

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2007/0295021 A1 Tyls et al. (43) Pub. Date:

(54) APPARATUS AND METHOD FOR GENERATING WATER FROM AN AIR **STREAM**

Inventors: Josef Tyls, North Vancouver (CA); Jiri Kutak-Petrik, Coquitlam (CA)

Correspondence Address:

ROBERT D. GUNDERMAN, JR. PATENT TECHNOLOGIES, LLC 150 LUCIUS GORDON DRIVE, SUITE 205 WEST HENRIETTA, NY 14586 (US)

Assignee: ALBONIA INNOVATIVE TECH-

NOLOGIES LTD., Vancouver, BC (CA)

(21)Appl. No.: 11/765,431

(22) Filed: Jun. 19, 2007

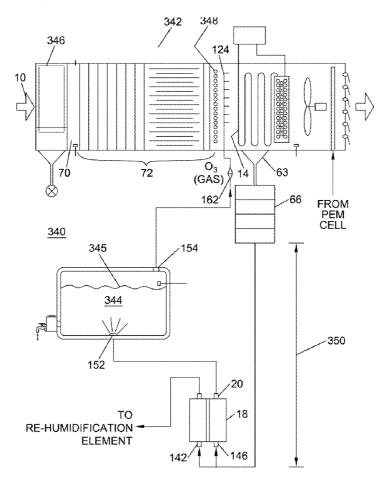
Related U.S. Application Data

Dec. 27, 2007

.... **62/285**; 62/317

(60) Provisional application No. 60/814,884, filed on Jun. 20, 2006.

Publication Classification


(51) Int. Cl. F25D 17/04

(2006.01)(2006.01)

F25D 21/14 (52) U.S. Cl.

ABSTRACT

An apparatus and method for generating water from an air stream is disclosed. The apparatus has an inlet for receiving an air stream, a condensing element located in the air stream, a collector for gathering water vapor condensate that is formed on the condensing element when the condensing element temperature drops below the dew point temperature of the ambient air stream, and an ozone generator that precisely generates ozone required to disinfect the water vapor condensate. In some embodiments of the invention, the ozone is also added to the air stream for disinfecting the air stream and associated elements of the apparatus.

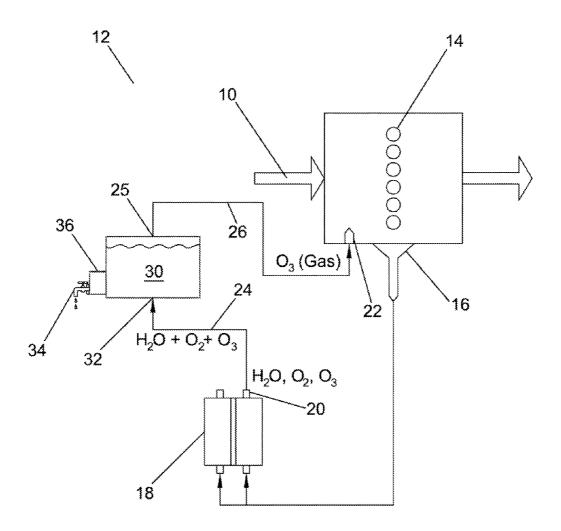


Fig. 1

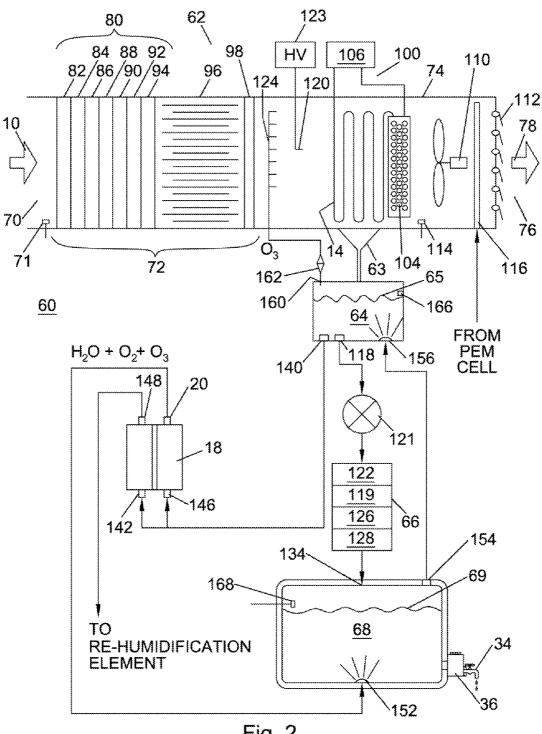


Fig. 2

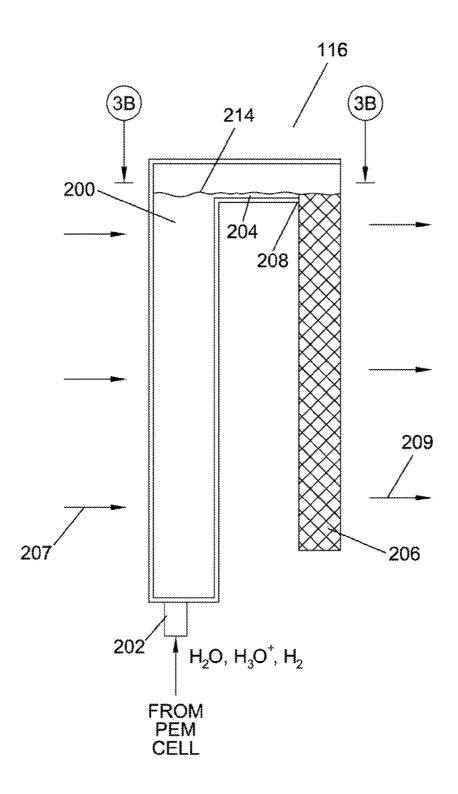


Fig. 3A

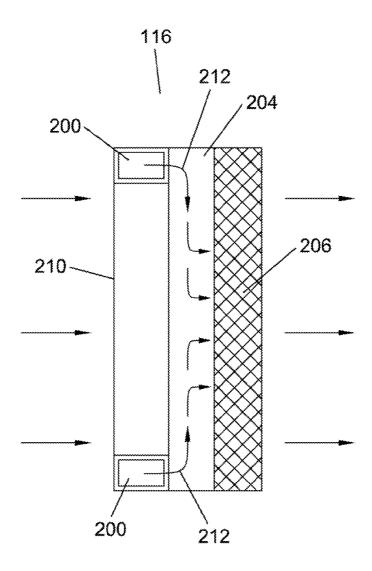


Fig. 3B

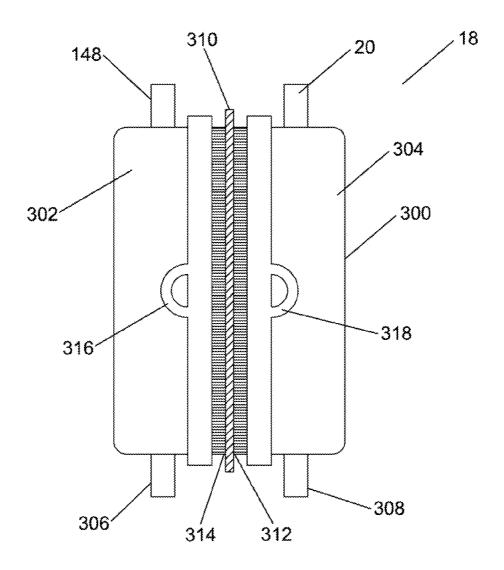


Fig. 4

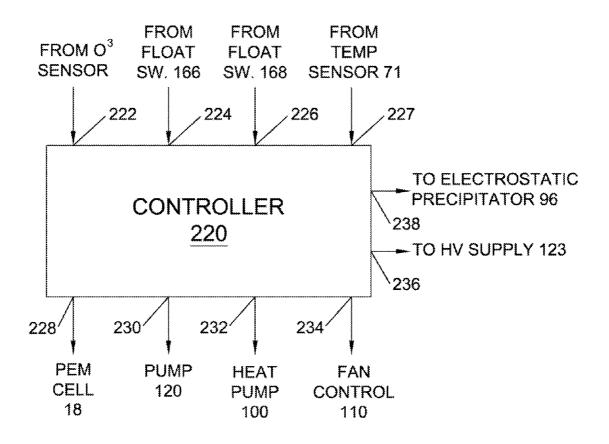


Fig. 5

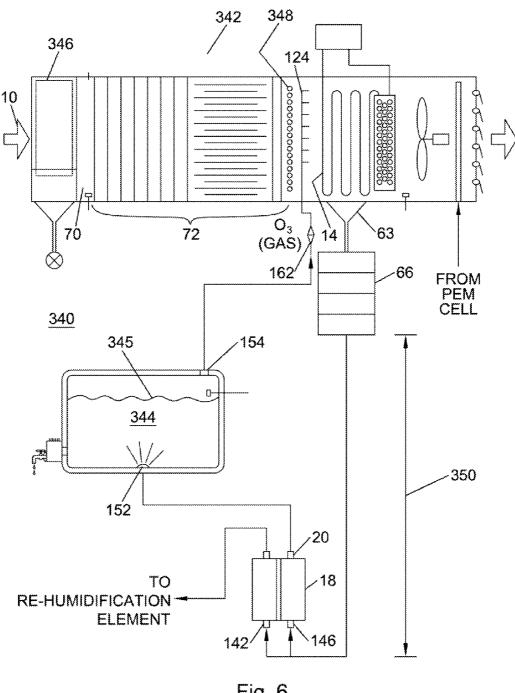


Fig. 6

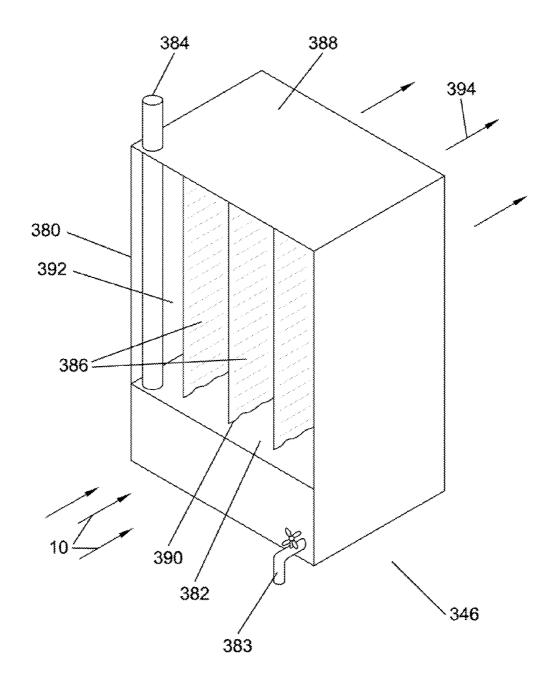


Fig. 7

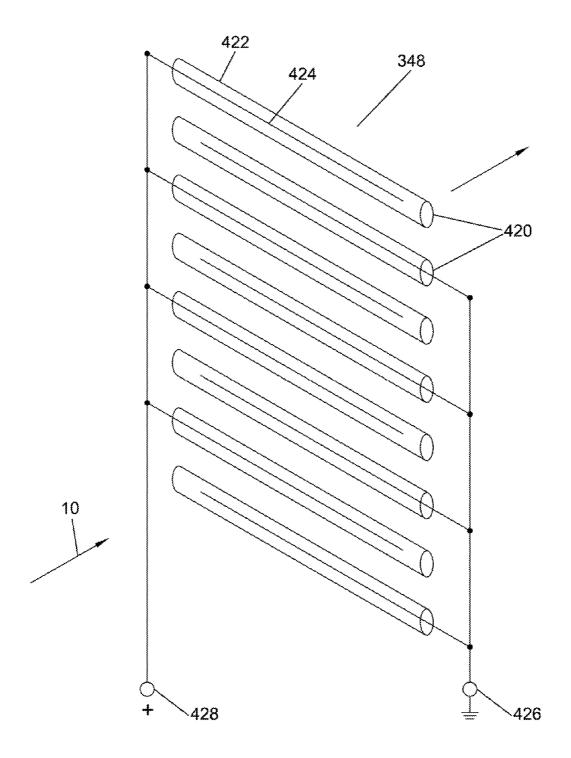


Fig. 8A

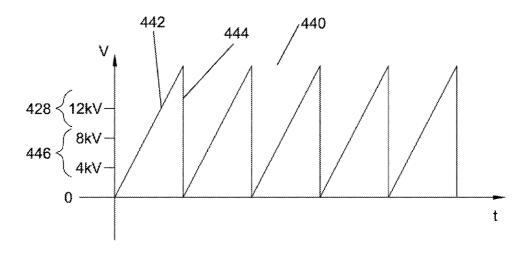


Fig. 8B

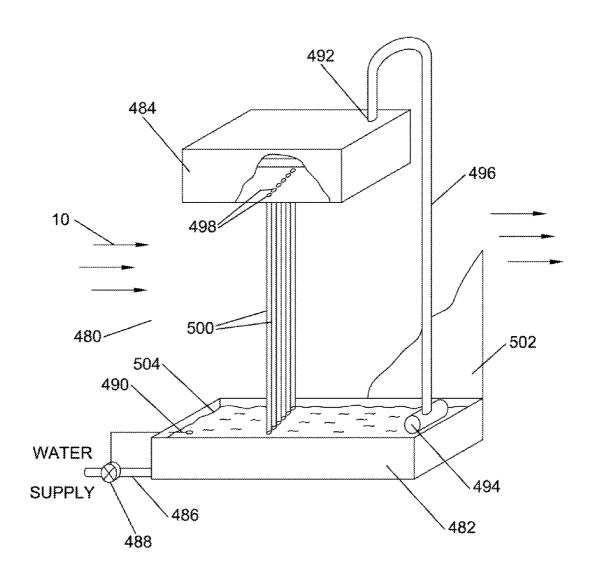


Fig. 9

APPARATUS AND METHOD FOR GENERATING WATER FROM AN AIR STREAM

CROSS-REFERENCE TO RELATED PATENT APPLICATIONS

[0001] This application claims the benefit of the filing date of U.S. provisional patent application Ser. No. 60/814,884 filed on Jun. 20, 2006.

BACKGROUND OF THE INVENTION

[0002] 1. Field of the Invention

[0003] This invention relates generally to generating water from water vapor in ambient air, and more particularly to an apparatus and method for generating water from water vapor in ambient air using an ozone generator for disinfection.

[0004] 2. Description of Related Art

[0005] Water may be generated from ambient air by condensing water vapor. In general, ambient air may contain contaminants, including particulate matter, moulds, spores, mites, volatile organic compounds, and other such contaminants. If these contaminants are not removed from the air or the generated water, the resulting water product that has been generated from ambient air may be contaminated.

[0006] One particular challenge in operating any practical water generation system is to combat the growth of biological contaminants that may not have been removed by filtering or other treatment processes. In particular, some water generation systems suffer from formation of black mould in water reservoirs and tubing.

[0007] In highly developed countries, the quality of drinking water has become of increasing concern to the population, and there is a demand for high quality potable water that is free of contaminants and other impurities.

[0008] In less developed countries, the water supply is often rudimentary or even non-existent and diseases are commonly spread through contaminated drinking water.

[0009] Accordingly, there remains a need for water generation system that generates a potable water product that is substantially free of contaminants.

BRIEF SUMMARY OF THE INVENTION

[0010] In accordance with the present invention, there is provided an apparatus for generating water from an air stream, the apparatus comprising an inlet for receiving an air stream, a condensing element located in the air stream, the condensing element capable of reaching a temperature that is less than or equal to a dew point temperature of the air stream, a collector for gathering water vapor condensate that forms on the condensing element, an ozone generator that uses a portion of the water vapor condensate to generate ozone, and a reservoir for mixing the generated ozone with the water vapor condensate. In some embodiments of the invention, the ozone is also added to the air stream for disinfecting the air stream and associated elements of the apparatus.

[0011] The foregoing paragraph has been provided by way of introduction, and is not intended to limit the scope of the following claims.

BRIEF DESCRIPTION OF THE DRAWINGS

Dec. 27, 2007

[0012] The invention will be described by reference to the following drawings, in which like numerals refer to like elements, and in which:

[0013] FIG. 1 is a schematic diagram of an apparatus for generating water in accordance with a first embodiment of the present invention;

[0014] FIG. 2 is a schematic diagram of an apparatus for generating water in accordance with a second embodiment of the present invention;

[0015] FIG. 3A is a side cross-sectional view of a rehumidifier element for use in the apparatus of FIG. 2;

[0016] FIG. 3B is a top cross sectional view of the re-humidifier element taken along the line 3B-3B as shown in FIG. 3A;

[0017] FIG. 4 is a cross sectional view of a PEM cell for use in the apparatus of FIG. 2;

[0018] FIG. 5 is a functional block diagram of a controller for use with the apparatus shown in FIG. 2;

[0019] FIG. 6 is a schematic diagram of an apparatus for generating water in accordance with an alternative embodiment of the present invention;

[0020] FIG. 7 is a perspective view of a humidifier element for use in the apparatus of FIG. 6;

[0021] FIG. 8A is a perspective view of an ozonation/ionization electrode for use in the apparatus of FIG. 6;

[0022] FIG. 8B is a graph of a high voltage waveform for driving the ozonation/ionization electrode shown in FIG. 8A; and

[0023] FIG. 9 is a partially cut away perspective view of an alternative embodiment of a humidifier element for use in the apparatus of FIG. 6.

[0024] The present invention will be described in connection with a preferred embodiment, however, it will be understood that there is no intent to limit the invention to the embodiment described. On the contrary, the intent is to cover all alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by this specification and the appended claims.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0025] For a general understanding of the present invention, reference is made to the drawings. In the drawings, like reference numerals have been used throughout to designate identical elements.

[0026] Referring to FIG. 1, an apparatus 12 for generating water from an air stream is depicted. The apparatus 12 includes a condensing element 14 located in proximity to the air stream 10. The condensing element may be a refrigeration component that uses the thermodynamic process of compression and expansion of a coolant. Such condensing elements are common in modern day refrigerators, air conditioners, dehumidifiers, and the like. The condensing element 14 is operated such that the condensing element temperature is less than or equal to a dew point temperature

of the air stream 10. This technique causes moisture to be removed from the air stream 10.

[0027] The apparatus 12 also includes a collector 16 in communication with the condensing element 14. The collector 16 is configured below the condensing element 14 such that it will collect water vapor condensate from the condensing element 14. The collector may be made from a plastic, a metal, fiberglass, or another material that would be apparent to those skilled in the art.

[0028] The apparatus 12 further includes a polymer electrolyte membrane (PEM) cell 18. A polymer electrolyte membrane cell is an electrochemical device, generally termed a fuel cell. The device typically uses hydrogen as fuel in the presence of a platinum catalyst to generate electricity. PEM cells may also be used in reverse from the norm, breaking water into constituent components when electricity is applied to the PEM cell. Such a process may be used in the present invention to generate ozone. In operation, the PEM cell 18 receives at least a portion of the condensate water from the collector 16 generates ozone from the condensate water at a first outlet 20. A first portion of the generated ozone becomes entrained in the condensate and disinfects the condensate.

[0029] The apparatus 12 may further includes a vent 22, located in proximity to the air stream 10 and upstream from the condensing element 14. The vent 22 in operation receives a second portion of the ozone generated in the PEM cell 18. The ozone mixes with the air stream 10 to treat the air stream and to prevent biological contamination of the apparatus 12.

[0030] In one embodiment the apparatus 12 also includes a first reservoir 30 having a first opening 32, located at a low point in the first reservoir. The first opening 32 is in communication with the first outlet 20 of the PEM cell 18 through a water supply line 24 for receiving treated condensate. The treated condensate includes water (H_2O), oxygen (O_2) and ozone (O_3). The first reservoir 30 receives the treated water condensate, which mixes with and treats the condensate in the first reservoir. The outlet 20 of the PEM cell is also in communication with the vent 22, and a second portion of gaseous ozone from the outlet of the PEM cell, which is not entrained in the condensate, is received at the vent 22 and is operable to treat the air stream 10 and prevent biological growth in the apparatus.

[0031] The first reservoir 30 may further include a spigot 34 for dispensing water from the first reservoir. In some embodiments the first reservoir 30 may also include a heater/cooler element 36. In some embodiments the element 36 may be configured to cool the condensate in the first reservoir 30, before dispensing as potable water through the spigot 34. In other embodiments the element 36 may be configured to heat the condensate or alternatively, a second element 36 may be provided, such that the apparatus 12 is capable of dispensing both cooled and heated condensate.

[0032] Referring now to FIG. 2, an apparatus for generating water from an ambient air stream 10 in accordance with a second embodiment of the present invention 60 is shown. The apparatus 60 includes a de-humidifier 62, a collector 63, a first reservoir 64, a condensate conditioner 66, a second reservoir 68, and a PEM cell 18.

[0033] The de-humidifier 62 includes an air stream inlet 70 for receiving the air stream 10, a filtration section 72, a

dehumidification chamber 74, and an air outlet 76. The air inlet 70 is in communication with the filtration section 72, and includes a temperature sensor for producing a signal representing the temperature of the incoming air stream.

[0034] In this embodiment the filtration section 72 includes a plurality of particulate filtration stages 80. A first filtration stage 82 may include, for example, a polyethylene mesh filter media for removing insects, mites, etc from the incoming air stream 10. A second filtration stage 84 may include a polycarbonate or polyethylene mesh filter media, which is effective at removing hair, for example. A third filtration stage 86 may include, for example, a 20 um to 50 um polyester spun fiber mesh filter media, which is effective in removing smoke, pollen, dust, and some spores from the air stream. The particulate filtration stage 80 may further include a filtration stage 88, including, for example, a 1 um-15 um filtration element for removing minute spores and other small airborne contaminants from the incoming air stream. The particulate filtration stage 80 may include further filtration media 90-94, depending on the contaminants present in the air stream where the apparatus 60 is to be operated. While a plurality of filters are shown, a subset of these or similar types of filters may be used depending on the quality of the air received at the air inlet 70. In some embodiments of the present invention the filtration section 72 further includes an electrostatic precipitator filter 96, which imparts a negative charge to airborne particulate matter in the air stream emanating from the filtration stages 80, causing the particulate matter to become ionized. The electrostatic precipitator filter includes positively charged plates (or ground potential plates (not shown)), to which the ionized particles are attracted, and thus removed from the air stream. The filtration section 72, in some embodiments of the present invention, further includes a volatile organic compound (VOC) filtration element 98, which typically includes a carbon impregnated foam filtration media for removing the volatile organic compounds from the incoming air stream 10.

[0035] The dehumidification chamber 74 includes the condensing element 14 as also shown in FIG. 1, and further includes a heat pump 100 that cools the condensing element. The heat pump 100 includes a condenser coil 104 and an evaporator coil, which in FIG. 2 is depicted as the condensing element 14. The evaporator coil and the condenser coil 104 are in communication with a compressor 106. In operation the heat pump 100 cools the condensing element 14 through evaporation of refrigerant in the heat pump 100, while the condenser coil 104 is heated. The term "condensing element" is used to refer to an element that may be cooled to facilitate condensation of water vapor thereon.

[0036] In other embodiments of the present invention, the condensing element 14 be cooled by other means, such as, for example, a Peltier cooling device.

[0037] The dehumidification chamber 74 further includes a fan 110 for drawing an air stream into the air inlet 70, through the filtration section 72, through the de-humidifier chamber 74, and discharging the air stream through the air outlet 76. In the embodiment shown, the air outlet 76 includes a plurality of louvered vanes 112 which are outwardly deflected by the passage of the discharge air stream 78 through the air outlet 76, and which close under gravitational forces when the fan 110 is deactivated, thus sealing off the air outlet 76.

[0038] The de-humidifier 62 further includes an ozone sensor 114 located proximate to the air outlet 76 for sensing an ozone level proximate to the air outlet 76 of the dehumidification chamber 74.

[0039] In this embodiment the de-humidifier 62 further includes an ionization electrode 120, and a high voltage power supply 123. The high voltage power supply 123 generates a negative voltage of about 10 kilovolts at the ionization electrode, which functions to generate excess electrons at the ionization electrode 120. The excess electrons mix with the air stream flowing through the dehumidifier 62.

[0040] The de-humidifier 62 further includes an ozone vent 124 which is located upstream of the condensing element 14, and is operable to introduce ozone into the air stream for reducing biological contaminants and inhibiting growth of same in the de-humidification chamber 74.

[0041] The collector 63 is in communication with the first reservoir 64 and the condensing element 14, and receives condensed water vapor extracted from the air stream and directs the condensate to the first reservoir 64. The first reservoir 64 has a first outlet 118. The apparatus 60 further includes a pump 121, which is in communication with the first outlet 118 to pump condensate from the first reservoir to the condensate conditioner 66.

[0042] The condensate conditioner 66 includes a plurality of water conditioning stages. A first water conditioning stage 122 includes a porous ceramic filtration element for removing particulate matter from the condensate received from the pump 121. A second water conditioning stage 119 includes an activated carbon block filter for removing contaminants such as volatile organic compounds not removed by the volatile organic compound filtration element 98, from the condensate. A third water conditioning stage 126 may include, in some embodiments of the present invention, re-mineralizing elements such as crushed quartz, granite, anthracite, sand, and the like, which are used to re-mineralize the condensate. A fourth water conditioning stage 128 may include a fiber mesh filter, which inhibits particulates from the re-mineralization element from being introduced into the condensate.

[0043] After being conditioned by the condensate conditioner 66, the condensate is received at an inlet 134 of the second reservoir 68. The second reservoir 68 includes the heater/cooler element 36 and the spigot 34 for dispensing heated and/or cooled potable water to a user.

[0044] The first reservoir 64 also includes a second outlet 140 and the PEM cell 18 includes first and second inlets 142 and 146 in communication with the first outlet for receiving a portion of the condensate from the first reservoir 64. As described above, the PEM cell 18 generates water, oxygen, and ozone at the first outlet 20. The PEM cell 18 also includes a second outlet 148, at which the hydrogen (H_2) , water, and hydronium ions (H_3O+) are produced. The second outlet 148 of the PEM cell 18 is in communication with the re-humidifier 116 at which water, hydrogen and hydronium are introduced into the air stream.

[0045] Advancing to FIG. 4, the PEM cell 18 is shown in greater detail. The PEM cell 18 includes a housing 300, a cathode water cavity 302 and an anode water cavity 304. The cathode water cavity 302 includes a water inlet 306, and the

anode water cavity 304 includes a water inlet 308, both water inlets being located at a lower end of the housing 300. The cathode water cavity 302 and the anode water cavity 304 are separated by an ion-exchange membrane 310, which acts as a solid electrolyte in the PEM cell 18. The ion-exchange membrane is contacted by catalysts 312 and 314. The PEM cell 18 further includes a cathode electrode 316 and an anode electrode 318. The catalysts 312 and 314 are chosen to enhance the formation of oxygen and ozone at the anode 318 while also inhibiting reformation of ozone molecules into diatomic oxygen.

[0046] The PEM cell 18 further includes a first outlet 20 in communication with the anode water cavity 304 and a second outlet 148 in communication with the cathode water cavity 302.

[0047] Water is supplied to the PEM cell 18 at the first and second inlets 306 and 308 and flows through the cell to the first and second outlets 20 and 148. When an external DC excitation current is applied between the anode 318 and the cathode 316, a portion of the water at the anode is dissociated into oxygen, ozone, and hydrogen ions. Generation of ozone is enhanced by choosing a catalyst 312 for the anode side that causes the anode 318 to have a high overpotential, thus stimulating a more vigorous dissociation of the water.

[0048] The hydrogen ions are able to selectively move through the ion-exchange membrane 310 to the cathode water cavity 302, where some of the hydrogen ions combine with electrons provided by the external DC current to form hydrogen gas. The remaining hydrogen ions (H+) form hydronium (H3O+), which causes the water leaving the second outlet to be acidic.

[0049] The water leaving the first outlet 20 includes ozone and oxygen entrained in the water. Advantageously, since the ozone is formed directly in the water, a significant portion of the ozone is dissolved in the water leaving the first outlet 20.

[0050] Ozone is effective in treating water by killing biological contaminants such as bacteria. Furthermore ozone is effective in chemically reacting with contaminants such as iron, arsenic, hydrogen sulfide, nitrites, and complex organics and may also cause some contaminant molecules to agglomerate, thus facilitating filtration. Advantageously, ozone treatment of water does not leave chemical traces in the water (e.g. chlorination), since the ozone dissociates into oxygen over time. However, due to this dissociation over time, a steady state production of ozone is usually desirable for adequate treatment of water.

[0051] The second outlet 148 of the PEM cell 18 is in communication with the re-humidifier 116. Turning back to FIG. 3, the re-humidifier 116 is shown in greater detail in side cross-sectional view. Referring to FIG. 3A the re-humidifier 116 includes a liquid reservoir 200. The liquid reservoir 200 includes an inlet 202, which is in communication with the PEM cell 18 (shown in FIG. 2) for receiving discharge liquid from the PEM cell. The discharge liquid is acidic due to the presence of the hydronium ions, and also includes dissolved hydrogen. The discharge liquid is generally too acidic to be re-combined with the potable treated condensate, and typically requires some form of neutralization.

[0052] To accomplish neutralization, the de-humidifier 62 includes a re-humidifier 116 that has a spillway 204 and a

fiber wick 206. The fiber wick hangs downwardly from an edge 208 of the spillway 204, and is fabricated from an acid resistant material such as acid resistant polymer. As best shown in top view in FIG. 3B, the liquid reservoir 200 includes an air stream aperture 210, which facilitates air flow (in the direction shown by arrows 207) from the de-humidification chamber 74 through the fiber wick 206.

[0053] The re-humidifier 116 operates by receiving the discharge liquid from the PEM cell 18 which causes a level of the liquid in the liquid reservoir 200 to rise to a level 214, whereupon the liquid flows over the spillway 204 to the fiber wick 206, in the direction indicated by arrows 212. The discharge liquid wets the fiber wick 206, and the airflow 207 causes the liquid to evaporate from the wick 206 into the air stream 209, which is exhausted through the air outlet (76 in FIG. 2). The evaporated hydronium ions quickly dissociate into water and oxygen ions, and the oxygen ions form diatomic oxygen molecules, thereby rendering the hydronium ions benign. The hydrogen is vented into the atmosphere through the outlet 76, and in low concentrations presents little or no hazard.

[0054] Referring to FIG. 2, advantageously, the hydronium ions are extremely reactive and are effective in further preventing biological contamination in the area of the air outlet 76. The evaporated water also partially re-humidifies the air stream before being discharged through the outlet 76.

[0055] The second reservoir 68 also includes an ozone inlet 152, which is in communication with the first outlet 20 of the PEM cell 18 for receiving treated condensate including entrained ozone and oxygen. The second reservoir 68 also includes an outlet 154 which is located at a high point of the second reservoir and which is in communication with an ozone inlet 156, on the first reservoir 64, for communicating gaseous ozone from the second reservoir 68 to the first reservoir 64.

[0056] The first reservoir 64 includes an outlet 160 located at a high point in the first reservoir. The outlet 160 is in communication with the ozone vent 124 for introducing ozone into the air stream 10 upstream from the condensing element 14. In the embodiment shown the apparatus 60 includes a filter 162. The filter 162 functions to prevent contamination of the first reservoir 64, in the event of a positive pressure differential occurring between the dehumidification chamber 74 and the first reservoir 64, which could force air into the reservoir.

[0057] The first reservoir 64 may further include a first float switch 166 for generating a signal when a level of the condensate in the first reservoir reaches a pre-determined level. The second reservoir 68 also may include a second float switch 168 for generating a signal when the condensate level in the second reservoir reaches a pre-determined level.

[0058] Referring now to FIG. 5, in one embodiment the apparatus 60 further includes a controller 220. The controller 220 monitors and adjusts various processes of the apparatus 60. The controller 220 includes a first input 222 for receiving a signal representing a concentration of ozone from the ozone sensor 114. The controller 220 also includes a second input 224 for receiving the signal from the first float switch 166, and an input 226 for receiving the signal from the second float switch 168. The controller 220 further includes an input 227 for receiving a temperature signal from the inlet air temperature sensor 71.

[0059] The controller 220 also includes an output 228 for producing a signal for controlling an excitation current to the PEM cell 18. The controller 220 further includes an output 230 for producing a signal for controlling the pump 121, an output 232 for producing a signal for controlling the heat pump 100, and an output 234 for producing a signal for controlling the operation of the fan 110. The controller 220 may include further outputs for activating and de-activating the high voltage supply 123, which drives the ionization electrode 120, and/or the electrostatic precipitator filter 96.

[0060] For a complete understanding of the present invention, the operation of the apparatus 60 is described with reference to FIG. 2, FIG. 3, and FIG. 4. Referring to FIG. 2, the fan 110 operates to draw the air stream 10 through the filtration section 72 and the dehumidification chamber 74, and to discharge the air stream 78 through the air outlet 76. The incoming air stream 10 is received at the air inlet 70 and passes through the filtration section 72 into the de-humidifier chamber 74. The filtration section 72 removes most particulate matter, mould, spores, dust, mites, smoke particles, and volatile organic compounds from the incoming air stream 10.

[0061] The ozone vent 124 introduces ozone into the dehumidification chamber 74 ahead of the condensing element 14. The ozone is effective in killing biological contaminants, which are not removed by the filtration section 72. The ozone also prevents growth of biological contaminants in the condensing element 14, the condenser coils 104, and the dehumidification chamber 74.

[0062] Since ozone, above a certain concentration, is considered to be harmful to humans, in one embodiment the ozone concentration may be monitored and controlled by monitoring the signal produced by the ozone sensor 114. Referring to FIG. 5 the ozone concentration signal is received from the ozone sensor 114 at the input 222 of the controller 220. The controller produces the PEM cell control signal at the output 228 in response to the ozone concentration. When the ozone concentration in the outlet discharge air stream 78 increases above a threshold level, the controller reduces the drive current to the PEM cell, thus reducing the generation of ozone at the PEM cell. In this manner, the concentration of ozone vented into the atmosphere though the air outlet 76 may be limited to a safe level.

[0063] When the heat pump 100 is activated by the controller 220 the condensing element 14 is cooled to a temperature at or below the dew point of the incoming air stream 10, as indicated by the temperature sensor 71. Water vapor in the air stream 10 condenses onto the condensing element 14, and drips into the collector 63. The collector 63 directs the water vapor condensate into the first reservoir 64 and the condensate accumulates in the first reservoir until the level of the water activates the first float switch 166. The controller 220 (shown in FIG. 5) receives the signal from the first float switch 166 at the inlet 224 and produces an activation signal at the output 230 to activate the pump 121 and cause condensate to be pumped from the first reservoir 64 through the condensate conditioner 66, and into the second reservoir 68.

[0064] The condensate conditioner 66 filters the condensate to remove various contaminants as described above, and also may re-mineralize the condensate to improve the taste of the water supplied by the apparatus 60.

[0065] The condensate is accumulated in the second reservoir 68 until the level of the condensate in the reservoir activates the second float switch 168 such that the controller 220 (shown in FIG. 5) receives a signal at the input 226 indicating that the condensate level in the second reservoir has reached the level of the second float switch 168. In response the controller produces a signal at the output 234 to deactivate the fan and a signal at the output 232 to deactivate the heat pump, thus discontinuing generation of condensate while the second reservoir is full. The controller may further produce output signals at the outputs 236 and 238 to de-activate the HV ionization supply 123, and the electrostatic precipitator filter 96 respectively. The controller 220 is further configured to produce signals at the outputs 232 and 234 to activate the heat pump 100 and fan 110 when the condensate level in the second reservoir 68 falls sufficiently to de-activate the second float switch 168.

[0066] The heater/cooler element 36 cools and/or heats the collected condensate, which may be dispensed as treated potable drinking water through the spigot 34.

[0067] A portion of the condensate in the first reservoir 64 is diverted through the second outlet 140 to the first and second inlets 142 and 146 of the PEM cell 18. As described previously the PEM cell 18 generates water, oxygen and ozone at the first outlet 20. The water, oxygen and ozone are received at the ozone inlet 152 in the second container 68 and bubbles through the second container causing the condensate to re-circulate while simultaneously being treated by the ozone. The ozone in the second reservoir 68 treats the condensate accumulated therein preventing biological growth, and contamination of the condensate in the second reservoir. Advantageously the oxygen entrained in the condensate at the first outlet 20 of the PEM cell 18 oxygenates the condensate in the second reservoir 68, which further enhances the taste of the water generated by the apparatus 60.

[0068] A portion of the ozone in the second reservoir 68 diffuses as gaseous ozone from a surface 69 of the condensate accumulated in the second reservoir, and is communicated through the outlet 154 to the ozone inlet 156 of the first reservoir 64.

[0069] The gaseous ozone received at the first reservoir 64 from the second reservoir mixes and becomes entrained in the condensate accumulated in the first reservoir 64, thus treating the condensate in the first reservoir. A portion of the ozone also diffuses from the surface 65 of the condensate in the first reservoir 64 and is communicated through the outlet 160, through the filter 162, to the ozone vent 124.

[0070] The re-humidifier 116 receives the discharge liquid from the second outlet 148 of the PEM cell 18, and causes the hydronium ions in the water to be evaporated and dissociated as described above.

[0071] In one embodiment where the apparatus 60 includes the ionization electrode 120 and high voltage power supply 123, electrons are generated at the electrode and introduced into the air stream ahead of the condensing element 14. The electrons are operable to generate anions of oxygen in the air stream and at least a portion of the anions dissolve into the water vapor condensate which collects on the condensing element 14. It is believed that the oxygen anions are effective in enhancing oxygen retention in the

water, thus producing a potable water product which has a high proportion of entrained oxygen.

[0072] Referring to FIG. 6, an apparatus 340 for generating water from an ambient air stream 10 in accordance with an alternative embodiment of the present invention is shown. The apparatus 340 includes several elements in common with the apparatus 60 shown in FIG. 2, and accordingly similar elements are numbered using similar reference numerals as in FIG. 2.

[0073] Referring to FIG. 6, the apparatus 340 includes a de-humidifier 342, and a reservoir 344 and the collector 63, the condensate conditioner 66, and the PEM cell 18 shown in FIG. 2.

[0074] In the embodiment depicted, the de-humidifier 342 includes a humidifier element 346, which is located ahead of the air inlet 70. The humidifier element 346 is shown in greater detail in FIG. 7. Referring to FIG. 7, the humidifier element 346 includes a housing 380, which includes a water reservoir 382 at a lower portion thereof. The humidifier element 346 further includes a water inlet 384 which is in communication with the reservoir 382 for receiving untreated (and possibly contaminated) water. The humidifier element 346 further includes a plurality of polyfiber panels 386, which are suspended from a top portion 388 of the housing 380. A lower end 390 of each of the polyfiber panels 386 is at least partially immersed in the water accumulated in the reservoir 382. The humidifier element 346 further includes an airflow aperture 392 for receiving the air stream 10

[0075] The humidifier element 346 generally operates by receiving, at the inlet 384, water which has not been treated, and pre-humidifies the incoming air stream 10 to enhance the water vapor content thereof. For example, the water may be from a ground water supply, a river, a stream, or any other untreated source of water.

[0076] The untreated water is accumulated in the reservoir 382 and sediment and other heavier particulate matter is permitted to settle in the reservoir. This matter may be removed from the reservoir through the drain 383. The water in the reservoir 382 wicks up and along the polyfiber panels 386 by capillary attraction, and is evaporated into the air stream 10 flowing between the polyfiber panels. The air stream 394 leaving the humidifier element 346 generally has enhanced water vapor content due to the additional water vapor evaporated from the polyfiber panels 386.

[0077] Advantageously the humidifier element 346 facilitates use of the apparatus 340 in environments where the air stream 10 has relatively low water vapor content.

[0078] Referring back to FIG. 6, in this embodiment the de-humidifier 342 further includes an ozonator/ionizer 348. The ozonator/ionizer 348 is shown in greater detail in FIG. 8. Referring to FIG. 8A the ozonator/ionizer 348 includes a plurality of electrode members 420, each electrode member including a conductive electrode 424, which is surrounded by a glass enclosure 422. Alternating, electrode members 420 are connected to a ground terminal 426 and a high voltage excitation signal terminal 428 respectively. The excitation is provided by a high voltage signal generator (not shown) which is configured to produce a waveform 440 as shown in FIG. 8B.

[0079] Referring to FIG. 8B the waveform 440 generally has the form of a saw-tooth function and includes a rising edge 442 and a falling edge 444. The rising edge 442 includes a first portion 446, including voltages up to about 10 kV. The rising edge 442 of the waveform 440 further includes a second portion 448, including voltages from about 10 kV up to about 12 kV. In one embodiment, the frequency of the saw-tooth waveform may be between 1 kHz and 7 kHz.

[0080] When the voltage is below about 10 kV, the ozonator/ionizer 348 produces a low concentration of ozone and a high concentration of free electrons. As the voltage increases above about 10 kV a corona discharge begins to form between the electrode members 420, and the ozonator/ionizer 348 produces a higher concentration of ozone and a lower concentration of free electrons. At a voltage of approximately 12 kV the ozonator/ionizer produces predominantly ozone, and the corona discharge may begin to are across the electrode member 420, thus short circuiting the high voltage signal generator whereupon the voltage returns to 0V along the falling edge 444.

[0081] The glass enclosure 422 surrounding each electrode prevents corrosion of the conductive electrodes 424 and also provides an easily cleanable surface. Referring back to FIG. 6, the ozonator/ionizer 348 enhances the production of ozone in the de-humidifier 342, which supplements the introduction of ozone introduced through the ozone vent 124. The ozonator/ionizer 348 generates both free electrons and ozone, and may be used in co-operation with, or instead of the ozone vent 124 and/or the ionization electrode 120 (shown in FIG. 2).

[0082] Still referring to FIG. 6, in this embodiment the first and second inlets 142 and 146 of the PEM cell 18 are directly in communication with the condensate conditioner 66. The first and second inlets 142 and 146 of the PEM cell 18 are located at a sufficient vertical distance indicated by the arrow 350 from the collector 63, such that the apparatus 340 is capable of operating by gravity feed alone. In one embodiment the vertical distance 350 is about 30 inches. The first outlet 20 of the PEM cell 18 is in communication with the ozone inlet 152 of the reservoir 344. The outlet 154 of the reservoir 344 is communication with the ozone vent 124 via the filter 162.

[0083] The operation of the apparatus 340 is described with reference to FIG. 6, FIG. 7, and FIG. 8. The air stream 10 is received at the humidifier 346, which humidifies the air stream 10, prior to passing through the filtration elements 72. The ozonator/ionizer 348 generates free electrons and ozone in the air stream 10 with the additional ozone generation supplementing the ozone introduced through the ozone vent 124. The water vapor in the air stream condenses on the condensing element 14, and is collected by the collector 63. The collector 63 directs the condensate through the condensate conditioner 66, which performs the same functions as described above in reference to FIG. 2.

[0084] In this embodiment, all of the condensate collected by the collector 63 is passed through the condensate conditioner 66 and through the PEM cell 18. Furthermore in this embodiment the flow is achieved through gravitational forces alone, thus eliminating the need for a pump and associated controller.

[0085] Ozone and oxygen are generated in the condensate at the first outlet 20 of the PEM cell 18, and communicated

to the ozone inlet 152 in the reservoir 344, thus treating the condensate accumulated in the reservoir. A portion of the ozone in the condensate accumulated in the reservoir 344 diffuses to the surface 345 and collects above the surface, where it is communicated through the outlet 154, through the filter 162, and to the ozone vent 124, where it treats the air stream and inhibits growth of biological contaminants in the de-humidifier 342.

[0086] Referring lastly to FIG. 9, an alternative embodiment of the humidifier element 480 is depicted. The humidifier element 480 includes a first water container 482 and a second water container 484. The second container 484 is located above the first container 482.

[0087] The first container 482 includes an inlet 486 for receiving untreated water, from for example a municipal water supply or a ground water supply. The inlet 486 includes a valve 488 for controlling the supply of water to the first container, and further includes a float switch, which is in communication with the valve 488 for controlling the supply of water to the first container. The first container 482 further includes a pump 494, which is in communication with an outlet tube 496.

[0088] The second container 484 includes an inlet 492, which is in communication with the outlet tube 496 for receiving water from the first container. In the embodiment shown, the pump 494 includes a float switch (not shown) for activating the pump when the water in the first container is at a sufficient level to feed the pump.

[0089] The second container 484 further includes a plurality of outlets 498 for generating a plurality of water streams 500 between the second container and the first container 482. The humidifier 480 is located in a duct section 502 (only a portion shown), which is configured to receive the air stream 10 and direct the air stream through the plurality of streams 500.

[0090] In operation, the humidifier 480 receives water at the inlet 486 and the second container 484 is filled until a water level 504 activates the float switch 490, thus causing the valve 488 to interrupt the flow of water. The float switch activated pump 494 operates whenever there is sufficient water in the first container 482, and causes water to be pumped from the first container, through the outlet tube 496, and into the second container 484 through the inlet 492.

[0091] The water pumped into the second container 484 flows downwardly through the plurality of outlets 498, forming the plurality of streams 500 which return to the first container 482. The air stream 10 flows through the plurality of streams 500, as water in the streams is evaporated, thus humidifying the air stream 10.

[0092] Advantageously, embodiments of the present invention described above provide for the generation of ozone from the condensate, which is subsequently entrained in the condensate and operable to treat the condensate, thus prevention biological contamination thereof. Diffused ozone gas, collected from the treated condensate, is re-used to treat the air stream components, thus preventing biological contamination thereof. The use of a PEM cell facilitates production of sufficient quantities of ozone and provides oxygen for oxygenating the condensate. If desired, additional ozone may be generated in the air stream, along with the generation of ionizing electrons as described above.

[0093] While specific embodiments of the invention have been described and illustrated, such embodiments should be considered illustrative of the invention only and not as limiting the invention as construed in accordance with the accompanying claims.

[0094] It is therefore, apparent that there has been provided, in accordance with the various objects of the present invention, an apparatus for generating water from an ambient air stream. While the various objects of this invention have been described in conjunction with preferred embodiments thereof, it is evident that many alternatives, modifications, and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and broad scope of this specification and the appended claims

What is claimed is:

1. An apparatus for generating water from an air stream, the apparatus comprising:

An inlet for receiving an air stream;

- a condensing element located in the air stream, the condensing element capable of reaching a temperature that is less than or equal to a dew point temperature of the air stream;
- a collector for gathering water vapor condensate that is formed on the condensing element;
- an ozone generator that uses a portion of the water vapor condensate to generate ozone; and
- a first reservoir for mixing the generated ozone with the water vapor condensate.
- 2. The apparatus as recited in claim 1, wherein the ozone generator is a fuel cell.
- 3. The apparatus as recited in claim 2, wherein the fuel cell is a polymer electrolyte membrane.
- **4**. The apparatus as recited in claim 1, further comprising a connection between the ozone generator and the inlet for receiving an air stream.
- **5**. The apparatus as recited in claim 1, further comprising a second reservoir for storing water vapor condensate, the second reservoir operatively coupled to the collector.
- **6**. The apparatus as recited in claim 5, further comprising a connection between the first reservoir containing ozone enhanced water vapor condensate and the second reservoir containing water vapor condensate.
- 7. The apparatus as recited in claim 6, wherein the connection is modulated by a controller that dynamically adjusts the ratio of ozone enhanced water vapor condensate from the first reservoir to the water vapor condensate from the second reservoir.
- **8**. The apparatus as recited in claim 1, further comprising a re-mineralization device for adding minerals to the water vapor condensate.
- 9. An apparatus for generating water from an air stream, the apparatus comprising:

An inlet for receiving an air stream;

7

a condensing element located in the air stream, the condensing element capable of reaching a temperature that is less than or equal to a dew point temperature of the air stream:

Dec. 27, 2007

- a collector for gathering water vapor condensate that is formed on the condensing element;
- an ozone generator that uses a portion of the air stream to generate ozone; and
- a first reservoir for mixing the generated ozone with the water vapor condensate.
- 10. The apparatus as recited in claim 9, wherein the ozone generator is a high voltage discharge device.
- 11. The apparatus as recited in claim 9, further comprising a connection between the ozone generator and the inlet for receiving an air stream.
- 12. The apparatus as recited in claim 9, further comprising a second reservoir for storing water vapor condensate, the second reservoir operatively coupled to the collector.
- 13. The apparatus as recited in claim 12, further comprising a connection between the first reservoir containing ozone enhanced water vapor condensate and the second reservoir containing water vapor condensate.
- 14. The apparatus as recited in claim 13, wherein the connection is modulated by a controller that dynamically adjusts the ratio of ozone enhanced water vapor condensate from the first reservoir to the water vapor condensate from the second reservoir.
- 15. The apparatus as recited in claim 9, further comprising a re-mineralization device for adding minerals to the water vapor condensate.
- 16. A method for generating water from an air stream, the method comprising:
 - cooling a condensing element to a temperature that is below the dew point of an air stream;

receiving the air stream at the condensing element;

collecting vapor condensate from the condensing element:

directing a portion of the water vapor condensate through a ozone generator for generating ozone; and

mixing the ozone with the water vapor condensate to produce disinfected water.

- 17. The method as recited in claim 16, wherein the ozone generator is a polymer electrolyte membrane.
- **18**. The method as recited in claim 16, wherein the ozone generator is a high voltage discharge device.
- 19. The method as recited in claim 16, further including the step of adding minerals to the disinfected drinking water.
- 20. The method as recited in claim 16, further including the step of directing a portion of the generated ozone into the air stream.

* * * * *