Abstract:
The present invention relates to the use of 2,3-dihydroimidazo[1,2-c]quinazoline compounds, and of pharmaceutical compositions containing such compounds, for the treatment or prophylaxis of multiple myeloma, as a sole agent or in combination with other one or more other active ingredients.
USE OF SUBSTITUTED 2,3-DIHYDROIMIDAZO [1,2-C] QUINAZOLINES FOR THE TREATMENT OF MYELOMA

The present invention relates to the use of 2,3-dihydroimidazo[1,2-c]quinazoline compounds, and of pharmaceutical compositions containing such compounds, for the treatment or prophylaxis of multiple myeloma, which is also known as myeloma, plasma cell myeloma, or as Kahler’s disease (after Otto Kahler), and which is a type of cancer of plasma cells in bone marrow that produce antibodies, as a sole agent or in combination with one or more other active ingredients.

BACKGROUND OF THE INVENTION

In the last decade the concept of developing anti-cancer medications which target abnormally active protein kinases has led to a number of successes. In addition to the actions of protein kinases, lipid kinases also play an important role in generating critical regulatory second messengers. The PI3K family of lipid kinases generates 3’-phosphoinositides that bind to and activate a variety of cellular targets, initiating a wide range of signal transduction cascades (Vanhaesebroeck et al., 2001; Toker, 2002; Pendaries et al., 2003; Downes et al., 2005). These cascades ultimately induce changes in multiple cellular processes, including cell proliferation, cell survival, differentiation, vesicle trafficking, migration, and chemotaxis.

PI3Ks can be divided into three distinct classes based upon differences in both structure, and substrate preference. While members of the Class II family of PI3Ks have been implicated in the regulation of tumor growth (Brown and Shepard, 2001; Traer et al., 2006), the bulk of research has focused on the Class I enzymes and their role in cancer (Vivanco And Sawyers, 2002; Workman, 2004, Chen et al., 2005; Hennessey et al., 2005; Stauffer et al., 2005; Stephens et al., 2005; Cully et al., 2006).
Class I PI3Ks have traditionally been divided into two distinct sub-classes based upon differences in protein subunit composition. The Class IA PI3Ks are comprised of a catalytic p110 catalytic subunit (p110α, β or γ) heterodimerized with a member of the p85 regulatory subunit family. In contrast, the Class IB PI3K catalytic subunit (p110γ) heterodimerizes with a distinct p101 regulatory subunit (reviewed by Vanhaesebroeck and Waterfield, 1999; Funaki et al, 2000; Katso et al, 2001). The C-terminal region of these proteins contains a catalytic domain that possesses distant homology to protein kinases. The PI3Kγ structure is similar to Class IA p110s, but lacks the N-terminal p85 binding site (Domin and Waterfield, 1997). Though similar in overall structure, the homology between catalytic p110 subunits is low to moderate. The highest homology between the PI3K isoforms is in the kinase pocket of the kinase domain.

The Class I PI3K isoforms associate with activated receptor tyrosine kinases (RTKs) (including PDGFR, EGFR, VEGFR, IGF1-R, c-KIT, CSF-R and Met), cytokine receptors, GPCRs, integrins, or with tyrosine phosphorylated adapter proteins (such as Grb2, Cbl, IRS-1 or Gab1), via their p85 regulatory subunits resulting in stimulation of the lipid kinase activity. Activation of the lipid kinase activity of the p110β and p110γ isoforms has been shown to occur in response to binding to activated forms of the ras Oncogene (Kodaki et al, 1994). In fact, the oncogenic activity of these isoforms may require binding to ras (Kang et al., 2006). In contrast, the p110α and p110δ isoforms exhibit oncogenic activity independent of ras binding, through constitutive activation of Akt.

Class I PI3Ks catalyze the conversion of PI(4,5)P₂ [PIP₂] to PI(3,4,5)P₃ [PIP₃]. The production of PIP₃ by PI3K affects multiple signaling processes that regulate and coordinate the biological end points of cell proliferation, cell survival, differentiation and cell migration. PIP₃ is bound by Pleckstrin-Homology (PH) domain-containing proteins, including the phosphoinositide-dependent kinase, PDK1 and the Akt proto-oncogene product, localizing these
proteins in regions of active signal transduction and also contributing directly to their activation (Klippel et al., 1997; Fleming et al., 2000; Itoh and Takenawa, 2002; Lemmon, 2003). This co-localization of PDK1 with Akt facilitates the phosphorylation and activation of Akt. Carboxy-terminal phosphorylation of Akt on Ser473 promotes phosphorylation of Thr308 in the Akt activation loop (Chan and Tsichlis, 2001; Hodgekinson et al., 2002; Scheid et al., 2002; Hresko et al., 2003). Once active, Akt phosphorylates and regulates multiple regulatory kinases of pathways that directly influence cell cycle progression and cell survival.

Many of the effects of Akt activation are mediated via its negative regulation of pathways which impact cell survival and which are commonly dysregulated in cancer. Akt promotes tumor cell survival by regulating components of the apoptotic and cell cycle machinery. Akt is one of several kinases that phosphorylate and inactivate pro-apoptotic BAD proteins (del Paso et al., 1997; Pastorino et al., 1999). Akt may also promote cell survival through blocking cytochrome C-dependent caspase activation by phosphorylating Caspase 9 on Ser196 (Cardone et al., 1998).

Akt impacts gene transcription on several levels. The Akt-mediated phosphorylation of the MDM2 E3 ubiquitin ligase on Ser166 and Ser186 facilitates the nuclear import of MDM2 and the formation and activation of the ubiquitin ligase complex. Nuclear MDM2 targets the p53 tumor suppressor for degradation, a process that can be blocked by LY294002 (Yap et al., 2000; Ogarawa et al., 2002). Downregulation of p53 by MDM2 negatively impacts the transcription of p53-regulated pro-apoptotic genes (e.g. Bax, Fas, PUMA and DR5), the cell cycle inhibitor, p21Cip1, and the PTEN tumor suppressor (Momand et al., 2000; Hupp et al., 2000; Mayo et al., 2002; Su et al., 2003). Similarly, the Akt-mediated phosphorylation of the Forkhead transcription factors FKHR, FKHRL and AFX (Kops et al., 1999; Tang et al., 1999), facilitates their binding to 14-3-3 proteins and export from the cell nucleus to the cytosol (Brunet et al., 1999). This functional inactivation of Forkhead activity also impacts pro-
apoptotic and pro-angiogenic gene transcription including the transcription of Fas ligand (Ciechomska et al., 2003) Bim, a pro-apoptotic Bcl-2 family member (Dijkers et al., 2000), and the Angiopoietin-1 (Ang-1) antagonist, Ang-2 (Daly et al., 2004). Forkhead transcription factors regulate the expression of the cyclin-dependent kinase (Cdk) inhibitor p27Kip1. Indeed, PI3K inhibitors have been demonstrated to induce p27Kip1 expression resulting in Cdk1 inhibition, cell cycle arrest and apoptosis (Dijkers et al., 2000). Akt is also reported to phosphorylate p21cip1 on Thr145 and p27Kip1 on Thr157 facilitating their association with 14-3-3 proteins, resulting in nuclear export and cytoplasmic retention, preventing their inhibition of nuclear Cdks (Zhou et al., 2001; Motti ež al., 2004; Sekimoto et al., 2004). In addition to these effects, Akt phosphorylates IKK (Romashkova and Makarov, 1999), leading to the phosphorylation and degradation of IKB and subsequent nuclear translocation of NFκB, resulting in the expression of survival genes such as IAP and Bcl-XL.

The PI3K/Akt pathway is also linked to the suppression of apoptosis through the JNK and p38MAPK MAP Kinases that are associated with the induction of apoptosis. Akt is postulated to suppress JNK and p38MAPK signaling through the phosphorylation and inhibition of two JNK/p38 regulatory kinases, Apoptosis Signal-regulating Kinase 1 (ASK1) (Kim et al., 2001; Liao and Hung, 2003; Yuan et al., 2003), and Mixed Lineage Kinase 3 (MLK3) (Lopez-Illasaca ež al., 1997; Barthwal et al., 2003; Figueroa et al., 2003). The induction of p38MAPK activity is observed in tumors treated with cytotoxic agents and is required for those agents to induce cell death (reviewed by Olson and Hallahan, 2004). Thus, inhibitors of the PI3K pathway may promote the activities of co-administered cytotoxic drugs.

An additional role for PI3K/Akt signaling involves the regulation of cell cycle progression through modulation of Glycogen Synthase Kinase 3 (GSK3) activity. GSK3 activity is elevated in quiescent cells, where it phosphorylates cyclin D1 on Ser286, targeting the protein for ubiquitination and degradation (Diehl et al., 1998) and blocking entry into S-phase. Akt inhibits GSK3 activity through
phosphorylation on Ser\(^9\) (Cross et al., 1995). This results in the elevation of Cyclin D1 levels which promotes cell cycle progression. Inhibition of GSK3 activity also impacts cell proliferation through activation of the wnt/beta-catenin signaling pathway (Abbosh and Nephew, 2005; Naito et al., 2005; Wilker et al., 2005; Kim et al., 2006; Segrelles et al., 2006). Akt mediated phosphorylation of GSK3 results in stabilization and nuclear localization of the beta-catenin protein, which in turn leads to increased expression of c-myc and cyclin D1, targets of the beta-catenin /Tcf pathway.

Although PI3K signaling is utilized by many of the signal transduction networks associated with both oncogenes and tumor suppressors, PI3K and its activity have been linked directly to cancer. Overexpression of both the p110\(\alpha\) and p110\(\beta\) isoforms has been observed in bladder and colon tumors and cell lines, and overexpression generally correlates with increased PI3K activity (Bénistant et al., 2000). Overexpression of p110\(\alpha\) has also been reported in ovarian and cervical tumors and tumor cell lines, as well as in squamous cell lung carcinomas. The overexpression of p110\(\alpha\) in cervical and ovarian tumor lines is associated with increased PI3K activity (Shayesteh et al., 1999; Ma et al., 2000). Elevated PI3K activity has been observed in colorectal carcinomas (Phillips et al., 1998) and increased expression has been observed in breast carcinomas (Gershtein et al., 1999).

Over the last few years, somatic mutations in the gene encoding p110\(\alpha\) (PIK3CA) have been identified in numerous cancers. The data collected to date suggests that PIK3CA is mutated in approximately 32% of colorectal cancers (Samuels et al., 2004; Ikenoue et al., 2005), 18-40% of breast cancers (Bachman et al., 2004; Campbell et al., 2004; Levine et al., 2005; Saal et al., 2005; Wu et al., 2005), 27% of glioblastomas (Samuels et al., 2004; Hartmann et al., 2005, Gallia et al., 2006), 25% of gastric cancers (Byun et al., 2003; Samuels et al., 2004; Li et al., 2005), 36% of hepatocellular carcinomas (Lee et al., 2005), 4-12% of ovarian cancers (Levine et al., 2005; Wang et al., 2005), 4% of lung cancers (Samuels et al., 2004; Whyte and Holbeck, 2006), and up to
40% of endometrial cancers (Oda et al., 2005). PIK3CA mutations have been reported in oligodendroma, astrocytoma, medulloblastoma, and thyroid tumors as well (Broderick et al., 2004; Garcia-Roston et al., 2005). Based upon the observed high frequency of mutation, PIK3CA is one of the two most frequently mutated genes associated with cancer, the other being K-ras. More than 80% of the PIK3CA mutations cluster within two regions of the protein, the helical (E545K) and catalytic (H1047R) domains. Biochemical analysis and protein expression studies have demonstrated that both mutations lead to increased constitutive p110\(\alpha\) catalytic activity and are in fact, oncogenic (Bader et al., 2006; Kang et al., 2005; Samuels et al., 2005; Samuels and Ericson, 2006). Recently, it has been reported that PIK3CA knockout mouse embryo fibroblasts are deficient in signaling downstream from various growth factor receptors (IGF-1, Insulin, PDGF, EGF), and are resistant to transformation by a variety of oncogenic RTKs (IGFR, wild-type EGFR and somatic activating mutants of EGFR, Her2/Neu)(Zhao et al., 2006).

Functional studies of PI3K in vivo have demonstrated that siRNA-mediated downregulation of p110\(\alpha\) inhibits both Akt phosphorylation and HeLa cell tumor growth in nude mice (Czauderna et al., 2003). In similar experiments, siRNA-mediated downregulation of p110\(\alpha\) was also shown to inhibit the growth of malignant glioma cells in vitro and in vivo (Pu et al., 2006). Inhibition of PI3K function by dominant-negative p85 regulatory subunits can block mitogenesis and cell transformation (Huang et al., 1996; Rahimi et al., 1996). Several somatic mutations in the genes encoding the p85\(\alpha\) and p85\(\beta\) regulatory subunits of PI3K that result in elevated lipid kinase activity have been identified in a number of cancer cells as well (Janssen et al., 1998; Jimenez et al., 1998; Philp et al., 2001; Jucker et al., 2002; Shekar et al., 2005). Neutralizing PI3K antibodies also block mitogenesis and can induce apoptosis in vitro (Roche et al., 1994: Roche et al., 1998; Benistant et al., 2000). In vivo proof-of-principle studies using the PI3K inhibitors LY294002 and wortmannin, demonstrate that inhibition of PI3K signaling slows tumor growth in vivo (Powis et al., 1994; Shultz et al., 1995; Semba et al., 2002; Ihle et al., 2004).
Overexpression of Class I PI3K activity, or stimulation of their lipid kinase activities, is associated with resistance to both targeted (such as imatinib and trastuzumab) and cytotoxic chemotherapeutic approaches, as well as radiation therapy (West et al., 2002; Gupta et al., 2003; Osaki et al., 2004; Nagata et al., 2004; Gottschalk et al., 2005; Kim et al., 2005). Activation of PI3K has also been shown to lead to expression of multidrug resistant protein-1 (MRP-1) in prostate cancer cells and the subsequent induction of resistance to chemotherapy (Lee et al., 2004).

The importance of PI3K signaling in tumorigenesis is further underscored by the findings that the PTEN tumor suppressor, a PI(3)P phosphatase, is among the most commonly inactivated genes in human cancers (Li et al., 1997, Steck et al., 1997; Ali et al., 1999; Ishii et al., 1999). PTEN dephosphorylates PI(3,4,5)P$_3$ to PI(4,5)P$_2$ thereby antagonizing PI3K-dependent signaling. Cells containing functionally inactive PTEN have elevated levels of PIP$_3$, high levels of activity of PI3K signaling (Haas-Kogan et al., 1998; Myers et al., 1998; Taylor et al., 2000), increased proliferative potential, and decreased sensitivity to pro-apoptotic stimuli (Stambolic et al., 1998). Reconstitution of a functional PTEN suppresses PI3K signaling (Taylor et al., 2000), inhibits cell growth and re-sensitizes cells to pro-apoptotic stimuli (Myers et al., 1998; Zhao et al., 2004). Similarly, restoration of PTEN function in tumors lacking functional PTEN inhibits tumor growth in vivo (Stahl et al., 2003; Su et al., 2003; Tanaka and Grossman, 2003) and sensitizes cells to cytotoxic agents (Tanaka and Grossman, 2003).

The class I family of PI3Ks clearly plays an important role in the regulation of multiple signal transduction pathways that promote cell survival and cell proliferation, and activation of their lipid kinase activity contributes significantly to the development of human malignancies. Furthermore, inhibition of PI3K may potentially circumvent the cellular mechanisms that underlie resistance to chemotherapeutic agents. A potent inhibitor of Class I
PI3K activities would therefore have the potential not only to inhibit tumor growth but also to sensitize tumor cells to pro-apoptotic stimuli in vivo.

Signal transduction pathways originating from chemoattractant receptors are considered to be important targets in controlling leukocyte motility in inflammatory diseases. Leukocyte trafficking is controlled by chemoattractant factors that activate heterotrimeric GPCRs and thereby trigger a variety of downstream intracellular events. Signal transduction along one of these pathways that results in mobilization of free Ca^{2+}, cytoskeletal reorganization, and directional movement depends on lipid-derived second messengers produced by PI3K activity (Wymann et al., 2000; Stein and Waterfield, 2000).

PI3Kγ modulates baseline cAMP levels and controls contractility in cells. Recent research indicates that alterations in baseline cAMP levels contribute to the increased contractility in mutant mice. This research, therefore, shows that PI3Kγ inhibitors would afford potential treatments for congestive heart failure, ischemia, pulmonary hypertension, renal failure, cardiac hypertrophy, atherosclerosis, thromboembolism, and diabetes.

PI3K inhibitors would be expected to block signal transduction from GPCRs and block the activation of various immune cells, leading to a broad anti-inflammatory profile with potential for the treatment of inflammatory and immunoregulatory diseases, including asthma, atopic dermatitis, rhinitis, allergic diseases, chronic obstructive pulmonary disease (COPD), septic shock, joint diseases, autoimmune pathologies such as rheumatoid arthritis and Graves’ disease, diabetes, cancer, myocardial contractility disorders, thromboembolism, and atherosclerosis.

Multiple myeloma is the second most common haematologic malignancy, with 20,000 new cases per year (Jemal A, et al, CancerJ. CUn., 2007, 57: 43-66), and remains incurable with a median survival of 3 to 5 years (Kyle RA, Rajkumar SV. Multiple myeloma. N. Engl. J. Med., 2004, 351: 1860-73).
Further, as multiple myeloma is a plasma cell malignancy characterised by complex heterogeneous cytogenetic abnormalities, the bone marrow microenvironment promotes multiple myeloma cell growth and resistance to conventional therapies.

The present invention is thus to provide compounds for the preparation of a medicament for use in the treatment of multiple myeloma.

To the Applicant's knowledge, no generic or specific disclosure or suggestion in the prior art is known that 2,3-dihydroimidazo[1,2-c]quinazoline compounds would be effective in the treatment or prophylaxis of multiple myeloma.

It has been found, and this is the basis of the present invention, that 2,3-dihydroimidazo[1,2-c]quinazoline compounds, as described and defined herein, show a beneficial effect in the treatment of multiple myeloma.

Accordingly, the present invention relates to the use of 2,3-dihydroimidazo[1,2-c]quinazoline compounds and of pharmaceutical compositions containing such compounds, for the preparation of a medicament for the treatment or prophylaxis of multiple myeloma, which is also known as myeloma, plasma cell myeloma, or as Kahler's disease (after Otto Kahler), and which is a type of cancer of plasma cells in bone marrow that produce antibodies, as a sole agent or in combination with other one or more other active ingredients.
Description of the Invention

A first embodiment of the present invention relates to the use of a compound of general formula (A):

\[
\begin{align*}
\text{(A)} \\
\end{align*}
\]

in which:

- \(X\) represents \(\text{CR}_5\text{R}_6\) or \(\text{NH}\);
- \(Y^1\) represents \(\text{CR}_3\) or \(\text{N}\);
- the chemical bond between \(\gamma^2 \cdots \gamma^3\) represents a single bond or double bond, with the proviso that when \(\gamma^2 : : : \gamma^3\) represents a double bond, \(Y^2\) and \(Y^3\) independently represent \(\text{CR}_4\) or \(\text{N}\), and
- when \(\gamma^2 \cdots \gamma^3\) represents a single bond, \(Y^2\) and \(Y^3\) independently represent \(\text{CR}_3\text{R}_4\) or \(\text{NR}_4\);
- \(Z^1, Z^2, Z^3\) and \(Z^4\) independently represent \(\text{CH}, \text{CR}_2\) or \(\text{N}\);
- \(R^1\) represents aryl optionally having 1 to 3 substituents selected from \(R^1, \text{C}_3\text{C}_8\) cycloalkyl optionally having 1 to 3 substituents selected from \(R^1, \text{C}_1\text{C}_6\) alkyl optionally substituted by aryl, heteroaryl, \(\text{C}_1\text{C}_6\) alkoxyaryl, aryloxy, heteroarylxyloxy or one or more halogen,
- \(d\) \(\text{C}_6\) alkoxy optionally substituted by carboxy, aryl, heteroaryl, \(\text{C}_1\text{C}_6\) alkoxyaryl, aryloxy, heteroarylxyloxy or one or more halogen, or
a 3 to 15 membered mono- or bi-cyclic heterocyclic ring that is saturated or unsaturated, optionally having 1 to 3 substituents selected from R^1, and contains 1 to 3 heteroatoms selected from the group consisting of N, 0 and S,

wherein

R^1 represents halogen, nitro, hydroxy, cyano, carboxy, amino, N-(Ci-$_6$-alkyl)amino, N-(hydroxyC$_{1-6}$-alkyl)amino, N,N-di(Ci-$_6$-alkyl)amino, N-(Ci-$_6$-acyl)amino, N-(formyl)-N-(Ci-$_6$-alkyl)amino, N-(Ci-$_6$-alkanesulfonyl) amino, N-(carboxyC$_{1-6}$-alkyl)-N-(Ci-$_6$-alkyl)amino, N-[N,N-di(Ci-$_6$-alkyl)amino methylene]amino, N-[N,N-di(Ci-$_6$-alkyl)amino (Ci-$_6$-alkyl)methylene]amino, N-[N,N-di(C$_{1-6}$-alkyl)amino C$_2$-$_6$-alkenyl]amino, aminocarbonyl, N-(Ci-$_6$-alkyl)aminocarbonyl, N,N-di(Ci-$_6$-alkyl)aminocarbonyl, C$_3$-β-cycloalkyl, Ci-$_6$ alkythio, Ci-$_6$-alkanesulfonyl, sulfamoyl, Ci-$_6$alkoxy carbonyl, N-arylamino wherein said aryl moiety is optionally having 1 to 3 substituents selected from R^{01}, N-(aryl-C$_1$-$_6$-alkyl)amino wherein said aryl moiety is optionally having 1 to 3 substituents selected from R^{01}, aryl d-$_6$-alkoxy carbonyl wherein said aryl moiety is optionally having 1 to 3 substituents selected from R^{01},

Ci-$_6$-alkyl optionally substituted by mono-, di- or tri-halogen, amino, N-(Ci-$_6$-alkyl)amino or N,N-di(Ci-$_6$-alkyl)amino,

C$_4$-$_6$alkOXY optionally substituted by mono-, di- or trihalogen, N-(Ci-$_6$-alkyl)sulfonamide, or N-(aryl)sulfonamide, or

a 5 to 7 membered saturated or unsaturated ring having 1 to 3 heteroatoms selected from the group consisting of O, S and N, and optionally having 1 to 3 substituents selected from R^{01}.
wherein

R¹⁰¹ represents halogen, carboxy, amino, N-(Ci₆ alkyl)amino, N,N-di(Ci₆ alkyl)amino, aminocarbonyl, N-(Ci₆ alkyl)aminocarbonyl, N,N-di(Ci₆ alkyl)aminocarbonyl, pyridyl,

C₁₋₆ alkyl optionally substituted by cyano or mono- di- or tri- halogen,

and

C₁₋₆ alkoy optionally substituted by cyano, carboxy, amino, N-(Ci-6 alkyl)amino, N,N-di(Ci-6 alkyl)amino, aminocarbonyl, N-(Ci-6 alkyl)aminocarbonyl, N,N-di(Ci-6 alkyl)aminocarbonyl or mono-, di- or tri- halogen;

R² represents hydroxy, halogen, nitro, cyano, amino, N-(Ci₆ alkyl)amino, N,N-di(Ci₆ alkyl)amino, N-(hydroxyCi₆ alkyl)amino, N-(hydroxyCi₆ alkyl)-N-(Ci-6 alkyl)amino, C₁₋₆ acyloxy, aminoC₁₋₆ acyloxy, C₂₋₆ alkenyl, aryl,

a 5-7 membered saturated or unsaturated heterocyclic ring having

1 to 3 heteroatoms selected from the group consisting O, S and N, and optionally substituted by

hydroxy, C₁₋₆ alkyl, C₁₋₆ alkoxy, oxo, amino, amino C₁₋₆ alkyl, N-(Ci₆ alkyl)amino, N,N-di(Ci₆ alkyl)amino, N-(Ci₆ acyl)amino, N-(Ci₆ alkyl)carbonylamino, phenyl, phenyl C₁₋₆ alkyl, carboxy, C₁₋₆ alkoxy carbonyl, aminocarbonyl, N-(Ci₆ alkyl)aminocarbonyl, or N,N-di(Ci₆ alkyl)amino, -C(O)- R³⁰

wherein

R³⁰ represents C₁₋₆ alkyl, C₁₋₆ alkoxy, amino, N-(Ci₆ alkyl)amino, N,N-di(Ci₆ alkyl)amino, N-(Ci₆ acyl)amino, or a 5-7 membered saturated or unsaturated heterocyclic ring having 1 to 3 heteroatoms selected from the group
consisting O, S and N, and optionally substituted by C_{1-6} alkyl, C_{1-6} alkoxy, oxo, amino, N-(C_{1-6}alkyl)amino, N,N-di(C_{1-6}alkyl)amino, N-(C_{1-6} acyl)amino, phenyl, or benzyl,

\[\text{Ci}_{-6} \text{ alkyl optionally substituted by } R^1, \]

or

\[\text{Ci}_{-6} \text{ alkoxy optionally substituted by } R^1, \]

wherein

\[R^1 \text{ represents cyano, mono-, di or tri- halogen, hydroxy, } \]

amino, N-(C_{1-6}alkyl)amino, N,N-di(C_{1-6}alkyl)amino, N- (hydroxyC_{1-6} alkyl) amino, N- (halophenylC_{1-6} alkyl) amino, amino C_{2-6} alkylenyl, C_{1-6} alkoxy, hydroxyC_{1-6} alkoxy, -C(O)- R^{01}, -NHC(O)- R^{01}, C_{3-8} cycloalkyl, isoindolino, phthalimidyl, 2-oxo-1,3-oxazolidinyl, aryl or a 5 or 6 membered saturated or unsaturated heterocyclic ring having 1 to 4 heteroatoms selected from the group consisting O, S and N, and optionally substituted by hydroxy, C_{1-6} alkyl, C_{1-6} alkoxy, C_{1-6} alkoxy carbonyl, hydroxyd_{-6} alkoxy, oxo, amino, aminoC_{1-6}alkyl, N-(C_{1-6}alkyl)amino, N,N-di(C_{1-6}alkyl)amino, N-(C_{1-6} acyl)amino, or benzyl,

wherein

\[R^{01} \text{ represents hydroxy, amino, N-(C_{6}alkyl)amino, } \]

N,N-di(C_{1-6}alkyl)amino, N- (halophenylC_{1-6} alkyl) amino, C_{1-6}alkyl, aminoC_{1-6} alkyl, aminoC_{2-6} alkylenyl, C_{1-6} alkoxy, a 5 or 6 membered saturated or unsaturated heterocyclic ring having 1 to 4 heteroatoms selected from the group consisting O, S and N,
and optionally substituted by hydroxy, C\textsubscript{1-6} alkyl, C\textsubscript{1-6} alkoxy, C\textsubscript{1-6} alkoxy carbonyl, hydroxy C\textsubscript{1-6} alkoxy, oxo, amino, N-(C\textsubscript{1-6} alkyl) amino, N,N-di(C\textsubscript{1-6} alkyl) amino, N-(C\textsubscript{1-6} acyl) amino or benzyl;

R3 represents hydrogen, halogen, aminocarbonyl, or C\textsubscript{1-6} alkyl optionally substituted by aryl C\textsubscript{1-6} alkoxy or mono-, di- or tri-halogen;

R4 represents hydrogen or C\textsubscript{1-6} alkyl;

R5 represents hydrogen or C\textsubscript{1-6} alkyl; and

R6 represents halogen, hydrogen or C\textsubscript{1-6} alkyl, or a physiologically acceptable salt, solvate, hydrate or stereoisomer thereof, for the preparation of a medicament for the treatment or prophylaxis of multiple myeloma, as a sole agent or in combination with one or more other active ingredients.

In a particular embodiment of the above-mentioned first embodiment, the present invention relates to the use of a compound selected from the following list for the preparation of a medicament for the treatment or prophylaxis of multiple myeloma, as a sole agent or in combination with one or more other active ingredients:

N-(7,8-dimethoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)\textsubscript{n} \kappa\textsubscript{o}tinamide;

2-(7, 8-dimethoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)-1-pyridin-3-ylethynol;

N-(7, 8-dimethoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)-1H-benzimidazole-5-carboxamide;
6-(acetamido)-N-(7,8-dimethoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)nicotinamide;
N-[5-[2-(7,8-dimethoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)-1-hydroxyvinyl]pyridin-2-yl]acetamide;
2-[[5-[2-hydroxy-2-pyridin-3-ylvinyl]-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-8-yl]oxy]-N,N-dimethylacetamide;
2-[7-methoxy-8-(tetrahydro-2H-pyran-2-ylmethoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-1-pyridin-3-ylethyleneol;
2-[8-(2-hydroxyethoxy)-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-1-pyridin-3-ylethyleneol;
((5-[2-hydroxy-2-pyridin-3-ylvinyl]-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-8-yl]oxy)acetic acid;
4-((5-[2-hydroxy-2-pyridin-3-ylvinyl]-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-8-yl]oxy)butanoic acid;
((5-[2-hydroxy-2-pyridin-3-ylvinyl]-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-8-yl]oxy)acetonitrile;
2-[7-methoxy-8-(2H-tetrazol-5-ylmethoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-1-pyridin-3-ylethyleneol;
2-[7-methoxy-8-(4-morpholin-4-yl-4-oxobutoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-1-pyridin-3-ylethyleneol;
5-[1-hydroxy-2-(8-morpholin-4-yl-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)vinyl]pyridin-3-ol;
N-(2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)-5-hydroxynicotinamide;
6-(acetamido)-N-(7,9-dimethoxy-8-methyl-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)nicotinamide;
N-(8,9-dimethoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)-5-hydroxynicotinamide;
5-hydroxy-N-(7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)nicotinamide;
N-(7,8-dimethoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)-5-[(4-methoxybenzyl)oxy]nicotinamide;
N-(7,8-dimethoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)-5-hydroxynicotinamide;
5-hydroxy-N-[8-(trifluoromethyl)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl] nicotinamide;
N-[8-[3-(1,3-dioxo-1,3-dihydro-2H-isooindol-2-yl)propoxy]-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl] nicotinamide;
N^y-bromo-δ-methoxy^-dihydroimidazo^-clquinazolin-5-yl]nicotinamide;
6-amino-N-(8-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
1-(1H-benzimidazol-5-yl)-2-(8,9-dimethoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]ethyl enol;
2-(8,9-dimethoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-1-(2,4-dimethyl-1,3-thiazol-5-yl)ethyl enol;
N-(9-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-1H-benzimidazole-5-carboxamide;
N-(8-bromo-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
N-(8-methyl-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-1H-benzimidazole-5-carboxamide;
N-(8-methyl-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-1H-benzimidazole-5-carboxamide;
N-[8-(trifluoromethyl)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-1H-benzimidazole-5-carboxamide;
N-(7-fluoro-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-1H-benzimidazole-5-carboxamide;
N-(7-fluoro-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
N-(8-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-1H-benzimidazole-5-carboxamide;
N-[8-(trifluoromethyl)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-1H-benzimidazole-5-carboxamide;
N-(7-fluoro-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-1H-benzimidazole-5-carboxamide;
6-(acetamido)-N-(8-morpholin-4-yl-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
1-(1H-benzimidazol-5-yl)-2-(8-morpholin-4-yl-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]ethyl enol;
N-[5-[1-hydroxy-2-(8-morpholin-4-yl-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)vinyl]pyridin-2-yl]acetamide;
6-methyl-N-(8-morpholin-4-yl-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)nicotinamide;
1-(1H-benzimidazol-5-yl)-2-[8-(4-methylpiperazin-1-yl)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]ethylenol;
N-(2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)-3H-imidazo[4,5-b]pyridine-6-carboxamide;
N-(7,8-dimethoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)-3H-imidazo[4,5-b]pyridine-6-carboxamide;
N-[7-(trifluoromethyl)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-1H-benzimidazole-5-carboxamide;
N-(7,9-dimethoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)-1H-benzimidazole-5-carboxamide;
N-[5-[2-(7,9-dimethoxy-8-methyl-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)-1-hydroxyvinyl]pyridin-2-yl]acetamide;
N-[5-[2-(7-bromo-9-methyl-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)-1-hydroxyvinyl] pyridin-2-yl]acetamide; and
2-(8,9-dimethoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)-1-pyridin-3-ylethylenol;

Another embodiment of the present invention encompasses the use of a compound having the formula (I):
or a physiologically acceptable salt, solvate, hydrate or stereoisomer thereof, in which:

\[R_1 \] represents \(-(CH_2)_n-(CHR_4)-(CH_2)_m-N(R_5)(R_5')\);
\[R_2 \] represents a heteroaryl optionally substituted with 1, 2 or 3 \(R_6 \) groups;
\[R_3 \] represents alkyl or cycloalkyl;
\[R_4 \] represents hydrogen, hydroxy or alkoxy; and
\[R_5 \text{ and } R_5' \text{ may be the same or different and represent independently,} \]
hydrogen, alkyl, cycloalkylalkyl, or alkoxyalkyl or \(R_6 \) and \(R_6' \) may be taken together with the nitrogen atom to which they are bound to form a 3-7 membered nitrogen containing heterocyclic ring optionally containing at least one additional heteroatom selected from oxygen, nitrogen or sulfur and which may be optionally substituted with 1 or more \(R_6' \) groups, or \(R_4 \) and \(R_6 \) may be taken together with the atoms to which they are bound to form a 5-6 membered nitrogen containing heterocyclic ring optionally containing 1 or more nitrogen, oxygen or sulfur atoms and which may be optionally substituted with 1 or more \(R_6 \) groups;

each occurrence of \(R_6 \) may be the same or different and is independently halogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroaryalkyl, heterocyclic ring, heterocyclylalkyl, alkyl-OR, alkyl-SR, alkyl-N(R)(R'), alkyl-COR, -CN, -COOR, -CON(R')(R'), -OR, -SR, -N(R')(R'), or -NRCOR each of which may be optionally substituted with 1 or more \(R_6 \) groups;

each occurrence of \(R_6' \) may be the same or different and is independently alkyl, cycloalkylalkyl, or alkyl-OR;
each occurrence of \(R_7 \) and \(R_7' \) may be the same or different and is independently hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, aryl, arylalkyl, heteroaryl, heterocyclic ring, heterocyclylalkyl, or heteroaryllalkyl;

each occurrence of \(R_8 \) is independently nitro, hydroxy, cyano, formyl, acetyl, halogen, amino, alkyl, alkoxy, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, aryl, arylalkyl, heteroaryl, heterocyclic ring, heterocyclylalkyl, or heteroaryllalkyl;

\(n \) is an integer from 1-4 and \(m \) is an integer from 0-4 with the proviso that when \(R_4 \) and \(R_5 \) are taken together with the atoms to which they are bound to form a 5-6 membered nitrogen containing ring, \(n + m \leq 4 \);

for the preparation of a medicament for the treatment or prophylaxis of multiple myeloma.

In a preferred embodiment, the invention encompasses the use of a compound of Formula (I), wherein \(R_2 \) is a nitrogen containing heteroaryl optionally substituted with 1, 2 or 3 \(R_6 \) groups,

for the preparation of a medicament for the treatment or prophylaxis of multiple myeloma.

In another preferred embodiment, the invention encompasses the use of a compound of Formula (I), wherein \(R_5 \) and \(R_5' \) are independently alkyl,

for the preparation of a medicament for the treatment or prophylaxis of multiple myeloma.

In still another preferred embodiment, the invention encompasses the use of a compound of Formula (I), wherein \(R_5 \) and \(R_5' \) are taken together with the nitrogen atom to which they are bound to form a 5-6 membered nitrogen containing heterocyclic ring containing at least one additional heteroatom.
selected from oxygen, nitrogen or sulfur and which may be optionally substituted with 1 or more \(R^6 \) groups,
for the preparation of a medicament for the treatment or prophylaxis of multiple myeloma.

In yet another preferred embodiment, the invention encompasses the use of a compound of Formula (I), wherein \(R^4 \) is hydroxyl,
for the preparation of a medicament for the treatment or prophylaxis of multiple myeloma.

In another preferred embodiment, the invention encompasses the use of a compound of Formula (I), wherein \(R^4 \) and \(R^6 \) are taken together with the atoms to which they are bound to form a 5-6 membered nitrogen containing heterocyclic ring optionally containing 1 or more nitrogen, oxygen or sulfur atoms and which may be optionally substituted with 1 or more \(R^6 \) groups,
for the preparation of a medicament for the treatment or prophylaxis of multiple myeloma.

In yet another preferred embodiment, the invention encompasses the use of a compound of Formula (I), wherein \(R^4 \) is methyl,
for the preparation of a medicament for the treatment or prophylaxis of multiple myeloma.

In still another preferred embodiment, the invention encompasses the use of a compound of Formula (I), wherein \(R^6 \) is pyridine, pyridazine, pyrimidine, pyrazine, pyrole, oxazole, thiazole, furan or thiophene, optionally substituted with 1, 2 or 3 \(R^6 \) groups; more preferably pyridine, pyridazine, pyrimidine, pyrazine, pyrole, oxazole or thiazole, optionally substituted with 1, 2 or 3 \(R^6 \) groups,
for the preparation of a medicament for the treatment or prophylaxis of multiple myeloma.
In a distinct embodiment, the invention encompasses the use of a compound of formula (Ia):

![Formula Ia](image)

or a physiologically acceptable salt, solvate, hydrate or stereoisomer thereof, wherein R_2 is as defined above, for the preparation of a medicament for the treatment or prophylaxis of multiple myeloma.

In another distinct embodiment, the invention encompasses the use of a compound of formula (Ib):

![Formula Ib](image)

or a physiologically acceptable salt, solvate, hydrate or stereoisomer thereof, wherein R_2 is as defined above, for the preparation of a medicament for the treatment or prophylaxis of multiple myeloma.

In still another distinct embodiment, the invention encompasses the use of a compound of formula (Ic):
or a physiologically acceptable salt, solvate, hydrate or stereoisomer thereof,
wherein R_2 is as defined above,
for the preparation of a medicament for the treatment or prophylaxis of
multiple myeloma.

In yet another distinct embodiment, the invention encompasses the use of a
compound of the formula (Id):

or a physiologically acceptable salt, solvate, hydrate or stereoisomer thereof,
wherein R^2 and R'^1 are as defined above,
for the preparation of a medicament for the treatment or prophylaxis of
multiple myeloma.

In yet another distinct embodiment, the invention encompasses the use of a
compound of the formula (le):
or a physiologically acceptable salt, solvate, hydrate or stereoisomer thereof,
wherein R^2 and R^4 are as defined above,
for the preparation of a medicament for the treatment or prophylaxis of
multiple myeloma.

In a preferred embodiment, the invention encompasses the use of a compound
of formula (I) - (V), wherein R^2 is pyridine, pyridazine, pyrimidine, pyrazine,
pyrole, oxazole, thiazole, furan or thiophene, optionally substituted with 1, 2
or 3 R^6 groups; more preferrably wherein R^2 is pyridine, pyridazine, pyrimidine,
pyrazine, pyrole, oxazole or thiazole, optionally substituted with 1, 2 or 3 R^6
groups,
for the preparation of a medicament for the treatment or prophylaxis of
multiple myeloma.

In still another preferred embodiment, the invention encompasses the use of a
compound having the formula:

N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]pyrimidine-5-carboxamide;
N-(8-{3-[(2R,6S)-2,6-dimethylmorpholin-4-yl]propoxy}-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)nicotinamide ;
N-(8-{3-[(2R,6S)-2,6-dimethylmorpholin-4-yl]propoxy}-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)-2,4-dimethyl-1,3-thiazole-5-carboxamide;
2-amino-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-1,3-thiazole-5-carboxamide;
2-amino-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]isonicotinamide;
2-amino-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-4-methyl-1,3-thiazole-5-carboxamide;
2-amino-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-4-propylpyrimidine-5-carboxamide;
N-{8-[2-(4-ethylmorpholin-2-yl)ethoxy]-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl}nicotinamide;
N-{8-[2-(dimethylamino)ethoxy]-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl}pyrimidine-5-carboxamide;
N-(8-{3-[2-(hydroxymethyl)morpholin-4-yl]propoxy}-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)nicotinamide;
N-(8-{3-[2-(hydroxymethyl)morpholin-4-yl]propoxy}-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)nicotinamide 1-oxide;
2-amino-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]pyrimidine-5-carboxamide;
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
N-[8-(2-hydroxy-3-morpholin-4-ylpropoxy)-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
N-(7-methoxy-8-[3-(3-methylmorpholin-4-yl)propoxy]-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
N-[8-(3-[2-(hydroxymethyl)morpholin-4-yl]propoxy)-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
N-(8-{2-[4-(cyclobutylmethyl)morpholin-2-yl]ethoxy}-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)nicotinamide;
N-(7-methoxy-8-{2-[4-(2-methoxyethyl)morpholin-2-yl]ethoxy}-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)nicotinamide;
N-[8-[(4-ethylmorpholin-2-yl)methoxy]-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
N-(7-methoxy-8-{2-[4-(2-methoxyethyl)morpholin-2-yl]methoxy}-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)nicotinamide;
N-[7-methoxy-8-{(4-methylmorpholin-2-yl)methoxy}-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
N-[7-methoxy-8-{(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]pyrimidine-4-carboxamide;
2-amino-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]pyrimidine-4-carboxamide;
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-1-methyl-1H-imidazole-4-carboxamide;
rel-N-(8-{3-[(2R,6S)-2,6-dimethylmorpholin-4-yl]propoxy}-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)pyrimidine-5-carboxamide;
rel-N-(8-{3-[(2R,6S)-2,6-dimethylmorpholin-4-yl]propoxy}-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-6-methylnicotinamide;
rel-6-acetamido-N-(8-{3-[(2R,6S)-2,6-dimethylmorpholin-4-yl]propoxy}-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
N^-methoxy- ^δ^S-morpholin^-ylpropoxyJ^-^-dihydroimidazot_i ,2-c]quinazolin-5-yl]-1-methyl-1H-imidazole-5-carboxamide;
6-amino-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-2-methylnicotinamide;
2-amino-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-4-methylpyrimidine-5-carboxamide;
6-amino-5-bromo-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
2-amino-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-
dihydroimidazo[1,2-c]quinazolin-5-yl]-1,3-oxazole-5-carboxamide;
N-[7-methoxy-8-(morpholin-2-ylmethoxy)-2,3-dihydroimidazo[1,2-
c]quinazolin-5-yl]nicotinamide;
2-\{[2-([dimethylamino]ethyl)amino]-N-[8-[3-(dimethylamino)propoxy]-7-
methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]pyrimidine-5-
carboxamide;
2-amino-N-[8-[3-(dimethylamino)propoxy]-7-methoxy-2,3-
dihydroimidazo[1,2-c]quinazolin-5-yl]-1,3-thiazole-5-carboxamide;
rel-2-amino-N-[8-[\{2R,6S\}-2,6-dimethylmorpholin-4-yl]propoxy]-7-
methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]pyrimidine-5-
carboxamide;
rel-6-amino-N-[8-[\{2R,6S\}-2,6-dimethylmorpholin-4-yl]propoxy]-7-
methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
2-\{2-hydroxyethyl\}amino]-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-
dihydroimidazo[1,2-c]quinazolin-5-yl]pyrimidine-5-carboxamide;
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-
c]quinazolin-5-yl]-2-\{[3-methoxypropyl]amino\}pyrimidine-5-
carboxamide;
2-amino-N-[8-[3-(dimethylamino)propoxy]-7-methoxy-2,3-
dihydroimidazo[1,2-c]quinazolin-5-yl]pyrimidine-5-carboxamide;
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-
c]quinazolin-5-yl]-2-\{[3-morpholin-4-ylpropyl]amino\}pyrimidine-5-
carboxamide;
2-\{2-(methoxyethyl)amino\]-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-
dihydroimidazo[1,2-c]quinazolin-5-yl]pyrimidine-5-carboxamide;
2-\{[2-(methoxyethyl)amino]-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-
dihydroimidazo[1,2-c]quinazolin-5-yl]pyrimidine-5-carboxamide;
2-\{[2-([dimethylamino]ethyl)amino]-N-[7-methoxy-8-(3-morpholin-4-
ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]pyrimidine-5-
carboxamide;
6-amino-N-[8-[3-(dimethylamino)propoxy]-7-methoxy-2,3-
dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-2-pyrrolidin-1-ylpyrimidine-5-carboxamide;
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-2-(4-methylpiperazin-1-yl)pyrimidine-5-carboxamide;
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-2-morpholin-4-ylpyrimidine-5-carboxamide;
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-6-piperazin-1-ylnicotinamide hydrochloride;
6-[(3S)-3-aminopyrrolidin-1-yl]-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide hydrochloride hydrate;
6-[(3R)-3-aminopyrrolidin-1-yl]-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide hydrochloride;
6-[(4-fluorobenzyl)amino]-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
6-[(2-furylmethyl)amino]-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
6-[(2-methoxyethyl)amino]-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-6-(1H-pyrrol-1-yl)nicotinamide;
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-6-morpholin-4-ylnicotinamide;
N-[7-methoxy-8-[3-(methylamino)propoxy]-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
6-[(2,2-dimethylpropanoyl)amino]-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
6-[(cyclopropylcarbonyl)amino]-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-6-(2,2,2-trifluoroethoxy)nicotinamide;
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-6-(trifluoromethyl)nicotinamide;
6-(isobutyrylamino)-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
N-[7-methoxy-8-[3-(4-methylpiperazin-1-yl)propoxy]-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-2-[(methylamino)carbonyl]amino]-1,3-thiazole-4-carboxamide;
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-6-[(methylamino)carbonyl]amino]nicotinamide;
N-[7-methoxy-8-(2-morpholin-4-yethoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
N-[8-[2-(dimethylamino)ethoxy]-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-2,4-dimethyl-1,3-thiazole-5-carboxamide;
N-[8-[2-(dimethylamino)ethoxy]-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-6-methylnicotinamide;
6-[(isopropylamino)carbonyl]amino]-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-6-pyrrolidin-1-yl]nicotinamide;
6-(dimethylamino)-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
N-[7-methoxy-8-(3-piperdin-1-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
N-[7-methoxy-8-(2-pyrrolidin-1-yethoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
N-[7-methoxy-8-(2-piperdin-1-yethoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
N-[7-methoxy-8-(2-pyridin-1-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
N-[7-methoxy-8-(2-pyridin-1-yethoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
6-\{[(ethylamino)carbonyl]amino\}-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide; 6-fluoro-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide; 2-amino-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide; 2-(ethylamino)-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-1,3-thiazole-4-carboxamide; N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]pyrazine-2-carboxamide; N-[8-(2-aminoethoxy)-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide; 6-amino-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide; N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]isonicotinamide; N-[8-[3-(diethylamino)propoxy]-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide; N-[8-[2-(diisopropylamino)ethoxy]-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide; N-[8-[2-(diethylamino)ethoxy]-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide; N-[8-[3-(dimethylamino)propoxy]-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide; N-[8-[2-(dimethylamino)ethoxy]-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide; N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-2-(methylthio)pyrimidine-5-carboxamide; N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-2-(methylthio)pyrimidine-5-carboxamide; N-[8-(3-aminopropoxy)-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide trifluoroacetate;
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]thiophene-2-carboxamide;
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-2,4-dimethyl-1,3-thiazole-5-carboxamide;
2-methoxy-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]pyrimidine-5-carboxamide;
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-3-furamide;
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-6-methylnicotinamide;
6-methoxy-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-6-methylnicotinamide;
6-(acetylamino)-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
or a physiologically acceptable salt, solvate, hydrate or stereoisomer thereof, for the preparation of a medicament for the treatment or prophylaxis of multiple myeloma.

In a preferred embodiment, the invention encompasses the use of a compound having the formula:
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-6-methylnicotinamide;
5-methoxy-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-2,4-dimethyl-1,3-thiazole-5-carboxamide;
N-[8-[2-(dimethylamino)ethoxy]-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
N-[8-[3-(dimethylamino)propoxy]-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
6-[[[(isopropylamino)carbonyl]amino]-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
N-[8-[2-(dimethylamino)ethoxy]-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-2,4-dimethyl-1,3-thiazole-5-carboxamide;
N-[7-methoxy-8-(2-morpholin-4-y1ethoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
rel-6-amino-N-(8-{3-[(2R,6S)-2,6-dimethylmorpholin-4-yl]propoxy}-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
rel-2-amino-N-(8-{3-[(2R,6S)-2,6-dimethylmorpholin-4-yl]propoxy}-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]pyrimidine-5-carboxamide;
2-amino-N-[7-methoxy-8-(3-morpholin-4-y1propoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]pyrimidine-5-carboxamide;
N-[8-[2-(dimethylamino)ethoxy]-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]pyrimidine-5-carboxamide;
N-[7-methoxy-8-(3-morpholin-4-y1propoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]pyrimidine-5-carboxamide;
or a physiologically acceptable salt, solvate, hydrate or stereoisomer thereof, for the preparation of a medicament for the treatment or prophylaxis of multiple myeloma.

Where there is a discrepancy between the chemical name and the chemical structure depicted, the chemical structure depicted takes precedence over the chemical name given.
Without being bound by theory or mechanism, the compounds of the present invention display surprising activity for the inhibition of phosphatidylinositol-3-kinase and chemical and structural stability over those compounds of the prior art. It is believed that this surprising activity is based on the chemical structure of the compounds, in particular the basicity of the compounds as a result of \(R_1 \) being amino optionally substituted with \(R_5 \) and \(R_5' \). Further, the appropriate choice of \(R_5 \) and \(R_5' \) provide the necessary activity against the appropriate isoforms to allow for activity in vivo.

Definitions

The term `alkyl` refers to a straight or branched hydrocarbon chain radical consisting solely of carbon and hydrogen atoms, containing solely of carbon and hydrogen atoms, containing no unsaturation, having from one to eight carbon atoms, and which is attached to the rest of the molecule by a single bond, such as illustratively, methyl, ethyl, n-propyl 1-methylethyl (isopropyl), n-butyl, n-pentyl, and 1,1-dimethylethyl (t-butyl).

The term "alkenyl" refers to an aliphatic hydrocarbon group containing a carbon-carbon double bond and which may be a straight or branched or branched chain having about 2 to about 10 carbon atoms, e.g., ethenyl, 1-propenyl, 2-propenyl (allyl), iso-propenyl, 2-methyl-1-propenyl, 1-butenyl, 2- and butenyl.

The term "alkynyl" refers to a straight or branched chain hydrocarbonyl radicals having at least one carbon-carbon triple bond, and having in the range of about 2 up to 12 carbon atoms (with radicals having in the range of about 2 up to 10 carbon atoms presently being preferred) e.g., ethynyl.
The term "alkoxy" denotes an alkyl group as defined herein attached via oxygen linkage to the rest of the molecule. Representative examples of those groups are methoxy and ethoxy.

The term "alkoxyakyl" denotes an alkoxy group as defined herein attached via oxygen linkage to an alkyl group which is then attached to the main structure at any carbon from alkyl group that results in the creation of a stable structure the rest of the molecule. Representative examples of those groups are -CH₂OCH₃, --CH₂OC₂H₅.

The term "cycloalkyl" denotes a non-aromatic mono or multicyclic ring system of about 3 to 12 carbon atoms such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and examples of multicyclic cycloalkyl groups include perhydronapththyl, adamantyl and norbornyl groups bridged cyclic group or spirobicyclic groups e.g sprio (4,4) non-2-yl.

The term "cycloalkylalkyl" refers to cyclic ring-containing radicals containing in the range of about 3 up to 8 carbon atoms directly attached to alkyl group which is then also attached to the main structure at any carbon from the alkyl group that results in the creation of a stable structure such as cyclopropylmethyl, cyclobuylethyl, cyclopentylethyl.

The term "aryl" refers to aromatic radicals having in the range of 6 up to 14 carbon atoms such as phenyl, naphthyl, tetrahydronapthyl, indanyl, biphenyl.

The term "arylalkyl" refers to an aryl group as defined herein directly bonded to an alkyl group as defined herein which is then attached to the main structure at any carbon from alkyl group that results in the creation of a stable structure the rest of the molecule, e.g., --CH₂C₆H₅, --C₂H₅C₆H₅.

The term "heterocyclic ring" refers to a stable 3- to 15 membered ring radical which consists of carbon atoms and from one to five heteroatoms selected
from the group consisting of nitrogen, phosphorus, oxygen and sulfur. For purposes of this invention, the heterocyclic ring radical may be a monocyclic, bicyclic or tricyclic ring system, which may include fused, bridged or spiro ring systems, and the nitrogen, phosphorus, carbon, oxygen or sulfur atoms in the heterocyclic ring radical may be optionally oxidized to various oxidation states. In addition, the nitrogen atom may be optionally quatemized; and the ring radical may be partially or fully saturated (i.e., heteroaromatic or heteroaryl aromatic). Examples of such heterocyclic ring radicals include, but are not limited to, azetidinyl, acridinyl, benzodioxolyl, benzodioxanyl, benzofurnyl, carbazolyl cinnolinyldioxolanyland indolizinyl, naphthyridinyl, perhydroazepinyl, phenazinyl, phenothiazinyl, phenoxazinyl, phthalazil, pyridyl, pteridinyl, purinyl, quinazolinyl, quinoxalinyl, quinolinyl, isoquinolinyl, tetrazoyl, imidazolyl tetrahydroisouinolyl, piperidinyl, pipеразинyl, 2-oxopiperazinyl, 2-oxopiperidinyl, 2-oxopyrrolidinyl, 2-oxoazepinyl, 2-oxoazepinyl, A-piperidonyl, pyrrolidinyl, pyrazinyl, pyrimidinyl pyridazinyl, oxazolyl oxazolinyl oxasolidinyl, triazolyl, indanyl, isoaxazolyl, isoxasolidinyl, morpholinyl, thiazolyl, thiazolinyl, thiazolidinyl, isothiazolyl, quinuclidinyl, isothiazolidinyl, indolyl, isoindolyl, indoUnyl, isoindolinyloctahydroindolyl, octahydroisoindolyl quinolyl, isoquinolinyl, decahydroisoquinolyl, benzimidazolyl, thiadiazolyl, benzopyranyl, benzothiazolyl, benzoxazolyl, furyl, tetrahydrofurtyl, tetrahydropyranlyl, thiethyl, benzothienyl, thiamorpholinyl, thiamorpholinyl sulfoxide thiamorpholinyl sulfone, dioxaphospholanyloxadiazolyl, chromanyl, isochromanyl.

The term "heteroaryl" refers to heterocyclic ring radical as defined herein which are aromatic. The heteroaryl ring radical may be attached to the main structure at any heteroatom or carbon atom that results in the creation of a stable structure.

The heterocyclic ring radical may be attached to the main structure at any heteroatom or carbon atom that results in the creation of a stable structure.
The term "heteroarylalkyl" refers to heteroaryl ring radical as defined herein directly bonded to alkyl group. The heteroarylalkyl radical may be attached to the main structure at any carbon atom from alkyl group that results in the creation of a stable structure.

The term "heterocyclyl" refers to a heterocyclic ring radical as defined herein. The heterocyclyl ring radical may be attached to the main structure at any heteroatom or carbon atom that results in the creation of a stable structure.

The term "heterocyclylalkyl" refers to a heterocyclic ring radical as defined herein directly bonded to alkyl group. The heterocyclylalkyl radical may be attached to the main structure at carbon atom in the alkyl group that results in the creation of a stable structure.

The term "carbonyl" refers to an oxygen atom bound to a carbon atom of the molecule by a double bond.

The term "halogen" refers to radicals of fluorine, chlorine, bromine and iodine.

Where the plural form of the word compounds, salts, polymorphs, hydrates, solvates and the like, is used herein, this is taken to mean also a single compound, salt, polymorph, isomer, hydrate, solvate or the like.

The compounds of this invention may contain one or more asymmetric centers, depending upon the location and nature of the various substituents desired. Asymmetric carbon atoms may be present in the \((R)\) or \((S)\) configuration, resulting in racemic mixtures in the case of a single asymmetric center, and diastereomeric mixtures in the case of multiple asymmetric centers. In certain instances, asymmetry may also be present due to restricted rotation about a given bond, for example, the central bond adjoining two substituted aromatic rings of the specified compounds. Substituents on a ring may also be present in either cis or trans form. It is intended that all such configurations (including
enantiomers and diastereomers), are included within the scope of the present invention. Preferred compounds are those, which produce the more desirable biological activity. Separated, pure or partially purified isomers and stereoisomers or racemic or diastereomeric mixtures of the compounds of this invention are also included within the scope of the present invention. The purification and the separation of such materials can be accomplished by standard techniques known in the art.

The present invention also relates to useful forms of the compounds as disclosed herein, such as pharmaceutically acceptable salts, co-precipitates, metabolites, hydrates, solvates and prodrugs of all the compounds of examples. The term "pharmaceutically acceptable salt" refers to a relatively non-toxic, inorganic or organic acid addition salt of a compound of the present invention. For example, see S. M. Berge, et al. "Pharmaceutical Salts," J. Pharm. Sci. 1977, 66, 1-19. Pharmaceutically acceptable salts include those obtained by reacting the main compound, functioning as a base, with an inorganic or organic acid to form a salt, for example, salts of hydrochloric acid, sulfuric acid, phosphoric acid, methane sulfonic acid, camphor sulfonic acid, oxalic acid, maleic acid, succinic acid and citric acid. Pharmaceutically acceptable salts also include those in which the main compound functions as an acid and is reacted with an appropriate base to form, e.g., sodium, potassium, calcium, magnesium, ammonium, and chorine salts. Those skilled in the art will further recognize that acid addition salts of the claimed compounds may be prepared by reaction of the compounds with the appropriate inorganic or organic acid via any of a number of known methods. Alternatively, alkali and alkaline earth metal salts of acidic compounds of the invention are prepared by reacting the compounds of the invention with the appropriate base via a variety of known methods.

Representative salts of the compounds of this invention include the conventional non-toxic salts and the quaternary ammonium salts which are formed, for example, from inorganic or organic acids or bases by means well
known in the art. For example, such acid addition salts include acetate, adipate, alginate, ascorbate, aspartate, benzoate, benzenesulfonate, bisulfate, butyrate, citrate, camphorate, camphorsulfonate, cinnamate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, fumarate, glucoheptanoate, glycerophosphate, hemisulfate, heptanoate, hexanoate, chloride, bromide, iodide, 2-hydroxyethanesulfonate, itaconate, lactate, maleate, mandelate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oxalate, pamoate, pectinate, persulfate, 3-phenylpropionate, picrate, pivalate, propionate, succinate, sulfonate, sulfate, tartrate, thiocyanate, tosylate, and undecanoate.

Base salts include alkali metal salts such as potassium and sodium salts, alkaline earth metal salts such as calcium and magnesium salts, and ammonium salts with organic bases such as dicyclohexylamine and N-methyl-D-glucamine. Additionally, basic nitrogen containing groups may be quatemized with such agents as lower alkyl halides such as methyl, ethyl, propyl, or butyl chlorides, bromides and iodides; dialkyl sulfates like dimethyl, diethyl, dibutyl sulfate, or diamyl sulfates, long chain halides such as decyl, lauryl, myristyl and stearyl chlorides, bromides and iodides, aralkyl halides like benzyl and phenethyl bromides and others.

A solvate for the purpose of this invention is a complex of a solvent and a compound of the invention in the solid state. Exemplary solvates would include, but are not limited to, complexes of a compound of the invention with ethanol or methanol. Hydrates are a specific form of solvate wherein the solvent is water.

Pharmaceutical compositions of the compounds of the invention

This invention also relates to pharmaceutical compositions containing one or more compounds of the present invention. These compositions can be utilized to achieve the desired pharmacological effect by administration to a patient in need thereof. A patient, for the purpose of this invention, is a mammal, including a human, in need of treatment for the particular condition or disease. Therefore, the present invention includes pharmaceutical compositions that are comprised of a pharmaceutically acceptable carrier and a pharmaceutically effective amount of a compound, or salt thereof, of the present invention. A pharmaceutically acceptable carrier is preferably a carrier that is relatively non-toxic and innocuous to a patient at concentrations consistent with effective activity of the active ingredient so that any side effects ascribable to the carrier do not vitiate the beneficial effects of the active ingredient. A pharmaceutically effective amount of compound is preferably that amount which produces a result or exerts an influence on the particular condition being treated. The compounds of the present invention can be administered with pharmaceutically-acceptable carriers well known in the art using any effective conventional dosage unit forms, including immediate, slow and timed release preparations, orally, parenterally, topically, nasally, ophthalmically, optically, sublingually, rectally, vaginally, and the like.

For oral administration, the compounds can be formulated into solid or liquid preparations such as capsules, pills, tablets, troches, lozenges, melts, powders, solutions, suspensions, or emulsions, and may be prepared according to methods known to the art for the manufacture of pharmaceutical compositions. The solid unit dosage forms can be a capsule that can be of the ordinary hard- or soft-shelled gelatin type containing, for example, surfactants, lubricants, and inert fillers such as lactose, sucrose, calcium phosphate, and corn starch.
In another embodiment, the compounds of this invention may be tableted with conventional tablet bases such as lactose, sucrose and cornstarch in combination with binders such as acacia, corn starch or gelatin, disintegrating agents intended to assist the break-up and dissolution of the tablet following administration such as potato starch, alginic acid, corn starch, and guar gum, gum tragacanth, acacia, lubricants intended to improve the flow of tablet granulation and to prevent the adhesion of tablet material to the surfaces of the tablet dies and punches, for example talc, stearic acid, or magnesium, calcium or zinc stearate, dyes, coloring agents, and flavoring agents such as peppermint, oil of wintergreen, or cherry flavoring, intended to enhance the aesthetic qualities of the tablets and make them more acceptable to the patient. Suitable excipients for use in oral liquid dosage forms include dicalcium phosphate and diluents such as water and alcohols, for example, ethanol, benzyl alcohol, and polyethylene alcohols, either with or without the addition of a pharmaceutically acceptable surfactant, suspending agent or emulsifying agent. Various other materials may be present as coatings or to otherwise modify the physical form of the dosage unit. For instance tablets, pills or capsules may be coated with shellac, sugar or both.

Dispersible powders and granules are suitable for the preparation of an aqueous suspension. They provide the active ingredient in admixture with a dispersing or wetting agent, a suspending agent and one or more preservatives. Suitable dispersing or wetting agents and suspending agents are exemplified by those already mentioned above. Additional excipients, for example those sweetening, flavoring and coloring agents described above, may also be present.

The pharmaceutical compositions of this invention may also be in the form of oil-in-water emulsions. The oily phase may be a vegetable oil such as liquid paraffin or a mixture of vegetable oils. Suitable emulsifying agents may be (1) naturally occurring gums such as gum acacia and gum tragacanth, (2) naturally
occurring phosphatides such as soy bean and lecithin, (3) esters or partial esters derived from fatty acids and hexitol anhydrides, for example, sorbitan monooleate, (4) condensation products of said partial esters with ethylene oxide, for example, polyoxyethylene sorbitan monooleate. The emulsions may also contain sweetening and flavoring agents.

Oily suspensions may be formulated by suspending the active ingredient in a vegetable oil such as, for example, arachis oil, olive oil, sesame oil or coconut oil, or in a mineral oil such as liquid paraffin. The oily suspensions may contain a thickening agent such as, for example, beeswax, hard paraffin, or cetyl alcohol. The suspensions may also contain one or more preservatives, for example, ethyl or n-propyl p-hydroxybenzoate; one or more coloring agents; one or more flavoring agents; and one or more sweetening agents such as sucrose or saccharin.

Syrups and elixirs may be formulated with sweetening agents such as, for example, glycerol, propylene glycol, sorbitol or sucrose. Such formulations may also contain a demulcent, and preservative, such as methyl and propyl parabens and flavoring and coloring agents.

The compounds of this invention may also be administered parenterally, that is, subcutaneously, intravenously, intraocularly, intramuscularly, or interperitoneally, as injectable dosages of the compound in preferably a physiologically acceptable diluent with a pharmaceutical carrier which can be a sterile liquid or mixture of liquids such as water, saline, aqueous dextrose and related sugar solutions, an alcohol such as ethanol, isopropanol, or hexadecyl alcohol, glycols such as propylene glycol or polyethylene glycol, glycerol ketals such as 2,2-dimethyl-1,1-dioxolane-4-methanol, ethers such as poly(ethylene glycol) 400, an oil, a fatty acid, a fatty acid ester or, a fatty acid glyceride, or an acetylated fatty acid glyceride, with or without the addition of a pharmaceutically acceptable surfactant such as a soap or a detergent, suspending agent such as pectin, carbomers,
methycellulose, hydroxypropylmethylcellulose, or carboxymethylcellulose, or emulsifying agent and other pharmaceutical adjuvants. Illustrative of oils which can be used in the parenteral formulations of this invention are those of petroleum, animal, vegetable, or synthetic origin, for example, peanut oil, soybean oil, sesame oil, cottonseed oil, corn oil, olive oil, petrolatum and mineral oil. Suitable fatty acids include oleic acid, stearic acid, isostearic acid and myristic acid. Suitable fatty acid esters are, for example, ethyl oleate and isopropyl myristate. Suitable soaps include fatty acid alkali metal, ammonium, and triethanolamine salts and suitable detergents include cationic detergents, for example dimethyl dialkyl ammonium halides, alkyl pyridinium halides, and alkylamine acetates; anionic detergents, for example, alkyl, aryl, and olefin sulfonates, alkyl, olefin, ether, and monoglyceride sulfates, and sulfosuccinates; non-ionic detergents, for example, fatty amine oxides, fatty acid alkanolamides, and poly(oxyethylene-oxypropylene)s or ethylene oxide or propylene oxide copolymers; and amphoteric detergents, for example, alkyl-beta-aminopropionates, and 2-alkylimidazoline quaternary ammonium salts, as well as mixtures.

The parenteral compositions of this invention will typically contain from about 0.5% to about 25% by weight of the active ingredient in solution. Preservatives and buffers may also be used advantageously. In order to minimize or eliminate irritation at the site of injection, such compositions may contain a non-ionic surfactant having a hydrophile-lipophile balance (HLB) preferably of from about 12 to about 17. The quantity of surfactant in such formulation preferably ranges from about 5% to about 15% by weight. The surfactant can be a single component having the above HLB or can be a mixture of two or more components having the desired HLB.

Illustrative of surfactants used in parenteral formulations are the class of polyethylene sorbitan fatty acid esters, for example, sorbitan monooleate and
the high molecular weight adducts of ethylene oxide with a hydrophobic base, formed by the condensation of propylene oxide with propylene glycol.

The pharmaceutical compositions may be in the form of sterile injectable aqueous suspensions. Such suspensions may be formulated according to known methods using suitable dispersing or wetting agents and suspending agents such as, for example, sodium carboxymethylcellulose, methylcellulose, hydroxypropylmethylcellulose, sodium alginate, polyvinylpyrrolidone, gum tragacanth and gum acacia; dispersing or wetting agents which may be naturally occurring phosphatide such as lecithin, a condensation product of an alkylene oxide with a fatty acid, for example, polyoxyethylene stearate, a condensation product of ethylene oxide with a long chain aliphatic alcohol, for example, heptadeca-ethyleneoxycetanol, a condensation product of ethylene oxide with a partial ester derived form a fatty acid and a hexitol such as polyoxyethylene sorbitol monooleate, or a condensation product of an ethylene oxide with a partial ester derived from a fatty acid and a hexitol anhydride, for example polyoxyethylene sorbitan monooleate.

The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent. Diluents and solvents that may be employed are, for example, water, Ringer's solution, isotonic sodium chloride solutions and isotonic glucose solutions. In addition, sterile fixed oils are conventionally employed as solvents or suspending media. For this purpose, any bland, fixed oil may be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid can be used in the preparation of injectables.

A composition of the invention may also be administered in the form of suppositories for rectal administration of the drug. These compositions can be prepared by mixing the drug with a suitable non-irritation excipient which is solid at ordinary temperatures but liquid at the rectal temperature and will
therefore melt in the rectum to release the drug. Such materials are, for example, cocoa butter and polyethylene glycol.

Another formulation employed in the methods of the present invention employs transdermal delivery devices ("patches"). Such transdermal patches may be used to provide continuous or discontinuous infusion of the compounds of the present invention in controlled amounts. The construction and use of transdermal patches for the delivery of pharmaceutical agents is well known in the art (see, e.g., US Patent No. 5,023,252, issued June 11, 1991, incorporated herein by reference). Such patches may be constructed for continuous, pulsatile, or on demand delivery of pharmaceutical agents.

Controlled release formulations for parenteral administration include liposomal, polymeric microsphere and polymeric gel formulations that are known in the art.

It may be desirable or necessary to introduce the pharmaceutical composition to the patient via a mechanical delivery device. The construction and use of mechanical delivery devices for the delivery of pharmaceutical agents is well known in the art. Direct techniques for, for example, administering a drug directly to the brain usually involve placement of a drug delivery catheter into the patient's ventricular system to bypass the blood-brain barrier. One such implantable delivery system, used for the transport of agents to specific anatomical regions of the body, is described in US Patent No. 5,011,472, issued April 30, 1991.

The compositions of the invention can also contain other conventional pharmaceutically acceptable compounding ingredients, generally referred to as carriers or diluents, as necessary or desired. Conventional procedures for preparing such compositions in appropriate dosage forms can be utilized. Such ingredients and procedures include those described in the following references, each of which is incorporated herein by reference: Powell, M.F. et
Commonly used pharmaceutical ingredients that can be used as appropriate to formulate the composition for its intended route of administration include:

acidifying agents (examples include but are not limited to acetic acid, citric acid, fumaric acid, hydrochloric acid, nitric acid);

alkalinizing agents (examples include but are not limited to ammonia solution, ammonium carbonate, diethanolamine, monoethanolamine, potassium hydroxide, sodium borate, sodium carbonate, sodium hydroxide, triethanolamine, trolamine);

adsorbents (examples include but are not limited to powdered cellulose and activated charcoal);

aerosol propellents (examples include but are not limited to carbon dioxide, CCl_2F_2, $\text{F}_2\text{ClIC-CCIF}_2$ and CCIF_3)

air displacement agents (examples include but are not limited to nitrogen and argon);

antifungal preservatives (examples include but are not limited to benzoic acid, butylparaben, ethylparaben, methylparaben, propylparaben, sodium benzoate);
antimicrobial preservatives (examples include but are not limited to benzalkonium chloride, benzethonium chloride, benzyl alcohol, cetylpyridinium chloride, chlorobutanol, phenol, phenylethyl alcohol, phenylmercuric nitrate and thimerosal);

antioxidants (examples include but are not limited to ascorbic acid, ascorbyl palmitate, butylated hydroxyanisole, butylated hydroxytoluene, hypophosphorus acid, monothioglycerol, propyl gallate, sodium ascorbate, sodium bisulfite, sodium formaldehyde sulfoxylate, sodium metabisulfite);

binding materials (examples include but are not limited to block polymers, natural and synthetic rubber, polyacrylates, polyurethanes, silicones, polysiloxanes and styrene-butyadiene copolymers);

buffering agents (examples include but are not limited to potassium metaphosphate, dipotassium phosphate, sodium acetate, sodium citrate anhydrous and sodium citrate dihydrate)

carrying agents (examples include but are not limited to acacia syrup, aromatic syrup, aromatic elixir, cherry syrup, cocoa syrup, orange syrup, syrup, corn oil, mineral oil, peanut oil, sesame oil, bacteriostatic sodium chloride injection and bacteriostatic water for injection)

chelating agents (examples include but are not limited to edetate disodium and edetic acid)

colorants (examples include but are not limited to FDEIC Red No. 3, FDEIC Red No. 20, FDEIC Yellow No. 6, FD&C Blue No. 2, DEIC Green No. 5, D&C Orange No. 5, D&C Red No. 8, caramel and ferric oxide red);

clarifying agents (examples include but are not limited to bentonite);
emulsifying agents (examples include but are not limited to acacia, cetomacrogol, cetyl alcohol, glyceryl monostearate, lecithin, sorbitan monooleate, polyoxyethylene 50 monostearate);

encapsulating agents (examples include but are not limited to gelatin and cellulose acetate phthalate)

flavorants (examples include but are not limited to anise oil, cinnamon oil, cocoa, menthol, orange oil, peppermint oil and vanillin);

humectants (examples include but are not limited to glycerol, propylene glycol and sorbitol);

levigating agents (examples include but are not limited to mineral oil and glycerin);

oils (examples include but are not limited to arachis oil, mineral oil, olive oil, peanut oil, sesame oil and vegetable oil);

ointment bases (examples include but are not limited to lanolin, hydrophilic ointment, polyethylene glycol ointment, petrolatum, hydrophilic petrolatum, white ointment, yellow ointment, and rose water ointment);

penetration enhancers (transdermal delivery) (examples include but are not limited to monohydroxy or polyhydroxy alcohols, mono-or polyvalent alcohols, saturated or unsaturated fatty alcohols, saturated or unsaturated fatty esters, saturated or unsaturated dicarboxylic acids, essential oils, phosphatidyl derivatives, cephalin, terpenes, amides, ethers, ketones and ureas)

plasticizers (examples include but are not limited to diethyl phthalate and glycerol);
solvents (examples include but are not limited to ethanol, corn oil, cottonseed oil, glycerol, isopropanol, mineral oil, oleic acid, peanut oil, purified water, water for injection, sterile water for injection and sterile water for irrigation);

stiffening agents (examples include but are not limited to cetyl alcohol, cetyl esters wax, microcrystalline wax, paraffin, stearyl alcohol, white wax and yellow wax);

suppository bases (examples include but are not limited to cocoa butter and polyethylene glycols (mixtures));

surfactants (examples include but are not limited to benzalkonium chloride, nonoxynol 10, octoxynol 9, polysorbate 80, sodium lauryl sulfate and sorbitan mono-palmitate);

suspending agents (examples include but are not limited to agar, bentonite, carboxomers, carboxymethylcellulose sodium, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose, kaolin, methylcellulose, tragacanth and veegum);

sweetening agents (examples include but are not limited to aspartame, dextrose, glycerol, mannitol, propylene glycol, saccharin sodium, sorbitol and sucrose);

tablet anti-adherents (examples include but are not limited to magnesium stearate and talc);

tablet binders (examples include but are not limited to acacia, alginic acid, carboxymethylcellulose sodium, compressible sugar, ethylcellulose, gelatin, liquid glucose, methylcellulose, non-crosslinked polyvinyl pyrrolidone, and pregelatinized starch);
tablet and capsule diluents (examples include but are not limited to dibasic calcium phosphate, kaolin, lactose, mannitol, microcrystalline cellulose, powdered cellulose, precipitated calcium carbonate, sodium carbonate, sodium phosphate, sorbitol and starch);

tablet coating agents (examples include but are not limited to liquid glucose, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose, methylcellulose, ethylcellulose, cellulose acetate phthalate and shellac);

tablet direct compression excipients (examples include but are not limited to dibasic calcium phosphate);

tablet disintegrants (examples include but are not limited to alginic acid, carboxymethylcellulose calcium, microcrystalline cellulose, polacrillin potassium, cross-linked polyvinylpyrrolidone, sodium alginate, sodium starch glycollate and starch);

tablet glidants (examples include but are not limited to colloidal silica, corn starch and talc);

tablet lubricants (examples include but are not limited to calcium stearate, magnesium stearate, mineral oil, stearic acid and zinc stearate);

tablet/capsule opaquants (examples include but are not limited to titanium dioxide);

tablet polishing agents (examples include but are not limited to carnuba wax and white wax);
thickening agents (examples include but are not limited to beeswax, cetyl alcohol and paraffin);

tonicity agents (examples include but are not limited to dextrose and sodium chloride);

viscosity increasing agents (examples include but are not limited to alginic acid, bentonite, carbomers, carboxymethylcellulose sodium, methylcellulose, polyvinyl pyrrolidone, sodium alginate and tragacanth); and

wetting agents (examples include but are not limited to heptadecaethylene oxycetanol, lecithins, sorbitol monooleate, polyoxyethylene sorbitol monooleate, and polyoxyethylene stearate).

Pharmaceutical compositions according to the present invention can be illustrated as follows:

Sterile IV Solution: A 5 mg/mL solution of the desired compound of this invention can be made using sterile, injectable water, and the pH is adjusted if necessary. The solution is diluted for administration to 1 - 2 mg/mL with sterile 5% dextrose and is administered as an IV infusion over about 60 minutes.

Lvophilized powder for IV administration: A sterile preparation can be prepared with (i) 100 - 1000 mg of the desired compound of this invention as a lypholized powder, (ii) 32-327 mg/mL sodium citrate, and (iii) 300 - 3000 mg Dextran 40. The formulation is reconstituted with sterile, injectable saline or dextrose 5% to a concentration of 10 to 20 mg/mL, which is further diluted with saline or dextrose 5% to 0.2 - 0.4 mg/mL, and is administered either IV bolus or by IV infusion over 15 - 60 minutes.
Intramuscular suspension: The following solution or suspension can be prepared, for intramuscular injection:

50 mg/mL of the desired, water-insoluble compound of this invention

5 mg/mL sodium carboxymethylcellulose

A mg/mL TWEEN 80

9 mg/mL sodium chloride

9 mg/mL benzyl alcohol

Hard Shell Capsules: A large number of unit capsules are prepared by filling standard two-piece hard gelatine capsules each with 100 mg of powdered active ingredient, 150 mg of lactose, 50 mg of cellulose and 6 mg of magnesium stearate.

Soft Gelatin Capsules: A mixture of active ingredient in a digestible oil such as soybean oil, cottonseed oil or olive oil is prepared and injected by means of a positive displacement pump into molten gelatin to form soft gelatin capsules containing 100 mg of the active ingredient. The capsules are washed and dried. The active ingredient can be dissolved in a mixture of polyethylene glycol, glycerin and sorbitol to prepare a water miscible medicine mix.

Tablets: A large number of tablets are prepared by conventional procedures so that the dosage unit is 100 mg of active ingredient, 0.2 mg of colloidal silicon dioxide, 5 mg of magnesium stearate, 275 mg of microcrystalline cellulose, 11 mg of starch, and 98.8 mg of lactose. Appropriate aqueous and non-aqueous coatings may be applied to increase palatability, improve elegance and stability or delay absorption.

Immediate Release Tablets/Capsules: These are solid oral dosage forms made by conventional and novel processes. These units are taken orally without water for immediate dissolution and delivery of the medication. The active ingredient is mixed in a liquid containing ingredient such as sugar, gelatin, pectin and sweeteners. These liquids are solidified into solid tablets or caplets.
by freeze drying and solid state extraction techniques. The drug compounds may be compressed with viscoelastic and thermoelastic sugars and polymers or effervescent components to produce porous matrices intended for immediate release, without the need of water.

Method of treating multiple myeloma

The present invention relates to a method for using the compounds of the present invention and compositions thereof, to treat mammalian multiple myeloma. Compounds can be utilized to inhibit, block, reduce, decrease, etc., cell proliferation and/or cell division, and/or produce apoptosis, in the treatment or prophylaxis of multiple myeloma. This method comprises administering to a mammal in need thereof, including a human, an amount of a compound of this invention, or a pharmaceutically acceptable salt, isomer, polymorph, metabolite, hydrate, solvate or ester thereof; etc. which is effective for the treatment or prophylaxis of multiple myeloma, which, as mentioned supra, is also known as myeloma, plasma cell myeloma, or as Kahler's disease (after Otto Kahler), which is a type of cancer of plasma cells in bone marrow that produce antibodies.

This disorder has been well characterized in humans, but also exists with a similar etiology in other mammals, and can be treated by administering pharmaceutical compositions of the present invention.

The term "treating" or "treatment" as stated throughout this document is used conventionally, e.g., the management or care of a subject for the purpose of combating, alleviating, reducing, relieving, improving the condition of, etc., of a disease or disorder, such as a carcinoma.

Dose and administration
Based upon standard laboratory techniques known to evaluate compounds useful for the treatment or prophylaxis of multiple myeloma, by standard toxicity tests and by standard pharmacological assays for the determination of treatment of the conditions identified above in mammals, and by comparison of these results with the results of known medicaments that are used to treat these conditions, the effective dosage of the compounds of this invention can readily be determined for treatment of the indication. The amount of the active ingredient to be administered in the treatment of the condition can vary widely according to such considerations as the particular compound and dosage unit employed, the mode of administration, the period of treatment, the age and sex of the patient treated, and the nature and extent of the condition treated.

The total amount of the active ingredient to be administered will generally range from about 0.001 mg/kg to about 200 mg/kg body weight per day, and preferably from about 0.01 mg/kg to about 20 mg/kg body weight per day. Clinically useful dosing schedules will range from one to three times a day dosing to once every four weeks dosing. In addition, "drug holidays" in which a patient is not dosed with a drug for a certain period of time, may be beneficial to the overall balance between pharmacological effect and tolerability. A unit dosage may contain from about 0.5 mg to about 1,500 mg of active ingredient, and can be administered one or more times per day or less than once a day. The average daily dosage for administration by injection, including intravenous, intramuscular, subcutaneous and parenteral injections, and use of infusion techniques will preferably be from 0.01 to 200 mg/kg of total body weight. The average daily rectal dosage regimen will preferably be from 0.01 to 200 mg/kg of total body weight. The average daily vaginal dosage regimen will preferably be from 0.01 to 200 mg/kg of total body weight. The average daily topical dosage regimen will preferably be from 0.1 to 200 mg administered between one to four times daily. The transdermal concentration will preferably be that required to maintain a daily dose of from 0.01 to 200
mg/kg. The average daily inhalation dosage regimen will preferably be from 0.01 to 100 mg/kg of total body weight.

Of course the specific initial and continuing dosage regimen for each patient will vary according to the nature and severity of the condition as determined by the attending diagnostician, the activity of the specific compound employed, the age and general condition of the patient, time of administration, route of administration, rate of excretion of the drug, drug combinations, and the like. The desired mode of treatment and number of doses of a compound of the present invention or a pharmaceutically acceptable salt or ester or composition thereof can be ascertained by those skilled in the art using conventional treatment tests.

Combination therapies

The compounds of this invention can be administered as the sole pharmaceutical agent or in combination with one or more other pharmaceutical agents where the combination causes no unacceptable adverse effects. For example, the compounds of this invention can be combined with known anti-angiogenesis, anti-hyper-proliferative, anti-inflammatory, analgesic, immunoregulatory, diuretic, antiarrhythmic, anti-hypercholesterolemia, anti-dyslipidemia, anti-diabetic or antiviral agents, and the like, as well as with admixtures and combinations thereof.
Examples:

The invention is demonstrated in the following examples which are not meant to limit the invention in any way:

Example 1

In accordance with the invention, the compounds were assessed in a cell-based assay that measures the capacity of the compounds to inhibit tumor cell proliferation following a 72-hour drug exposure. Cell viability is determined using CellTiter-Glo® Luminescent Cell Viability Assay (Promega). Cells were plated at 2000 - 5000 cells/well (depending on the cell lines) in 100 µl growth medium on 96-well microtiterplate. For each cell line assayed, cells were plated onto a separate plate for determination of Luminescence at t = 0 hour and t = 72 hour time points. Following overnight incubation at 37 °C, Luminescence values for the t = 0 samples were determined. Dose plates for the t = 72 hour time points were treated with compounds diluted into growth medium. Cells were then incubated for 72 hours at 37 °C. Luminescence values for the t = 72 hour samples were determined. For data analysis, briefly, t = 0 values were subtracted from those determined for the t = 72 hour time points, for both the treated and untreated samples. Percent differences in fluorescence between drug-treated and control values were used to determine the percent inhibition of growth.

IC₅₀ values for the compound 2-amino-N-[7-methoxy-8-(3-morpholin-4-y1propoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]pyrimidine-5-carboxamide, of structure:
hereinafter referred to as compound A. In this functional assay were presented in Table I. Compound A strongly inhibits the proliferation of 9 multiple myeloma tested with IC50s ranging from 3-100 nM. These data suggested that compound A has equal or even more potent antiproliferative activity in comparison to the current standards of care drugs for multiple myeloma, such as Bortezomib, Thalidomide/lenalidomide, Dexamethasone and Melphalan.

Table I. IC50s of compound A in proliferation assays with multiple myeloma cell lines

<table>
<thead>
<tr>
<th>Cell Line</th>
<th>KMS-12-BM</th>
<th>KMS-12-PE</th>
<th>L363</th>
<th>LP-1</th>
<th>Molm13</th>
<th>Molp2</th>
<th>Molp8</th>
<th>RPM 8226</th>
<th>CPM2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound A</td>
<td>3.7E-09</td>
<td>6.7E-08</td>
<td>8.1E-09</td>
<td>3.7E-09</td>
<td>3.7E-08</td>
<td>1.2E-08</td>
<td>2.3E-08</td>
<td>4.8E-08</td>
<td>9.2E-08</td>
</tr>
</tbody>
</table>

As neoangiogenesis has been suggested playing important role in stimulating proliferation, survival, and drug resistance of multiple myeloma through paracrine and cell adhesion-mediated interactions similar to those between MM cells and BMSCs, the effect of test compounds on endothelial cell proliferation may be evaluated.

CONTROL SUBSTANCES

Rapamicin (obtained from Sigma, St Louis, MO, USA) is used as a reference inhibitor.
References:

6. Benistant, C.; Chapuis, H.; Roche, S. A specific function for phosphatidylinositol 3-kinase a (p85a-p110a) in cell survival and for phosphatidylinositol 3-kinase b (p85a-p110b) in de novo DNA synthesis of human colon carcinoma cells. Oncogene 2000, 19, 5083-5090.

34. Hresko, R. C.; Murata, H.; Mueckler, M. Phosphoinositide-dependent Kinase-2 is a distinct protein kinase enriched in a novel cytoskeletal fraction

79. Roche, S.; Koegl, M.; Courtneidge, S. A. The phosphatidylinositol 3-
kinase is required for DNA synthesis induced by some, but not all, growth

80. Romashkova, J. A.; Makarov, S. S. NF-kB is a target of Akt in anti-

S.; Malmstroem, P.-O.; Mansukhani, M.; Enoksson, J.; Hibshoosh, H.; Borg, A.;
Parsons, R. PIK3CA mutations correlate with hormone receptors, node
metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human

Vogelstein, B.; Velculescu, V. E. Mutant PIK3CA promotes cell growth and

Opin. Oncol. 2006, 18, 77-82.

84. Samuels, Y.; Wang, Z.; Bardelli, A.; Silliman, N.; Ptak, J.; Szabo, S.;
Yan, H.; Gazdar, A.; Powell, S. M.; Riggins, G. J.; Willson, J. K. V.; Markowitz,
S.; Kinzler, K. W.; Vogelstein, B.; Velculescu, V. E. Brevia: High frequency of

85. Scheid, M. P.; Marignani, P. A.; Woodgett, J. R. Multiple
phosphoinositide 3-kinase-dependent steps in activation of protein kinase B.

86. Schultz, R. M.; Merriman, R. L.; Andis, S. L.; Bonjouklian, R.; Grindey,
G. B.; Rutherford, P. G.; Gallegos, A.; Massey, K.; Powis, G. In vitro and in vivo
antitumor activity of the phosphatidylinositol-3-kinase inhibitor, wortmannin.

87. Segrelles, C.; Moral, M.; Lara, M. F.; Ruiz, S.; Santos, M.; Leis, H.;
Garcia-Escudero, R.; Martinez-Cruz, A. B.; Martinez-Palacio, J.; Hernandez, P.;
Ballestín, C.; Paramio, J. M. Molecular determinants of Akt-induced

88. Sekimoto, T.; Fukumoto, M.; Yoneda, Y. 14-3-3 suppresses the nuclear
localization of threonine 157-phosphorylated p27Kip1. EMBO J. 2004, 23, 1934-
1942.

Kimura, W.; Yamakawa, M. Down-regulation of PIK3CG catalytic subunit of
phosphatidylinositol 3-OH kinase by CpG hypermethylation in human colorectal

101. Taylor, V.; Wong, M.; Brandts, C.; Reilly, L.; Dean, N. M.; Cowsert, L. M.; Moodie, S.; Stokoe, D. 5' Phospholipid phosphatase SHIP-2 causes protein

CLAIMS

1. Use of a compound of general formula :

\[
\text{(I)}
\]

or a physiologically acceptable salt, solvate, hydrate or stereoisomer thereof, in which:

- \(R^1 \) represents \(-\text{CH}_2\)^{n}\,-\text{(CHR)}^{4}\,-\text{(CH}_2\,)^{m}\,-\text{N}(R^5)(R^5')\);
- \(R^2 \) represents a heteroaryl optionally substituted with 1, 2 or 3 \(R^6 \) groups;
- \(R^3 \) represents alkyl or cycloalkyl;
- \(R^4 \) represents hydrogen, hydroxy or alkoxy;
- \(R^6 \) and \(R^6' \) may be the same or different and are independently, hydrogen, alkyl, cycloalkylalkyl, or alkoxyalkyl or \(R^6 \) and \(R^6' \) may be taken together with the nitrogen atom to which they are bound to form a 3-7 membered nitrogen containing heterocyclic ring optionally containing at least one additional heteroatom selected from oxygen, nitrogen or sulfur and which may be optionally substituted with 1 or more \(R^6' \) groups, or \(R^4 \) and \(R^6 \) may be taken together with the atoms to which they are bound to form a 5-6 membered nitrogen containing heterocyclic ring optionally containing 1 or more nitrogen, oxygen or sulfur atoms and which may be optionally substituted with 1 or more \(R^6 \) groups;

each occurrence of \(R^6 \) may be the same or different and is independently halogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl,
aryl, arylalkyl, heteroaryl, heteroaryalkyl, heterocyclic ring, heterocyclylalkyl, alkyl-OR⁷, alkyl-SR⁷, alkyl-N(R⁷)(R⁷'), alkyl-COR⁷, CN, -COOR⁷, -CON(R⁷)(R⁷'), -OR⁷, -SR⁷, -N(R⁷)(R⁷'), or -NR⁷COR⁷ each of which may be optionally substituted with 1 or more R⁸ groups;

each occurrence of R⁸ may be the same or different and is independently alkyl, cycloalkylalkyl, or alkyl-OR⁷;

each occurrence of R⁷ and R⁷' may be the same or different and is independently hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, aryl, arylalkyl, heteroaryl, heterocyclic ring, heterocyclylalkyl, or heteroaryalkyl;

each occurrence of R⁶ is independently nitro, hydroxy, cyano, formyl, acetyl, halogen, amino, alkyl, alkoxy, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, aryl, arylalkyl, heteroaryl, heterocyclic ring, heterocyclylalkyl, or heteroaryalkyl;

n is an integer from 1-4 and m is an integer from 0-4 with the proviso that when when R⁶ and R⁶' are taken together with the atoms to which they are bound to form a 3-7 membered nitrogen containing ring, n + m ≤ 4; for the preparation of a medicament for the treatment of multiple myeloma.

2. The use according to claim 1, wherein in said compound of formula (I), R⁶ is a nitrogen containing heteroaryl optionally substituted with 1, 2 or 3 R⁸ groups.

3. The use according to claim 1, wherein in said compound of formula (I), R⁶ and R⁶' are independently alkyl.

4. The use according to claim 1, wherein in said compound of formula (I), R⁶ and R⁶' are taken together with the nitrogen atom to which they are bound
to form a 5-6 membered nitrogen containing heterocyclic ring containing at least one additional heteroatom selected from oxygen, nitrogen or sulfur and which may be optionally substituted with 1 or more R^6 groups.

5. The use according to claim 1, wherein in said compound of formula (I), R^4 is hydroxy.

6. The use according to claim 1, wherein in said compound of formula (I), R^4 and R^5 are taken together with the atoms to which they are bound to form a 5-6 membered nitrogen containing heterocyclic ring optionally containing 1 or more nitrogen, oxygen or sulfur atoms and which may be optionally substituted with 1 or more R^6 groups.

7. The use according to claim 1, wherein in said compound of formula (I), R^8 is methyl.

8. The use according to claim 1, wherein in said compound of formula (I), R^2 is pyridine, pyridazine, pyrimidine, pyrazine, pyrole, oxazole, thiazole, furan or thiophene, optionally substituted with 1, 2 or 3 R^6 groups.

9. The use according to claim 1, wherein in said compound of formula (I), R^2 is pyridine, pyridazine, pyrimidine, pyrazine, pyrole, oxazole or thiazole, optionally substituted with 1, 2 or 3 R^6 groups.

10. The use according to claim 1, wherein said compound is of the formula:
11. The use according to claim 10, wherein in said compound, \(R \) is pyridine, pyridazine, pyrimidine, pyrazine, pyrole, oxazole, thiazole, furan or thiophene, optionally substituted with 1, 2 or 3 \(R \) groups.

12. The use according to claim 11, wherein in said compound, \(R \) is pyridine, pyridazine, pyrimidine, pyrazine, pyrole, oxazole or thiazole, optionally substituted with 1, 2 or 3 \(R \) groups.

13. The use according to claim 1, wherein said compound of formula (I) has the formula:

![Chemical Structure](image)

14. The use according to claim 13, wherein in said compound, \(R \) is pyridine, pyridazine, pyrimidine, pyrazine, pyrole, oxazole, thiazole, furan or thiophene, optionally substituted with 1, 2 or 3 \(R \) groups.

15. The use according to claim 14, wherein in said compound, \(R \) is pyridine, pyridazine, pyrimidine, pyrazine, pyrole, oxazole or thiazole, optionally substituted with 1, 2 or 3 \(R \) groups.

16. The use according to claim 1, wherein said compound of formula (I) is of the formula:
17. The use according to claim 16, wherein in said compound, \(R^2 \) is pyridine, pyridazine, pyrimidine, pyrazine, pyrole, oxazole, thiazole, furan or thiophene, optionally substituted with 1, 2 or 3 \(R^6 \) groups.

18. The use according to claim 17, wherein in said compound, \(R^2 \) is pyridine, pyridazine, pyrimidine, pyrazine, pyrole, oxazole or thiazole, optionally substituted with 1, 2 or 3 \(R^6 \) groups.

19. The use according to claim 1, wherein said compound has the formula:

20. The use according to claim 19, wherein in said compound, \(R^2 \) is pyridine, pyridazine, pyrimidine, pyrazine, pyrole, oxazole, thiazole, furan or thiophene, optionally substituted with 1, 2 or 3 \(R^6 \) groups.

21. The use according to claim 20, wherein in said compound, \(R^2 \) is pyridine, pyridazine, pyrimidine, pyrazine, pyrole, oxazole or thiazole, optionally substituted with 1, 2 or 3 \(R^6 \) groups.
22. The use of claim 19, wherein in said compound, \(R^5 \) is alkyl.

23. The use according to claim 1, wherein said compound is of the formula:

\[\text{Diagram} \]

24. The use according to claim 23, wherein in said compound, \(R^5 \) is pyridine, pyridazine, pyrimidine, pyrazine, pyrole, oxazole, thiazole, furan or thiophene, optionally substituted with 1, 2 or 3 \(R^6 \) groups.

25. The use according to claim 24, wherein in said compound, \(R^5 \) is pyridine, pyridazine, pyrimidine, pyrazine, pyrole, oxazole or thiazole, optionally substituted with 1, 2 or 3 \(R^6 \) groups.

26. The use according to claim 23, wherein in said compound, \(R^5 \) is alkyl.

27. The use according to any one of the preceding claims, wherein said compound is, namely:

- \(N\)-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]pyrimidine-5-carboxamide;
- \(N\)-(8-\{3-[(2R,6S)-2,6-dimethylmorpholin-4-yl]propoxy\}-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
- \(N\)-(8-\{3-[(2R,6S)-2,6-dimethylmorpholin-4-yl]propoxy\}-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)-2,4-dimethyl-1,3-thiazole-5-carboxamide;
- 2-amino-\(N\)-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-1,3-thiazole-5-carboxamide;
2-amino-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]isonicotinamide;
2-amino-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-4-methyl-1,3-thiazole-5-carboxamide;
2-amino-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-4-propylpyrimidine-5-carboxamide;
N-{8-[2-(4-ethylmorpholin-2-yl)ethoxy]-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl}nicotinamide;
N-{8-[2-(dimethylamino)ethoxy]-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl}pyrimidine-5-carboxamide;
N-(8-{3-[2-(hydroxymethyl)morpholin-4-yl]propoxy}-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)nicotinamide;
N-(δ^S^-^-ChydroxymethylJmorpholin^-ylJpropoxy)-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)nicotinamide;
N-{8-[3-(dimethylamino)propoxy]-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl}nicotinamide 1-oxide;
2-amino-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]pyrimidine-5-carboxamide;
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-6-(2-pyrrololidin-1-ylethyl)nicotinamide;
6-CyclopentylaminoJ-N^-^-methoxy-δ^S-morpholin^-ylJpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)nicotinamide;
N-[8-(2-hydroxy-3-morpholin-4-ylpropoxy)-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
N-[7-methoxy-8-[3-(3-methylmorpholin-4-yl)propoxy]-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
N-(8-[3-(2-(hydroxymethyl)morpholin-4-yl)propoxy]-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
N-(8-[2-(4-cyclobutylmethyl)morpholin-2-yl)ethoxy]-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)nicotinamide;
N-(7-methoxy-8-{[4-(2-methoxyethyl)morpholin-2-yl]ethoxy}-2,3-
dihydroimidazo[1,2-c]quinazolin-5-yl)nicotinamide;
N-[8-{[(4-ethylmorpholin-2-yl)methoxy]-7-methoxy-2,3-
dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
N-(7-methoxy-8-{[4-(2-methoxyethyl)morpholin-2-yl]methoxy}-2,3-
dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
N-[7-methoxy-8-{[(4-methylmorpholin-2-yl)methoxy]-7-methoxy-2,3-
dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
N-[7-methoxy-8-{(3-morpholin-4-yl)propoxy}-2,3-dihydroimidazo[1,2-
c]quinazolin-5-yl]pyrimidine-4-carboxamide;
2-amino-N-[7-methoxy-8-(3-morpholin-4-yl)propoxy]-2,3-
dihydroimidazo[1,2-c]quinazolin-5-yl]pyrimidine-4-carboxamide;
N-[7-methoxy-8-(3-morpholin-4-yl)propoxy]-2,3-dihydroimidazo[1,2-
c]quinazolin-5-yl]-1-methyl-1H-imidazole-4-carboxamide;
rel-N-(8-{3-[(2R,6S)-2,6-dimethylmorpholin-4-yl]propoxy}-7-methoxy-
2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]pyrimidine-5-carboxamide;
rel-N-(8-{3-[(2R,6S)-2,6-dimethylmorpholin-4-yl]propoxy}-7-methoxy-
2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-6-methylnicotinamide;
rel-6-acetamido-N-(8-{3-[(2R,6S)-2,6-dimethylmorpholin-4-yl]propoxy}-
7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
N-[7-methoxy-8-(3-morpholin-4-yl)propoxy]-2,3-dihydroimidazo[1,2-
c]quinazolin-5-yl]-1-methyl-1H-imidazole-5-carboxamide;
6-amino-N-[7-methoxy-8-(3-morpholin-4-yl)propoxy]-2,3-
dihydroimidazo[1,2-c]quinazolin-5-yl]-2-methylnicotinamide;
2-amino-N-[7-methoxy-8-(3-morpholin-4-yl)propoxy]-2,3-
dihydroimidazo[1,2-c]quinazolin-5-yl]-4-methylpyrinnidine-5-
carboxamide;
6-amino-5-bromo-N-[7-methoxy-8-(3-morpholin-4-yl)propoxy]-2,3-
dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
2-amino-N-[7-methoxy-8-(3-morpholin-4-yl)propoxy]-2,3-
dihydroimidazo[1,2-c]quinazolin-5-yl]-1,3-oxazole-5-carboxamide;
N-[7-methoxy-8-(morpholin-2-ylmethoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
2-[[2-(dimethylamino)ethyl]amino]-N-[8-[3-(dimethylamino)propoxy]-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]pyrimidine-5-carboxamide;
2-amino-N-{8-[3-(dimethylamino)propoxy]-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl}-1,3-thiazole-5-carboxamide;
rel-2-amino-N-{8-[(2R,6S)-2,6-dimethylmorpholin-4-yl]propoxy}-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]pyrimidine-5-carboxamide;
rel-6-amino-N-{8-[(2R,6S)-2,6-dimethylmorpholin-4-yl]propoxy}-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
2-[[2-hydroxyethyl]amino]-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]pyrimidine-5-carboxamide;
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-2-[[3-methoxypropyl]amino]pyrimidine-5-carboxamide;
2-amino-N-{8-[3-(dimethylamino)propoxy]-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]pyrimidine-5-carboxamide;
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-2-[[3-morpholin-4-ylpropyl]amino]pyrimidine-5-carboxamide;
2-[[2-methoxyethyl]amino]-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]pyrimidine-5-carboxamide;
2-[[2-(dimethylamino)ethyl]amino]-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]pyrimidine-5-carboxamide;
6-amino-N-{8-[3-(dimethylamino)propoxy]-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-2-pyrrolidin-1-ylpyrimidine-5-carboxamide;
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-2-(4-methylpiperazin-1-yl)pyrimidine-5-carboxamide;
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-2-morpholin-4-ylpyrimidine-5-carboxamide;
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-6-piperazin-1-ylnicotinamide hydrochloride;
6-[(3S)-3-aminopyrrolidin-1-yl]-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide hydrochloride hydrate;
6-[(3R)-3-aminopyrrolidin-1-yl]-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide hydrochloride;
6-[(4-fluorobenzyl)amino]-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
6-[(2-furylmethyl)amino]-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
6-[(2-methoxyethyl)amino]-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-6-(1H-pyrrol-1-yl)nicotinamide;
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-6-morpholin-4-ylnicotinamide;
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-6-(2,2,2-trifluoroethoxy)nicotinamide;
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-6-(trifluoromethyl)nicotinamide;
6-(isobutyrylamino)-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
N-[7-methoxy-8-[3-(4-methylpiperazin-1-yl)propoxy]-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-2-{{(methylamino)carbonyl}amino}-1,3-thiazole-4-carboxamide;
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazol[1,2-c]quinazolin-5-yl]-6-{[(methylamino)carbonyl]amino}nicotinamide;
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-2-(methylamino)-1,3-thiazole-4-carboxamide;
N-[7-methoxy-8-(2-morpholin-4-ylethoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
N-{8-[2-(dimethylamino)ethoxy]-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl}-2,4-dimethyl-1,3-thiazole-5-carboxamide;
N-[8-[2-(dimethylamino)ethoxy]-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-6-methylnicotinamide;
6-{{(isopropylamino)carbonyl}amino}-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-6-pyrrolidin-1-ylnicotinamide;
6-(dimethylamino)-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
N-[7-methoxy-8-(3-piperidin-1-ylethoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
N-[7-methoxy-8-(2-pyrrolidin-1-ylethoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
N-[7-methoxy-8-(2-piperidin-1-ylethoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
6-{{(ethylamino)carbonyl}amino}-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
6-fluoro-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-
dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
2-amino-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-
dihydroimidazo[1,2-c]quinazolin-5-yl]-1,3-oxazole-4-carboxamide;
2-(ethylamino)-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-
dihydroimidazo[1,2-c]quinazolin-5-yl]-1,3-thiazole-4-carboxamide;
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-
c]quinazolin-5-yl]pyrazine-2-carboxamide;
N-[8-(2-aminoethoxy)-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-
yl]nicotinamide;
6-amino-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-
dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-
c]quinazolin-5-yl]isocotinamide;
N-{8-[3-(diethylamino)propoxy]-7-methoxy-2,3-dihydroimidazo[1,2-
c]quinazolin-5-yl}nicotinamide;
N-{8-[2-(diisopropylamino)ethoxy]-7-methoxy-2,3-dihydroimidazo[1,2-
c]quinazolin-5-yl}nicotinamide;
N-{8-[2-(diethylamino)ethoxy]-7-methoxy-2,3-dihydroimidazo[1,2-
c]quinazolin-5-yl}nicotinamide;
N-{8-[3-(dimethylamino)propoxy]-7-methoxy-2,3-dihydroimidazo[1,2-
c]quinazolin-5-yl]nicotinamide;
N-{8-[3-(dimethylamino)ethoxy]-7-methoxy-2,3-dihydroimidazo[1,2-
c]quinazolin-5-yl]nicotinamide;
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimida-
zo[1,2-c]quinazolin-5-yl]-2-(methylamino)pyrimidine-5-carboxamide;
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-
c]quinazolin-5-yl]-2-(methylthio)pyrimidine-5-carboxamide;
N-[8-(3-aminopropoxy)-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-
5-yl]nicotinamide trifluoroacetate;
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-
c]quinazolin-5-yl]thiophene-2-carboxamide;
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-2,4-dimethyl-1,3-thiazole-5-carboxamide;
2-methoxy-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]pyrimidine-5-carboxamide;
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-3-furamide;
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]thiophene-3-carboxamide;
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-2-methyl-1,3-thiazole-4-carboxamide;
6-methoxy-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
5-methoxy-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-6-methylnicotinamide;
6-(acetylamino)-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
N-\[^S\]-methoxy-\[^S\]-morpholin-\[^S\]-ylpropoxy]-\[^S\]-dihydroimidazotriazine;
6-(acetylamino)-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
N-\[^S\]-methoxy-\[^S\]-morpholin-\[^S\]-ylpropoxy]-\[^S\]-dihydroimidazotriazine;

28. The use according to any one of the claims 1 to 26, wherein said compound is, namely:
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-6-methylnicotinamide;
5-methoxy-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-2,4-dimethyl-1,3-thiazole-5-carboxamide;
N-[8-[2-(dimethylamino)ethoxy]-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
N-[8-[3-(dimethylamino)propoxy]-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
6-[[isopropylamino)carbonyl]amino]-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
N-[8-[2-(dimethylamino)ethoxy]-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]-2,4-dimethyl-1,3-thiazole-5-carboxamide;
N-[7-methoxy-8-(2-morpholin-4-ylethoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
rel-6-amino-N-(8-{3-[(2R,6S)-2,6-dimethylmorpholin-4-yl]propoxy}-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]nicotinamide;
rel-2-amino-N-(8-{3-[(2R,6S)-2,6-dimethylmorpholin-4-yl]propoxy}-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]pyrimidine-5-carboxamide;
2-amino-N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]pyrimidine-5-carboxamide;
N-[8-[2-(dimethylamino)ethoxy]-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]pyrimidine-5-carboxamide;
N-[7-methoxy-8-(3-morpholin-4-ylpropoxy)-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl]pyrimidine-5-carboxamide;
or a physiologically acceptable salt, solvate, hydrate or stereoisomer thereof.
INTERNATIONAL SEARCH REPORT

INTERNATIONAL CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>Category</th>
<th>A61K31/519</th>
<th>A61P35/00</th>
</tr>
</thead>
</table>

According to international Patent Classification (IPC) or to both national classification and IPC

FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

<table>
<thead>
<tr>
<th>A61K</th>
</tr>
</thead>
</table>

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate of the relevant passages</th>
<th>Relevant to claim</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of Box C

<table>
<thead>
<tr>
<th>Special categories of cited documents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document defining the general state of the art which is not considered to be of particular relevance</td>
</tr>
<tr>
<td>Earlier document but published on or after the international filing date</td>
</tr>
<tr>
<td>Document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)</td>
</tr>
<tr>
<td>Document referring to an oral disclosure use, exhibition or other means</td>
</tr>
</tbody>
</table>

| Document published prior to the international filing date but later than the priority date claimed |
| Document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention |
| Document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone |
| Document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art |
| Document member of the same patent family |

Date of the actual completion of the international search

22 December 2009

Date of mailing of the international search report

12/01/2010

Name and mailing address of the ISA - European Patent Office, P B 5818 Patentlaan 2 NL-2280 HV RIJWIJK Tel (+31-70) 340-2040, Fax (+31-70) 340-3016

Authorized officer

Kerkmann, Miren

Form PCT/ISA/01/10 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>
INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2009/006586

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>UO 2008070150 A</td>
<td>12-06-2008</td>
<td>AR 0641 06</td>
<td>11-03-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2007328008</td>
<td>12-06-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2671614</td>
<td>12-06-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CL 35082007</td>
<td>04-07-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CR 10838</td>
<td>05-11-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EC SP099387</td>
<td>30-11-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2096919</td>
<td>09-09-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PA 8759601</td>
<td>09-02-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UY 30761</td>
<td>03-07-2008</td>
</tr>
<tr>
<td></td>
<td>WO 2004029055 A</td>
<td>08-04-2004</td>
<td>AT 411996 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2003293310</td>
<td>19-04-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 0314830</td>
<td>16-08-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 24991 34</td>
<td>08-04-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1688582</td>
<td>26-10-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 1549652 T3</td>
<td>23-02-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EC SP055768</td>
<td>11-08-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1549652</td>
<td>06-07-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2042504</td>
<td>01-04-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2312843 T3</td>
<td>01-03-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 1084393</td>
<td>27-03-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HR 20050375 A2</td>
<td>31-05-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2006508063 T</td>
<td>09-03-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 200905067404 A</td>
<td>01-07-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MA 27483</td>
<td>01-08-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX PA0500 1808 A</td>
<td>16-08-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 539062 A</td>
<td>31-05-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 1549652 E</td>
<td>15-12-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2326881 C2</td>
<td>20-06-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SI 1549652 T1</td>
<td>30-04-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UA 82205 C2</td>
<td>25-03-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 200970388 A</td>
<td>29-10-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2006128732 A</td>
<td>15-06-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UY 28001</td>
<td>30-04-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 200503306 A</td>
<td>26-07-2006</td>
</tr>
</tbody>
</table>

WO 2009091550 A2 23-07-2009 NONE