product from step (iii) in NMP (2mL). The resulting mixture was stirred at 140°C for 5Oh then diluted with EtOAc and washed with saturated NaHCO₃ solution and saturated brine. The organic phase was dried, filtered and evaporated. The crude product was purified by column chromatography, elution gradient 5 to 10% MeOH in DCM to give the subtitle compound, 0.095g.

1H NMR DMSO-J₆: δ 6.98 (1H, s), 6.84 - 6.78 (2H, m), 4.62 (IH, t), 4.21 - 4.12 (IH, m), 3.97 (2H, s), 3.86 (3H, s), 3.65 (2H, s), 3.41 - 3.33 (2H, m), 2.06 (3H, s), 1.55 - 1.41 (IH, m), 1.35 - 1.21 (IH, m), 1.15 - 1.00 (2H, m), 0.78 (3H, t)
(v) (S)-2-(4-((2-Amino-4-(1-hydroxypentan-2-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetic acid

A 5M aqueous solution of potassium hydroxide (0.5mL) was added to stirred solution of the product from step (iv) (0.095g) in MeOH (1mL). The mixture was stirred at 70°C for 15h and then the solvent was evaporated under reduced pressure. The resulting aqueous solution was adjusted to pH ~7 using concentrated HCl. The aqueous was extracted with EtOAc and the combined organic phase was dried, filtered and evaporated to give the subtitle compound, 0.09g.

1H NMR DMSO-J₆: δ 6.87 (IH, s), 6.66 (2H, s), 5.65 (2H, s), 5.45 (IH, d), 4.13 - 4.05 (IH, m), 3.82 (3H, s), 3.58 (2H, s), 3.33 (2H, s), 3.42 - 3.34 (IH, m), 3.27 - 3.22 (IH, m), 3.17 - 3.11 (IH, m), 2.03 (3H, s), 1.53 - 1.41 (IH, m), 1.39 - 1.20 (IH, m), 1.20 - 1.05 (2H, m), 0.78 (3H, t)

(vi) (S)-Methyl 2-(4-((2-amino-4-(1-hydroxyheptan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetate

Concentrated sulfuric acid (0.3mL) was added to a solution of the product from step (v) (0.09g) in MeOH (1mL). The solution was heated at 70°C for 3h and then poured into saturated aqueous NaHCO₃ solution (10mL). The aqueous was extracted with EtOAC and the combined organic phases were dried, filtered and evaporated. The crude product was purified by RPHPLC to give the title compound, 0.007g.

1H NMR DMSO-J₆: δ 6.89 (IH, s), 6.74 - 6.69 (2H, m), 5.62 (2H, s), 5.44 (IH, d), 4.59 - 4.53 (IH, m), 4.13 - 4.04 (IH, m), 3.84 (3H, s), 3.62 (2H, s), 3.59 (3H, s), 3.30 - 3.23 (4H, m), 2.03 (3H, s), 1.52 - 1.41 (IH, m), 1.33 - 1.21 (IH, m), 1.17 - 0.99 (2H, m), 0.77 (3H, t)

LC-MS m/z 403 multimode+

Example 31
(S)-Methyl 2-(4-((2-amino-4-(1-hydroxyheptan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetate
(i) (S)-2-(4-((2-Amino-4-(1-hydroxyheptan-3-ylamino)-6-methylpyrimidin-5-
yl)methyl)-3-methoxyphenyl)acetic acid

(S)-3-Aminoheptan-1-ol (108 mg) was added to a suspension of the product from example 30 step (iii) (O.lg) in butan-1-ol (2mL). The resulting mixture was stirred at 180°C for 3h in a CEM microwave. The mixture was then diluted with 5M aqueous potassium hydroxide (0.5mL) and heated at 150°C for 3h in a CEM microwave. The mixture was adjusted to ~pH 7 with cone. HCl and the organic phase was separated. The aqueous was extracted with butan-1-ol and the combined organic phase was evaporated under reduced pressure to give the subtitle compound, 0.124g.

1H NMR (DMSO-d6); δ 6.88 (IH, s), 6.70 (IH, d), 6.67 (IH, d), 5.90 (2H, s), 5.70 (IH, d), 4.23 - 4.12 (IH, m), 3.83 (3H, s), 3.60 (2H, s), 3.46 (2H, s), 3.35 - 3.27 (2H, m), 2.00 (3H, s), 1.65 - 1.52 (IH, m), 1.50 - 1.29 (3H, m), 1.27 - 0.97 (4H, m), 0.77 (3H, t)

(ii) (S)-Methyl 2-(4-((2-amino-4-(1-hydroxyheptan-3-ylamino)-6-methylpyrimidin-5-
yl)methyl)-3-methoxyphenyl)acetate

Concentrated HCl (1mL) was added to a solution of the product from step (i) (O.lg) in MeOH (2mL). The mixture was heated at 70°C for 2h, poured into saturated aqueous NaHCO₃ solution (1OmL) and the aqueous was adjusted to pH ~7 by adding NaHCO₃. The aqueous was extracted with EtOAc and the combined organic phase was dried, filtered and evaporated. The crude product was purified by RPHPLC to give the title compound, 0.018g.

1H NMR DMSO-J₆; δ 6.89 (IH, s), 6.71 (IH, d), 6.69 (IH, d), 5.66 (2H, s), 5.57 (IH, d), 4.37 (IH, t), 4.21 - 4.11 (IH, m), 3.84 (3H, s), 3.62 (2H, s), 3.60 (2H, s), 3.59 (3H, s), 3.29 - 3.26 (2H, m), 2.00 (3H, s), 1.62 - 1.52 (IH, m), 1.48 - 1.30 (3H, m), 1.27 - 1.01 (4H, m), 0.77 (3H, t)

LC-MS m/z 431 multimode+
Example 32

(S)-Methyl 2-(4-((2-amino-4-(1-hydroxyhexan-2-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetate

(i) (S)-2-(4-((2-Amino-4-(1-hydroxyhexan-2-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetic acid

(S)-2-aminohexan-1-ol (0.077g) was added to a suspension of the product from example 30 step (iii) (0.1g) in butan-1-ol (2mL). The resulting mixture was stirred at 180°C for 2h in a CEM microwave. The mixture was then diluted with 5M aqueous potassium hydroxide (0.5mL) and heated at 100°C for 15h. The mixture was adjusted to ~ pH 7 with cone. HCl and the organic phase was separated. The aqueous was extracted with butan-1-ol and the combined organic phase was evaporated under reduced pressure to give the subtitle compound, 0.1g.

1H NMR DMSO-d_6: δ 6.88 (IH, s), 6.69 (2H, s), 5.67 (2H, s), 5.45 (IH, d), 4.11 - 4.03 (IH, m), 3.83 (3H, s), 3.59 (2H, s), 3.43 (2H, s), 3.39 - 3.33 (IH, m), 3.28 - 3.22 (IH, m), 2.04 (3H, s), 1.58 - 1.46 (IH, m), 1.31 - 0.99 (3H, m), 0.90 - 0.82 (2H, m), 0.77 (3H, t)

(ii) (S)-Methyl 2-(4-((2-amino-4-(1-hydroxyhexan-2-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetate

Concentrated hydrochloric acid (1mL) was added to a stirred solution of the product from step (i) (0.1g) in MeOH (2mL) and the mixture was heated at 70°C for 2h. The mixture was allowed to cool and then poured into saturated aqueous NaHCO$_3$ solution (5mL). The mixture was adjusted to pH ~7 by adding NaHCO$_3$ and the aqueous was extracted with EtOAc. The combined organic phase was dried, filtered and evaporated. The crude product was purified by RPHPLC to give the title compound, 0.014g.
Example 33

(S)-Methyl 2-(4-((2-amino-4-(1-hydroxyheptan-3-ylammo)-6-methylpyrimidin-5-yl)methyl)-3-fluorophenyl)acetate

(i) (4-((2-Amino-4-chloro-6-methylpyrimidin-5-yl)methyl)-3-fluorophenyl)methanol

A solution of diisobutylaluminium hydride (1M in hexanes, 8.8mL) was added dropwise over 10min to a suspension of the product from example 22 step (iii) (0.78g) in THF (10mL) at 0°C. The mixture was allowed to warm to rt and stirred for 1h. EtOAc (10mL) was added and then the mixture stirred for 10min before being added to ice/water (100mL). The mixture was stirred for 30min and then diluted with EtOAc (50mL). The organic phase was separated and the aqueous was extracted with EtOAc. The combined organic phase was dried, filtered and evaporated to afford the subtitle compound, 0.3g.

1H NMR (DMSO-d6); δ 7.11 (d, IH), 7.04 (d, IH), 6.89 (s, IH), 6.84 (dd, 2H), 5.27 (t, IH), 4.46 (d, 2H), 3.92 (s, 2H), 2.21 (s, 3H)

(ii) 4-Chloro-5-(4-(chloromethyl)-2-fluorobenzyl)-6-methylpyrimidin-2-amine

Thionyl chloride (0.078mL) was added to a stirred solution of the product from step (i) (0.30g) in DCM (5mL). The mixture was stirred at rt for 1h and then the solvent was evaporated under reduced pressure. The crude product was purified by column chromatography to give the subtitle compound, 0.13g.

1H NMR (DMSO-d6); δ 7.29 (d, IH), 7.19 (d, IH), 6.96 - 6.87 (m, 3H), 4.73 (s, 2H), 3.94 (s, 2H), 2.22 (s, 3H)
(iii) 2-(4-((2-Amino-4-chloro-6-methylpyrimidin-5-yl)methyl)-3-fluorophenyl)acetonitrile

Potassium cyanide (0.056g) was added to a stirred solution of the product from step (ii) (0.13g) in DMSO (1mL) and DMF (1mL). The mixture was stirred at rt for 15h and then diluted with EtOAc (10mL). The organic phase was washed with water and brine then dried, filtered and evaporated to give the subtitle compound, 0.12g.

1H NMR DMSO-d_6: δ 7.20 (d, 1H), 7.11 (d, 1H), 6.97 - 6.88 (m, 3H), 4.03 (s, 2H), 3.93 (s, 2H), 2.22 (s, 3H)

(iv) (S)-2-(4-((2-Amino-4-(1-hydroxyheptan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-fluorophenyl)acetonitrile

(S)-3-Aminoheptan-1-ol (0.135g) was added to a stirred solution of the product from step (iii) (0.12g) in NMP (2mL). The mixture was heated at 150°C for 48h, and then at 170°C for a further 8h. The mixture was allowed to cool, diluted with water (10mL) and the aqueous extracted with EtOAc. The combined organic phase was dried and evaporated. The crude product was purified by column chromatography, to give the subtitle compound, 0.11g.

1H NMR DMSO-d_6: δ 7.17 (d, 1H), 7.05 (d, 1H), 6.86 (dd, 1H), 5.87 (s, 2H), 4.38 (t, 1H), 4.26 - 4.16 (m, 1H), 4.01 (s, 2H), 3.75 (s, 2H), 3.37 - 3.33 (m, 2H), 1.96 (s, 3H), 1.65 - 1.36 (m, 4H), 1.31 - 1.05 (m, 4H), 0.79 (t, 3H)

(v) (S)-2-(4-((2-Amino-4-(1-hydroxyheptan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-fluorophenyl)acetic acid

A 5M aqueous solution of potassium hydroxide (0.58mL) was added to a stirred solution of the product from step (iv) (0.11g) in MeOH (1.5mL). The mixture was heated at 70°C for 15h. The solvent was evaporated under reduced pressure and the aqueous residue was adjusted to pH ~7 with concentrated HCl. The aqueous was extracted with EtOAc and the combined organic phase was dried, filtered and evaporated to the subtitle compound, 0.102g.
1H NMR DMSO- J 6: δ 7.03 (d, IH), 6.87 (d, IH), 6.75 - 6.68 (m, IH), 5.78 - 5.66 (m, 3H), 4.25 - 4.14 (m, IH), 3.82 - 3.70 (m, 2H), 3.69 (s, 2H), 3.58 (s, 2H), 3.45 - 3.37 (m, 2H), 1.96 (s, 3H), 1.62 - 1.53 (m, IH), 1.51 - 1.37 (m, 3H), 1.30 - 1.08 (m, 4H), 0.80 (t, 3H).

(vi) (S)-Methyl 2-((2-amino-4-(1-hydroxyheptan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-fluorophenyl)acetate

Concentrated sulfuric acid (0.3mL) was added to a stirred solution of the product from step (v) (0.08g) in MeOH (1mL) and the mixture was heated to 70°C for 2h. The mixture was allowed to cool, diluted with water (2mL) and neutralised with NaHCO₃. The aqueous was extracted with EtOAc and the combined organic phase was dried and evaporated. The crude product was purified by RPHPLC to give the title compound, 0.005g.

1H NMR DMSO- J 6: δ 7.09 (d, IH), 6.95 (d, IH), 6.78 (dd, IH), 5.83 (d, IH), 5.71 (s, 2H), 4.39 (t, IH), 4.25 - 4.15 (m, IH), 3.72 (s, 2H), 3.66 (s, 2H), 3.60 (s, 3H), 3.37 - 3.33 (m, 2H), 1.95 (s, 3H), 1.65 - 1.54 (m, 2H), 1.53 - 1.35 (m, 2H), 1.30 - 1.04 (m, 4H), 0.79 (t, 3H).

LC-MS m/z 419 multimode+

Example 34

Methyl 2-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate, benzene sulphonic acid salt

(i) Ethyl 3-oxo-2-(((tetrahydro-2H-pyran-2-yloxy)methyl)benzyl)butanoate

Ethyl acetoacetate (11.7ml) was added to a stirred suspension of sodium hydride (60% disp. in oil, 3.8g) in THF (200ml) at 0°C under nitrogen. After 1h, a solution of 2-((chloromethyl)benzyl)oxy)tetrahydro-2H-pyran (22.2g) in THF (50ml) was added, the mixture
warmed to rt, then potassium iodide (16g) added and heated under reflux for 48h. The mixture was partitioned between water and ether, the organics separated, washed with water, dried and evaporated under reduced pressure. The residue was purified by column chromatography eluting with 20% EtOAc in isohexane to afford the subtitle compound, 15.66g.

LC-MS m/z 333 APCI-

(ii) 2-Amino-6-methyl-5-(4-((tetrahydro-2H-pyran-2-yl)oxy)methyl)benzyl)pyrimidin-4-ol
A mixture of the product from step (i) (15.66g) and guanidine carbonate (8.7g) in EtOH (150ml) was heated under reflux for 48h. The mixture was cooled, the solvent removed under reduced pressure and the residue triturated with water. The solid was filtered, washed with water then diethylether and dried to afford the subtitle compound, 11.58g.

1H NMR DMSO-d_6: δ 7.18 (d, 2H); 7.14 (d, 2H); 4.64 (t, IH); 4.61-4.35 (m, 2H); 3.81-3.75 (m, IH); 3.62 (s, 2H); 3.48-3.43 (m, IH); 1.96 (s, 3H); 1.74-1.60 (m, 2H); 1.53-1.43 (m, 4H)

LC-MS m/z 330 APCI+

(iii) 2-Amino-6-methyl-5-(4-((tetrahydro-2H-pyran-2-yl)oxy)methyl)benzyl)pyrimidin-4-yl 2,4,6-trimethylbenzenesulphonate
2-Mesitylenesulfonyl chloride (3.65g) was added to a stirred mixture of the product from step (ii) (5g), TEA (4.2ml) and DMAP (0.2g) in DCM (100ml) at rt under nitrogen. The mixture was stirred at rt for 4h then partitioned between DCM and water. The organics were separated, washed with aq NaHCO$_3$ soln, water, dried and evaporated under reduced pressure to afford the subtitle compound, 6.49g.

LC-MS m/z 512 APCI+

(iv) 6-Methyl-N4-pentyl-5-(4-((tetrahydro-2H-pyran-2-yl)oxy)methyl)benzyl)pyrimidine-2,4-diamine
A mixture of the product from step (iii) (6.49g) and n-pentylamine (7.34ml) in 1-butanol was heated under reflux for 24h. The solvent was evaporated and the residue partitioned between EtOAc and water. The organics were separated, dried and evaporated under reduced pressure. The residue was purified by column chromatography eluting with 8% MeOH/DCM to afford the subtitle compound, 3.4g.
LC-MS m/z 399 APCI+

(v) (4-((2-Amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)methanol
2M HCl (10ml) was added to a stirred solution of the product from step (iv) (3.4g) in MeOH (30ml). The mixture was stirred at rt for 3 days then the solvent evaporated under reduced pressure. The residue was partitioned between DCM/aq NaHCO₃ solution, the organics separated, dried and evaporated under reduced pressure to afford the subtitle compound, 2.38g. LC-MS m/z 315 APCI+

(vi) 5-(4-(Chloromethyl)benzyl)-6-methyl-N4-pentylpyrimidine-2,4-diamine
Thionyl chloride (1ml) was added to a mixture of the product from step (v) (1.2g) in DCM (20ml) and stirred at rt for 2h. The solvent was evaporated under reduced pressure and the residue used crude in the next step.

(vii) 2-(4-((2-Amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetonitrile
Potassium cyanide (0.75g) was added to a solution of the crude product from step (vi) in DMSO (10ml) and DMF (10ml). The mixture was stirred at rt for 18h, then partitioned between EtOAc/water. The organics were separated, washed with aq NaHCO₃ solution, dried and evaporated under reduced pressure to afford the subtitle compound, 1.2g. LC-MS m/z 324 APCI+

(viii) 2-(4-((2-Amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetic acid
A mixture of the product from step (vii) (1.2g) and KOH (5M in water, 5ml) in MeOH (15ml) was heated under reflux for 18h. The solvent was evaporated under reduced pressure and the residue dissolved in water (15ml). The solution was adjusted to pH7 with 2M HCl then the solid filtered, washed with water then ether to afford the subtitle compound, 1.13g LC-MS m/z 343 multimode+

(ix) Methyl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate, benzene sulphonic acid salt
2M HCl in ether (2ml) was added to a mixture of the product from step (viii) (0.1g) in MeOH (5ml) and the mixture stirred at rt for 18h. The solvent was evaporated and the residue purified
by RPHPLC. The gum (0.06g) was dissolved in MeCN (2ml) then benzenesulphonic acid (0.027g) added and the solvent evaporated under reduced pressure. The residue was triturated with ether and filtered to afford the title compound, 0.069g.

1H NMR DMSO-d_6: δ 11.87 (s, 1H); 7.93 (t, 1H); 7.62-7.59 (m, 2H); 7.41-7.25 (m, 4H); 7.18 (d, 2H); 7.09 (d, 2H); 3.82 (s, 2H); 3.63 (s, 2H); 3.59 (s, 3H); 3.39-3.34 (m, 2H); 2.18 (s, 3H); 1.51-1.44 (m, 2H); 1.27-1.07 (m, 4H); 0.81 (t, 3H)

LC-MS m/z 357 multimode+

Example 35

2-Morpholinoethyl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate, benzene sulphonic acid salt

A solution of Ti_2P (1.57M in THF, 0.28ml) was added to a mixture of the product from example 34 step (viii) (0.1g), 4-(2-hydroxyethyl)morpholine (0.06g), TEA (0.14ml) and DMAP (0.01g) in DMF (5ml) and stirred at rt for 24h. The mixture was partitioned between DCM/water, the organics separated, washed with aq NaHCO$_3$ soln, brine, dried and evaporated under reduced pressure. The residue was purified by RPHPLC to give a gum, 0.06g. The gum was dissolved in MeCN (4ml) and benzene sulphonic acid (0.021g) was added, the solution evaporated under reduced pressure and the residue triturated with ether/EtOAc and the solid filtered and dried to afford the title compound, 0.042g.

1H NMR DMSO-d_6: δ 11.85 (brs, 1H); 7.94 (brs, 1H); 7.60 (m, 2H); 7.40-7.26 (brm, 4H); 7.20 (d, 2H); 7.09 (d, 2H); 4.14 (s, 2H); 3.82 (s, 2H); 3.62 (s, 2H); 3.52 (s, 4H); 3.37-3.31 (m, 2H); 2.37 (brs, 4H); 1.50-1.45 (m, 2H); 1.26-1.11 (m, 4H); 0.81 (t, 3H)

LC-MS m/z 456 multimode+

Example 36
2-(Dimethylamino)ethyl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate

A solution of TP (1.57M in THF, 0.42ml) was added to a mixture of the product from example 34 step (viii) (0.15g), N,N-dimethylethanolamine (0.08ml), TEA (0.3ml) and DMAP (0.02g) in DMF (5ml) and stirred at rt for 24h. The mixture was partitioned between DCM/water, the organics separated, washed with aq NaHCO₃ soln, brine, dried and evaporated under reduced pressure. The residue was purified by RPHPLC, then the product dissolved in MeCN (10ml) and PS-TBD (0.1g) added and left for 2h. The mixture was filtered, the solvent evaporated under reduced pressure and the residue triturated with isohexane and filtered to afford the title compound, 0.034g.

1H NMR DMSO-d_6: δ 7.14 (d, 2H); 7.04 (d, 2H); 6.14 (t, IH); 5.63 (s, 2H); 4.08 (t, 2H); 3.71 (s, 2H); 3.58 (s, 2H); 3.26-3.22 (m, 2H); 2.43 (t, 2H); 2.12 (s, 6H); 1.99 (s, 3H); 1.47-1.40 (m, 2H); 1.27-1.13 (m, 4H); 0.82 (t, 3H)

LC-MS m/z 414 multimode+

Example 37

3-(Dimethylamino)propyl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate

The title compound was prepared using the same method as example 36.
Example 38

2-(4-Methylpiperazin-1-yl)ethyl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate, di benzene sulphonic acid

The title compound was prepared using the same method as example 36. The dibenzene sulphonic acid salt was prepared by dissolving the product (0.098g) in MeCN (4ml) then benzene sulphonic acid (0.066g) was added and the solution evaporated under reduced pressure to afford the title compound.

\[^1 \text{H NMR DMSO-}^6 \delta \ 7.13 \ (s, \ 2H) ; 7.04 \ (s, \ 2H) ; 6.14 \ (t, \ IH) ; 5.63 \ (s, \ 2H) ; 4.02 \ (t, \ 2H) ; 3.71 \ (s, \ 2H) ; 3.58 \ (s, \ 2H) ; 3.26-3.22 \ (m, \ 2H) ; 2.18 \ (t, \ 2H) ; 2.06 \ (s, \ 6H) ; 2.00 \ (s, \ 3H) ; 1.69-1.62 \ (m, \ 2H) ; 1.47-1.40 \ (m, \ 2H) ; 1.27-1.12 \ (m, \ 4H) ; 0.82 \ (t, \ 3H) \]

LC-MS m/z 428 multimode+

Example 39

Methyl 2-(3-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)-4-hydroxyphenyl)acetate

\[^1 \text{H NMR DMSO-}^6 \delta \ 11.89 \ (s, \ IH) ; 9.31 \ (s, \ IH) ; 7.95 \ (s, \ 1H) ; 7.61-7.30 \ (m, \ 12H) ; 7.19 \ (d, \ 2H) ; 7.10 \ (d, \ 2H) ; 4.15 \ (s, \ 2H) ; 3.82 \ (s, \ 2H) ; 3.63 \ (s, \ 2H) ; 3.37 \ (brs, \ 4H) ; 3.00 \ (brs, \ 4H) ; 2.79 \ (s, \ 3H) ; 2.18 \ (s, \ 3H) ; 1.49-1.45 \ (m, \ 2H) ; 1.23-1.07 \ (m, \ 4H) ; 0.81 \ (t, \ 3H) \]

LC-MS m/z 469 multimode+
(i) 2-Amino-4-chloro-6-(pentylamino)pyrimidine-5-carbaldehyde
A mixture of 2-amino-4,6-dichloropyrimidine-5-carbaldehyde (30g), pentylamine (18.5ml) and TEA (22ml) in MeOH (600ml) were heated under reflux for 3h then partitioned between EtOAc/water. The organics were separated, washed with water, dried and evaporated under reduced pressure. The residue was tritivated with ether/iso-hexane to afford the subtitle compound, 20g.
LC-MS m/z 243/5 APCI+

(ii) 2-Amino-4-methyl-6-(pentylamino)pyrimidine-5-carbaldehyde
A mixture of the product from step (i) (20g), tetramethyltin (20ml) and tetrakis(triphenylphosphine)palladium (0) (2g) in DMF (200ml) was heated at 100°C for 16h then evaporated under reduced pressure. The residue was partitioned between EtOAc/brine, the organics separated, dried and evaporated under reduced pressure. The residue was purified by chromatography on silica eluting with 50-60% EtOAc/isohexane to afford the subtitle compound, 14.4g.
LC-MS m/z 223 APCI+

(iii) (2-Amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methanol
Sodium borohydride (0.6g) was added to a solution of the product from step (ii) (2g) in MeOH (30ml) at 0-5°C. The mixture was warmed to rt, stirred for 3h then the solvent evaporated under reduced pressure. The residue was partitioned between EtOAc and brine, the organics separated, dried and evaporated under reduced pressure to afford the subtitle compound, 1.78g.
\[^1\text{H NMR DMSO-J}_6; \delta 6.14 \text{ (t, IH)} ; 5.73 \text{ (s, 2H)} ; 4.64 \text{ (t, IH)} ; 4.30 \text{ (d, 2H)} ; 3.30-3.25 \text{ (m, 2H)} ; 2.10 \text{ (s, 3H)} ; 1.54-1.47 \text{ (m, 2H)} ; 1.34-1.24 \text{ (m, 4H)} ; 0.87 \text{ (t, 3H)} \]

(iv) Methyl 2-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)-4-hydroxyphenyl)acetate
A mixture of the product from step (iii) (1.5g) and 4-hydroxyphenylacetic acid (1.02g) in water (35ml) and 2M HCl (5ml) was heated at 100°C for 48h, cooled and evaporated under reduced pressure. The residue was azeotroped with toluene and the residue dissolved in MeOH (20ml). Cone. HCl (ImI) was added and the mixture stirred at rt for 4h then
The residue was partitioned between EtOAc/aq NaHCO₃ soln, the organics separated, dried and evaporated under reduced pressure. The residue was purified by column chromatography eluting with 8% MeOH/DCM to give a solid which was then purified by RPHPLC to afford the title compound, 0.23g.

1H NMR DMSO-δ6: δ 9.66 (s, 1H); 6.87 (d, 1H); 6.76 (d, 1H); 6.66 (s, 1H); 6.05 (brs, 1H); 5.61 (s, 2H); 3.56 (s, 2H); 3.54 (s, 3H); 3.43 (s, 2H); 3.25-3.20 (m, 2H); 2.07 (s, 3H); 1.48-1.40 (m, 2H); 1.28-1.14 (m, 4H); 0.83 (t, 3H)

LC-MS m/z 373 multimode+

Example 40

Methyl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)-3-methoxyphenoxy)acetate

(i) Ethyl 2-(4-(benzyloxy)-2-methoxybenzylidene)-3-oxobutanoate

A solution of 4-(benzyloxy)-2-methoxybenzaldehyde (28.3g), ethyl acetoacetate (18ml), acetic acid (1.74ml) and piperidine (0.56ml) in toluene (400ml) was heated under reflux for 48h. A solution of acetic acid (1.74ml) and piperidine (0.56ml) in toluene (10ml) was added and the solution heated under reflux for a further 48h. The solvent was evaporated under reduced pressure and the residue partitioned between EtOAc and brine. The organics were separated, washed with aq NaHCO₃ soln, 1M HCl, brine, dried and evaporated under reduced pressure to give the subtitle compound, 40g (used crude in next step).

(ii) Ethyl 2-(4-hydroxy-2-methoxybenzyl)-3-oxobutanoate

A mixture of the product from step (i) (40g) and 5% Pd-C (3g) in EtOAc were hydrogenated at 3Bar for 48h. The mixture was filtered through celite and evaporated
under reduced pressure. The residue was purified by column chromatography eluting with 30% EtOAc/iso-hexane to afford the subtitle compound, 23.35g.

LC-MS m/z 265 APCI-

(iii) 2-Amino-5-(4-hydroxy-2-methoxybenzyl)-6-methylpyrimidin-4-ol
A mixture of the product from step (ii) (23.35g) and guanidine carbonate (15.9g) in EtOH (300ml) was heated under reflux for 24h. The mixture was cooled and the solid filtered and washed with EtOH, water, EtOH then diethyl ether and dried to afford the subtitle compound, 11.36g.

1H NMR DMSO-\(\text{J}_6\): \(\delta\) 9.10 (s, IH); 6.61 (d, IH); 6.35 (s, IH); 6.27 (s, 2H); 6.20 (d, IH); 3.74 (s, 3H); 3.42 (s, 2H); 1.92 (s, 3H)

(iv) 4-((2-Amino-4-(mesitylsulfonyloxy)-6-methylpyrimidm-5-yl)methyl)-3-methoxyphenyl 2,4,6-trimethylbenzenesulfonate
2-Mesitylenesulfonyl chloride (5.25g) was added to a mixture of the product from step (iii) (5g), TEA (7ml) and DMAP (120mg) in DCM (100ml) and stirred at rt for 24h. DMF (10ml) was added and the mixture heated under reflux for 12h. Another portion of 2-mesitylenesulfonyl chloride (2g) was added and heated under reflux for a further 24h. The mixture was partitioned between DCM/water, the organics separated, washed with aq NaHCO\(_3\) soln, brine, dried and evaporated under reduced pressure. The residue was triturated with ether/iso-hexane and filtered to afford the subtitle compound, 9.515g.

LC-MS m/z 626 APCI+

(v) 4-((2-Amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)-3-methoxyphenol
A mixture of the product from step (iv) (9.51g) and pentyamine (12ml) in dioxane (100ml) was heated under reflux for 48h. The solvent was evaporated and the residue partitioned between EtOAc/water. The organics were separated, washed with aq NaHCO\(_3\) soln, water, dried and evaporated under reduced pressure. The residue was dissolved in MeOH (200ml) then aq NaOH (2M, 40ml) added and the mixture heated under reflux for 6h. The mixture was acidified to pH 7 with aq 2M HCl, the solvent evaporated under reduced pressure and the residue partitioned between DCM/water. The organics were separated, washed with aq NaHCO\(_3\) soln, brine, dried and evaporated under reduced
pressure. The residue was triturated with ethyl acetate and filtered to afford the subtitle compound, 2.43g.

\[\text{H NMR DMSO-} \delta 9.24 (s, 1H); 6.56-6.54 (m, 2H); 6.43 (s, 1H); 6.29 (s, 2H); 6.23 (d, 1H); 3.78 (s, 3H); 3.51 (s, 2H); 3.27 (q, 2H); 2.04 (s, 3H); 1.48-1.40 (m, 2H); 1.29-1.11 (m, 4H); 0.83 (t, 3H)

LC-MS m/z 331 APCI+

(vi) Methyl 2-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)-3-methoxyphenoxy)acetate

Methyl bromoacetate (57ul) was added to a mixture of the product from step (v) (0.2g) and \(\text{K_2CO}_3 \) (0.25 Ig) in DMF (10ml) and the mixture stirred at rt for 24h. The mixture was partitioned between EtOAc/water, the organics separated, dried and evaporated under reduced pressure. The residue was purified by RPHPLC to afford the title compound, 0.057g

\[\text{H NMR DMSO-} \delta 6.60-6.58 (m, 2H); 6.35 (dd, 1H); 5.92 (t, 1H); 5.62 (s, 2H); 4.73 (s, 2H); 3.83 (s, 3H); 3.68 (s, 3H); 3.52 (s, 2H); 3.22 (m, 2H); 1.97 (s, 3H); 1.46-1.39 (m, 2H); 1.27-1.09 (m, 4H); 0.83 (t, 3H)

LC-MS m/z 403 multimode+

Example 41

Methyl 2-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)phenyl acetate, benzene sulphonic acid

(i) 2-Amino-5-(4-(hydroxymethyl)benzyl)-6-methylpyrimidin-4-ol

Cone. HCl (4ml) was added to a mixture of the product from example 34 step (ii) (5.2g) in MeOH (100ml) at rt and stirred for 30min. The solvent was evaporated under reduced pressure and the residue dissolved in water (150ml). Aq sat. NaHCO\textsubscript{3} soln was added until
basic then the solid filtered, washed with water, ether and dried to afford the subtitle compound, 3.48g.

LC-MS m/z 246 APCI+

(ii) 2-Amino-5-(4-(chloromethyl)benzyl)-6-methylpyrimidin-4-ol, hydrochloride

Thionyl chloride (6ml) was added to a mixture of the product from step (i) (2.38g) in DCM (80ml) and the mixture stirred at rt under nitrogen for 18h. The mixture was evaporated under reduced pressure to afford the subtitle compound, used crude in next step.

LC-MS m/z 264/266 APCI+

(iii) 2-(4-((2-Amino-4-hydroxy-6-methylpyrimidin-5-yl)methyl)phenyl)acetonitrile

Potassium cyanide (2g) was added to a solution of the product from step (ii) in DMF (20ml) and DMSO (10ml) and the mixture stirred at rt for 18h. The mixture was flushed with nitrogen for 20min, then diluted with brine (80ml), stirred for 10min and the precipitate filtered, washed with water then ether and dried to afford the subtitle compound, 2.46g.

1H NMR DMSO-d_6: δ 10.92 (s, 1H); 7.22-7.17 (m, 4H); 6.41 (s, 2H); 3.95 (s, 2H); 3.63 (s, 2H); 1.99 (s, 3H)

(iv) 2-Amino-5-(4-(cyanomethyl)benzyl)-6-methylpyrimidin-4-yl 2,4,6-trimethylbenzenesulfonate

A mixture of the product from step (iii) (3.4g), 2-mesitylenesulfonyl chloride (3.51g), TEA (5.59ml) and DMAP (82mg) was stirred at rt for 18h. The mixture was partitioned between DCM/water, the organics separated, washed with aq. NaHCO$_3$ soln, water, dried and evaporated under reduced pressure. The residue was triturated with ether/ethylacetate and filtered to afford the subtitle compound, 5.08g.

LC-MS m/z 437 APCI+

(v) 2-(4-((2-Amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)phenyl)acetonitrile

A mixture of the product from step (iv) (0.3g) and butylamine (1mL) in 1,4-dioxane (6ml) was sealed into a microwave tube and the reaction was performed in the CEM Microwave,
at 160°C and IOOW for 1h. The solvent was evaporated under reduced pressure and the residue used crude in the next step.

(vi) 2-(4-((2-Amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)phenyl)acetic acid

The product from step (v) in MeOH (10ml) and 5M KOH in water (3ml) was heated under reflux for 18h. The mixture was neutralised with acetic acid then purified by RPHPLC to afford the subtitle compound, 0.168g.

\[\text{1H NMR DMSO-}^6: \delta 7.06 \text{ (d, 2H); 6.91 (d, 2H); 6.11 (t, IH); 5.64 (s, 2H); 3.67 (s, 2H); 3.27-3.22 (m, 2H); 3.15 (s, 2H); 2.00 (s, 3H); 1.47-1.40 (m, 2H); 1.26-1.17 (m, 2H); 0.84 (t, 3H) \]

(vii) Methyl 2-(4-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)phenyl)acetate, benzene sulphonic acid

A mixture of the product from step (vi) (0.146g) and 4M HCl in dioxane (3ml) in MeOH (7ml) was stirred at rt for 18h. The solvent was evaporated and the residue purified by RPHPLC to afford the ester, 0.098g. The ester was dissolved in MeCN (4ml) then benzene sulphonic acid (0.045g) added. The solvent was evaporated to give a solid which was triturated with ether and filtered to afford the title compound, 0.111g.

\[\text{1H NMR DMSO-}^6: \delta 11.88 \text{ (s, IH); 7.93 (t, IH); 7.62-7.59 (m, 2H); 7.37-7.28 (m, 4H); 7.18 (d, 2H); 7.09 (d, 2H); 3.82 (s, 2H); 3.63 (s, 2H); 3.59 (s, 3H); 3.39-3.34 (m, 2H); 2.18 (s, 3H); 1.49-1.42 (m, 2H); 1.21-1.11 (m, 2H); 0.82 (t, 3H) \]

LC-MS m/z 343 multimode+

Example 42

(S)-Methyl 2-(3-((2-amino-4-(1-hydroxyhexan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)-4-fluorophenyl)acetate

![Chemical structure image]
(i) Methyl 4-fluoro-3-methylbenzoate
Thionyl chloride (5.68 ml) was added dropwise to a solution of 4-fluoro-3-methylbenzoic acid (10 g) in MeOH (150 mL) at O°C over a period of 10 minutes under nitrogen. The resulting mixture was stirred at rt for 24h. The solvent was removed and the residue diluted with EtOAc, washed with sat. NaHCO₃, brine, dried, filtered and evaporated to afford the subtitle compound, 9.85 g.
LC-MS m/z 169 ESI

(ii) Methyl 3-(bromomethyl)-4-fluorobenzoate
NBS (14.60 g) and AIBN (2.89 g) were added to a solution of the product from step (i) (9.85 g) in EtOAc (200 mL). The resulting mixture was stirred at 80°C for 20h. After cooling the mixture was washed with sat. sodium thiosulphate, brine, dried, filtered and the solvent removed. The crude product was purified using chromatography, to give the subtitle compound, 5.30 g.
LC-MS m/z 248 ESI

(iii) Methyl 3-((2-ammo-4-chloro-6-methylpyrimidm-5-yl)methyl)-4-fluorobenzoate
The subtitle compound was prepared using the product of step (ii) and the method of example 22 steps (i)-(iii).

1H NMR DMSO-d6: δ 7.92 - 7.87 (m, 1H), 7.51 - 7.49 (m, 1H), 7.37 (dd,1H), 6.98 (s, 2H), 4.01 (s, 2H), 3.81 (s, 3H), 2.23 (s, 3H)
LC-MS m/z 310 ESI

(iv) 2-(3-((2-Ammo-4-chloro-6-methylpyrimidm-5-yl)methyl)-4-fluorophenyl)acetonitrile
The subtitle compound was prepared using the product of step (iii) and the method of example 30 steps (i)-(iii).

1H NMR DMSO-d6: δ 7.27 - 7.20 (m, 2H), 6.95 - 6.87 (m, 3H), 3.97 (s, 2H), 3.95 (s, 2H), 2.22 (s, 3H)
LC-MS m/z 291 ESI.
(v) (S)-2-(3-((2-Amino-4-(1-hydroxyhexan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)-4-fluorophenyl)acetonitrile

(S)-3-Aminohexan-1-ol (101mg) was added to a stirred solution of the product from step (iv) (100mg) in butan-1-ol (2mL). The reaction was performed in a microwave, at 180°C for 2h. The solvent was removed and the crude product was purified using chromatography, to give the subtitle compound, 70mg.

1H NMR DMSO d-6: δ 6.99 (s, 1H), 6.93 - 6.77 (m, 5H), 4.70 (t, 1H), 4.26 - 4.17 (m, 1H), 3.98 (s, 2H), 3.86 (s, 3H), 3.69 (s, 2H), 3.43 - 3.33 (m, 2H), 2.12 (s, 3H), 1.39 - 1.27 (m, 2H), 1.15 - 1.03 (m, 2H), 0.79 (t, 3H)

LC-MS m/z 370 ESI

(vi) (S)-Methyl 2-(3-((2-amino-4-(1-hydroxyhexan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)-4-fluorophenyl)acetate

Aq. 5M KOH (0.5mL) was added to a stirred solution of the product from step (v) (70mg) in butan-1-ol (1mL) and heated to 100°C for 15h. The mixture was allowed to cool, diluted with water (2mL) and then adjusted to pH 7 with cone. HCl. The organic phase was separated and the aqueous was extracted with butan-1-ol (5 mL). The combined organic extracts were evaporated, the residue was dissolved in MeOH and cone. HCl (0.3 mL) was added and the mixture heated to 70°C for 1h. After cooling the reaction was poured into sat. NaHCO$_3$ (10 mL) and extracted with EtOAc, dried and the solvent removed. The crude product was purified by RPHPLC to afford the title compound as a colourless gum, 22mg.

1H NMR DMSO d-6: δ 7.12 - 7.06 (m, 2H), 6.76 (d, 1H), 5.83 (d, 1H), 5.72 (s, 2H), 4.38 (t, 1H), 4.30 - 4.17 (m, 1H), 3.73 (s, 2H), 3.58 - 3.51 (m, 5H), 3.39 - 3.34 (m, 2H), 1.95 (s, 3H), 1.68 - 1.33 (m, 4H), 1.30 - 1.11 (m, 2H), 0.80 (t, 3H)

LC-MS m/z 405 multimode+

Example 43

(S)-Methyl 2-((2-amino-4-(1-hydroxypentan-2-ylamino)-6-methylpyrimidin-5-yl)methyl)phenyl)acetate, benzenesulphonic acid salt
To the product from example 41 step (iv) (300mg) in butanol (2ml), (S)-(+-) - 2- amino - 1- pentanol (213mg) was added and the reaction mixture heated in a microwave, at 180°C for 2h. The solvent was evaporated under reduced pressure and the crude product was purified using chromatography, to give the subtitle compound, 150mg.

I H NMR DMSO d-6: \(\delta \) 7.26 (2H), 7.20 - 7.15 (m, 2H), 6.74 (s, 2H), 6.29 (s, 1H), 4.67 (t, 1H), 4.25 - 4.16 (m, 1H), 3.95 (s, 2H), 3.87 (d, 1H), 3.79 (d, 1H), 3.44 - 3.33 (m, 2H), 2.17 (s, 3H), 1.56 - 1.46 (m, 3H), 1.40 - 1.28 (m, 1H), 1.12 - 1.00 (m, 2H), 0.78 (t, 3H)

LC-MS m/z 340 ESI

Aq. 5M KOH (1 ml) was added to a stirred solution of the product from step (i) (0.15 g) in butan-1-ol (2 mL). The mixture was heated at 100°C for 15h and then allowed to cool. The pH was adjusted to ~ 7 using cone. HCl and the organic phase was separated. The aqueous was extracted with butanol (5mL) and then the combined organics were evaporated under reduced pressure. The crude product was purified by RPHPLC to afford the subtitle compound as a colorless solid, 0.041 g.

LC-MS m/z 359 multimode+

Cone. HCl (0.5mL) was added to a stirred solution of the product from step (ii) (40mg) in MeOH (1mL) and the mixture heated at 70°C for 2h. The mixture was poured into sat aq NaHCO₃ (5mL) and then adjusted to pH ~ 7 with solid sodium bicarbonate. The aqueous
was extracted with EtOAc and the combined organics were dried, filtered and evaporated under reduced pressure. The crude product was purified by RPHPLC to give a gum. The salt was formed as in example 41 step (vii) to give a white solid, 12mg.

\[\text{H NMR DMSO d-6: } \delta \text{ 11.83 (s, 1H), 7.61 - 7.56 (m, 1H), 7.41 - 7.24 (m, 4H), 7.18 (d, 2H), 7.11 (d, 2H), 4.79 - 4.67 (m, 1H), 4.33 - 4.21 (m, 1H), 3.90 (d, IH), 3.81 (d, IH), 3.63 (s, 2H), 3.59 (s, 3H), 3.43 - 3.37 (m, 2H), 2.19 (s, 3H), 1.59 - 1.20 (m, 2H), 1.13 - 1.01 (m, 2H), 0.78 (t, 3H) } \]

LC-MS m/z 373 multimode+

Example 44
(S)-M ethyl 2-(4-((2-amino-4-(l-hydroxyhexan-2-ylamino)-6-methylpyrimidin-5-yl)methyl)phenyl)acetate, benzene sulphonic acid salt

The title compound was prepared by the method of example 43 using (S)-2-amino-l-hexanol. The salt was formed as in example 41 step (vii) to give a white solid, 15mg.

\[\text{H NMR DMSO d-6: } \delta \text{ 7.24 (d, 2H), 7.15 (d, 2H), 6.23 - 6.02 (m, 3H), 4.61 (t, IH), 4.17 - 4.05 (m, IH), 3.97 (s, 2H), 3.82 (d, IH), 3.75 (d, IH), 3.43 - 3.35 (m, 2H), 2.07 (s, 3H), 1.60 - 1.48 (m, IH), 1.37 - 0.97 (m, 5H), 0.77 (t, 3H) } \]

LC-MS m/z 387 multimode+

Example 45
(S)-M ethyl 2-(4-((2-amino-4-(l-hydroxyhexan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-fluorophenyl)acetate
The title compound was prepared by the method of example 33 using (S)-3-aminohexan-l-ol to give a white solid, 102mg.

\(^1\)H NMR DMSO-d6: 7.08 (dd, 1H), 6.95 (dd, 1H), 6.78 (dd, 1H), 5.83 (d, 1H), 5.71 (s, 2H), 4.39 (t, 1H), 4.28 - 4.17 (m, 1H), 3.72 (s, 2H), 3.66 (s, 2H), 3.60 (s, 3H), 3.36 - 3.32 (m, 2H), 1.94 (s, 3H), 1.65 - 1.54 (m, 1H), 1.53 - 1.32 (m, 3H), 1.22 - 1.08 (m, 2H), 0.79 (t, 3H)

LC-MS m/z 405 multimode+

Example 46

Methyl 2-(4-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetate, benzene sulphonic acid salt.

The title compound was prepared by the method of example 30 using butylamine. The salt was formed as in example 41 step (vii) to give a white solid, 140mg.

\(^1\)H NMR DMSO-d6: 6.85 (s, 1H), 6.59 (d, 1H), 6.53 (d, 1H), 5.90 (t, 1H), 5.60 (s, 2H), 3.80 (s, 3H), 3.55 (s, 2H), 3.25 - 3.20 (m, 2H), 3.08 (s, 2H), 1.99 (s, 3H), 1.42 (q, 2H), 1.22 (sextet, 2H), 0.85 (t, 3H)

LC-MS m/z 373 multimode+
Example 47
(S)-Methyl 2-(4-((2-amino-4-(1-hydroxypentan-2-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-fluorophenyl)acetate, benzene sulphonic acid salt

The title compound was prepared by the method of example 33 and (S)-2-aminopentan-l-ol. The salt was formed as in example 41 step (vii) to give a white solid, 34mg.

\[
\begin{align*}
\text{H NMR DMSOd-O: } & \delta 11.88 \text{ (s, IH), } 7.61 - 7.57 \text{ (m, 2H), } 7.47 \text{ (d, IH), } 7.35 - 7.27 \text{ (m, 4H), } 7.13 \text{ (dd, IH), } 7.00 \text{ (dd, IH), } 6.94 \text{ (dd, IH), } 4.72 \text{ (t, IH), } 4.35 - 4.25 \text{ (m, IH), } 3.85 \text{ (s, 2H), } 3.69 \text{ (s, 2H), } 3.60 \text{ (s, 3H), } 3.44 - 3.35 \text{ (m, 2H), } 2.12 \text{ (s, 3H), } 1.59 - 1.46 \text{ (m, IH), } \\
& 1.44 - 1.32 \text{ (m, IH), } 1.28 - 1.06 \text{ (m, 2H), } 0.80 \text{ (t, 3H)}
\end{align*}
\]

LC-MS m/z 390 multimode+

Example 48
(S)-Methyl 2-(4-((2-amino-4-(1-hydroxyhexan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetate, benzene sulphonic acid salt

The title compound was prepared by the method of example 30 using (S)-3-aminohexan-l-ol. The salt was formed as in example 41 step (vii) to give a white solid, 76mg.

\[
\begin{align*}
\text{H NMR DMSOd-6: } & \delta 11.82 \text{ (s, IH), } 7.61 - 7.58 \text{ (m, 2H), } 7.37 \text{ (d, IH), } 7.34 - 7.26 \text{ (m, 5H), } 6.93 \text{ (s, IH), } 6.78 - 6.74 \text{ (m, 2H), } 4.42 - 4.32 \text{ (m, IH), } 3.84 \text{ (s, 3H), } 3.69 \text{ (s, 2H), }
\end{align*}
\]
3.65 (s, 2H), 3.60 (s, 3H), 3.36 - 3.27 (m, 2H), 2.13 (s, 3H), 1.65 - 1.59 (m, 2H), 1.48 - 1.39 (m, 2H), 1.19 - 1.05 (m, 2H), 0.80 (t, 3H)

LC-MS m/z 417 multimode+

Example 49
(S)-Methyl 2-((2-amino-4-(1-hydroxyhexan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)phenyl)acetate, benzene sulphanic acid salt

The title compound was prepared by the method of example 43 using (S)-3-aminoheptan-1-ol. The salt was formed as in example 41 step (vii) to give a white solid, 56mg.

1H NMR DMSOd-6: δ 7.61 - 7.56 (m, 1H), 7.33 - 7.27 (m, 2H), 7.17 (d, 2H), 7.08 (d, 2H), 4.40 - 4.23 (m, 2H), 3.84 - 3.75 (m, 2H), 3.65 - 3.55 (m, 5H), 2.11 (s, 3H), 2.05 - 1.93 (m, 1H), 1.64 - 1.54 (m, 2H), 1.47 - 1.36 (m, 2H), 1.13 - 1.02 (m, 2H), 0.77 (t, 3H)

LC-MS m/z 387 multimode+

Example 50
(S)-Methyl 2-((2-amino-4-(1-hydroxyheptan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)phenyl)acetate, benzene sulphanic acid salt

The title compound was prepared by the method of example 43 using (S)-3-aminoheptan-1-ol. The salt was formed as in example 41 step (vii) to give a white solid, 51mg.

1H NMR DMSOd-6: δ 11.86 - 11.78 (m, 1H), 7.61 - 7.57 (m, 2H), 7.33 - 7.27 (m, 3H), 7.18 (d, 2H), 7.09 (d, 2H), 4.39 - 4.28 (m, 2H), 3.87 - 3.80 (m, 2H), 3.61 (d, 5H), 2.17 (s,
Example 51

Methyl 2-(4-((N-(3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propyl)-1-methylpiperidine-4-carboxamido)methyl)phenyl)acetate, benzene sulphonic acid salt

To the product of example 2 (50mg) in DMF (4ml) and TEA (0.18ml), 1-methylpiperidine-4-carboxylic acid hydrochloride (23.89 mg) was added followed by T3P (1.57M in THF, 0.092 ml). The reaction mixture was stirred for 1h. The solvents were evaporated, the crude product was purified by RPHPLC. The resulting gum was dissolved in MeCN, benzenesulfonic acid was added and the solvent removed to give the title compound as a white solid, 15mg.

¹H NMR DMSO d-6 δ 7.65 - 7.59 (m, 1H), 7.32 - 7.18 (m, 5H), 7.16 - 7.08 (m, 2H), 4.60 - 4.42 (m, 2H), 3.66 - 3.57 (m, 5H), 3.41 - 3.23 (m, 4H), 2.40 - 2.16 (m, 9H), 2.11 (s, 3H), 1.82 - 1.43 (m, 9H), 1.35 - 1.18 (m, 5H), 0.87 (t, 3H)

LC-MS m/z 539 multimode +

Example 52

Methyl 2-(4-((N-(3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propyl)-2-(methylthio)acetamido)methyl)phenyl)acetate
The title compound was prepared by the method of example 51 and 2-(methylthio)acetic acid to give a gum, 27mg.

\[
\text{H NMR DMSO-d}_6: 57.32 - 7.11 (m, 4H), 6.27 - 6.13 (m, 1H), 5.60 - 5.45 (m, 2H), 4.64 - 4.44 (m, 2H), 3.76 - 3.55 (m, 5H), 3.44 - 3.37 (m, 2H), 2.34 - 2.20 (m, 3H), 2.18 - 1.97 (m, 8H), 1.66 - 1.41 (m, 4H), 1.35 - 1.20 (m, 5H), 0.86 (t, 3H)
\]

LC-MS m/z 502 multimode +

Example 53

(S)-Methyl 2-((2-amino-4-(2-hydroxybutylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenylacetate, benzene sulphonic acid salt

(i) (S)-2-(2-Hydroxybutyl)isoindoline-1,3-dione

To 1,2-Benzenedicarboximide (4.29g) in DMF (10ml), (S)-(−)-1,2-epoxybutane (2.1g) was added followed by K₂CO₃ (4.03g) and heated at 60°C for 48h. The reaction was diluted with water, extracted with EtOAc, dried and solvent removed to give the subtitle compound as a white solid, 1.8g.

LC-MS m/z 220 ESI

(ii) (S)-l-Aminobutan-2-ol
To the product from step (i) (0.8g) in MeOH (30ml), hydrazine hydrate (60% in water, 0.6ml) was added and the mixture stirred at rt for 48h. The mixture was acidified with acetic acid, filtered and solvent removed. The product was purified on SCX resin to give the subtitle compound as a gum, 0.3 lg.

\[^1H \text{ NMR DMSOd-6: } \delta 5.54 - 5.28 (m, 3H), 3.45 - 3.32 (m, 1H), 2.52 - 2.39 (m, 2H), 1.46 - 1.20 (m, 2H), 0.85 (t 3H) \]

(iii) (S)-2-(tert-Butyldimethylsilyloxy)butan-l-amine

To the product from step (ii) (310 mg) in DMF (10 mL), tert-butylchlorodimethylsilane (734 mg) was added followed by imidazole (474 mg) and stirred at rt for 24h. The mixture was washed with water and extracted with EtOAc, dried and the solvent removed to give the subtitle compound as a yellow oil, 610mg.

LC-MS m/z 204 ESI

(iv) (S)-2-(4-((2-Ammo-4-(2-hydroxybutylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetonitrile, hydrochloride

The product of step (iii) (605mg) was added to the product of example 30 step (iii) (300mg) in butan-1-ol (3 mL) and stirred at 180°C for 6 h in a microwave. The solvent was removed and the residue dissolved in EtOAc washed with water, dried and solvent removed. The product was purified using chromatography to give the protected compound (105 mg) as a white solid. (LC-MS m/z 470 ESI). This was dissolved in MeOH (5ml) and 2M HCl (Iml) was added and stirred overnight, the solvent was removed to give the subtitle compound as a yellow gum, 80mg.

LC-MS m/z 356 ESI

(v) (S)-Methyl 2-(4-((2-ammo-4-(2-hydroxybutylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetate, benzene sulphonic acid salt

The title compound was prepared using the product of step (iv) (80mg) and the method of example 42 step (vi). The benzene sulphonic acid salt was prepared as a white solid, 15mg.
1H NMR DMSOd-6: δ 11.91 - 11.87 (m, IH), 7.69 - 7.63 (m, IH), 7.63 - 7.56 (m, IH), 7.35 - 7.27 (m, 2H), 3.85 (s, 3H), 3.70 (s, 2H), 3.66 (s, 2H), 3.62 (s, 3H), 3.57 - 3.51 (m, IH), 3.41 - 3.25 (m, 2H), 2.18 (s, 3H), 1.36 - 1.17 (m, 2H), 0.98 - 0.89 (m, 3H)

LC-MS m/z 389 multimode +

Example 54

Methyl 2-(3-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)-4-methoxyphenyl)acetate

\begin{center}
\begin{tikzpicture}
% TikZ code for the structure
\end{tikzpicture}
\end{center}

(i) 2-Amino-4-chloro-6-(pentylamino)pyrimidine-5-carbaldehyde

To 2-mmino-4,6-dichloropyrimidine-5-carbaldehyde (30g) in MeOH (600ml) and TEA (22ml), pentyamine (18.5ml) was added and heated at reflux for 3h. The solvent was removed and the residue partitioned between EtOAc and water, the organic layer was dried and the solvent evaporated. The residue was triturated with ether/isohexane to give the subtitle compound as a solid, 20.2g.

LC-MS m/z 243 APCI +

(ii) 2-Amino-4-methyl-6-(pentylamino)pyrimidine-5-carbaldehyde

To the product from step (i) (20g) in DMF (200ml), Pd(PPh\textsubscript{3})\textsubscript{4} (2g) was added followed by SnMe\textsubscript{4} (20ml) and the mixture heated at 100°C for 16h. The solvent was evaporated and the residue partitioned between EtOAc and brine, the organics were dried and solvent removed. The product was purified by silica chromatography to give the subtitle compound, 14.4g.

LC-MS m/z 233 APCI +

(iii) (2-Amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methanol
To the product from step (ii) (4g) in MeOH (50ml), sodium borohydride (0.7g) was added portionwise over 5min. The mixture was stirred at rt for 1h then the solvent removed under reduced pressure. The residue was separated, dried and evaporated under reduced pressure to give the subtitle compound, 3.89g.

LC-MS m/z 225 APCI+

(iv) 2-(3-((2-Amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)-4-methoxyphenyl)acetic acid

To the product from step (iii) (0.8g) in 1M aq HCl (20ml), 4-methoxyphenylacetic acid (1.8g) was added and heated under reflux for 48h. The solvent was evaporated and the residue purified by SCX then by RPHPLC to give the subtitle compound, 164mg.

LC-MS m/z 373 APCI+

(v) Methyl 2-(3-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)-4-methoxyphenyl)acetate

A solution of the product from step (iv) (135mg) in MeOH (5ml) and 4M HCl in dioxane (0.5ml) was stirred at rt for 18h. The solvent was evaporated and the residue purified by RPHPLC to give the title compound as a solid, 31mg.

1H NMR DMSO-d6: δ 7.05 (d, 1H), 6.93 (d, 1H), 6.65 (s, 1H), 5.97 (t, 1H), 3.84 (s, 3H), 3.60 (s, 2H), 3.54 (s, 3H), 3.48 (s, 2H), 3.26-3.19 (m, 2H), 1.98 (s, 3H), 1.48-1.38 (m, 2H), 1.29-1.14 (m, 4H), 0.83 (t, 3H)

LC-MS m/z 387 multimode +

Example 55

3-(Dimethylamino)-2,2-dimethylpropyl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate, benzene sulphonic acid salt
The title compound was prepared using the method of example 35 and 3-(dimethylamino)-2,2-dimethylpropan-1-ol to give a white solid, 65mg.

\[^1\text{H NMR DMSO-d6}: \delta \ 7.62 - 7.55 \text{ (m, 2H), 7.35 - 7.25 \text{ (m, 2H), 7.22 - 7.13 \text{ (m, 2H), 7.12 - 6.91 \text{ (m, 3H), 3.84 - 3.73 \text{ (m, 4H), 3.63 \text{ (s, 2H), 2.22 - 1.93 \text{ (m, HH), 1.54 - 1.40 \text{ (m, 3H), 1.29 - 1.08 \text{ (m, 6H), 0.88 - 0.74 \text{ (m, 8H)}}}}}}\]

LC-MS m/z 456 multimode +

Example 56

3-(4-Methylpiperazin-1-yl)propyl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate, benzene sulphonic acid salt

The title compound was prepared using the method of example 35 and 3-(4-methylpiperazin-1-yl)propan-1-ol to give a white solid, 63mg.

\[^1\text{H NMR DMSO-d6}: \delta \ 7.64 - 7.53 \text{ (m, 2H), 7.38 - 7.25 \text{ (m, 3H), 7.17 \text{ (d, 2H), 7.08 \text{ (d, 2H), 6.95 - 6.81 \text{ (m, IH), 4.03 \text{ (t, 2H), 3.79 \text{ (s, 2H), 3.59 \text{ (s, 2H), 3.48 - 3.36 \text{ (m, 2H), 3.36 - 3.27 \text{ (m, 4H), 2.65 - 2.54 \text{ (m, 2H), 2.40 - 2.28 \text{ (m, 6H), 2.13 \text{ (s, 3H), 1.75 - 1.65 \text{ (m, 2H), 1.51 - 1.41 \text{ (m, 2H), 1.28 - 1.17 \text{ (m, 3H), 1.16 - 1.05 \text{ (m, 2H), 0.81 \text{ (t, 3H)}}}}}}}}\]

LC-MS m/z 483 multimode +

Example 57
4-(Dimethylamino)butyl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate, bis benzene sulphonic acid salt

The title compound was prepared using the method of example 35 and 4-dimethylamino-1-butanol to give a foam, 13 mg.

1H NMR DMSO-d$_6$: δ 7.94-7.30 (m, 1OH); 7.18 (d, 2H); 7.09 (d, 2H); 4.03 (s, 2H); 3.82 (s, 2H); 3.63 (s, 2H); 3.37-3.32 (m, 2H); 3.04-3.01 (m, 2H); 2.75 (s, 6H); 2.18 (s, 3H); 1.61-1.44 (m, 6H); 1.23-1.10 (m, 4H); 0.80 (t, 3H)

LC-MS m/z 442 multimode+

To a stirred suspension of 4-(dimethylamino)butan-1-ol (1.54 g), the product from example 34 step (viii) (1.5 g) and Hunig’s base (2.295 mL) in DMF (30 mL) was added HATU (1.666 g). After 4 h a further portion of HATU (250 mg) was added and stirring continued for 2 h. The solution was diluted with EtOAc and washed with brine, dried and concentrated to give a brown oil, 2 g. The crude product was purified by column chromatography eluting with DCM; MeCN; Et$_3$N (90:10:10 to 70:20:20) then by RPHPLC. The residue was dissolved in EtOAc, washed with sat NaHCO$_3$ soln., dried and concentrated to give a clear oil 0.45 g. The oil was dissolved in MeCN and saccharin (0.18 g) was added. Evaporation of the solvent gave a foam which was triturated under ether for 60 h to give a white solid which was collected, washed with ether and dried in vacuo at 40°C, yield 0.5 g.

1H NMR DMSO-d$_6$: δ 7.66-7.56 (m, 4H); 7.2-7.18 (d, 2H); 7.17-7.06 (m, 3H); 6.56 (s, 2H); 4.02 (t, 2H); 3.78 (s, 2H); 3.60 (s, 2H); 3.33-3.28 (m, 2H); 2.69-2.64 (m, 2H); 2.50 (s, 6H); 2.10 (s, 3H); 1.60-1.40 (m, 6H); 1.30-1.20 (m, 4H); 0.81 (t, 3H)
LC-MS m/z 442 multimode+

Example 58

3-Morpholinopropyl 2-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate, benzene sulphonate acid salt

The title compound was prepared using the method of example 35 and 3-morpholinopropan-1-ol to give a white solid, 115mg.

1H NMR DMSO-d$_6$: δ 7.84 (s, 1H), 7.61-7.59 (m, 2H), 7.34-7.2 (m, 4H), 7.18 (d, 2H), 7.09 (d, 2H), 4.04 (t, 2H), 3.81 (s, 2H), 3.61 (s, 2H), 3.55 (b s, 4H), 3.38-3.33 (m, 2H), 2.33 (brs, 6H), 2.17 (s, 3H), 1.75-1.68 (m, 2H), 1.51-1.44 (m, 2H), 1.27-1.08 (m, 4H), 0.81 (t, 3H)

LC-MS m/z 470 multimode+

Example 59

1-Methylpiperidin-4-yl 2-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate

The title compound was prepared using the method of example 35 and 1-methylpiperidin-4-ol to give a white solid, 25mg.
\textbf{Example 60}

(l-Methylpiperidin-4-yl)methyl 2-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate, benzene sulphonic acid salt

A solution of T$_3$P (1.57M in THF, 0.56ml) was added to a mixture of the product from example 34 step (viii) (0.15g), (l-methylpiperidin-4-yl)methanol (114mg) and TEA (0.3ml) in DMF (5ml) and stirred at rt for 24h. The mixture was partitioned between DCM/water, the organics separated, washed with aq NaHCO$_3$ soln, brine, dried and evaporated under reduced pressure. The residue was purified by RPHPLC to give a gum, 100mg. The gum was dissolved in MeCN (5ml) then benzenesulphonic acid (35mg) added and the solvent evaporated under reduced pressure. The residue was triturated with ether and filtered, 103mg

\textbf{Example 61}

4-(Pyrrolidin-1-yl)butyl 2-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate, benzene sulphonic acid salt
The title compound was prepared using the method of example 35 and 4-(pyrrolidin-1-yl)butan-1-ol to give a white solid, 26mg.

\[\text{H NMR DMSO-d6: } \delta 7.59 (dd, 2H), 7.34 - 7.28 (m, 3H), 7.16 (d, 2H), 7.07 (d, 2H), 4.03 (t, 2H), 3.75 (s, 2H), 3.60 (s, 2H), 2.95 - 2.76 (m, 5H), 2.07 (d, 4H), 2.03 - 1.91 (m, 1H), 1.89 - 1.74 (m, 2H), 1.64 - 1.51 (m, 5H), 1.49 - 1.39 (m, 2H), 1.29 - 1.19 (m, 4H), 1.18 - 1.09 (m, 2H), 0.82 (t, 3H) \]

LC-MS m/z 468 multimode+

Example 62

(l-(2-Methoxyethyl)piperidin-4-yl)methyl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate, bis benzene sulphonic acid salt

The title compound was prepared using the method of example 35 and (l-(2-methoxyethyl)piperidin-4-yl) methanol to give a foam, 168mg.

\[\text{H NMR DMSO-d6: } \delta 11.94 (s, 1H), 9.12 (s, 1H), 7.95 (t, 1H), 7.60 (d, 4H), 7.43 (brs, 2H), 7.34-7.27 (m, 6H), 7.19 (d, 2H), 7.10 (d, 2H), 7.10 (d, 2H), 3.90 (d, 2H), 3.82 (s, 2H), 3.66-3.61 (m, 4H), 3.49 (d, 2H), 3.39-3.33 (m, 2H), 3.31 (s, 3H), 3.27-3.18 (m, 2H), 2.98-2.89 (m, 2H), 2.18 (s, 3H), 1.89-1.78 (m, 3H), 1.52-1.42 (m, 4H), 1.25-1.07 (m, 4H), 0.81 (t, 3H) \]

LC-MS m/z 498 multimode+
Example 63
4-(4-Methylpiperazin-1-yl)butyl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate, benzene sulphonie acid salt

The title compound was prepared using the method of example 35 and A-(A-methylpiperazin-1-yl)butan-1-ol to give a white solid, 151mg.

1H NMR DMSO-d$_6$: δ 7.62 - 7.57 (m, 2H), 7.33 - 7.28 (m, 3H), 7.16 (d, 2H), 7.07 (d, 2H), 4.01 (t, 2H), 3.77 (s, 2H), 3.60 (s, 2H), 2.34 - 2.28 (m, 2H), 2.11 (s, 3H), 2.07 (s, 2H), 2.05 - 1.95 (m, 1H), 1.61 - 1.50 (m, 2H), 1.50 - 1.37 (m, 4H), 1.27 - 1.18 (m, 4H), 1.17 - 1.09 (m, 2H), 0.81 (t, 3H)

LC-MS m/z 497 multimode+

Example 64
4-(4-Dioxidothiomorpholin-4-yl)butyl(4-([2-amino-4-methyl-6-(pentlamino)pyrimidin-5-yl]methyl)phenyl)acetate, benzene sulphonie acid salt

The title compound was prepared using the method of example 35 and 4-(4-hydroxybutyl)thiomorpholine 1,1-dioxide to give a white solid, 98mg.

1H NMR DMSO-d$_6$: δ 7.95 - 7.88 (m, 1H), 7.60 - 7.56 (m, 2H), 7.33 - 7.29 (m, 3H), 7.20 - 7.16 (m, 2H), 7.12 - 7.07 (m, 2H), 4.06 - 3.99 (m, 2H), 3.82 (s, 2H), 3.61 (s, 2H), 3.40 - 3.34 (m, 1H), 3.09 - 3.02 (m, 4H), 2.85 - 2.79 (m, 4H), 2.46 - 2.39 (m, 2H), 2.19 (s, 3H), 1.59 - 1.50 (m, 1H), 1.50 - 1.36 (m, 4H), 1.26 - 1.17 (m, 2H), 1.15 - 1.06 (m, 2H), 0.81 (t, 3H)
Example 65
4-Morpholinobutyl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate, benzene sulphonic acid salt

The title compound was prepared using the method of example 35 and 4-morpholinobutanol to give a white solid, 30mg.

1H NMR DMSOd-6: δ 7.60 - 7.55 (m, 2H), 7.33 - 7.28 (m, 3H), 7.19 - 7.14 (m, 2H), 7.09 - 7.04 (m, 2H), 4.02 (t, 2H), 3.77 (s, 2H), 3.62 - 3.51 (m, 5H), 3.31 (2H, m) 2.35 - 2.20 (m, 6H), 2.11 (s, 3H), 1.59 - 1.51 (m, 2H), 1.50 - 1.36 (m, 4H), 1.27 - 1.17 (m, 3H), 1.17 - 1.07 (m, 2H), 0.81 (t, 3H)

LC-MS m/z 532 multimode+

Example 66
2-(1-Methylpiperidin-4-yl)ethyl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate, benzene sulphonic acid salt

The title compound was prepared using the method of example 35 and 2-(1-methylpiperidin-4-yl) ethanol to give a gum, 90mg.

1H NMR DMSOd-6: δ 7.61 - 7.58 (m, 2H), 7.34 - 7.28 (m, 3H), 7.15 (d, 2H), 7.07 (d, 2H), 6.40 (s, 1H), 4.05 (t, 2H), 3.76 (s, 2H), 3.59 (s, 2H), 3.32 - 3.27 (m, 2H), 3.13 -
Example 67
Piper idin-4-ylmethyl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate

(i) tert-Butyl 4-((2-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetoxymethyl)piperidine-1-carboxylate

The subtitle compound was prepared using the method of example 60 and tert-butyl 4-(hydroxymethyl)piperidine-1-carboxylate to give a crude solid, 237mg.

LCMS m/z 540 APCI +ve

(ii) Piperidin-4-ylmethyl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate

To the product of step (i) (237mg) in DCM (7ml), TFA (2ml) was added and stirred at rt for 7h. The solvent was removed and the crude product was partitioned between DCM / NaHCO₃ (aq), dried and evaporated under reduced pressure. The residue was purified by RPHPLC to give a white solid, 54mg.

1H NMR DMSOd-6: δ 7.13 (d, 2H), 7.04 (d, 2H), 6.14 (t, 1H), 5.63 (s, 2H), 3.83 (d, IH), 3.71 (s, 2H), 3.59 (s, 2H), 3.27-3.22 (m, 2H), 2.90-2.84 (m, 2H), 2.41-2.33 (m, 2H), 1.99 (s, 3H), 1.66-1.55 (m, IH), 1.51-1.40 (m, 4H), 1.27-0.95 (m, 6H), 0.82 (t, 3H)

LC-MS m/z 440 multimode+

Example 68
4-(4-(Dimethylamino)piperidin-1-yl)butyl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate, saccharin salt

To the product from example 34 step (viii) (250mg) in DMF (7ml), 4-(4-(dimethylamino)piperidin-1-yl)butan-1-ol (292mg) was added followed by Hunig’s base and HATU (278mg) and stirred at rt for 3h. The product was then purified by RPHPLC, to give a gum (193mg), this was dissolved in MeCN (6ml) then saccharin (67mg) was added and the solvent evaporated under reduced pressure. The residue was triturated with ether, filtered and dried under high vac to give the title compound as a white solid, 156mg.

H NMR DMSOd-6: δ 7.66-7.55 (m, 4H), 7.16 (d, 2H), 7.07 (d, 2H), 6.88 (s, 1H), 6.38 (s, 2H), 4.02 (t, 2H), 3.76 (s, 2H), 3.60 (s, 2H), 3.32-3.27 (m, 2H), 2.95 (d, 2H), 2.68-2.60 (m, 1H), 2.33 (brs, 2H), 2.09 (s, 3H), 1.97 (brs, 2H), 1.84 (d, 2H), 1.57-1.39 (m, 8H), 1.26-1.09 (m, 4H), 0.81 (t, 3H)

LC-MS m/z 525 multimode+

Example 69
(l-Methylpiperidin-4-yl)methyl 2-(4-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)phenyl)acetate, saccharin salt

To the product from example 41 step (vi) (140mg) in DMF (5ml), (l-methylpiperidin-4-yl)methanol (0.1 Ig), DMAP (5mg) and TEA (0.2ml) were added followed by HATU (195mg). The mixture was stirred for 18h then purified by RPHPLC to give a gum
The gum was dissolved in MeCN (5ml), saccharin (31mg) added and the solvent evaporated under reduced pressure. The residue was triturated with ether and the solid filtered and dried to give the title compound, 80mg.

\[^1H \text{NMR} \ DMSOd-6: \delta \ 7.66-7.55 \ (m, 4H), 7.16 \ (d, 2H), 7.07 \ (d, 2H), 6.57 \ (s, 2H), 3.90 \ (d, 2H), 3.77 \ (s, 2H), 3.62 \ (s, 2H), 3.34-3.29 \ (m, 2H), 3.09-3.06 \ (m, 2H), 2.47 \ (s, 3H), 2.46-2.36 \ (m, 2H), 2.09 \ (s, 3H), 1.70-1.67 \ (m, 2H), 1.48-1.41 \ (m, 2H), 1.33-1.13 \ (m, 4H), 0.83 \ (t, 3H) \]

LC-MS m/z 440 multimode+

Example 70

(S)-4-(Dimethylamino)butyl 2-(4-((2-amino-4-(1-hydroxypentan-2-ylamino)-6-methylpyrimidin-5-yl)methyl)phenyl)acetate, saccharin salt

(i) 2-(4-((2-Amino-4-chloro-6-methylpyrimidin-5-yl)methyl)phenyl)acetonitrile

The product from example 4 1 step (iii) (3.7g) and POCl\(_3\) (30ml) were heated at 100°C for 18h then evaporated under reduced pressure. The residue was diluted with cold water, and neutralised with aq 5M NaOH soln. and heated at 50°C for 2h. The subtitle compound was filtered, washed with water and dried under vacum at 45°C, 1.81g.

\[^1H \text{NMR} \ DMSOd-6: \delta \ 7.27 \ (d, 2H), 7.12 \ (d, 2H), 6.88 \ (s, 2H), 3.98 \ (s, 2H), 3.96 \ (s, 2H), 2.21 \ (s, 3H) \]

LC-MS m/z APCI +273

(ii) (S)-2-(4-((2-Amino-4-(1-hydroxypentan-2-ylamino)-6-methylpyrimidin-5-yl)methyl)phenyl)acetic acid

To the product of step (i) (0.4g) in butan-1-ol (3ml), (S)-(+-)-2-amino-1-pentanol (0.5g) was added and the reaction heated in a microwave, at 160°C at IOOW for 1.5h. After cooling, aq. 5M KOH (1ml) was added and the mixture heated at 100°C for 48h. The
mixture was cooled and the solvent evaporated under reduced pressure. The residue was purified by RPHPLC to give the TFA salt, which was purified by SCX, eluting with MeCN then 10%aq NH₄ZMeCN to give the subtitle compound, 174mg.

LC-MS m/z APCI +372

(iii) (S)-4-(Dimethylamino)butyl 2-(4-((2-amino-4-(1-hydroxyhexan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)phenyl)acetate, 1.75 saccharin salt

The title compound was prepared using the method of example 68 and the product of step (ii) with 4-(dimethylamino)butan-1-ol, yield 145mg.

1H NMR DMSOd-6: δ 7.68-7.58 (m, 8H), 7.19 (d, 2H), 7.11 (d, 2H), 4.37-4.30 (m, 1H), 4.04 (t, 2H), 3.90-3.80 (m, 2H), 3.63 (s, 2H), 3.37-3.29 (m, 3H), 3.06-3.02 (m, 2H), 2.76 (s, 6H), 2.20 (s, 3H), 1.66-1.58 (m, 6H), 1.46-1.40 (m, 2H), 1.09-1.04 (m, 2H), 0.77 (t, 3H)

LC-MS m/z 458 multimode+

Example 71

(S)-(1-Methylpiperidin-4-yl)methyl 2-(4-((2-amino-4-(1-hydroxypentan-2-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetate, benzenesulfonic acid salt

To the product from example 30 step (v) (100mg) in DMF (3ml), (1-methylpiperidin-4-yl)methanol (90mg), TEA (0.17ml) and DMAP (6.3mg) were added, followed by T3P (1.57M in THF, 0.24ml) and stirred at rt for 15h. The reaction was diluted with EtOAc (10 mL), washed with water, dried, filtered and evaporated under reduced pressure. The crude product was purified by RPHPLC to give the product as a gum, this was dissolved in MeCN (0.5 mL) and benzenesulfonic acid (6.33 mg) was added and the solvent evaporated. The residue was triturated with Et₂O to give the title compound as a white solid, 25 mg.
1H NMR DMSOd-6: δ 7.61 - 7.58 (m, 2H), 7.35 - 7.28 (m, 3H), 6.91 (s, 1H), 6.78 (d, 1H), 6.73 (d, 1H), 4.70 - 4.13 (m, 1H), 3.83 (s, 3H), 3.65 (s, 2H), 3.64 (s, 2H), 3.41 - 3.35 (m, 4H), 3.13 - 3.01 (m, 2H), 2.49 - 2.44 (m, 3H), 2.10 (s, 3H), 1.74 - 1.66 (m, 3H), 1.55 - 1.43 (m, 1H), 1.37 - 1.22 (m, 4H), 1.09 (t, 3H), 0.78 (t, 3H)

LC-MS m/z 500 multimode+

Example 72
(l-Methylpiperidin-4-yl)methyl 2-(4-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetate, bis benzenesulfonic acid salt

(i) 2-(4-((2-Amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetic acid

To the product of example 30 step (iii) (400mg) in butan-1-ol (3ml), butylamine (0.39 mL) was added and the reaction heated in a microwave, at 180°C for 1h. The reaction was repeated on an identical scale and the two batches were combined. Aq. 5M KOH (1mL) was added and the mixture was heated at 100°C for 36h. After cooling, the solvent was evaporated under reduced pressure. The residue was diluted with water (5 mL) and the pH adjusted to ~ 7 using cone. HCl. The resulting precipitate was collected by filtration and the solid suspended in MeCN (10 mL) for 10min. The suspension was filtered and the collected solid dried under vacuum to give the subtitle compound as a white solid, 560 mg.

1H NMR DMSOd-6: δ 6.88 (d, 1H), 6.70 (dd, 1.4 Hz, 2H), 6.64 (d, 2H), 6.23 - 6.18 (m, 1H), 5.91 (s, 1H), 3.83 (s, 3H), 3.59 (s, 2H), 3.49 (s, 2H), 3.27 - 3.21 (m, 8H), 1.98 (s, 3H), 1.42 (q, 2H), 1.25 - 1.16 (m, 3H), 0.84 (t, 3H)

LC-MS m/z 359 multimode+
(ii) (1-Methylpiperidin-4-yl)methyl 2-(4-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetate, bis benzenesulphonic acid salt

The title compound was prepared using the product from step (i) and the method of example 71 to give a white solid, 35mg.

1H NMR DMSOd-6: δ 11.90 (s, 1H), 7.90 - 7.86 (m, 1H), 7.62 - 7.57 (m, 4H), 7.35 - 7.26 (m, 6H), 6.92 (s, 1H), 6.76 - 6.72 (m, 2H), 3.92 (d, 2H), 3.83 (s, 3H), 3.67 (s, 2H), 3.65 (s, 2H), 3.46 - 3.32 (m, 4H), 2.97 - 2.85 (m, 2H), 2.79 - 2.73 (m, 2H), 2.52 - 2.51 (m, 3H), 2.10 (s, 2H), 1.90 - 1.80 (m, 2H), 1.52 - 1.30 (m, 4H), 1.28 - 1.15 (m, 4H), 0.85 (t, 3H)

LC-MS m/z 470 multimode+

Example 73

4-(Pyrrolidin-1-yl)butyl 2-(4-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetate, benzenesulphonic acid salt

The title compound was prepared using the method of example 72 and 4-(pyrrolidin-1-yl)butan-1-ol to give a gum, 64mg.

1H NMR DMSOd-6: δ 7.60 - 7.57 (m, 2H), 7.34 - 7.28 (m, 3H), 6.90 (s, 1H), 6.72 (d, 1H), 6.68 (d, 1H), 4.04 (t, 2H), 3.84 (s, 3H), 3.62 (s, 2H), 3.61 (s, 2H), 2.92 - 2.78 (m, 2H), 2.58 - 2.50 (m, 4H), 2.02 (s, 3H), 1.85 - 1.75 (m, 4H), 1.65 - 1.50 (m, 4H), 1.48 - 1.38 (m, 4H), 1.31 - 1.14 (m, 4H), 0.84 (t, 3H)

LC-MS m/z 484 multimode+

Example 74
(S)-(1-Methylpiperidin-4-yl)methyl 2-(4-((2-amino-4-(1-hydroxyhexan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-fluorophenyl)acetate, saccharin salt

(i) (S)-2-(4-((2-Amino-4-(1-hydroxyhexan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-fluorophenyl)acetonitrile

(S)-3-Aminohexan-1-ol (0.966g) was added to a suspension of the product of example 33 step (iii) (1.2 g) in butan-1-ol (9 mL). The reaction was performed in the CEM Microwave, at 180 °C for 2h. The solvent was evaporated under reduced pressure and the crude product was purified by flash silica chromatography, to give the subtitle compound as an orange solid, 0.98g.

1H NMR DMSOdO: δ 7.17 (dd, IH), 7.06 (dd, IH), 6.87 (dd, IH), 6.01 (d, IH), 5.91 (s, 2H), 4.44 - 4.36 (m, IH), 4.30 - 4.19 (m, IH), 4.01 (s, 2H), 3.75 (s, 2H), 3.41 - 3.23 (m, 2H), 1.96 (s, 3H), 1.65 - 1.32 (m, 2H), 1.30 - 1.05 (m, 4H), 0.79 (t, 3H)

LC/MS m/z 372 APCI+

(ii) (S)-2-(4-((2-Amino-4-(1-hydroxyhexan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-fluorophenyl)acetic acid

5M KOH (3 ml) was added to a stirred solution of the product from step (i) (0.98 g) in butan-1-ol (3 mL). The solution was heated to 100°C for 15h and then allowed to cool. The solvent was evaporated under reduced pressure and the residue was diluted with water (5 mL). The pH was adjusted to ~7 using cone. HCl and the aqueous was extracted with DCM/MeOH (9:1). The combined organics were evaporated to dryness. The aqueous was also evaporated to dryness and the residue suspended in MeOH (10 mL). The solids were removed by filtration and the filtrate was combined with the residues from the organic extracts and evaporated to dryness to give the subtitle compound as a light brown solid, 0.830 g.
\[^1\text{H NMR }	ext{DMSO-d}_6: \delta 7.66 - 7.54 \text{ (m, 4H)}, 7.11 \text{ (dd, IH)}, 6.98 \text{ (dd, IH)}, 6.85 \text{ (dd, IH)}, 4.42 - 4.25 \text{ (m, 2H)}, 3.92 \text{ (d, 2H)}, 3.78 \text{ (s, 2H)}, 3.68 \text{ (s, 2H)}, 3.44 - 3.33 \text{ (m, 2H)}, 3.18 - 3.03 \text{ (m, 4H)}, 2.52 - 2.52 \text{ (m, 3H)}, 2.02 \text{ (s, 3H)}, 1.77 - 1.66 \text{ (m, 4H)}, 1.65 - 1.50 \text{ (m, 2H)}, 1.49 - 1.38 \text{ (m, IH)}, 1.36 - 1.21 \text{ (m, 2H)}, 1.21 - 1.11 \text{ (m, 2H)}, 0.80 \text{ (t, 3H)} \]

LC-MS m/z 502 multimode+

Example 75

(S)-Methyl 2-((2-amino-4-(1-hydroxyhexan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-hydroxyphenylacetate

(i) Methyl 2-(benzyloxy)-4-iodobenzoate
A mixture of methyl 2-hydroxy-4-iodobenzoate (22.8g), benzyl bromide (10.3ml) and K2CO3 (22.67g) in DMF (200ml) was stirred at rt for 72h. The mixture was partitioned between diethyl ether and water, the organics separated washed with water, dried and evaporated under reduced pressure to give a white solid, 29.5g.

\[
\begin{align*}
\text{H} \text{ NMR CDCl}_3 & : \delta 7.54-7.30 \text{ (m, 8H)}, 5.14 \text{ (s, 2H)}, 3.88 \text{ (s, 3H)} \\
\text{LC-MS m/z} & \text{ 369 APCI +}
\end{align*}
\]

(ii) (2-(Benzyloxy)-4-iodophenyl)methanol

A solution of DIBAL-H (179 mL, 1M) was added to a solution of the product from step (i) (26.4g) in THF (400ml) at rt. The mixture was stirred for 3h then a further 10ml of DIBAL-H was added and stirred for a further 1h. The mixture was quenched carefully with EtOAc and then with 2M aq HCl. The mixture was partitioned between ether/ 2M HCl, the organics were separated, washed with water, dried and evaporated under reduced pressure. The residue was tritutated with isohexane and filtered to give the subtitle compound as a solid, 21g.

\[
\text{LC-MS m/z} \text{ 341 APCI +}
\]

(iii) Methyl 3-(benzyloxy)-4-(hydroxymethyl)benzoate

To a solution of the product from step (ii) (21 g) in MeOH (150 mL), hunig's base (53.9 ml), and dichloro[1,r-bis(diphenylphosphino)ferrocene]palladium (II) dichloromethane adduct (2.54 g) was added. The resulting mixture was stirred at 90°C for 16h under carbon monoxide (4 bar) in a carbonylator. After cooling, the reaction mixture was filtered through a filter disc, evaporated and purified using chromatography, to give the subtitle compound as a white solid, 10g.

\[
\text{LC-MS m/z} \text{ 273 APCI +}
\]

(iv) Methyl 3-(benzyloxy)-4-(chloromethyl)benzoate

The product of step (iii) (9.5 g) was dissolved in DCM (200ml), cooled to 0°C and thionyl chloride (3.57 ml) was added and stirred at rt for 2h. The solvents were evaporated and the residue taken up in DCM and washed with aq. NaHCO₃. The combined organics were dried, filtered and evaporated to give the subtitle compound as a brown oil, 9.6Og.

\[
\text{LC-MS m/z} \text{ 291 APCI +}
\]
Methyl 3-(benzyloxy)-4-(2-(ethoxycarbonyl)-3-oxobutyl)benzoate

The subtitle compound was prepared using the product from step (iv) (9.6g) and the method of example 34 step (i), to give an oil, 8.6g.
LC-MS m/z 385 APCI +

(vi) Methyl 4-((2-amino-4-hydroxy-6-methylpyrimidin-5-yl)methyl)-3-(benzyloxy)benzoate

The subtitle compound was prepared using the product from step (v) (8.6g) and the method of example 34 step (ii) to give a solid, 5.87g.

\[\text{H NMR DMSOd-6: } \delta 7.59 - 7.37 \text{ (m, 7H), 7.37 - 7.28 (m, 2H), 7.01 (d, 1H), 6.48 - 6.33 (m, 1H), 5.24 (s, 2H), 3.83 (s, 3H), 3.68 (s, 2H), 1.90 (s, 3H)} \]
LC-MS m/z 380 APCI +

(vii) Methyl 4-((2-amino-4-chloro-6-methylpyrimidin-5-yl)methyl)-3-(benzyloxy)benzoate

POCl₃ (25 ml) was added to the product from step (vi) (4.8g) and stirred at 80°C for 18h. After cooling, the reaction was evaporated to dryness and the residue diluted with water (100 mL) and neutralized with solid NaHCO₃. The mixture was heated at 50°C for 30min and left to cool. The subtitle compound was collected by filtration as a solid, 3.78g.

\[\text{H NMR DMSOd-6: } \delta 7.63 - 7.29 \text{ (m, 8H), 6.93 - 6.77 (m, 2H), 5.28 (s, 2H), 3.97 (s, 2H), 3.83 (s, 3H), 2.15 (s, 3H)} \]
LC-MS m/z 398 APCI +

(viii) 4-((2-Amino-4-chloro-6-methylpyrimidin-5-yl)methyl)-3-(benzyloxy)phenyl)methanol

A solution of DIBAL-H (28.5 ml,1M in THF) was added portion wise over 30min to a stirred solution of the product from step (vii) (3.78g) in THF (40mL) at -20°C. The mixture was allowed to warm to 0°C over 2h and then EtOAc (30 mL) and isopropanol (10 mL) were added. The reaction was poured into a sat. solution of sodium sulfate and stirred for 1h. The organics were separated, dried, filtered and the solvent evaporated under reduced pressure. The crude product was purified using chromatography to give the subtitle compound as a white solid, 2.60g.
LC-MS m/z 370 APCI +

(ix) 5-(2-(Benzyloxy)-4-(chloromethyl)benzyl)-4-chloro-6-methylpyrimidin-2-amine

Thionyl chloride (0.513 ml) was added to a stirred solution of the product from step (viii) (2.6g) in DCM (120mL) at 0°C. The mixture was allowed to warm to rt and stirred for 1h. The reaction mixture was poured into sat. sodium bicarbonate solution (100 mL) and extracted with EtOAc, the combined organics were dried, filtered and the solvent evaporated under reduced pressure to give the subtitle compound as a yellow solid, 2.78g.

LC-MS m/z 389 APCI +

(x) 2-(4-((2-Amino-4-chloro-6-methylpyrimidin-5-yl)methyl)-3-(benzyloxy)phenyl)acetonitrile

The subtitle compound was prepared using the product from step (ix) (2.78g) and the method of example 20 step (vi) to give a solid, 2.1g.

1H NMR DMSOd-6: δ 7.53 - 7.29 (m, 5H), 7.10 (d, 1H), 6.89 - 6.80 (m, 3H), 6.68 (d, 1H), 5.19 (s, 2H), 3.97 (s, 2H), 3.88 (s, 2H), 2.14 (s, 3H)

LC-MS m/z 379 APCI +

(xi) (S)-2-(4-((2-Amino-4-(1-hydroxyhexan-3-ylammo)-6-methylpyrimidin-5-yl)methyl)-3-(benzyloxy)phenyl)acetic acid

The subtitle compound was prepared using the product of step (x) (250mg) and the method of example 72 step (i) with (S)-3-aminohexan-1-ol to give a solid, 250mg.

LC-MS m/z 479 APCI +

(xii) (S)-2-(4-((2-Amino-4-(1-hydroxyhexan-3-ylammo)-6-methylpyrimidin-5-yl)methyl)-3-hydroxyphenyl)acetic acid

The product from step (xi) (250mg) was dissolved in EtOH (25 mL) and Pd/C (200mg) in EtOH (5mL) was added, then the mixture stirred under hydrogen (4 bar) at rt for 16h. The catalyst was filtered off and the solvent was evaporated. The crude product was purified by RPHPLC to give the subtitle compound as a white solid, 70mg.

LC-MS m/z 460 APCI +
(xiii)(S)-Methyl 2-(4-((2-amino-4-(1-hydroxyhexan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-hydroxyphenyl)acetate

The product from step (xii) (70mg) was dissolved in MeOH (5mL) and TMSCl (2ml) was added and stirred for 1h. The solvents were evaporated, the residue was purified on RPHPLC to give the title compound as a white solid, 50mg.

1H NMR DMSOd-6: δ 6.76 - 6.67 (m, 2H), 6.57 - 6.48 (m, 1H), 5.60 (s, 2H), 4.22 - 4.08 (m, 1H), 3.59 - 3.46 (m, 6H), 2.11 (s, 3H), 1.65 - 1.51 (m, 1H), 1.51 - 1.18 (m, 4H), 1.16 - 1.01 (m, 2H), 0.76 (t, 3H)

LC-MS m/z 403 multimode+

Example 76

(S)-(1-Methylpiperidin-4-yl)methyl 2-(4-((2-amino-4-(1-hydroxypentan-2-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-hydroxyphenyl)acetate

(i) (S)-2-(4-((2-Amino-4-(1-hydroxypentan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-(benzyloxy)phenyl)acetic acid

The subtitle compound was prepared using the product of example 75 step (x) (200mg) and (S)-(+-)2-amino-l-pentanol (188mg), via the method of example 72 step (i) to give a yellow solid, lOOm.

LC-MS m/z 479 APCI +

(ii) (S)-(1-Methylpiperidin-4-yl)methyl 2-(4-((2-amino-4-(1-hydroxypentan-2-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-(benzyloxy)phenyl)acetate

The subtitle compound was prepared using the product from step (i) (260mg) and the method of example 71 to give a white solid, lOOm.
The product from step (ii) (100mg) was dissolved in EtOAc (10mL) and Pd/C (73.9 mg) in EtOAc (1mL) was added and the reaction stirred under hydrogen (4 bar) at rt for 16h. The catalyst was filtered off and the solvents were evaporated. The crude product was purified by RPHPLC to give the title compound as a white solid, 22mg.

1H NMR DMSO-d$_6$: δ 6.74 - 6.70 (m, 2H), 6.56 (d, 1H), 5.62 - 5.54 (m, 3H), 4.14 - 3.99 (m, 1H), 3.86 (d, 2H), 3.55 (s, 2H), 3.50 (s, 2H), 3.24 - 3.19 (m, 1H), 2.75 - 2.62 (m, 2H), 2.15 - 2.04 (m, 6H), 1.82 - 1.71 (m, 2H), 1.59 - 1.43 (m, 4H), 1.34 - 0.98 (m, 6H), 0.77 (t, 3H)

LC-MS m/z 486 multimode+

Example 77

Methyl 2-((2-amino-4-(butylammo)-6-methylpyrimidm-5-yl)methyl)-3-hydroxyphenyl)acetate

To the product from example 72 step (i) (550mg) in DCM (20mL), BBr$_3$ (0.29ml) was added dropwise and the reaction mixture stirred for 5h. MeOH (4mL) was added followed by 4M HCl in dioxane (0.5mL) and stirred for 16h and the solvents evaporated. The residue was purified by RPHPLC to give the title compound as a white solid, 8mg.

1H NMR DMSO-d$_6$: δ 6.73 (d,1H), 6.69 - 6.65 (m, 1H), 6.58 - 6.53 (m, 1H), 6.12 - 5.98 (m, 1H), 5.59 (d, 2H), 3.58 (s, 3H), 3.55 (s, 2H), 3.51 (s, 2H), 3.24 - 3.17 (m, 2H), 2.05 (s, 3H), 1.47 - 1.35 (m, 2H), 1.26 - 1.15 (m, 3H), 0.84 (t, 3H)

LC-MS m/z 359 multimode+
Example 78

(S)-4-(Pyrrolidin-1-yl)butyl 2-(4-((2-amino-4-(1-hydroxyhexan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-hydroxyphenyl)acetate

(i) (S)-2-(4-((2-Amino-4-(1-hydroxyhexan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-(benzyloxy)phenyl)acetic acid

The subtitle compound was prepared using the product of example 75 step (x) and (S)-3-aminohexan-1-ol, via the method of example 72 step (i) to give a white solid, 300mg.

LC-MS m/z 479 APCI +

(ii) (S)-4-(Pyrrolidin-1-yl)butyl 2-(4-((2-amino-4-(1-hydroxyhexan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-(benzyloxy)phenyl)acetate, bis trifluoroacetate salt

The subtitle compound was prepared using the product of step (i) (154mg) and 4-(pyrrolidin-1-yl)butan-1-ol (18mg), via the method of example 74 step (iii). The product was purified by RPHPLC to give the product as the TFA salt, 170mg.

LC-MS m/z 603 APCI +

(iii) (S)-4-(Pyrrolidin-1-yl)butyl 2-(4-((2-amino-4-(1-hydroxyhexan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-hydroxyphenyl)acetate

The title compound was prepared using the product from step (ii) (170mg) and the method of example 76 step (iii) to give a white solid, 50mg.

^1H NMR DMSO-d6: δ 6.76 - 6.68 (m, 2H), 6.59 - 6.54 (m, 1H), 5.69 - 5.58 (m, 3H), 4.19 - 4.10 (m, 1H), 4.04 - 3.95 (m, 2H), 3.55 (s, 2H), 3.49 (s, 2H), 3.42 - 3.34 (m, 1H), 2.39 - 2.27 (m, 6H), 2.08 (s, 3H), 1.69 - 1.49 (m, 7H), 1.47 - 1.21 (m, 6H), 1.12 - 1.01 (m, 2H), 0.81 - 0.70 (m, 3H)

LC-MS m/z 514 multimode+
Example 79

4-(Pyrrolidin-1-yl)butyl 2-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-3-hydroxyphenyl)acetate

(i) 2-((2-Amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-3-hydroxyphenyl)acetic acid

To the product of example 77 (100mg) in THF (5 mL), LiOH (35.1 mg) in water (5 mL) was added and stirred for 16h at rt. The solvent was evaporated, the residue redissolved in water and AcOH was added. The precipitate was filtered and dried to give the subtitle compound as a white solid, 50mg.

LC-MS m/z 345 APCI +

(ii) 4-(Pyrrolidin-1-yl)butyl 2-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-3-hydroxyphenyl)acetate

The title compound was prepared using the product of step (i) (50mg), 4-(pyrrolidin-1-yl)butan-1-ol (64.2mg) and the method of example 74 step (iii) to give a tan solid, 9mg.

1H NMR DMSOd-6: δ 6.75 - 6.64 (m, 2H), 6.57 - 6.51 (m, 1H), 5.60 (s, 2H), 4.01 (t, 2H), 3.58 - 3.51 (m, 2H), 3.52 - 3.45 (m, 2H), 3.25 - 3.15 (m, 2H), 2.38 - 2.24 (m, 6H), 2.05 (s, 3H), 1.68 - 1.50 (m, 5H), 1.51 - 1.33 (m, 4H), 1.29 - 1.11 (m, 3H), 0.84 (t, 3H)

LC-MS m/z 470 multimode+

Example 80

(S)-Methyl 2-((2-amino-4-(1-hydroxypentan-2-ylamino)-6-methylpyrimidin-5-yl)methyl)-4-methoxyphenyl)acetate, benzene sulphonlic acid salt
2-(3-(Bromomethyl)-4-methoxyphenyl)acetic acid
NBS (2.72g) and AIBN (0.136g) were added in one portion to a solution of 2-(4-methoxy-3-methylphenyl)acetic acid (2.99g) in EtOAc (50ml) and stirred at 80°C for 2h. Another portion of AIBN (0.136g) was added and the suspension stirred for a further 2h. The reaction mixture was diluted with EtOAc, washed with sat. sodium thiosulfate solution, 2M HCl, water, and sat. brine. The organic phase was dried, filtered and evaporated to afford the subtitle compound, 4.10g.

LC-MS m/z 260 APCI +

(ii) Methyl 2-(3-(bromomethyl)-4-methoxyphenyl)acetate
Thionyl chloride (1.359ml) was added dropwise to a solution of the product from step (i) (4.02g) in MeOH (50mL), the resulting suspension was stirred at 0°C for 10min then warmed to rt for 18h. The solvent was evaporated and the residue was diluted with EtOAc washed with sat. NaHCO₃ and sat. brine. The organic phase was dried, filtered and evaporated. The crude product was purified by chromatography, to give the subtitle compound as a yellow oil, 1.47g.

LC-MS m/z 274 APCI +

(iii) Ethyl 2-(2-methoxy-5-(2-methoxy-2-oxoethyl)benzyl)-3-oxobutanoate
The title compound was prepared using the product of step (ii) (1.2g) and the method of example 34 step (i) to give a solid, 0.52g.

^H NMR DMSO-d₆: δ 7.09 (dd, 1H), 6.96 (d,IH), 6.90 (d, IH), 4.08 - 3.99 (m, 3H), 3.77 (s, 3H), 3.58 (s, 3H), 3.54 (s, 2H), 3.03 (ddIH), 2.90 (dd, IH), 2.15 (s, 3H), 1.10 (t, 3H)

LC-MS m/z 323 APCI +
(iv) Methyl 2-(3-((2-amino-4-hydroxy-6-methylpyrimidin-5-yl)methyl)-4-methoxyphenyl)acetate

Guanidine carbonate (0.443g) was added to a solution of the product from step (iii) (0.52g) in MeOH (10ml) and stirred at 50 °C for 15h. The solvent was evaporated and the residue stirred in EtOAc (10mL) and water (10mL), the resulting solid was filtered off. Further product was collected by evaporation of the filtrate, the solids were combined to give the subtitle compound as a yellow solid, 0.607g.

1H NMR DMSO-d₆: δ 7.01 (dd, 1H), 6.88 (d, 1H), 6.73 (d, 1H), 6.33 (s, 2H), 3.80 (s, 3H), 3.55 (s, 2H), 3.54 (s, 2H), 3.49 (s, 3H), 1.92 (s, 3H)

LC-MS m/z 318 APCI +

(v) Methyl 2-((2-ammo-4-(mesitylsulfonyloxy)-6-methylpyrimidin-5-yl)methyl)-4-methoxyphenyl)acetate

The subtitle compound was prepared using the product from step (iv) (0.55g) and the method of example 3 4 step (iii) to give a solid, 0.6g.

1H NMR DMSO-d₆: δ 7.08 - 7.06 (m, 3H), 6.90 (d, 1H), 6.58 (d, 1H), 6.46 (s, 2H), 3.77 (s, 3H), 3.66 (s, 2H), 3.55 (s, 3H), 3.48 (s, 2H), 2.47 (s, 6H), 2.28 (s, 3H), 2.15 (s, 3H)

LC-MS m/z 500 APCI +

(vi) (S)-2-(3-((2-Ammo-4-(l-hydroxypentan-2-y lamno)-6-methylpyrimidin-5-yl)methyl)-4-methoxypheny l)acetate, benzene sulphonic acid salt

(S)-(+-)2-Amino-l-pentanol (1OOmg) was added to a suspension of the product from step (v) (243mg) in butan-1-ol (2mL). The reaction was heated in a microwave at 160°C for 2h. 5M KOH (0.5mL) was added and the mixture heated in a microwave at 100 °C for 1h. The solvent was evaporated under reduced pressure and the residue purified by RPHPLC to give the subtitle compound as a white solid, 60mg.

LC-MS m/z 389 APCI +

(vii) (S)-Methyl 2-((2-amino-4-(l-hydroxypentan-2-ylamino)-6-methylpyrimidin-5-yl)methyl)-4-methoxyphenyl)acetate, benzene sulphonic acid salt

The title compound was prepared using the product from step (vi) (50mg) and the method of example 34 step (ix) to give a white solid, 36mg.
1H NMR DMSOd-6: δ 7.62 - 7.56 (m, 2H), 7.36 - 7.22 (m, 6H), 7.11 (dd, 1H), 6.97 (d, 1H), 6.79 (d, 1H), 4.74 (t, 1H), 4.33 - 4.21 (m, 1H), 3.83 (s, 3H), 3.72 (s, 2H), 3.56 (s, 3H), 3.53 (s, 2H), 3.44 - 3.33 (m, 2H), 2.16 (s, 3H), 1.59 - 1.44 (m, 1H), 1.42 - 1.29 (m, 1H), 1.17 - 1.04 (m, 2H), 0.79 (t, 3H)

LC-MS m/z 403 multimode+

Example 81

(S)-(1-M ethylpiperidin-4-yl)methyl 2-(4-((2-amino-4-(2-hydroxybutylamino)-6-methylpyrimidin-5-yl)methyl)phenyl)acetate, saccharin salt

\[
\begin{align*}
\text{NH}_2 & \quad \text{O} \\
\text{N} & \quad \text{N} \\
\text{OH} & \quad \text{N} \\
\text{N} & \quad \text{O} \\
\text{N} & \quad \text{N}
\end{align*}
\]

(i) Methyl 2-(4-(cyanomethyl)benzyl)-3-oxobutanoate

A stirred mixture of methyl 3-hydroxy-2-methylenebutanoate (19.5g), 2-(4-bromophenyl)acetonitrile (40g), PdOAc$_2$ (2g), tetrabutylammonium bromide (40g) and NaHCO$_3$ (31.5g) in THF (300ml) was heated under N$_2$ at reflux for 24h. The mixture was cooled, diluted with ether (500ml) and filtered through celite. The filtrate was washed with water, dried and evaporated under reduced pressure to give an oil, used crude in next step. LC-MS m/z 244 APCI -

(ii) 2-(4-((2-Amino-4-hydroxy-6-methylpyrimidin-5-yl)methyl)phenyl)acetonitrile

A mixture of the crude product from step (i) and guanidine (16g) in EtOH (350ml) was heated under reflux for 5h. The mixture was cooled, neutralised with acetic acid, and the solid filtered and dried, 22.1g.

1H NMR DMSOd-6 δ 10.91 (brs, 1H), 7.20-7.17 (m, 4H), 6.38 (s, 2H), 3.95 (s, 2H), 3.63 (s, 2H), 2.00 (s, 3H)

LC-MS m/z 255 APCI +
The subtitle compound was prepared using the product from step (ii) (4g) and the method of example 75 step (vii) to give a solid, 3.2g.

LC-MS m/z 274 APCI +

(iv) (E)-N’-(4-Chloro-5-(4-(cyanomethyl)benzyl)-6-methylpyrimidin-2-yl)-N,N-dimethylformamide

N,N-Dimethylformamide dimethyl acetal (0.147ml) was added to a stirred suspension of the product from step (iii) (200mg,) in toluene (3mL). The mixture was heated at 110°C for 3h and then the solvent evaporated under reduced pressure to give the subtitle compound as a brown oil, 240mg.

1H NMR DMSOd-6: δ 8.58 (s, 2H), 7.27 (d, 2H), 7.24 (d, 2H), 7.17 (d, 2H), 7.13 (d, 2H), 4.05 (s, 2H), 3.98 (s, 2H), 3.32 (s, 4H), 3.14 (s, 6H), 3.02 (s, 6H), 2.32 (s, 3H), 2.30 (s, 3H)

LC-MS m/z 328 APCI +

(v) (S)-5-Ethyloxazolidin-2-one

4-Nitrobenzoic acid (0.348g) was added to a stirred solution of (R,R)-(−)-N,N’-bis(3,5-di-t-butylsalicylid-ene)-1,2-cyclohexanediaminocobalt(II) (0.628g) in MTBE (10mL). Urethane (3.09g,) and 2-ethyloxirane (6.02ml) was added and the mixture stirred for 18h at rt. The solution was then added portion wise to a suspension of sodium hydride (2.77g) in THF (5OmL) and stirred for 3h and then sat. NH₃Cl was added. The organic phase was washed with brine, dried, filtered and evaporated under reduced pressure. The crude product was purified using chromatography, to afford the subtitle compound as a white solid, Ig.

1H NMR DMSOd-6: δ 5.34 (s, 1H), 4.66 - 4.53 (m, 1H), 3.67 (dd, 1H), 3.25 (dd, 1H), 1.88 - 1.65 (m, 2H), 1.02 (t, 3H)

(vi) (S,E)-N’-(5-(4-(Cyanomethyl)benzyl)-4-(5-ethyl-2-oxooxazolidin-3-yl)-6-methylpyrimidin-2-yl)-N,N-dimethylformimidamide

Palladium(II) acetate (8.22mg) and 9,9-dimethyl-4,5-bis(diphenylphosphino)xanthene (42.4 mg) were added to dioxane (3mL) and the solution stirred at rt for 1Omin. The product from step (iv) (240mg), (S)-5-ethyloxazolidin-2-one (169mg) and K2CO3
(202mg) were added and the mixture heated at 100 °C for 1h. The solvent was evaporated under reduced pressure and the crude product was purified using chromatography, to give the subtitle compound as a white solid, 136mg.

1H NMR DMSOd-6: δ 8.59 (s, 1H), 7.24 (d, 2H), 7.02 (d, 2H), 4.49 - 4.37 (m, 1H), 3.97 (s, 2H), 3.96 (s, 2H), 3.17 (t, 2H), 3.12 (s, 3H), 3.01 (s, 3H), 2.32 (s, 3H), 1.54 - 1.42 (m, 2H), 0.84 (t, 3H)

LC-MS m/z 407 APCI +

(vii) (S)-2-(4-((2-Amino-4-(2-hydroxybutylamino)-6-methylpyrimidin-5-yl)methyl)phenyl)acetic acid

Aq. 5M KOH (1mL) was added to a stirred solution of the product from step (vi) (136mg) in butan-1-ol (2mL). The solution was heated at 100°C for 15h and the solvent evaporated under reduced pressure. The residue was diluted with MeOH (2mL) and the pH adjusted to ~7 using acetic acid. The solution was purified by RPHPLC to give the subtitle compound as a white solid, 55mg.

1H NMR DMSOd-6: δ 7.06 (d, 2H), 6.93 (d, 2H), 5.94 (t, 1H), 5.70 (s, 2H), 3.67 (s, 2H), 3.41 - 3.29 (m, 2H), 3.18 - 3.06 (m, 3H), 2.03 (s, 3H), 1.38 - 1.17 (m, 2H), 0.83 (t, 3H)

LC-MS m/z 345 APCI +

(viii)(S)-(l-Methylpiperidin-4-yl)methyl 2-(4-((2-aminoo-4-(2-hydroxybutylamino)-6-methylpyrimidin-5-yl)methyl)phenyl)acetate, saccharin salt

The title compound was prepared using the product from step (vii) and the method of example 74 step (iii) to give a white solid, 20mg.

1H NMR DMSOd-6: δ 7.65 - 7.61 (m, 1H), 7.60 - 7.55 (m, 3H), 7.15 (d, 2H), 7.07 (d, 2H), 4.78 - 4.72 (m, 1H), 3.90 (d, 2H), 3.75 (s, 2H), 3.62 (s, 2H), 3.52 - 3.45 (m, 2H), 3.23 - 3.16 (m, 2H), 3.06 - 2.93 (m, 2H), 2.43 - 2.36 (m, 3H), 2.06 (s, 3H), 1.71 - 1.60 (m, 4H), 1.35 - 1.14 (m, 5H), 0.82 (t, 3H)

LC-MS m/z 454 multimode+

Example 82

4-(Pyrrolidin-1-yl)butyl 2-(4-((2-aminoo-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)phenyl)acetate, saccharin salt
To a mixture of the product of example 41 step (vi) (240mg) in DMF (10ml), 4-
(pyrrolidin-1-yl)butan-1-o l (209mg) and Hunig's base (0.4ml) were added followed by
HATU (278mg), and the mixture was stirred for 24h then purified by RPHPLC. The
product was dissolved in MeCN (5ml) and saccharin (80mg) added and the solvent
 evaporated under reduced pressure. The residue was trituated with ether and filtered to
give the title compound as a solid, 195mg.

\[\text{H NMR DMSO-d6: } \delta 7.66-7.56 (m, 4H), 7.16 (d, 2H), 7.07 (d, 2H), 6.84 (s, 1H), 6.34 \\
(s, 2H), 4.03 (t, 2H), 3.76 (s, 2H), 3.61 (s, 2H), 3.32-3.28 (m, 2H), 2.96-2.80 (m, 6H), 2.08 (s, 3H), 1.92 (s, 4H), 1.82 (s, 4H), 1.48-1.40 (m, 2H), 1.23-1.14 (m, 2H), 0.83 (t, 3H) \]

LC-MS m/z 454 multimode+

Example 83

(1-Methylpiperidin-4-yl)methyl 2-(3-((2-ammo-4-(butylammo)-6-methylpyrimidin-5-
yl)methyl)-4-methoxyphenyl)acetate

(i) Methyl 2-(5-(cyanomethyl)-2-methoxybenzyl)-3-oxobutanoate

N,N-dimethylacetamide (20OmL) was added to Pd-1 18 (1.009g) and tetrabutylammonium
chloride hydrate (0.916g), followed by 2-(3-bromo-4-methoxyphenyl)acetonitrile (7g). Methyl 3-hydroxy-2-methylenebutyrate (5.64mL) and dicyclohexylamine (9.25mL) were added and the solution was heated at 80°C for 3 days. The reaction mixture was diluted
with EtOAc (20mL) and extracted with water. The organic phase was dried, filtered and evaporated under reduced pressure. The crude product was purified by chromatography to afford the subtitle compound as an orange oil, 5.01g.

LC-MS m/z 276 APCI +

(ii) 2-(3-((2-Amino-4-hydroxy-6-methylpyrimidin-5-yl)methyl)-4-methoxyphenyl)acetonitrile

Guanidine carbonate (5g) was added to a stirred solution of the product from step (i) (5.01g) in MeOH (80mL). The suspension was heated at 50°C for 15h and then the solvent evaporated under reduced pressure. The residue was diluted with water (20mL) and diethyl ether (20mL). The resulting precipitate was collected by filtration and the solid was dried under vacuum to give the subtitle compound as an orange solid, 2.8g.

^1^H NMR DMSO-d6: 57.11 (dd, 1H), 6.95 (d, 1H), 6.81 (d, 1H), 6.46 (s, 2H), 3.86 (s, 2H), 3.82 (s, 3H), 3.56 (s, 2H), 1.93 (s, 3H)

LC-MS m/z 285 APCI +

(iii) 2-(3-((2-Amino-4-chloro-6-methylpyrimidin-5-yl)methyl)-4-methoxyphenyl)acetonitrile

The product from step (ii) (2.8g) was added to POCl₃ (25ml) and heated at 90°C for 15h and then evaporated under reduced pressure. The residue was diluted with ice/water (20 mL) and the mixture adjusted to pH ~7 with sodium bicarbonate. The mixture was heated at 50°C for 1h and the precipitate collected by filtration. The solid was dried under vacuum to give the subtitle compound as a brown solid, 2.88g.

LC-MS m/z 303 APCI +

(iv) 2-(3-((2-Ammo-4-(butylammo)-6-methylpyrimidin-5-yl)methyl)-4-methoxyphenyl)acetic acid

Butylamine (0.393mL) was added to a stirred suspension of the product from step (iii) (0.4g) in butan-1-ol (3mL) and heated in a microwave, at 150°C for 1h. The reaction was repeated on an identical scale and the two batches were combined. 5M KOH (3mL) was added and the mixture was heated at 100°C for 48h. The solvent was evaporated under reduced pressure and the residue diluted with water (5mL). The pH was adjusted to ~7
using cone. HCl and the precipitate was collected by filtration then dried under vacuum to give the subtitle compound, 0.7g.

LC-MS m/z 359 APCI +

(v) Methyl 2-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-4-methoxyphenyl)acetate

4M HCl in dioxane (1mL) was added to a stirred suspension of the product from step (iv) (650mg) in MeOH (2mL). The suspension was heated at 60°C for 2h. The solvent was evaporated under reduced pressure to give the subtitle compound as a brown solid, 630mg.

LC-MS m/z 373 APCI +

(vi) (l-Methylpiperidin-4-yl)methyl 2-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-4-methoxyphenyl)acetate

4M HCl in dioxane (1.5mL) was added to a mixture of the product from step (v) (300mg) and (l-methylpiperidin-4-yl)methanol (520mg). The suspension was heated at 80°C for 24h and the solvent evaporated under reduced pressure. The residue was purified by RPHPLC to give the title compound as a gum, 10mg.

1H NMR DMSOdO: 57.05 (d, 1H), 6.93 (d, 1H), 6.65 (s, 1H), 5.98 (t, 1H), 5.69 (s, 2H), 3.84 - 3.79 (m, 5H), 3.60 (s, 2H), 3.47 (s, 2H), 3.28 - 3.19 (m, 2H), 2.76 - 2.71 (m, 2H), 2.13 (s, 3H), 1.98 (s, 3H), 1.82 - 1.72 (m, 2H), 1.57 - 1.35 (m, 5H), 1.26 - 1.04 (m, 4H), 0.84 (t, 3H)

LC-MS m/z 470 multimode+

Example 84

4-(Pyrrolidin-1-yl)butyl 2-(3-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate, saccharin salt

(i) Methyl 2-((cyanomethyl)benzyl)-3-oxobutanoate
A stirred mixture of methyl 3-hydroxy-2-methylenebutanoate (11.37ml), 2-(3-bromophenyl)acetonitrile (22g), PdOAc₂ (3.15g), tetrabutylammonium bromide (30.1g) and NaHCO₃ (19.64g) in THF (40ml) was heated at reflux for 24h. The mixture was partitioned between ether and water, the organics separated, washed with water, dried and evaporated under reduced pressure to give the subtitle compound, 22g.

LC-MS m/z 244 APCI -

(ii) 2-(3-((2-Amino-4-hydroxy-6-methylpyrimidin-5-yl)methyl)phenyl)acetonitrile

The title compound was prepared using the method of example 83 step (ii) and the product of step (i) (22g) to give the title compound as a gum, 16.2g.

LC-MS m/z 255 APCI +

(iii) 2-(3-((2-Amino-4-chloro-6-methylpyrimidin-5-yl)methyl)phenyl)acetonitrile

The title compound was prepared using the method of example 83 step (iii) and the product of step (ii) (3g) to give the title compound as a solid, 1.76g.

LC-MS m/z 273 APCI +

(iv) 2-(3-((2-Amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetonitrile

The product from step (iii) (1g) was combined with butan-1-ol (25mL) and pentan-1-amine (4 mL) was added. The reaction mixture was heated to 110°C for 18h. The solvents were evaporated and the product purified using chromatography to give the subtitle compound as an orange oil, 600mg.

LC-MS m/z 324 APCI +

(v) 2-(3-((2-Hydroxy-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetic acid

The product from step (iv) (600mg) was dissolved in butan-1-ol (50mL) and aq. 5M KOH (2mL) was added. The reaction was heated in a microwave for 8h at 160°C. The solvents were evaporated and the product purified by RPHPLC to give the subtitle compound as a solid, 252mg.
1H NMR DMSO-d6: 57.20 - 7.12 (m, 1H), 7.03 (d, 2H), 6.92 (d, 1H), 6.23 (s, 1H), 5.81 (s, 2H), 3.71 (s, 2H), 3.40 (s, 2H), 3.28 - 3.18 (m, 2H), 2.00 (s, 3H), 1.49 - 1.39 (m, 2H), 1.29 - 1.19 (m, 2H), 1.20 - 1.09 (m, 2H), 0.82 (t, 3H)

LC-MS m/z 343 APCI +

(vi) 4-(Pyrrolidin-1-yl)butyl 2-(3-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate, saccharin salt

The title compound was prepared using the method of example 82 and the product from step (v) (115mg) and 4-(pyrrolidin-1-yl)butan-1-ol (96mg) to give a white solid, 29mg.

1H NMR DMSO-d6: 57.66 - 7.53 (m, 1H), 7.26 - 7.19 (m, 4H), 7.11 - 7.06 (m, 1H), 7.05 - 6.99 (m, 1H), 4.07 - 3.98 (m, 2H), 3.79 (s, 2H), 3.61 (d, 3H), 3.11 - 3.02 (m, 4H), 3.02 - 2.93 (m, 2H), 2.13 (d 4H), 1.88 (s, 4H), 1.66 - 1.54 (m, 4H), 1.52 - 1.41 (m, 2H), 1.30 - 1.19 (m, 2H), 1.19 - 1.07 (m, 2H), 0.82 (t, 3H)

LC-MS m/z 468 multimode+

Example 85
(l-Methylpiperidin-4-yl)methyl 2-(3-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate

The title compound was prepared using the method of example 82 using the product of example 84 step (v) (115mg) and (l-methylpiperidin-4-yl)methanol (87mg) to give a solid, 19mg.

1H NMR DMSO-d6: 57.22 - 7.17 (m, 1H), 7.07 - 6.96 (m, 3H), 6.17 - 6.11 (m, 1H), 5.63 (s, 2H), 3.88 - 3.83 (m, 2H), 3.71 (s, 2H), 3.59 (s, 2H), 3.27 - 3.21 (m, 2H), 2.74 - 2.67 (m, 2H), 2.12 (s, 3H), 1.99 (s, 3H), 1.81 - 1.73 (m, 2H), 1.57 - 1.40 (m, 5H), 1.27 - 1.11 (m, 6H), 0.82 (t, 3H)

LC-MS m/z 454 multimode+
Example 86

(S)-4-(Dimethylamino)butyl 2-(4-((2-amino-4-(1-hydroxyhexan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-fluorophenyl)acetate, saccharin salt

The title compound was prepared using the method of example 74 and A-(dimethylamino)butan-1-ol to give a white solid, 9mg.

1H NMR DMSO-d$_6$: 5.76 - 7.54 (m, 5H), 7.10 (dd, 1H), 6.97 (dd, 1H), 6.82 (dd, 1H), 6.28 (s, 1H), 6.15 (s, 2H), 4.44 - 4.33 (m, 1H), 4.32 - 4.22 (m, 1H), 4.03 (t, 2H), 3.75 (s, 2H), 3.66 (s, 2H), 3.46 - 3.38 (m, 2H), 2.36 (s, 6H), 1.99 (s, 3H), 1.66 - 1.34 (m, 10H), 1.21 - 1.10 (m, 2H), 0.80 (t, 3H)

LC-MS m/z 490 multimode+

Example 87

(S)-4-(4-Methylpiperazin-1-yl)butyl 2-(4-((2-amino-4-(1-hydroxyhexan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-fluorophenyl)acetate, saccharin salt

The title compound was prepared using the method of example 74 and A-(A-methylpiperazin-1-yl)butan-1-ol to give a foam, 63mg.

1H NMR DMSO-d$_6$: 5.76 - 7.55 (m, 4H), 7.11 (dd, 1H), 6.98 (dd, 1H), 6.86 (dd, 1H), 6.77 - 6.62 (m, 2H), 4.42 - 4.27 (m, 2H), 4.03 (t, 2H), 3.79 (s, 2H), 3.66 (s, 2H), 3.53 -
3.36 (m, 2H), 2.65 - 2.54 (m, 2H), 2.40 - 2.29 (m, HH), 2.05 (s, 3H), 1.65 - 1.50 (m, 4H), 1.50 - 1.35 (m, 4H), 1.22 - 1.07 (m, 2H), 0.80 (t, 3H).

LC-MS m/z 545 multimode+

Example 88

(S)-Methyl 2-(4-((2-amino-4-(1-hydroxypentan-2-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-hydroxyphenyl)acetate

(i) (S)-2-(4-((2-Amino-4-(1-hydroxypentan-2-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-hydroxyphenyl)acetic acid

To the product from example 30 step (v) (250mg) in DMF (20ml), sodium thiomethoxide (180mg) was added and stirred at 100°C for 16h. The solvents were evaporated, and crude product purified by RPHPLC to give the subtitle compound as a colourless gum, 120mg.

LC/MS m/z 375 APCI+

(ii) (S)-Methyl 2-(4-((2-amino-4-(1-hydroxypentan-2-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-hydroxyphenyl)acetate

The product from step (i) (120mg) was dissolved in MeOH (10mL) and TMS-Cl (0.205mL) was added and stirred at rt overnight. The crude product was purified by RPHPLC to give the title compound as a white solid, 35mg.

1H NMR DMSOd-O: 5.674 - 6.70 (m, 2H), 6.56 (dd, 1H), 5.62 - 5.54 (m, 3H), 4.11 - 4.01 (m, 1H), 3.59 - 3.53 (m, 5H), 3.52 - 3.48 (m, 2H), 3.40 - 3.32 (m, 1H), 3.30 - 3.17 (m, 1H), 2.10 (s, 3H), 1.55 - 1.45 (m, 1H), 1.33 - 1.21 (m, 2H), 1.15 - 0.99 (m, 2H), 0.76 (t, 3H).

LC-MS m/z 389 multimode +
Example 89
2-Hydroxyethyl 2-(4-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetate

(i) Methyl 4-((2-amino-4-chloro-6-methylpyrimidin-5-yl)methyl)-3-methoxybenzoate

The product from example 21 step (ii) (7g) was added portion wise over 5min to POCl₅ (32ml) and heated at 100°C for 2Oh and then allowed to cool. The solvent was removed under reduced pressure and the residue was cautiously diluted with ice water (10OmL) and adjusted to pH ~7 using NaHCO₃ and then heated at 50°C for 1h. The precipitate was collected by filtration and dried under vacuum to give the subtitle compound as a cream solid, 3g.

LC/MS m/z 322 APCI+

(ii) Methyl 4-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxybenzoate

A stirred mixture of the product from step (i) (8 g) and butylamine (7.40 ml) in dioxane (100 ml) was heated at 90°C for 72h. More butylamine (7.40 ml) was added and the reaction mixture stirred for a further 70 hrs. The solvent was evaporated and the crude product was purified by chromatography (5%MeOH/DCM) to afford the subtitle compound as a tan solid, 4.5g.

¹H NMR DMSO d₆: δ 7.51 - 7.45 (m, 2H), 7.39 - 7.22 (m, 1H), 6.89 (d, 1H), 6.87 - 6.70 (m, 2H), 3.91 (d, 3H), 3.84 (s, 3H), 3.73 (s, 2H), 2.03 (s, 3H), 1.51 - 1.38 (m, 2H), 1.27 - 1.13 (m, 2H), 0.84 (t, 3H).

LC/MS m/z 359 APCI+
(ii) (4-((2-Amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)methanol

A solution of DIBAL-H (80ml, 1M in hexanes) was added portion wise over 20min to a stirred solution of the product from step (ii) (3.8g) in THF (25mL) at 0°C. The mixture was allowed to warm to rt, stirred for 2h, then cooled to 0°C. Isopropanol (2mL) was added, stirred for 10 min and then added to a saturated solution of sodium sulfate (50mL). The mixture was diluted with DCM (100 mL) and then stirred for 1h. The organic phase was separated and the aqueous was extracted with DCM. The combined organic extracts were dried and filtered. The crude product was purified via silica chromatography (10% MeOH/DCM) to give the subtitle compound as a cream solid, 2.2 g.

LC/MS m/z 331 APCI+

(iv) N4-Butyl-5-(4-(chloromethyl)-2-methoxybenzyl)-6-methylpyrimidine-2,4-diamine

The product from step (iii) (2.2 g) in DCM (100mL) was cooled to 0°C and SOCl₂ (0.486ml) was added dropwise. The reaction was allowed to warm up to rt over 1hr, and poured cautiously into sat. NaHCO₃ and the aqueous phase was separated. The organic phase was dried, filtered and the solvent evaporated under reduced pressure to give the subtitle compound as a yellow solid, 2.260 g.

LC/MS m/z 349 APCI+

(v) 2-(4-((2-Amino-4-(butylammo)-6-methylpyrimidm-5-yl)methyl)-3-methoxyphenyl)acetonitrile

KCN (0.844g) was added to a stirred solution of the product from step (iv) (2.78g) in DMF (10mL) and DMSO (10mL). The mixture was stirred at rt for 15h. The reaction mixture was diluted with EtOAc (100 mL) and sat. NaHCO₃ (100 mL). The organic phase was separated, dried and solvent removed to give the subtitle compound as a solid, 2.2g.

LC/MS m/z 340 APCI+

(vi) 2-(4-((2-Amino-4-(butylammo)-6-methylpyrimidm-5-yl)methyl)-3-methoxyphenyl)acetic acid
The product from step (v) (2.1g) was dissolved in butan-1-ol (20mL) and aq. 5M KOH (3.71 ml) was added and the mixture was heated at 100°C for 36h. The mixture was allowed to cool and the solvent was evaporated under reduced pressure. The residue was diluted with water (5mL) and the pH adjusted to ~ 7 using cone HCl. The resulting precipitate was collected by filtration and the solid was then suspended in MeCN (10mL) for 10min. The suspension was filtered and the solid dried under vacuum overnight to give the subtitle compound as a white solid, 2.60 g.

LC/MS m/z 359 APCI+

(vii) 2-Hydroxyethyl 2-(4-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetate

The product from step (vi) (100mg), ethane-1,2-diol (0.031ml) and Hunig's Base (0.146ml) were combined in DMF (5mL) and HATU (106mg) was added and stirred at rt for 1h. The reaction mixture was purified by RPHPLC to give the title compound as a solid, 6mg.

1H NMR DMSO d-6: δ 6.91 (s, 1H), 6.72 (d, IH), 6.64 (d, IH), 6.02 - 5.92 (m, 1H), 5.69 - 5.57 (m, 2H), 4.80 (t, IH), 4.04 (t, 2H), 3.84 (s, 3H), 3.62 (s, 1H), 3.59 - 3.54 (m, 3H), 3.26 - 3.18 (m, 2H), 1.96 (s, 3H), 1.50 - 1.33 (m, 2H), 1.28 - 1.09 (m, 4H), 0.84 (t, 3H)

LC-MS m/z 403 multimode +

Example 90

4-(4-(Dimethylamino)piperidin-1-yl)butyl 2-(4-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetate, saccharin salt

![Chemical Structure](image)

The title compound was prepared using the method of example 89 step (vii), using the product of example 89 step (vi) (150mg) and 4-(4-(dimethylamino)piperidin-1-yl)butan-1-ol (168mg). The saccharin salt was prepared to give the title compound as a white solid, 43mg.
Example 91

4-Hydroxybutyl 2-(4-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetate, saccharin salt

The title compound was prepared using the method of example 89 step (vii) and the product of example 89 step (vi) (150mg) and butane-1,4-diol (75mg). The saccharin salt was formed with one equivalent of saccharin in MeCN, to give the title compound, 30mg.

Example 92

3-(Methylsulfonyl)propyl 2-(4-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetate
The title compound was prepared using the method of example 89 step (vii), using the product of example 89 step (vi) (150mg) and 3-(methylsulfonyl)propan-1-ol (116mg), to give the title compound as a gum, 6.3mg.

1H NMR DMSO d-6: δ 6.90 (d, 1H), 6.72 (dd, 1H), 6.65 (d, 1H), 6.02 - 5.95 (m, 1H), 5.66 - 5.61 (m, 2H), 4.15 - 4.08 (m, 2H), 3.84 (s, 3H), 3.63 (s, 2H), 3.58 (s, 2H), 3.26 - 3.19 (m, 2H), 3.17 - 3.09 (m, 2H), 2.96 (s, 3H), 2.05 - 1.97 (m, 2H), 1.97 (s, 3H), 1.46 - 1.34 (m, 2H), 1.26 - 1.14 (m, 2H), 0.84 (t, 3H)

LC-MS m/z 479 multimode +

Example 93

3-Hydroxypropyl 2-(4-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetate, saccharin salt

The title compound was prepared using the method of example 89 (step vii) and the product of example 89 step (vi) (150mg) and propane-1,3-diol (63mg). The saccharin salt was formed with one equivalent of saccharin in MeCN, to give the title compound, 30.6mg.

1H NMR DMSO d-6: δ 11.84 (s, 1H), 7.93 - 7.85 (m, 1H), 7.67 - 7.61 (m, 1H), 7.60 - 7.53 (m, 4H), 7.39 - 7.32 (m, 1H), 6.93 (s, 1H), 6.74 (s, 2H), 4.53 - 4.46 (m, 1H), 4.10 - 4.03 (m, 2H), 3.83 (s, 3H), 3.68 (s, 2H), 3.62 (s, 2H), 3.47 - 3.35 (m, 2H), 2.10 (s, 3H), 1.77 - 1.65 (m, 2H), 1.52 - 1.40 (m, 2H), 1.24 - 1.13 (m, 2H), 0.85 (t, 3H)

LC-MS m/z 417 multimode +
Example 94

(S)-4-(Dimethylamino)butyl 2-(4-((2-amino-4-(1-hydroxyhexan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)phenyl)acetate, bis saccharin salt

(i) (S)-2-(4-((2-Amino-4-(1-hydroxyhexan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)phenyl)acetic acid

A mixture of the product of example 81 step (iii) (0.4g) and (S)-3-aminohexan-1-ol (0.5g) in butan-1-ol (3 mL) was sealed into a microwave tube. The reaction was performed in the CEM Microwave, at 160°C and 100W for 1.5h. Aq. 5M KOH (1ml) was added and the mixture heated at 100°C for 48h. The mixture was cooled and the solvent evaporated under reduced pressure. The residue was purified by RPHPLC to give the subtitle compound, 174mg.

LC/MS m/z 373 APCI+

(ii) (S)-4-(Dimethylamino)butyl 2-(4-((2-amino-4-(1-hydroxyhexan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)phenyl)acetate, bis saccharin salt

HATU (0.193g) was added to a stirred solution of the product from step (i) (0.172g), 4-(dimethylamino)butan-1-ol (0.216g) and Hunig base (0.25ml) in DMF (6ml) at rt. The mixture was stirred at rt for 3h then purified by RPHPLC to give a gum, 130mg. The gum was dissolved in MeCN (4ml) and saccharin (100mg) added and the solvent evaporated under reduced pressure to give the title compound as a solid, 230mg.

1H NMR DMSO-d6/D2O: δ 7.68-7.58 (m, 8H), 7.19 (d, 2H), 7.11 (d, 2H), 4.37-4.30 (m, 1H), 4.04 (t, 2H), 3.90-3.80 (m, 2H), 3.63 (s, 2H), 3.37-3.29 (m, 2H), 3.06-3.02 (m, 2H), 2.76 (s, 6H), 2.20 (s, 3H), 1.66-1.58 (m, 6H), 1.46-1.40 (m, 2H), 1.09-1.04 (m, 2H), 0.77 (t, 3H)

LC-MS m/z 472 multimode +
Example 95

(l-Methylpiperidin-4-yl)methyl 2-(4-(2-amino-4-(butylamino)-6-methylpyrimidin-5-ylthio)phenyl)acetate, saccharin salt

(i) 2-Amino-5-(4-(hydroxymethyl)phenylthio)-6-methylpyrimidin-4-ol

A stirred mixture of (4-mercaptophenyl)methanol (6.72g), 2-amino-5-bromo-6-methylpyrimidin-4-ol (10.76g) and K$_2$CO$_3$ (7.29g) in ethylene glycol (120ml) was heated at 155°C for 9h. After cooling the mixture was poured into water (500ml) and neutralised with conc. HCl. The precipitate was filtered, washed with water then 50% EtOH/ether and dried to give the subtitle compound as a solid, 6.7g.

1H NMR DMSOdO: δ11.07 (brs, 1H); 7.18 (d, 2H); 6.99 (d, 2H); 6.87 (brs, 2H); 5.09 (s, 1H); 4.41 (s, 2H); 2.24 (s, 3H)

LC/MS m/z 264 APCI+

(ii) 2-Amino-5-(4-(chloromethyl)phenylthio)-6-methylpyrimidin-4-ol

SOCl$_2$ (20ml) was added slowly to a stirred mixture of the product from step (i) (6.7g) in DCM (50ml) and stirred at rt for 24h. The solvent was evaporated under reduced pressure to give the title compound, 8.7g.

LC/MS m/z 282 APCI+

(iii) 2-(4-(2-Amino-4-hydroxy-6-methylpyrimidin-5-ylthio)phenyl)acetonitrile

A mixture of the product from step (ii) (8.7g) and KCN (8.28g) in DMF (20ml) and DMSO (20ml) was stirred at rt for 2h then 50°C for 2h. Water (150ml) was added and stirred for 30min. The solid obtained was filtered off and added to MeOH (150ml), heated to reflux for 5min then hot filtered and allowed to cool to rt. The precipitate was filtered and dried under high vacuum at 45°C, to give the subtitle compound as a brown solid, 2.3g.
LC/MS m/z 273 APCI+

(iv) 2-(4-(2-Amino-4-chloro-6-methylpyrimidin-5-ylthio)phenyl)acetonitrile
A mixture of the product from step (iii) (2.3g) and POCl₃ (25ml) was heated under reflux for 8h. The mixture was evaporated under reduced pressure and ice/water added to the residue. The mixture was stirred at rt for 15min then neutralised with aq. 2M NaOH solution and heated at 40°C for 2h then extracted with DCM. The organics were dried, evaporated under reduced pressure and the residue purified by column chromatography (2% MeOH/DCM), to give the subtitle compound as a solid, 530mg.

1H NMR CDCl₃: δ 7.22 (d, 2H); 7.07 (d, 2H); 5.36 (s, 2H); 3.70 (s, 2H); 2.50 (s, 3H)
LC/MS m/z 291 APCI+

(v) 2-(4-(2-Amino-4-(butylamino)-6-methylpyrimidin-5-ylthio)phenyl)acetonitrile
A mixture of the product from step (iv) (525mg) and butylamine (3ml) in BuOH (14ml) was heated under reflux for 5h. The solvent was evaporated under reduced pressure and the residue partitioned between EtOAc/water. The organics were separated, dried and evaporated under reduced pressure to give the subtitle compound as a gum, 610mg.

LC/MS m/z 328 APCI+

(vi) 2-(4-(2-Amino-4-(butylamino)-6-methylpyrimidin-5-ylthio)phenyl)acetic acid
A mixture of the product from step (v) (610mg) and aq. 5M KOH (2ml) in EtOH (8ml) was heated under reflux for 18h. The mixture was purified by RPHPLC to give the subtitle compound as a solid, 392mg.

1H NMR DMSO-d6: 57.09 (d, 2H); 6.87 (d, 2H); 6.54 (t, 1H); 6.30 (s, 2H); 3.29-3.24 (m, 2H); 3.20 (s, 2H); 2.19 (s, 3H); 1.45-1.38 (m, 2H); 1.23-1.13 (m, 2H); 0.82 (t, 3H)
LC/MS m/z 347 APCI+

(vii) (l-Methylpiperidin-4-yl)methyl 2-(4-(2-amino-4-(butylamino)-6-methylpyrimidin-5-ylthio)phenyl)acetate, saccharin salt
HATU (0.209g) was added to a stirred mixture of the product from step (vi) (0.19g), (1-methylpiperidin-4-yl)methanol (0.142g), and Hunig's base (0.3ml) in DMF (6ml) at rt. The mixture was stirred for 24h then purified by RPHPLC, to give a gum (130mg). The gum was dissolved in MeCN (5ml) and saccharin (52mg) added and the solution evaporated under reduced pressure, triturated with ether and filtered to give the title compound as a solid, 173mg.

\[^1H \text{NMR DMSO-d}_6: \delta 7.65-7.56 (m, 4H) ; 7.17 (d, 2H); 6.98 (d, 2H); 6.70 (s, 1H); 6.43 (s 2H); 3.93 (d, 2H); 3.62 (s, 2H); 3.31-3.23 (m, 2H); 2.91-2.81 (brm, 2H); 2.71 (s, 3H); 2.20 (s, 3H); 1.85-1.75 (m, 3H); 1.45-1.33 (m, 4H); 1.20-1.11 (m, 2H); 0.81 (t, 3H) \]

LC-MS m/z 458 multimode +

Example 96

4-(Pyrrolidin-1-yl)butyl 2-(4-(2-amino-4-(butylamino)-6-methylpyrimidin-5-ylthio)phenyl)acetate, saccharin salt

\[\text{The title compound was prepared via the method of example 95, using the product of step (vi) (180mg) and 4-(pyrrolidin-1-yl)butan-1-ol (149mg), to give a solid, 189mg.} \]

\[^1H \text{NMR DMSO-d}_6: \delta 7.65-7.55 (m, 4H) ; 7.17 (d, 2H); 6.97 (d, 2H); 6.66 (s, 1H); 6.41 (s, 2H); 4.04 (t, 2H); 3.61 (s, 2H); 3.27 (m, 2H); 3.08 (brm, 2H); 2.20 (s, 3H); 1.91 (s, 4H); 1.65-1.58 (m, 4H); 1.44-1.37 (m, 2H); 1.20-1.07 (m, 2H); 0.81 (t, 3H) \]

LC-MS m/z 472 multimode +

Example 97

4-(Dimethylamino)butyl 2-(3-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-4-methoxyphenyl)acetate, saccharin salt
HATU (382 mg) was added to a stirred solution of the product from example 83 step (iv) (300 mg), 4-(dimethylamino)-1-butanol (196 mg) and triethylamine (0.233 ml) in DMF (3 mL). The mixture was stirred at rt for 1 h and then diluted with MeCN (2 mL) and purified via RPHPLC. The purified product was dissolved in MeCN (1 mL) and saccharin (14.84 mg) was added and the solution was stirred for 10 min. The solvent was evaporated under reduced pressure and the residue was triturated with diethyl ether to give the title compound as a white solid, 31 mg.

1H NMR DMSOdO: δ 7.66 - 7.55 (m, 7H), 7.10 (dd, 1H), 6.96 (d, 1H), 6.72 (d, 1H), 4.00 (t, 2H), 3.83 (s, 3H), 3.68 (s, 2H), 3.53 (s, 2H), 3.42 - 3.33 (m, 2H), 3.02 - 2.93 (m, 2H), 2.71 (s, 6H), 2.10 (s, 3H), 1.68 - 1.51 (m, 4H), 1.47 (q, 2H), 1.27 - 1.15 (m, 2H), 0.85 (t, 3H)

LC-MS m/z 458 multimode +

Example 98

Methyl 2-(3-((2-ammo-4-(butylammo)-6-methylpyrimidm-5-yl)methyl)-4-methoxyphenyl)acetate

A solution of boron tribromide (13.95 ml, 1 M in DCM) was added portionwise over 30 min to a stirred suspension of the product from example 83 step (iv) (1 g) in DCM (15 mL) at 0°C. The suspension was allowed to warm to rt and stirred for 5 h. The suspension was cooled to 0°C and then MeOH (10 mL) and 4 M HCl in dioxane (2 mL) were added and the mixture stirred for 1 h. The solvent was evaporated under reduced pressure and the residue
was purified by flash silica chromatography (5% MeOH/DCM) to give the title compound (minor product) as a white solid, 51 mg.

\[^1H \text{NMR DMSO}_d\text{O}: \delta 9.81 (s, 1H), 7.51 (s, 1H), 6.99 (s, 2H), 6.92 (dd, 1H), 6.79 (d, 1H), 6.70 (d, 1H), 3.63 (s, 2H), 3.55 (s, 3H), 3.47 (s, 2H), 3.38 - 3.33 (m, 2H), 2.16 (s, 3H), 1.53 - 1.41 (m, 2H), 1.28 - 1.16 (m, 2H), 0.85 (t, 3H) \]

LC-MS m/z 373 multimode +

Example 99

Methyl 2-((3-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-4-hydroxyphenyl)acetate

![Chemical structure](image)

A solution of boron tribromide (2.51ml, 1M in DCM) was added portionwise over 30min to a stirred suspension of the product from example 83 step (iv) (300mg) in DCM (5mL) at 0°C. The suspension was allowed to warm to rt and stirred for 3h. A further portion of boron tribromide (1.674ml, 1M in DCM) was added and the mixture stirred at rt for a further 2h. MeOH (2mL) and 4M HCl in dioxane (2mL) were added and the mixture stirred for 1h. The solvent was evaporated under reduced pressure and the residue purified by RPHPLC, to give the title compound as a white solid, 27 mg.

\[^1H \text{NMR DMSO}_d\text{O}: \delta 9.65 (s, 1H), 6.87 (dd, 1H), 6.76 (d, 1H), 6.66 (d, 1H), 6.05 (t, 1H), 5.61 (s, 2H), 3.56 (s, 2H), 3.54 (s, 3H), 3.43 (s, 2H), 3.26 - 3.20 (m, 2H), 2.06 (s, 3H), 1.43 (q, 2H), 1.21 (sextet, 2H), 0.84 (t, 3H) \]

LC-MS m/z 359 multimode +

Example 100

(S)-2-(l-Methylpiperidin-4-yl)ethyl 2-((2-amino-4-(l-hydroxyhexan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-fluorophenyl)acetate, saccharin salt
HATU (175mg) was added to a stirred solution of the product from example 74 step (ii) (150 mg), 2-(l-methylpiperidin-4-yl)ethanol (0.107ml) in DMF (2 ml). The mixture was stirred at rt for 1h and then diluted with MeCN (3ml). The solution was purified by RPHPLC, the resulting gum was dissolved in MeCN (0.5mL) and saccharin (11.72mg) was added and the solvent evaporated. The residue was triturated with diethyl ether to give the title compound as a solid, 22 mg.

1H NMR DMSO-d6: δ 7.67 - 7.55 (m, 5H), 7.12 (d, IH), 6.99 (d, IH), 6.92 - 6.82 (m, 3H), 4.41 - 4.29 (m, 2H), 4.11 - 4.04 (m, 2H), 3.81 (s, 2H), 3.67 (s, 2H), 3.42 - 3.37 (m, 2H), 2.80 - 2.69 (m, 2H), 2.67 (s, 3H), 2.08 (s, 3H), 1.84 - 1.75 (m, 2H), 1.67 - 1.49 (m, 6H), 1.48 - 1.38 (m, 2H), 1.37 - 1.06 (m, 6H), 0.81 (t, 3H)

LC-MS m/z 516 multimode +

Example 101

2-(4-Methylthiazol-5-yl)ethyl 2-(4-((2-ammo-4-(butylammo)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetate

The title compound was prepared using the method of example 89 step (vii), using the product of example 89 step (vi) (150mg) and 2-(4-methylthiazol-5-yl)ethanol (60mg) to give the title compound as a gum, 10mg.
Example 102

4-(Dimethylamino)butyl 2-(4-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-3-hydroxyphenyl)acetate

The title compound was prepared using product of example 79 step (i) (80 mg) and 4-(dimethylamino)butan-1-ol using the general coupling method of example 74 step (iii). The product was purified by RPHPLC to give the product, 25 mg.

1H NMR DMSO-d6: δ 8.80 (s, IH), 6.84 (d, IH), 6.69 - 6.58 (m, 2H), 5.98 (t, IH), 5.64 (s, 2H), 4.18 (t, 2H), 3.81 (s, 3H), 3.59 (d, 4H), 3.27 - 3.16 (m, 2H), 3.07 (t, 2H), 2.27 (s, 3H), 1.99 (d, 3H), 1.44 - 1.34 (m, 2H), 1.28 - 1.11 (m, 2H), 0.83 (t, 3H)

LC-MS m/z 484 multimode +

Example 103

(1-Methylpiperidin-4-yl)methyl 2-(4-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-3-hydroxyphenyl)acetate, di-trifluoroacetic acid salt
The title compound was prepared using product of example 79 step (i) (90 mg) and (1-methylpiperidin-4-yl)methanol using the general coupling method of example 74 step (iii). The product was purified by RPHPLC to give the product, 15.4 mg.

\[^1H \text{NMR DMSO-d}_6: \delta 12.32 - 12.11 (m, 1H), 10.04 - 9.86 (m, 1H), 9.40 - 9.18 (m, 1H), 7.92 - 7.78 (m, 1H), 7.57 - 7.42 (m, 2H), 6.82 - 6.69 (m, 2H), 6.65 - 6.54 (m, 1H), 3.91 (s, 2H), 3.63 (s, 2H), 3.55 (s, 2H), 3.45 - 3.29 (m, 2H), 2.97 - 2.79 (m, 3H), 2.79 - 2.70 (m, 3H), 2.18 (s, 3H), 1.90 - 1.76 (m, 2H), 1.52 - 1.29 (m, 4H), 1.27 - 1.14 (m, 2H), 0.85 (t, 3H) \]

LC-MS m/z 456 APCI +

Biological Assay

Human TLR7 assay

Recombinant human TLR7 was stably expressed in a HEK293 cell line already stably expressing the pNiFty2-SEAP reporter plasmid; integration of the reporter gene was maintained by selection with the antibiotic zeocin. The most common variant sequence of human TLR7 (represented by the EMBL sequence AF240467) was cloned into the mammalian cell expression vector pUNO and transfected into this reporter cell-line. Transfectants with stable expression were selected using the antibiotic blasticidin. In this reporter cell-line, expression of secreted alkaline phosphatase (SEAP) is controlled by an NFκB/ELAM-1 composite promoter comprising five NFκB sites combined with the proximal ELAM-1 promoter. TLR signaling leads to the translocation of NFκB and activation of the promoter results in expression of the SEAP gene. TLR7-specific activation was assessed by determining the level of SEAP produced following overnight incubation of the cells at 37°C with the standard compound in the presence of 0.1% (v/v) dimethylsulfoxide (DMSO). Concentration dependent induction of SEAP production by compounds was expressed as the concentration of compound which produced half of the maximal level of SEAP induction for that compound (pEC50). The results obtained are shown in Table 1 following.
<table>
<thead>
<tr>
<th>Compound of Ex. No.</th>
<th>pEC50</th>
<th>Compound of Ex. No.</th>
<th>pEC50</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.3</td>
<td>2</td>
<td>6.0</td>
</tr>
<tr>
<td>3</td>
<td>6.2</td>
<td>4</td>
<td>6.4</td>
</tr>
<tr>
<td>5</td>
<td>6.2</td>
<td>6</td>
<td>5.9</td>
</tr>
<tr>
<td>7</td>
<td>5.6</td>
<td>8</td>
<td>5.6</td>
</tr>
<tr>
<td>9</td>
<td>5.4</td>
<td>10</td>
<td>5.8</td>
</tr>
<tr>
<td>11</td>
<td>6.0</td>
<td>12</td>
<td>5.8</td>
</tr>
<tr>
<td>13</td>
<td>5.6</td>
<td>14</td>
<td>5.9</td>
</tr>
<tr>
<td>15</td>
<td>6.4</td>
<td>16</td>
<td>5.8</td>
</tr>
<tr>
<td>17</td>
<td>6.0</td>
<td>18</td>
<td>5.8</td>
</tr>
<tr>
<td>19</td>
<td>5.6</td>
<td>20</td>
<td>5.7</td>
</tr>
<tr>
<td>21</td>
<td>7.8</td>
<td>22</td>
<td>6.2</td>
</tr>
<tr>
<td>23</td>
<td>6.0</td>
<td>24</td>
<td>6.0</td>
</tr>
<tr>
<td>25</td>
<td>6.1</td>
<td>26</td>
<td>6.1</td>
</tr>
<tr>
<td>27</td>
<td>5.7</td>
<td>28</td>
<td>5.9</td>
</tr>
<tr>
<td>29</td>
<td>6.1</td>
<td>30</td>
<td>7.5</td>
</tr>
<tr>
<td>31</td>
<td>8.2</td>
<td>32</td>
<td>7.3</td>
</tr>
<tr>
<td>33</td>
<td>7.3</td>
<td>34</td>
<td>6.4</td>
</tr>
<tr>
<td>35</td>
<td>6.6</td>
<td>36</td>
<td>6.6</td>
</tr>
<tr>
<td>37</td>
<td>6.9</td>
<td>38</td>
<td>6.9</td>
</tr>
<tr>
<td>39</td>
<td>7.0</td>
<td>40</td>
<td>6.9</td>
</tr>
<tr>
<td>41</td>
<td>6.0</td>
<td>42</td>
<td>6.2</td>
</tr>
<tr>
<td>43</td>
<td>6.1</td>
<td>44</td>
<td>6.2</td>
</tr>
<tr>
<td>45</td>
<td>7.3</td>
<td>46</td>
<td>7.6</td>
</tr>
<tr>
<td>47</td>
<td>6.3</td>
<td>48</td>
<td>8.7</td>
</tr>
<tr>
<td>49</td>
<td>6.7</td>
<td>50</td>
<td>6.8</td>
</tr>
<tr>
<td>51</td>
<td>6.1</td>
<td>52</td>
<td>6.2</td>
</tr>
<tr>
<td>53</td>
<td>7.4</td>
<td>54</td>
<td>7.1</td>
</tr>
<tr>
<td>55</td>
<td>6.9</td>
<td>56</td>
<td>6.6</td>
</tr>
<tr>
<td>Compound of Ex. No.</td>
<td>pEC50</td>
<td>Compound of Ex. No.</td>
<td>pEC50</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------</td>
<td>--------------------</td>
<td>-------</td>
</tr>
<tr>
<td>57</td>
<td>6.9</td>
<td>58</td>
<td>6.9</td>
</tr>
<tr>
<td>59</td>
<td>6.9</td>
<td>60</td>
<td>6.7</td>
</tr>
<tr>
<td>61</td>
<td>6.9</td>
<td>62</td>
<td>6.7</td>
</tr>
<tr>
<td>63</td>
<td>6.8</td>
<td>64</td>
<td>5.6</td>
</tr>
<tr>
<td>65</td>
<td>6.5</td>
<td>66</td>
<td>6.8</td>
</tr>
<tr>
<td>67</td>
<td>6.1</td>
<td>68</td>
<td>6.2</td>
</tr>
<tr>
<td>69</td>
<td>6.9</td>
<td>70</td>
<td>5.9</td>
</tr>
<tr>
<td>71</td>
<td>7.7</td>
<td>72</td>
<td>7.8</td>
</tr>
<tr>
<td>73</td>
<td>8.3</td>
<td>74</td>
<td>7.4</td>
</tr>
<tr>
<td>75</td>
<td>8.2</td>
<td>76</td>
<td>6.2</td>
</tr>
<tr>
<td>77</td>
<td>7.2</td>
<td>78</td>
<td>7.3</td>
</tr>
<tr>
<td>79</td>
<td>6.9</td>
<td>80</td>
<td>7.7</td>
</tr>
<tr>
<td>81</td>
<td>6.0</td>
<td>82</td>
<td>7.0</td>
</tr>
<tr>
<td>83</td>
<td>7.7</td>
<td>84</td>
<td>6.5</td>
</tr>
<tr>
<td>85</td>
<td>6.3</td>
<td>86</td>
<td>6.7</td>
</tr>
<tr>
<td>87</td>
<td>7.6</td>
<td>88</td>
<td>7.0</td>
</tr>
<tr>
<td>89</td>
<td>7.3</td>
<td>90</td>
<td>7.6</td>
</tr>
<tr>
<td>91</td>
<td>7.7</td>
<td>92</td>
<td>7.7</td>
</tr>
<tr>
<td>93</td>
<td>7.7</td>
<td>94</td>
<td>6.9</td>
</tr>
<tr>
<td>95</td>
<td>7.2</td>
<td>96</td>
<td>7.3</td>
</tr>
<tr>
<td>97</td>
<td>7.5</td>
<td>98</td>
<td>7.3</td>
</tr>
<tr>
<td>99</td>
<td>7.1</td>
<td>100</td>
<td>7.5</td>
</tr>
<tr>
<td>101</td>
<td>7.4</td>
<td>102</td>
<td>7.0</td>
</tr>
<tr>
<td>103</td>
<td>6.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CLAIMS

1. A compound of formula (I)

\[
\begin{align*}
\text{NH}_2 \\
\text{N} \\
\text{R}^1 \\
\text{R}^2 \\
\text{NR}^3 \text{R}^4
\end{align*}
\]

(I)

wherein

1. \(R^1\) represents \(Q\)-C alkyl, \(Q\)-C\(_6\) alkoxy or \(Q\)-C\(_6\) alkylthio;

2. \(R^2\) represents either

\[
\begin{align*}
\text{X}^1 & \quad \text{Z} \\
\text{R}^7_i & \quad \text{X}^3 \\
\text{COOR}^6 & \quad \text{Y}^1 \\
\text{COOR}^8 \\
\end{align*}
\]

(Ia) or

\[
\begin{align*}
\text{X}^2 & \quad \text{Z} \\
\text{R}^8 & \quad \text{X}^4 \\
\text{A} & \quad \text{Y}^1 \\
\text{R}^9 & \quad \text{R}^9_n \\
\end{align*}
\]

(lb);

3. \(R^3\) represents a hydrogen atom or a C1-C3 alkyl group;

4. \(R^4\) represents,

(i) C3-C8 cycloalkyl, \(Ci\)-C\(_g\) alkyl, C2-C\(_g\) alkenyl or C2-C\(_g\) alkynyl, each of which may be optionally substituted by one or more substituents independently selected from halogen, hydroxyl, \(Ci\)-C\(_g\) alkoxy, \(Ci\)-C\(_g\) alkylthio and

C3-C6 cycloalkyl, or

(ii) a group
in which \(m \) is 1 or 2, \(q \) is 0, 1 or 2 and each \(R \) independently represents a halogen atom or a hydroxyl, methyl, cyano, trifluoromethyl, \(S(O)_j \)-methyl or methoxy group;

\(X \) represents an oxygen or sulphur atom or a group \(\text{NH} \) or \(\text{CH}_2 \);

\(X^2 \) and \(X^4 \) each independently represent a bond or an oxygen or sulphur atom;

\(R^5 \) and \(R^5_a \) each independently represent a hydrogen atom or a \(Q\)-\(C_3 \) alkyl group;

\(R^6 \) represents a \(C_1\)-\(C_6 \) alkyl group optionally substituted by one or more substituents independently selected from halogen, cyano, hydroxyl, \(C_1\)-\(C_3 \) alkoxy, methylsulphonyl, methylthiazolyl and \(NR^{10} R^{11} \), or \(R^6 \) represents a saturated heterocyclic ring optionally substituted by \(C_1\)-\(C_6 \) alkyl;

\(Y \) is 1 or 2;

each \(R^7 \) independently represents a hydrogen or halogen atom or a hydroxyl, methyl, cyano, halomethoxy or methoxy group;

\(Z \) represents a \(C_2\)-\(C_g \) alkyene or \(C_3\)-\(C_8 \) cycloalkylene group;

\(X^3 \) represents \(NR^{12} \), \(>\text{N-COR}^{12} \), \(\text{CONR}^{12} \), \(\text{NR}^{12} \text{CO} \), \(\text{SO}_2 \text{NR}^{12} \), \(>\text{N-SO}_2 \text{R}^{12} \), \(\text{NR}^{12} \text{SO}_2 \), \(\text{NR}^{12} \text{CONR}^{13} \) or \(\text{NR}^{13} \text{CONR}^{12} \), \(S(0)_p \), or \(O \);

\(p \) is 0, 1 or 2;

\(Y^1 \) represents a single bond or \(C_1\)-\(C_g \) alkyene;

\(A \) represents a monocyclic or bicyclic \(C_g\)-\(C_{10} \) aryl or a monocyclic or bicyclic \(C_5\)-\(C_{12} \) heteroaryl group containing 1 to 3 ring heteroatoms;
R represents a C₁-C₆ alkyl group optionally substituted by one or more substituents independently selected from halogen, cyano, hydroxyl, NR, and C₁-C₃ alkoxy; n is 0, 1 or 2; each R independently represents halogen, cyano, hydroxy, thiol, C₁-C₃ alkyl, C₁-C₃ hydroxyalkyl, Q-C₃ haloalkyl, Q-C₃ alkoxy, Q-C₃ haloalkoxy, C₁-C₃ alkylthio, C₁-C₃ alkylsulfonyl or C₁-C₃ alkylsulfonyl; R₁₀ and R₁¹ each independently represent hydrogen, Ci-C₆ alkyl or C₃-C₆ cycloalkyl, or R₁₀ and R₁¹ together with the nitrogen atom to which they are attached form a 4- to 7-membered saturated heterocyclic ring which may optionally contain a further ring heteroatom selected from oxygen, S(O)₉ or NR, the heterocyclic ring being optionally substituted by Ci-C₆ alkyl (which is itself optionally substituted by Q-C₆ alkoxy) or di-Ci-C₆ alkylamino; R₁² represents a hydrogen atom, a 3- to 8-membered saturated or unsaturated heterocyclic ring comprising at least one ring group O, S(O), N or NR, a Ci-C₆ alkyl group or C₃-C₆ cycloalkyl group, the latter two groups being optionally substituted by one or more substituents independently selected from NR, and R, or R₁² is a Ci-C₆ alkylene which may be linked to a carbon atom within a C₂-C₆ alkylene group Z so as to form a saturated 4- to 7-membered nitrogen-containing ring; R₁⁴, R₂² and R₃⁵ each independently represent a hydrogen atom, CO₂R, S(O)₉R, COR, or a Ci-C₉ alkyl, C₂-C₉ alkenyl, C₂-C₉ alkynyl or C₃-C₈ cycloalkyl group, each of which may be optionally substituted by one or more substituents independently selected from halogen, cyano, OR, and NR,; R₁⁵ and R₁⁶ each independently represent a hydrogen atom, a 3- to 8-membered saturated heterocyclic ring comprising at least one ring group O, S(O), or NR, Q-C₆ alkyl or C₃-C₆ cycloalkyl, the latter two groups being optionally substituted by one or more
substituents independently selected from halogen, cyano, S(O)\textsubscript{2}R23, OR24, CO\textsubscript{2}R24, OC(O)R24, SO\textsubscript{2}NR\textsubscript{2}R25, CONR\textsubscript{2}R25, NR24R25, NR24SO\textsubscript{2}R26, NR24COR25, or a 3- to 8-membered saturated heterocyclic ring comprising at least one ring group O, S(O)b or NR25, or

R15 and R16 together with the nitrogen atom to which they are attached form a 3- to 8-membered saturated heterocyclic ring comprising a ring nitrogen atom and optionally one or more further ring heteroatoms independently selected from nitrogen, oxygen, sulphur and sulphonyl, the heterocyclic ring being optionally substituted by one or more substituents independently selected from halogen, cyano, S(O)aR27, OR27, CO\textsubscript{2}R27, COR97, OC(O)R97, SO\textsubscript{2}NR3R97, CONR3R97, NR32R97, NR32SO\textsubscript{2}R97, NR32COR98, Ci-C\textsubscript{6} haloalkyl, C\textsubscript{3}-C\textsubscript{8} cycloalkyl, C\textsubscript{1}-C\textsubscript{6} alkyl, aryl and heteroaryl, the latter four groups being optionally substituted by one or more substituents independently selected from halogen, cyano, S(O)\textsubscript{a}R30, 0 R30, CO\textsubscript{2}R30, SO\textsubscript{2}NR\textsubscript{30}R31, CONR\textsubscript{30}R31 and NR\textsubscript{30}R31;

R17 represents halogen, cyano, Q-C3 haloalkoxy, CO\textsubscript{2}R32, S(O)\textsubscript{6}R32, OR32, SO\textsubscript{2}NR3R34, CONR3R34, NR32SO\textsubscript{2}R33, NR32CO\textsubscript{2}R33, NR32COR34 or a 3- to 8-membered saturated heterocyclic ring comprising a ring group NR35;

a, b, d, f, g, h, t, v, w and z each independently represent 0, 1 or 2;

R18, R26, R29 and R33 each independently represent a Q-C\textsubscript{6} alkyl or C\textsubscript{3}-C\textsubscript{6} cycloalkyl group;

R13, R19, R20, R21, R23, R24, R25, R27, R28, R30, R31, R32 and R34 each independently represent a hydrogen atom or a Ci-C\textsubscript{6} alkyl or C\textsubscript{3}-C\textsubscript{6} cycloalkyl group; and

R36 represents a hydrogen atom or a C\textsubscript{1}-C\textsubscript{3} alkyl group;

or a pharmaceutically acceptable salt thereof.

2. A compound according to claim 1, wherein R1 represents Ci-C\textsubscript{g} alkyl.
3. A compound according to claim 1 or claim 2, wherein R³ represents a hydrogen atom.

4. A compound according to any one of the preceding claims, wherein R⁴ represents Ci-Cg alkyl optionally substituted by one or more substituents independently selected from halogen, hydroxyl, Q-C₆ alkoxy, Q-C₆ alkylthio and C3-C6 cycloalkyl.

5. A compound according to any one of the preceding claims, wherein R² represents a group of formula (Ia).

6. A compound according to claim 5, wherein X¹ represents CH₂, X² represents a bond and R⁵ represents a hydrogen atom.

7. A compound according to claim 5 or claim 6, wherein j is 1 and R⁷ represents hydrogen, hydroxyl, fluorine or methoxy.

8. A compound according to any one of claims 1 to 4, wherein R² represents a group of formula (Ib).

9. A compound according to claim 8, wherein Z¹ represents C2-C6 alkylene.

10. A compound according to claim 8 or claim 9, wherein X³ represents NR¹₂, >N-COR¹₂, NR¹₂CO or >N-SO₂R¹₂.

11. A compound according to any one of claims 8 to 10, wherein Y¹ represents Ci-C₆ alkylene.
12. A compound according to any one of claims 8 to 11, wherein A represents a monocyclic or bicyclic C₆-C₁₀ aryl selected from phenyl.

13. A compound according to any one of claims 8 to 12, wherein R represents C₁-C₆ alkyl.

14. A compound according to claim 1 being,
 Methyl 2-(3-((3-(2-Amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propylamino)methyl)phenyl)acetate,
 Methyl 2-(4-(3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propylamino)methyl)phenyl)acetate,
 Methyl 2-(3-((N-(3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propyl)-2-(dimethylamino)acetamido)methyl)phenyl)acetate,
 Methyl 2-(4-(3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propyl)-2-(dimethylamino)acetamido)methyl)phenyl)acetate,
 (S)-Methyl 1-(2-((3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propyl)(3-(2-methoxy-2-oxoethyl)benzyl)amino)-2-oxoethyl)pyrrolidine-2-carboxylate,
 Methyl 2-(3-((N-(3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propyl)-2-(4-methylpiperazin-1-yl)acetamido)methyl)phenyl)acetate,
 Methyl 2-(3-((N-(3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propyl)-2-(4-hydroxypiperidin-1-yl)acetamido)methyl)phenyl)acetate,
 Methyl 2-(3-((2-(4-acetyl-1,4-diazepan-1-yl)-N-(3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propyl)acetamido)methyl)phenyl)acetate,
 Methyl 2-(3-((N-(3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propyl)-2-(4-(3-(dimethylamino)propyl)piperazin-1-yl)acetamido)methyl)phenyl)acetate,
 Methyl 2-(3-((N-(3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propyl)-2-(2-hydroxyethyl)(methyl)amino)acetamido)methyl)phenyl)acetate,
 Methyl 4-((3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propyl)(3-(2-methoxy-2-oxoethyl)benzyl)amino)-4-oxobutanoate,
 Methyl 2-((3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propyl)-4-(dimethylamino)butanamido)methyl)phenyl)acetate,
Methyl 2-((3-((N-(3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propyl)methylsulfonamido)methyl)phenyl)acetate,
Methyl 2-((3-((N-(3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propyl)-1-methyl-1H-imidazole-4-sulfonamido)methyl)phenyl)acetate,
Methyl 2-((4-((N-(3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propyl)-2-((2-methoxyethyl)(methyl)amino)acetamido)methyl)phenyl)acetate,
Methyl 2-((3-((N-(3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propyl)-3-(dimethylamino)propanamido)methyl)phenyl)acetate,
Methyl 2-((4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)butylamino)methyl)phenyl)acetate,
(S)-Methyl 2-((4-((3-(2-amino-4-(1-hydroxyheptan-3-ylamino)-6-methylpyrimidin-5-yl)propylamino)methyl)phenyl)acetate,
(S)-Methyl 2-((4-((N-(3-(2-amino-4-(1-hydroxyheptan-3-ylamino)-6-methylpyrimidin-5-yl)propyl)-2-(dimethylamino)acetamido)methyl)phenyl)acetate,
Methyl 2-((3-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate,
Methyl 2-((4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)-3-methoxyphenyl)acetate,
Methyl 2-((4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)-3-fluorophenyl)acetate,
Methyl 2-((4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propylamino)-2-oxoethyl)phenyl)acetate,
Methyl 2-((3-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propylamino)-2-oxoethyl)phenyl)acetate,
Methyl 2-((3-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propylamino)methyl)phenoxy)acetate,
Methyl 2-((4-((N-(3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propyl)-2-((4-(methylsulfonyl)phenyl)piperidin-1-yl)acetamido)methyl)phenyl)acetate,
Methyl 2-((4-((N-(3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propyl)-2-morpholinoacetamido)methyl)phenyl)acetate,
Methyl 2-((4-((N-(3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propyl)-2-(4-phenylpiperidin-1-yl)acetamido)methyl)phenyl)acetate,
Methyl 2-(4-((N-(3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propyl)-2-(piperidin-1-yl)acetamido)methyl)phenyl)acetate,
(S)-Methyl 2-(4-((2-amino-4-(1-hydroxypentan-2-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetate,
(S)-Methyl 2-(4-((2-amino-4-(1-hydroxyheptan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetate,
(S)-Methyl 2-(4-((2-amino-4-(1-hydroxyhexan-2-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetate,
(S)-Methyl 2-(4-((2-amino-4-(1-hydroxyheptan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-fluorophenyl)acetate,
Methyl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate,
2-Morpholinoethyl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate,
2-(Dimethylamino)ethyl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate,
3-(Dimethylamino)propyl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate,
2-(4-Methylpiperazin-1-yl)ethyl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate,
Methyl 2-(3-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)-4-hydroxyphenyl)acetate,
Methyl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)-3-methoxyphenoxy)acetate,
Methyl 2-(4-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)phenyl)acetate,
(S)-Methyl 2-(3-((2-amino-4-(1-hydroxyhexan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)-4-fluorophenyl)acetate,
(S)-Methyl 2-(4-((2-amino-4-(1-hydroxypentan-2-ylamino)-6-methylpyrimidin-5-yl)methyl)phenyl)acetate,
(S)-Methyl 2-(4-((2-amino-4-(1-hydroxyhexan-2-ylamino)-6-methylpyrimidin-5-yl)methyl)phenyl)acetate,
(S)-Methyl 2-((2-amino-4-(1-hydroxyhexan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-fluorophenyl)acetate,
Methyl 2-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetate,
(S)-Methyl 2-((2-amino-4-(1-hydroxyhexan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-fluorophenyl)acetate,
(S)-Methyl 2-((2-amino-4-(1-hydroxyhexan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetate,
(S)-Methyl 2-((2-amino-4-(1-hydroxyhexan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)phenyl)acetate,
(S)-Methyl 2-((2-amino-4-(1-hydroxyheptan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)phenyl)acetate,
Methyl 2-((N-(3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propyl)-1-methylpiperidine-4-carboxamido)methyl)phenyl)acetate,
Methyl 2-((N-(3-(2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)propyl)-2-(methylthio)acetamido)methyl)phenyl)acetate,
(S)-Methyl 2-((2-amino-4-(2-hydroxybutylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetate,
Methyl 2-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)4-methoxyphenyl)acetate,
3-(Dimethylamino)-2,2-dimethylpropyl 2-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate,
3-(4-Methylpiperazin-1-yl)propyl 2-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate,
4-(Dimethylamino)butyl 2-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate,
3-Morpholinopropyl 2-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate,
1-Methylpiperidin-4-yl 2-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate,
(1-Methylpiperidin-4-yl)methyl 2-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate,
4-(Pyrrolidin-1-yl)butyl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate,
(1-(2-Methoxyethyl)piperidin-4-yl)methyl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate,
4-(4-Methylpiperazin-1-yl)butyl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate,
4-(1,1-Dioxidothiomorpholin-4-yl)butyl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate,
4-Morpholinobutyl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate,
2-(1-Methylpiperidin-4-yl)ethyl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate,
Piperidin-4-ylmethyl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate,
4-(4-(Dimethylamino)piperidin-1-yl)butyl 2-(4-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate,
(l-Methylpiperidin-4-yl)methyl 2-(4-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)phenyl)acetate,
(S)-4-(Dimethylamino)butyl 2-(4-((2-amino-4-(1-hydroxypentan-2-ylamino)-6-methylpyrimidin-5-yl)methyl)phenyl)acetate,
(S)-(1-Methylpiperidin-4-yl)methyl 2-(4-((2-amino-4-(1-hydroxypentan-2-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetate,
(l-Methylpiperidin-4-yl)methyl 2-(4-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetate,
4-(Pyrrolidin-1-yl)butyl 2-(4-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetate,
(S)-(1-Methylpiperidin-4-yl)methyl 2-(4-((2-amino-4-(1-hydroxyhexan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-fluorophenyl)acetate,
(S)-Methyl 2-(4-((2-amino-4-(1-hydroxyhexan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-hydroxyphenyl)acetate,
(S)-(1-Methylpiperidin-4-yl)methyl 2-(4-((2-amino-4-(1-hydroxypentan-2-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-hydroxyphenyl)acetate,
Methyl 2-(4-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-3-hydroxyphenyl)acetate,

(S)-4-(Pyrrrolidin-1-yl)butyl 2-(4-((2-amino-4-(1-hydroxyhexan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-hydroxyphenyl)acetate,

4-(Pyrrrolidin-1-yl)butyl 2-(4-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-3-hydroxyphenyl)acetate,

(S)-Methyl 2-(3-((2-amino-4-(1-hydroxypentan-2-ylamino)-6-methylpyrimidin-5-yl)methyl)-4-methoxyphenyl)acetate,

(S)-(l-Methylpiperidin-4-yl)methyl 2-(4-((2-amino-4-(2-hydroxybutylamino)-6-methylpyrimidin-5-yl)methyl)phenyl)acetate,

4-(Pyrrrolidin-1-yl)butyl 2-(4-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)phenyl)acetate,

(l-Methylpiperidin-4-yl)methyl 2-(3-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-4-methoxyphenyl)acetate,

4-(Pyrrrolidin-1-yl)butyl 2-(3-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate,

(l-Methylpiperidin-4-yl)methyl 2-(3-((2-amino-4-methyl-6-(pentylamino)pyrimidin-5-yl)methyl)phenyl)acetate,

(S)-4-(Dimethylamino)butyl 2-(4-((2-amino-4-(1-hydroxyhexan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-fluorophenyl)acetate,

(S)-4-(4-Methylpiperazin-1-yl)butyl 2-(4-((2-amino-4-(1-hydroxyhexan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-fluorophenyl)acetate,

(S)-Methyl 2-(4-((2-amino-4-(1-hydroxypentan-2-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-hydroxyphenyl)acetate,

2-Hydroxyethyl 2-(4-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetate,

4-(4-(Dimethylamino)piperidin-1-yl)butyl 2-(4-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetate,

4-Hydroxybutyl 2-(4-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetate,

3-(Methylsulfonyl)propyl 2-(4-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetate,
3-Hydroxypropyl 2-(4-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetate,
(S)-4-(Dimethylamino)butyl 2-(4-((2-amino-4-(1-hydroxyhexan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)phenyl)acetate,
(1-Methylpiperidin-4-yl)methyl 2-(4-((2-amino-4-(butylamino)-6-methylpyrimidin-5-ylthio)phenyl)acetate,
4-(Pyrrolidin-1-yl)butyl 2-(4-((2-amino-4-(butylamino)-6-methylpyrimidin-5-ylthio)phenyl)acetate,
4-(Dimethylamino)butyl 2-(3-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-4-methoxyphenyl)acetate,
Methyl 2-(3-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-4-methoxyphenyl)acetate,
Methyl 2-(3-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-4-hydroxyphenyl)acetate,
(S)-2-(1-Methylpiperidin-4-yl)ethyl 2-(4-((2-amino-4-(1-hydroxyhexan-3-ylamino)-6-methylpyrimidin-5-yl)methyl)-3-fluorophenyl)acetate,
2-(4-Methylthiazol-5-yl)ethyl 2-(4-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-3-methoxyphenyl)acetate,
(1-Methylpiperidin-4-yl)methyl 2-(4-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-3-hydroxyphenyl)acetate,
4-(Dimethylamino)butyl 2-(4-((2-amino-4-(butylamino)-6-methylpyrimidin-5-yl)methyl)-3-hydroxyphenyl)acetate,
or a pharmaceutically acceptable salt of any one thereof.

15. A process for the preparation of a compound of formula (I) or a pharmaceutically acceptable salt thereof as defined in claim 1 which comprises,

(a) when R^* represents a group of formula (Ia), reacting a compound of formula (II)
wherein $X^1, X^2, R^1, R^3, R^4, R^5$ and R^7 are as defined in formula (I), with a compound of formula (III), R^6-OH, where R^6 is as defined in formula (I); or

(b) when R^2 represents a group of formula (Ib), reacting a compound of formula (IV)

wherein $n, A, X^3, X^4, Y^1, Z^1, R^1, R^3, R^4, R^{5a}$ and R^9 are as defined in formula (I), with a compound of formula (V), R^8-OH, where R^8 is as defined in formula (I); or

(c) when R^2 represents a group of formula (Ib) in which X^3 represents NH and Y^1 represents C_6H_{12} alkyene, reacting a compound of formula (VI)
wherein R^1, R^3, R^4, and Z^1 are as defined in formula (I), with a compound of formula (VII)

\[
\begin{align*}
\text{NH}_2 & \\
& | \\
R^1 & \text{NN} \\
& | \\
& | \\
Z^1 & \text{NH}_2 \\
\end{align*}
\]

(VI)

wherein Y^2 represents -(C1-C5 alkyl)j-CHO, j is 0 or 1, and A, n, X^4, R^{5a}, R^8 and R^9 are as defined in formula (I);

and optionally after (a), (b) or (c) carrying out one or more of the following procedures:

- converting a compound of formula (I) into another compound of formula (I)
- removing any protecting groups
- forming a pharmaceutically acceptable salt.

16. A pharmaceutical composition comprising a compound of formula (I) as claimed in any one of claims 1 to 14 or a pharmaceutically acceptable salt thereof in association with a pharmaceutically acceptable adjuvant, diluent or carrier.

17. A compound of formula (I) as claimed in any one of claims 1 to 14 or a pharmaceutically acceptable salt thereof for use in treating asthma, COPD, allergic rhinitis, allergic conjunctivitis, atopic dermatitis, cancer, hepatitis B, hepatitis C, HIV, HPV, bacterial infections or dermatosis.

18. Use of a compound of formula (I) as claimed in any one of claims 1 to 14 or a pharmaceutically acceptable salt thereof in the manufacture of a medicament for use in
treating asthma, COPD, allergic rhinitis, allergic conjunctivitis, atopic dermatitis, cancer, hepatitis B, hepatitis C, HIV, HPV, bacterial infections or dermatosis.

19. A method of treating an obstructive airways disease in a patient suffering from, or at risk of, said disease, which comprises administering to the patient a therapeutically effective amount of a compound of formula (I) as claimed in any one of claims 1 to 14 or a pharmaceutically acceptable salt thereof.

20. A combination of a compound of formula (I) as claimed in any one of claims 1 to 14 or a pharmaceutically acceptable salt thereof and one or more agents independently selected from:
 • a non-steroidal glucocorticoid receptor agonist;
 • a selective β2 adrenoceptor agonist;
 • a phosphodiesterase inhibitor;
 • a protease inhibitor;
 • a glucocorticoid;
 • an anticholinergic agent;
 • a modulator of chemokine receptor function; and
 • an inhibitor of kinase function.
Fig. 1A (MONOSACCHARIN SALT)

Counts / s

Position [°2 Theta]
Fig. 1B

<table>
<thead>
<tr>
<th>XRPD of Monosaccharin salt of Example 57</th>
<th>XRPD of Monosaccharin salt of Example 57</th>
</tr>
</thead>
<tbody>
<tr>
<td>2θ (°)</td>
<td>d space (Å)</td>
</tr>
<tr>
<td>6.3591</td>
<td>13.89953</td>
</tr>
<tr>
<td>6.9124</td>
<td>12.78817</td>
</tr>
<tr>
<td>7.3269</td>
<td>12.06562</td>
</tr>
<tr>
<td>8.3939</td>
<td>10.53409</td>
</tr>
<tr>
<td>9.8676</td>
<td>8.96393</td>
</tr>
<tr>
<td>10.8454</td>
<td>8.15784</td>
</tr>
<tr>
<td>11.7549</td>
<td>7.52861</td>
</tr>
<tr>
<td>12.4448</td>
<td>7.11275</td>
</tr>
<tr>
<td>12.7113</td>
<td>6.96421</td>
</tr>
<tr>
<td>12.9682</td>
<td>6.82685</td>
</tr>
<tr>
<td>13.6976</td>
<td>6.46492</td>
</tr>
<tr>
<td>14.4166</td>
<td>6.14407</td>
</tr>
<tr>
<td>14.6521</td>
<td>6.04582</td>
</tr>
<tr>
<td>16.2142</td>
<td>5.4667</td>
</tr>
<tr>
<td>16.4918</td>
<td>5.37531</td>
</tr>
<tr>
<td>16.7975</td>
<td>5.27818</td>
</tr>
<tr>
<td>17.224</td>
<td>5.14843</td>
</tr>
<tr>
<td>17.6001</td>
<td>5.03925</td>
</tr>
<tr>
<td>17.7692</td>
<td>4.99165</td>
</tr>
<tr>
<td>18.1766</td>
<td>4.88069</td>
</tr>
<tr>
<td>18.6503</td>
<td>4.75779</td>
</tr>
<tr>
<td>19.1041</td>
<td>4.64577</td>
</tr>
<tr>
<td></td>
<td>19.7576</td>
</tr>
<tr>
<td></td>
<td>4.49356</td>
</tr>
<tr>
<td></td>
<td>20.0967</td>
</tr>
<tr>
<td></td>
<td>4.41851</td>
</tr>
<tr>
<td></td>
<td>20.4436</td>
</tr>
<tr>
<td></td>
<td>4.34431</td>
</tr>
<tr>
<td></td>
<td>20.6797</td>
</tr>
<tr>
<td></td>
<td>4.29524</td>
</tr>
<tr>
<td></td>
<td>20.9564</td>
</tr>
<tr>
<td></td>
<td>4.23914</td>
</tr>
<tr>
<td></td>
<td>21.3643</td>
</tr>
<tr>
<td></td>
<td>4.15912</td>
</tr>
<tr>
<td></td>
<td>22.0341</td>
</tr>
<tr>
<td></td>
<td>4.03418</td>
</tr>
<tr>
<td></td>
<td>22.8587</td>
</tr>
<tr>
<td></td>
<td>3.89049</td>
</tr>
<tr>
<td></td>
<td>23.0919</td>
</tr>
<tr>
<td></td>
<td>3.85172</td>
</tr>
<tr>
<td></td>
<td>23.2947</td>
</tr>
<tr>
<td></td>
<td>3.81865</td>
</tr>
<tr>
<td></td>
<td>23.6138</td>
</tr>
<tr>
<td></td>
<td>3.76776</td>
</tr>
<tr>
<td></td>
<td>24.1901</td>
</tr>
<tr>
<td></td>
<td>3.6793</td>
</tr>
<tr>
<td></td>
<td>24.7329</td>
</tr>
<tr>
<td></td>
<td>3.59976</td>
</tr>
<tr>
<td></td>
<td>25.5475</td>
</tr>
<tr>
<td></td>
<td>3.4868</td>
</tr>
<tr>
<td></td>
<td>26.0651</td>
</tr>
<tr>
<td></td>
<td>3.41873</td>
</tr>
<tr>
<td></td>
<td>27.0187</td>
</tr>
<tr>
<td></td>
<td>3.30019</td>
</tr>
<tr>
<td></td>
<td>28.7768</td>
</tr>
<tr>
<td></td>
<td>3.10244</td>
</tr>
<tr>
<td></td>
<td>29.788</td>
</tr>
<tr>
<td></td>
<td>2.99938</td>
</tr>
<tr>
<td></td>
<td>31.0299</td>
</tr>
<tr>
<td></td>
<td>2.88212</td>
</tr>
<tr>
<td></td>
<td>31.2805</td>
</tr>
<tr>
<td></td>
<td>2.8596</td>
</tr>
<tr>
<td></td>
<td>37.1333</td>
</tr>
<tr>
<td></td>
<td>2.42123</td>
</tr>
</tbody>
</table>

Accuracy - +/- 0.1° 2θ
INTERNATIONAL SEARCH REPORT

International application No.

PCT/SE2008/051334

A. CLASSIFICATION OF SUBJECT MATTER

IPC: see extra sheet

According to International Patent Classification (IPC) or both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC: A61K, C07D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE, DK, FI, NO classes as above

Electronic data base consulted during the international search (name of database and, where practicable, search terms used)

EPO-INTERNAL, WPI DATA, PAJ, CHEM. ABS DATA

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 2657206 A (HITCHINGS, G ET AL), 27 October 1953 (27.10.1953), page 1, line 1 - line 14, claims 1-6, example 42</td>
<td>1-20</td>
</tr>
<tr>
<td>A</td>
<td>US 20040214192 A1 (HASHIDA, R ET AL), 28 October 2004 (28.10.2004), page 1, paragraph [0001], tables 22, 26 and 45</td>
<td>1-20</td>
</tr>
<tr>
<td>A</td>
<td>US 6458798 B1 (FUJITA, H ET AL), 1 October 2002 (01.10.2002), page 1, line 11 - line 18, claims 9, 13, page 25- compound no 9; examples 28, 29, 30</td>
<td>1-20</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier application or patent but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

Date of the actual completion of the international search

10 February 2009

Date of mailing of the international search report

20-02-2009

Name and mailing address of the ISA/Swedish Patent Office

Box 5055, S-102 42 STOCKHOLM
Facsimile No. +46 8 666 02 86

Authorized officer

Hakan Yildirim/ELY
Telephone No. +46 8 782 25 00

Form PCT/ISA/210 (second sheet) (July 2008)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 4912112 A (SEYDEL, J ET AL), 27 March 1990</td>
<td>1-20</td>
</tr>
<tr>
<td>A</td>
<td>(27.03.1990), page 1, line 8 - line 11, claims 1, 20, examples</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>GB 1375162 A (STUART, A ET AL), 27 November 1974</td>
<td>1-20</td>
</tr>
<tr>
<td>A</td>
<td>(27.11.1974), page 1, line 15 - line 18, claims 1-27, examples</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US 4179562 A (PONSFORD, R J), 18 December 1979</td>
<td>1-20</td>
</tr>
<tr>
<td>A</td>
<td>(18.12.1979), page 4, line 11 - line 23, claims 1-26, examples</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Falco, E.A. et al. (1951) 2,4-Diaminopyrimidines as antimalarials. 1. 5-Aryloxyl and 5-alkoxyl derivatives. Journal of the American Chemical Society 73 (8), pp. 3753-3758, page 3754:right column, lines 12-14, table 1</td>
<td>1-20</td>
</tr>
</tbody>
</table>
INTERNATIONAL SEARCH REPORT

<table>
<thead>
<tr>
<th>Box No. π</th>
<th>Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:</td>
</tr>
<tr>
<td>1. ☒ Claims Nos.: 1 9</td>
<td>because they relate to subject matter not required to be searched by this Authority, namely:</td>
</tr>
<tr>
<td></td>
<td>Claim 19 relates to a method for treatment of the human or animal body by therapy, see PCT rule 39.1(iv).</td>
</tr>
<tr>
<td></td>
<td>.../...</td>
</tr>
<tr>
<td>2. ☐ Claims Nos.:</td>
<td>because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:</td>
</tr>
<tr>
<td>3. ☐ Claims Nos.:</td>
<td>because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Box No. III</th>
<th>Observations where unity of invention is lacking (Continuation of item 3 of first sheet)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This International Searching Authority found multiple inventions in this international application, as follows:</td>
</tr>
<tr>
<td></td>
<td>.</td>
</tr>
</tbody>
</table>

1. ☑ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims. |
2. ☐ As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fees. |
3. ☐ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.: |
4. ☐ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: |

Remark on Protest

= The additional search fees were accompanied by the applicant’s protest and, where applicable, the payment of a protest fee.
= The additional search fees were accompanied by the applicant’s protest but the applicable protest fee was not paid within the time limit specified in the invitation.
= No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (July 2008)
Nevertheless, a search has been made for this claim. The search has been directed to the technical content of the claim.
International patent classification (IPC)

C07D 239/48 (2006.01)
A51X 31/505 (2006.01)
A61P 11/00 (2006.01)
A61P 17/00 (2006.01)
A61P 27/14 (2006.01)
A61P 31/00 (2006.01)
A61P 35/00 (2006.01)
C07D 239/49 (2006.01)
C07D 401/10 (2006.01)
C07D 401/12 (2006.01)
C07D 403/10 (2006.01)
C07D 403/12 (2006.01)
C07D 417/10 (2006.01)

Download your patent documents at www.prv.se

The cited patent documents can be downloaded at www.prv.se by following the links:
- In English/Searches and advisory services/Cited documents (service in English) or
- e-tjanster/anförda dokuraent (service in Swedish).

Use the application number as username.
The password is TFJTRITBAD.

Paper copies can be ordered at a cost of 50 SEK per copy from PRV InterPat (telephone number 08-782 28 85).

Cited literature, if any, will be enclosed in paper form.
<table>
<thead>
<tr>
<th>Country</th>
<th>Application Number</th>
<th>Date</th>
<th>Inventor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>2657206 A</td>
<td>27/10/1953</td>
<td>NONE</td>
</tr>
<tr>
<td>US</td>
<td>20040214192 Al</td>
<td>28/10/2004</td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>6458798 B1</td>
<td>01/10/2002</td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>4912112 A</td>
<td>27/03/1990</td>
<td></td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (April 2005)
<table>
<thead>
<tr>
<th>Country</th>
<th>Number</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>GB</td>
<td>1375162</td>
<td>27/11/1974</td>
</tr>
<tr>
<td>AR</td>
<td>192588</td>
<td>28/02/1973</td>
</tr>
<tr>
<td>AR</td>
<td>192802</td>
<td>14/03/1973</td>
</tr>
<tr>
<td>AR</td>
<td>192803</td>
<td>14/03/1973</td>
</tr>
<tr>
<td>AT</td>
<td>319948</td>
<td>10/01/1975</td>
</tr>
<tr>
<td>AU</td>
<td>465145</td>
<td>18/09/1975</td>
</tr>
<tr>
<td>AU</td>
<td>3486371</td>
<td>03/05/1973</td>
</tr>
<tr>
<td>BE</td>
<td>774281</td>
<td>21/04/1972</td>
</tr>
<tr>
<td>BG</td>
<td>20364</td>
<td>05/11/1975</td>
</tr>
<tr>
<td>BG</td>
<td>20365</td>
<td>05/11/1975</td>
</tr>
<tr>
<td>BG</td>
<td>20797</td>
<td>20/12/1975</td>
</tr>
<tr>
<td>BG</td>
<td>21406</td>
<td>20/05/1976</td>
</tr>
<tr>
<td>CA</td>
<td>967158</td>
<td>06/05/1975</td>
</tr>
<tr>
<td>CA</td>
<td>999583</td>
<td>09/11/1976</td>
</tr>
<tr>
<td>CH</td>
<td>568301</td>
<td>31/10/1975</td>
</tr>
<tr>
<td>CH</td>
<td>568302</td>
<td>31/10/1975</td>
</tr>
<tr>
<td>CH</td>
<td>582681</td>
<td>15/12/1976</td>
</tr>
<tr>
<td>DD</td>
<td>94818</td>
<td>05/01/1973</td>
</tr>
<tr>
<td>DD</td>
<td>100877</td>
<td>12/10/1973</td>
</tr>
<tr>
<td>DE</td>
<td>2152814</td>
<td>04/05/1972</td>
</tr>
<tr>
<td>DK</td>
<td>132174</td>
<td>03/11/1975</td>
</tr>
<tr>
<td>ES</td>
<td>396219</td>
<td>16/09/1975</td>
</tr>
<tr>
<td>FI</td>
<td>56175</td>
<td>31/08/1979</td>
</tr>
<tr>
<td>FR</td>
<td>2111769</td>
<td>09/06/1972</td>
</tr>
<tr>
<td>GB</td>
<td>1375163</td>
<td>27/11/1974</td>
</tr>
<tr>
<td>HU</td>
<td>166528</td>
<td>28/03/1975</td>
</tr>
<tr>
<td>IE</td>
<td>37452</td>
<td>03/08/1977</td>
</tr>
<tr>
<td>IL</td>
<td>37984</td>
<td>31/03/1976</td>
</tr>
<tr>
<td>IL</td>
<td>45422</td>
<td>31/03/1976</td>
</tr>
<tr>
<td>JP</td>
<td>53135991</td>
<td>28/11/1978</td>
</tr>
<tr>
<td>JP</td>
<td>55036662</td>
<td>22/09/1980</td>
</tr>
<tr>
<td>KR</td>
<td>7800097</td>
<td>08/04/1978</td>
</tr>
<tr>
<td>LU</td>
<td>64129</td>
<td>28/06/1972</td>
</tr>
<tr>
<td>MC</td>
<td>894</td>
<td>22/06/1972</td>
</tr>
<tr>
<td>NL</td>
<td>175178</td>
<td>31/05/1984</td>
</tr>
<tr>
<td>NL</td>
<td>7114494</td>
<td>25/04/1972</td>
</tr>
<tr>
<td>NO</td>
<td>134837</td>
<td>13/09/1976</td>
</tr>
<tr>
<td>PH</td>
<td>9226</td>
<td>15/07/1975</td>
</tr>
<tr>
<td>RO</td>
<td>67383</td>
<td>30/07/1981</td>
</tr>
<tr>
<td>SE</td>
<td>384505</td>
<td>10/05/1976</td>
</tr>
<tr>
<td>SE</td>
<td>409705</td>
<td>03/09/1979</td>
</tr>
<tr>
<td>SU</td>
<td>429581</td>
<td>25/05/1974</td>
</tr>
<tr>
<td>US</td>
<td>3772289</td>
<td>13/11/1973</td>
</tr>
<tr>
<td>YU</td>
<td>35002</td>
<td>30/06/1980</td>
</tr>
<tr>
<td>YU</td>
<td>186678</td>
<td>31/10/1982</td>
</tr>
<tr>
<td>YU</td>
<td>267871</td>
<td>31/12/1979</td>
</tr>
<tr>
<td>ZA</td>
<td>7107047</td>
<td>27/06/1973</td>
</tr>
<tr>
<td>ZM</td>
<td>14971</td>
<td>21/07/1972</td>
</tr>
<tr>
<td>AT</td>
<td>323745</td>
<td>25/07/1975</td>
</tr>
<tr>
<td>AT</td>
<td>323746</td>
<td>25/07/1975</td>
</tr>
<tr>
<td>CS</td>
<td>194663</td>
<td>31/12/1979</td>
</tr>
<tr>
<td>Country</td>
<td>Patent Number</td>
<td>Application Date</td>
</tr>
<tr>
<td>---------</td>
<td>---------------</td>
<td>------------------</td>
</tr>
<tr>
<td>US</td>
<td>4179562</td>
<td>18/12/1979</td>
</tr>
<tr>
<td>BE</td>
<td>863314 A</td>
<td>25/07/1978</td>
</tr>
<tr>
<td>CH</td>
<td>637385 A</td>
<td>29/07/1983</td>
</tr>
<tr>
<td>DE</td>
<td>2733001 A</td>
<td>09/02/1978</td>
</tr>
<tr>
<td>FR</td>
<td>2359830 A,B</td>
<td>24/02/1978</td>
</tr>
<tr>
<td>GB</td>
<td>1546937 A</td>
<td>31/05/1979</td>
</tr>
<tr>
<td>JP</td>
<td>53018588 A</td>
<td>20/02/1978</td>
</tr>
<tr>
<td>US</td>
<td>4232022 A</td>
<td>04/11/1980</td>
</tr>
</tbody>
</table>