ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ

Заявка: 99109458/04, 14.10.1997
Приоритет: 16.10.1996 US 08/731,495
Дата публикации: 27.06.2002
Дата перевода заявки PCT на национальную фазу: 17.05.1999
Адрес для переписки: 193036, Санкт-Петербург, а/я 24, НЕВИНПАТ, А.В. Попикарову

ДВОЙНЫЕ МЕТАЛЛОЦИАНИДНЫЕ КАТАЛИЗАТОРЫ, СОДЕРЖАЩИЕ ФУНКЦИОНАЛИЗИРОВАННЫЕ ПОЛИМЕРЫ

Изобретение относится к двойным металлоцианидным катализаторам, пригодным для полимеризации эпоксидсоединений. Катализатор по данным рентгеновской дифрактометрии не является кристаллическим. Он содержит: а) двойное металлоцианидное соединение, б) органический комплексосообразующий агент и в) от 2 до 80 мас.% функционализированного полимера или его водорастворимой соли. Катализаторы по изобретению легко получать и выделять, они, по сути, являются накристаллическими и имеют высокую активность относительно полимеризации эпоксидсоединений. Порошок, полученный с использованием катализатора по изобретению, имеют низкую степень ненасыщенности, низкую вязкость и пониженное содержание хвостовой фракции высокой молекулярной массы. 3 з.п. ф-лы, 1 табл., 3 ил.

Фиг. 1
RUSSIAN AGENCY
FOR PATENTS AND TRADEMARKS

ABSTRACT OF INVENTION

(21), (22) Application: 99109458/04, 14.10.1997
(46) Date of publication: 27.06.2002
(87) PCT publication: WO 98/16310 (23.04.1998)
(85) Commencement of national phase: 17.05.1999
(98) Mail address: 193036, Sankt-Peterburg, a/fja 24, NEVINPAT, A.V.Polikarpovu

(54) DOUBLE METAL CYANIDE CATALYSTS CONTAINING FUNCTIONALYZED POLYMERS

(57) Abstract:
FIELD: polymerization catalysts.
SUBSTANCE: double metal cyanide catalysts suitable for epoxide polymerization is not crystalline from data X-ray powder diffractometry. Catalyst contains double metal cyanide compound, organic complexing agent, and 2-80% of a functionalized polymer or its water-soluble salt. Polyols prepared in presence of this catalyst have low degree of unsaturation, low viscosity, and lowered level high-molecular tail fraction. EFFECT: simplified preparation procedure. 4 cl, 3 dwg, 1 tbl, 13 ex

RU 2183989 C2
Область техники, к которой относится изобретение

Изобретение относится к двойным меттаполициклическим (DMC) катализаторам, пригодным для полимеризации эпоксидсоединений. В частности, настоящее изобретение относится к DMC катализаторам, которые имеют высокую активность, не являются, по сути, кристаллическими и содержат функционализированный полимер.

Упомянутые катализаторы особенно пригодны для получения полиэфирполиолов низкой степени ненасыщенности, используемых при производстве полиуретанов.

Предпосылки создания изобретения

Двойные метаполициклические комплексы являются источником активных катализаторов полимеризации эпоксидсоединений. Упомянутые активные катализаторы позволяют получать полиэфирполиолы, имеющие низкую степень ненасыщенности по сравнению с подобными полиолами, полученными с помощью основного (КН) катализатора. Упомянутые катализаторы могут быть использованы для получения множества полимерных продуктов, в том числе простых полиолей, сложных полиэфиров и простых и сложных полиэфирполиолов. Упомянутые полиолы могут использоваться для получения полиуретановых покрытых материалов, пластмасс, герметиков, пенолипластов и клеящих веществ.

DMC катализаторы получают, обычно, посредством реакции водных растворов солей металлов и цианидов металлов с образованием осадка DMC соединения. В процессе получения упомянутых катализаторов включают органический комплексобразующий агент - низкой молекулярной массы, как правило, простой эфир либо спирт. Получение типичных DMC катализаторов описывается, например, в патентах США 3427526, 3829505 и 5158522.

В течение нескольких десятков лет для получения полиэфирполиолов, использующих DMC катализаторы, имеющие высокую степень кристалличности, наиболее распространённый катализатор включает органический комплексобразующий агент, как правило, глиям, воду, соль металла с некоторым добавом (как правило, хлорид цинка) и DMC соединения. Активность полимеризации эпоксидсоединений, превосходящая активность, обеспечивающую коммерческий стандардный (КOH) катализатор, считалась достаточной. Позднее стали понимать, что для успешной коммерциализации полиолей, полученных с помощью DMC катализаторов, ценность полиолей могла бы представлять более активные катализаторы.

Автором настоящего изобретения недавно были описаны, по существу, аморфные DMC катализаторы, обладающие исключительно высокой активностью в отношении полимеризации эпоксидсоединений (см. патент США 5470813). Упомянутым автором были также описаны обладающие высокой активностью DMC катализаторы, состав которых: наряду с органическим комплексобразующим агентом низкой молекулярной массы, входит, приблизительно, от 5 до приблизительно, 80% (масс.) простого полиэфира, например, полиэфирполиола (см. патент США 5482906 и 5545601). По сравнению с ранее используемыми DMC катализаторами упомянутые DMC катализаторы, описанные в патентах США 5470813, 5482906 и 5545601, обладают высокой активностью и обеспечивают получение полиэфирполиолов с низкой степенью ненасыщенности. Упомянутые катализаторы имеют достаточную высокую активность, что обеспечивает возможность их использования в очень низких концентрациях, которые часто являются достаточно низкими для того, чтобы избежать серьезного уменьшения упомянутого катализатора из полиолей.

В настоящее время DMC катализаторы, имеющие в общем, относительно низкую степень кристалличности, предшествующие гомогенизации реагирующих веществ с целью эффективного включения органического комплексобразующего агента в структуру катализатора либо включения простого полиэфира (обычно, полиэфирполиола) в состав катализатора, является получение DMC катализаторов, обладающих высоким уровнем активности. Данные порошкового рентгеноструктурного анализа свидетельствуют о том, что катализаторы упомянутого типа, по существу, лишены кристалличности (см. Фигуру 1).

Даже наилучшие из известных DMC катализаторов могли бы быть улучшены. Например, катализатор по патенту США 5470813 скончен к образованию полиолей с высоким содержанием хлоровосстановленных полиолей фракций высокой молекулярной массы для гелеобразования в случае получения полиолей в "горючих" условиях (например, при ускоренном добавлении эпоксидсоединений, очень низкой концентрации катализатора). Образование геля влечет за собой загрязнение реакторов. Полиолевая хлорированная фракция высокой молекулярной массы может также способствовать получению полиолей с неприемлемо высокой вязкостью и затруднить обработку пенолипластов.

Процесс получения катализаторов может быть усовершенствован. Большинство DMC катализаторов, известных в данной области техники, представляют собой малодисперсные частицы, забивающие фильтры, поэтому для выделения катализатора приходится прибегать к центрифугированию (см., например, патент США 5470813). В предпочтительном варианте упомянутый катализатор можно было бы легко промыть и выделить посредством простого фильтрования. Наряду с этим большинство DMC катализаторов перед использованием высыхают до твердой пелюшки и упомянутую пелюшку приходится измельчать с приложением значительных усилий для получения легкоусыпчивого порошка (см., например, заявку на патент Японии 3-245848). Необходимость превращения DMC катализаторов в порошок требует значительного времени и усилий.

В целом, необходимы новые DMC катализаторы. В предпочтительном варианте упомянутые катализаторы должны быть, по существу, некристаллическими и высокоактивными. В предпочтительном
варианте упомянутые катализаторы должны легко выделяться в процессе получения посредством простого фильтрования и сушиться до состояния лепешек, легко превращающейся в порошок. Идеальный катализатор должен был бы обеспечивать возможность получения полиэфирполиоллов с низкой степенью ненасыщенности, уменьшать количество полиэфирной хвостовой фракции высокой молекулярной массы и уменьшать количество проблем, связанных с образованием геля и загрязнением реактора. Идеальный катализатор должен быть достаточно активным для использования в очень низких концентрациях, в предпочтительном варианте в концентрациях составно ниже их для ликвидации какой бы то ни было необходимости в удалении упомянутого катализатора из полиолла.

Краткое изложение сущности изобретения

Настоящее изобретение представляет собой двойной металлоацидинный (DMC) катализатор, пригодный для полимеризации эпоксидсодержащих. В состав упомянутого катализатора входит DMC соединение, органический комплексобразующий агент и, приблизительно, от 2 до, приблизительно, 80% (мас.) функционализированного полимера либо водорастворимой соли, полученной из упомянутого полимера. Настоящее изобретение, кроме того, включает способ получения упомянутых катализаторов и способ получения полиполиэфирных соединений с помощью упомянутых катализаторов.

Автор настоящего изобретения с удовлетворением обнаружил, что DMC катализаторы, в состав которых входит функционализированный полимер, соответствующий определению, представленному далее, являются, по сути, некристаллическими и, кроме того, обладают высокой активностью в отношении полимеризации эпоксидсодержащих.

Упомянутая активность сопоставима с активностью упомянутых DMC катализаторов, содержащих простые полиэфиры (см. патенты США 5432908 и 5545501) и, в целом, превосходит активность сопоставимых катализаторов, полученных при отсутствии упомянутого функционализированного полимера.

Катализаторы, соответствующие настоящему изобретению, легко выделяются в процессе приготовления посредством простого фильтрования, и, таким образом, исключают необходимость центрифугирования. Наряду с этим высушенные катализаторы, соответствующие настоящему изобретению, легко превращаются в легкосыпучие порошки без необходимости их измельчения либо размалывания с приложением значительных усилий.

Полимеризация эпоксидсодержащих с помощью катализаторов, соответствующих настоящему изобретению, обеспечивает получение полиоллов, имеющих очень низкую степень ненасыщенности. Наряду с этим полиоллы, полученные из катализаторов, соответствующих настоящему изобретению, включают небольшие объемы полиэфирной хвостовой фракции высокой молекулярной массы и сокращают количество проблем, связанных с образованием геля и загрязнением реактора, даже в том случае, когда упомянутый полиол получают в "стрессовых" условиях.

Вполне очевидно, что ключевым моментом получения DMC катализаторов, отличающихся высокой активностью, является упоминание образования высококачественных форм упомянутых катализаторов. Следовательно, включая в состав упомянутого катализатора функционализированного полимера является, по сути, некристаллического катализатора, который легко получается и выделяется, который отличается высокой активностью и обеспечивает получение полиэфирполиоллов высокого качества.

Краткое описание фигур

На рисунках представлены рентгеновские порошковые дифрактограммы катализатора, соответствующего настоящему изобретению (из Примера 4), DMC катализатора, содержащего простой полиэфир, полученного по патенту США 5432908 (см. Сравнительный Пример 9) и, по сути, аморфного катализатора, полученного при отсутствии добавки функционализированного полимера, как описано в патенте США 5470813 (см. Сравнительные Примеры 10 и 11). На рисунках представлены традиционный гексацианокобалат-гликольный катализатор. На рисунках показан гексацианокобалат цинка, полученный без комплексобразующего агента.

Подробное описание изобретения

Катализаторы, соответствующие настоящему изобретению, включают двойные металлоацидинные (DMC) соединения, органический комплексобразующий агент и, приблизительно, от 2 до, приблизительно, 80% (мас.) функционализированного полимера либо водорастворимой соли упомянутого полимера.

Двойные металлоацидинные соединения, используемые в настоящем изобретении, представляют собой продукты реакции водорастворимой соли металла и водорастворимого дицианидода металла. Водорастворимая соль металла, в предпочтительном варианте, имеет общую формулу M(X)n, где M выбирают из группы, состоящей в состав которой входят Zn(II), Fe(II), Ni(II), Mn(II), Co(II), Sn(II), Pb(II), Fe(III), Mo(IV), Mo(VI), Al(III), V(IV), S(II), W(VI), Cu(I) и Cr(III). В более предпочтительном варианте M выбирают из группы, состоящей в состав которой входят Zn(II), Fe(II), Co(II) и Ni(II). В еще более предпочтительном случае Х, в предпочтительном варианте, представляет собой анион, выбираемые из группы, в состав которой входят галогенид, гидроксид, сульфат, карбонат, цианид и соли ионов, ионов карбоната и ионов, и имеет значение от 1 до 3. Что удовлетворяет валентному состоянию M. К примеру, подходящих солей металлов относятся, однако, ими не ограничиваются, цинка хлорид, цинка бромид, цинка ацетат, цинка ацетонитрилат, цинка бензоат, цинка нитрат, железа (II) сульфат, железа (II) бромид, кобальта (II) хлорид, кобальта (II) сульфат, ацетонитрил, нитрата (II) формат, нитрата (II) нитрат и т.д., а также их смеси.
Водорастороримые цианиды металлов, используемые для получения двойных металлоцианидных соединений, используемых в настояще изобретении, в предпочтительном варианте, имеют общую формулу \(\text{Y}_m\text{M}(\text{CN})_n\text{A}_x \), где \(m \) выбирают из группы, в состав которой входят Fe(II), Fe(III), Co(II), Co(III), Cr(II), Cr(III), Mn(II), Mn(III), Ir(II), Ir(III), Rh(II), Rh(III), Ru(II), Ru(III), V(IV) и V(V). В толще предпочтительном варианте \(M \) выбирают из группы, в состав которой входят Co(II), Fe(II), Fe(III), Cr(III), Ir(III) и Ni(II). В состав одного из высокомолекулярных водорастороримых цианидов металла может входить один или более из упомянутых металлов. В упомянутой формуле \(Y - \text{ион щелочноzemельного металла либо ион цеолитообразующего металла; } A - \text{ион выбираемый из группы, в состав которой входит галогенид, гидроксид, сульфат, карбонат, цианид, оксалат, глюконат, изоцианат, изотиоцианат, карбоксилат и нитрат. Как } a, \text{tак и } b \text{представляет собой целое число, превышающее либо равное 1, сумма } a+b+b+3 \text{ равна а и } b+b+3 \text{ равна b и уравновешивает заряд } M. \text{К подходящим водорастороримым цианидам металла относятся, однако, ими не ограничиваются, калия гексацианокобалат \((\text{III}) \), калия гексацианосеррафрат \((\text{II}) \), калия гексацианосеррафрат \((\text{II}) \), калия кобалат \((\text{II}) \) гексацианокобалат \((\text{III}) \), } \text{и t.p. К числу примеров двойных металлоцианидных соединений, которые могут быть использованы в настояще изобретении, относятся, например, циано гексацианокобалат \((\text{III}) \), циано гексацианосеррафрат \((\text{III}) \), циано гексацианосеррафрат \((\text{II}) \), нишлакa \((\text{II}) \), гексацианосеррафрат \((\text{II}) \), кобалат \((\text{II}) \) гексацианокобалат \((\text{III}) \), и t.p. Дополнительные примеры подходящих двойных металлоцианидных соединений перечислены в патенте США 5158922, описание которого включено в настоящее описание в качестве ссылки. В состав DMC катализаторов, соответствующих настоящему изобретению, входит органический комплексобразующий агент. Комплексобразующий агент в целом, должен быть относительно растворимым в воде. К числу подходящих комплексобразующих агентов относятся комплексобразующие агенты, обозначенные в данной области техники, например, численные в патенте США 5158922. Упомянутый комплексобразующий агент добавляют либо в процессе получения, либо непосредственно после осаждения упомянутого катализатора. Как правило, используют избыточное количество комплексобразующего агента. Предпочтительными комплексобразующими агентами являются водорастороримые органические соединения, включающие гетероатом, которые могут образовывать комплекс с двойным металлоцианидным соединением. К числу подходящих комплексобразующих агентов относятся, однако, ими не ограничиваются, спирты, ацетилидны, нитрилы, простые эфиры, сложные эфиры, амины, амины, нитрилы, сульфиды и их смеси. К числу предпочтительных комплексобразующих агентов относятся водорастороримые алкифакические спирты, которые выбирают из группы, в состав которой входит этанол, изопропиловый спирт, n-бутиловый спирт, изобутиловый спирт, второ-бутиловый спирт и трет-бутиловый спирт. Особое предпочтение отдается трет-бутиловому спирту. Ключевым компонентом упомянутых DMC катализаторов, соответствующих настоящему изобретению, является функционализированный полимер либо его водорастороримая соль. Под "функционализированным полимером" подразумевается полимер, за исключением простого полиэтифира, в состав которого входит одна либо несколько функциональных групп, включающих кислотоп, ацетат, оксазол, фосфор либо галоген, причем упомянутый полимер либо его водорастороримая соль имеют относительно высокую растворимость в воде, т.е., как минимум около 3% (мас.) упомянутого полимера, либо его соли растворяются при комнатной температуре в воде либо смеси воды с органическим растворителем, смещающимися с водой. Примерами органических растворителей, смешивающихся с водой, являются тетрагидрофуран, ацетон, ацетонитрил.

где \(R' - \text{водород; } \text{COOH либо C}_1\text{C}_5 \text{алькильная группа, } A - \text{одна либо несколько функциональных групп, выбранная из группы, включающей } -\text{OH, } -\text{NH}_2, -\text{NR}, -\text{SO}_2, -\text{SR}, -\text{CO}, -\text{CN, -Cl}, -\text{Br, -C}_1\text{NH}, -\text{C}_1\text{H}_2\text{OH, -C}_1\text{H}_4\text{C}(\text{CH}_3)_2\text{OH, -CONH}_2, -\text{CONH}, -\text{CO}, -\text{NR}, -\text{OR}, -\text{NO}_2, -\text{NHCOR, -NRCOR, -COOH, -COOR, -CHO, -OCOR, -COO-R, } -\text{SO}_2\text{H, -CONH-R-SO}_2\text{H, - пиридин и пиридинол, где } R' - \text{C}_1\text{C}_5 \text{алкил либо аликинезная группа, п имеет значение в пределах, приблизительно, от 5 до, приблизительно, 5000. В более предпочтительном варианте имеет значение в пределах, приблизительно, от 10 до, приблизительно, 500. Факультативно, упомянутый полимер включает также повторяющиеся структурные единицы, полученные из нефункционализированного винилового электролита, например, сложенных либо дикарбоновым, например, этилентриоксиэтил, бутилен, тетрагидрофуран, изопропил, оксазол и т.п. при условии, что упомянутый полимер либо его соль имеют относительно хорошую растворимость в воде либо смесях воды и органического растворителя, смешивающихся с водой. К числу подходящих функционализированных полимеров относятся, например, поли(этиленмалонионат), сополимер полипирролидона и акриловой кислоты, поли(этиленмалонат).
поли(2-акриламил-2-метил-1-пропансульфоновая кислота), сополимер полиакриламида и малавиновой кислоты, поли(акрилонитрил), поли(акрилакрилат)),
поли(винилиметиловый эфир),
поли(винилиакетат), поли(виниловый спирт),
поли(N-винилпирролидона), сополимер поли(N-винилпирролидона) и акриловой кислоты,
поли(N,N-диметилакриламида),
поли(винилиметанол), поли(4-винилфенол),
поли(4-винилпирролидон), поли(винилпирролидон),
сополимер полиакриловой кислоты и стирола,
поли(винилсульфоат), натриевая соль поли(винилсульфата) и т.п.
В группу предпочтительных катализаторов, соответствующих настоящему изобретению, упомянутый функционализированный полимер выбирают из группы, включающей сложные полиэфирзы, поликарбонаты, полимеры оксазолина, полипропиленгликоли, сополимеры малавиновой кислоты и малавинового ангирида, гидроксиазетилполиэфиры, крахмалы и полицетилен. Таким образом, упомянутый функционализированный полимер может быть, например, поли(этиленгликолдейдипат), поли(диэтиленгликолмалеат),
поли(1,6-гександиоксабензат),
поли(2-этил-2-оксазолил), сополимер полиацетилена, винилового спирта и винилицетата и т.п., а также их сополимеры.
В состав катализаторов, соответствующих данному изобретению, входят приблизительно, от 2% (мас.) до 10% (мас.), в процентном соотношении на массу катализатора, функционализированные полимеры. В патенте предлагается вариант в составе, по упомянутого катализатора, приблизительно, от 5 до 80% (мас.) упомянутого полимера, наиболее предпочтительным является диапазон, приблизительно, от 10% (мас.) до 60% (мас.).
Для обеспечения адекватной активности катализатора, необходимого для проведения реакции, не менее 2% (масс. упомянутого полимера, по сравнению с катализатором, полученным при отсутствии упомянутого полимера.
Катализаторы, в состав которых входит приблизительно, более 80% (мас.) упомянутого полимера, представляют собой, в целом, более активными, и их выделение часто оказывается затруднительным.
Молекулярная масса функционализированного полимера может изменяться в весьма широком диапазоне. В предпочтительном варианте среднечисленная молекулярная масса находится в пределах, приблизительно, от 300 до 500000. Более предпочтительный диапазон составляет, приблизительно, от 500 до 500000.
Автор настоящего изобретения с удовлетворением обнаружил, что DMC катализатора, в состав которых входят функционализированные полимеры, описанные ранее, являются, по существу, нестехиометрическими и, кроме того, обладают высокой активностью в отношении полимеризации эпоксидов. С заменной "по существу, нестехиометрическими" подразумевается катализаторы, не имеющие четко определенной структуры, либо характеризующиеся отсутствием резких линий на рентгеновской порошковой дифрактограмме упомянутого состава.
Рентгеновская порошковая дифрактограмма, традиционных катализаторов, включающих гексацианоборат цинка и глии (например, катализаторов, опишиных в патенте США 5159922), содержит много резких линий, что указывает на высокую степень кристалличности упомянутых катализаторов (см. Фигуру 2). Гексацианоборат цинка, полученный при отсутствии комплексобразующего агента, также отличается высокой степенью кристалличностью (см. Фигуру 3). В противоположность этому, катализаторы, соответствующие настоящему изобретению, подобно катализаторам, описанным в патентах США 5470813 и 5482908, являются, по существу, не кристаллическими (см. Фигуру 4).
Активность катализаторов, соответствующих данному изобретению, сравнивается с активностью, сообщающейся для DMC катализаторов, в состав которых входят простые полиэфиры (см. патенты США 5482908 и 5545601) и, в целом, превышает активность сополимеров катализаторов, полученных при отсутствии функционализированного полимера. Как показано в Таблице (далее), активность катализаторов, соответствующих данному изобретению, превышает, приблизительно, 15 г РО (пропиленоксида)/мин при 20-25 ppm (части на миллион) катализатора и 105 °C, по сравнению с активностью, составляющей 10 г РО/мин при 20 ppm катализатора, полученного при отсутствии упомянутого функционализированного полимера.
Подобно катализаторам патентов США 5470813 и 5482908, катализаторы, соответствующие данному изобретению, не являются, по существу, кристаллическими либо аморфными. Фактически, упомянутые рентгеновские порошковые дифрактограммы катализаторов, соответствующих данному изобретению, удовлетворительно соответствуют дифрактogrammам, описанным автором настоящего изобретения в ранее опубликованных патентах. Описание к патентам США 5470813 и 5482908, относящихся к определению свойств катализатора с помощью рентгеновской порошковой дифрактометрии, включены в настоящее описание в качестве сведений.
Для катализаторов, соответствующих данному изобретению, характерно почти полное отсутствие резких линий и сравнительно небольшое количество сигналов. На Фигуре 1 представлены рентгеновские порошковые дифрактограммы катализатора, соответствующего данному изобретению (в состав которого в качестве функционализированного полимера, входит поли(винилиметиловый эфир), см. Пример 4), DMC катализатора, содержащего простой полиэфир, описанный в патенте США 5482908 (см. Сравнительный Пример 9) и, по сути, аморфного катализатора, не содержащего примерной структуры, как описано в патенте США 5470813 (см. Сравнительные Примеры 10 и 11). Как показано на фигурах, следы удивительно
подробны, несмотря на присутствие либо отсутствие полимерной добавки и несмотря на глубокие различия вида полимерной добавки (простой полисульфур либо функционализированный полимер). Точное положение пиков в некоторой степени зависит от количества функционализированного полимера, природы уплотненного полимера и происходящего химического комплексообразующего агента. В целом степень кристалличности понижается при увеличении содержания функционализированного полимера.

Предпочтительные катализаторы, соответствующие настоящему изобретению, демонстрируют единственный относительно острый пик на рентгеновской дифрактограмме для межплоскостного расстояния, составляющий, приблизительно, от 3,7 ангстре́м до, приблизительно, 3,8 ангстре́м, что соответствует углу, приблизительно, от 23 градусов до тета, 23 градусов до тета. При этом пики размер кристаллиты составляет, приблизительно, 280 ангстре́м, что соответствует значению полуполосмальной общей ширины (FWHM), составляющему, приблизительно, 0,3. Основная часть предпочтительных катализаторов, судя по рентгеновской дифрактограмме, является, по сути, некристаллической, основное место на упомянутой дифрактограмме занимают два дополнительных основных более широких пика, центрированных вокруг межплоскостных расстояний, составляющих, приблизительно, от 4,7 до 4,9 ангстре́м (около 18-19 градусов до тета) и, приблизительно, от 5,6 до 6,2 ангстре́м (около 13-15 градусов до тета). Присутствуют обычно дополнительные, гораздо более мягкие некристаллические пики. На Фигуру 1 показан предпочтительный катализатор, соответствующий настоящему изобретению (функционализированный полимер=поли(винилметиловый эфир), см. Пример 4), который имеет пики рентгеновской порошковой дифрактограммы при межплоскостном расстоянии (ангстре́м): 3,75, 4,8и 6,06.

Катализаторы, соответствующие настоящему изобретению, легко выделяются в процессе получения посредством простого фильтрования, что исключает необходимость центрифугирования. Как показано в приведенных далее примерах, при промывке и выделении уплотненного катализатора может использоваться простое фильтрование под давлением. Как показано в Сравнительных Примерах 10 и 11, выделение катализатора при отсутствии функционализированного полимера требует применения более сложной процедуры центрифугирования.

Сухие катализаторы, соответствующие настоящему изобретению, легко измельчаются до состояния лепестковых порошков без необходимости их дробления либо размалывания с применением значительных усилий. Это контрастирует с процессом получения большинства DMC катализаторов, которые обычно высыхают до получения лепешек с последующим измельчением до получения порошка. Как показано в Сравнительных Примерах 10 и 11 и заявке на патент Японии 3-245848, для превращения высушенной фильтр-прессовой лепешки DMC катализаторов в порошок необходим, как правило, тяжелый этап измельчения. Катализаторы, соответствующие настоящему изобретению, легко измельчаются до состояния лепестковых порошков.

Посредством полимеризации эпоксидных катализаторов, соответствующими настоящему изобретению, получают полиолы имеющие очень низкую степень ненасыщенности. Как показано в Таблице 1, типичные уровни ненасыщенности в случае поли(оксипропилен)-диола (молекулярная масса 8000), полученного в "стессовых" условиях при 130°С, составляют от 0,004 до 0,007 молк. Полиолы, полученные из катализаторов, соответствующих настоящему изобретению, содержат пониженные уровни полиполевой хвостовой фракции высокой молекулярной массы и вызывают меньше проблем, связанных с образованием геля и загрязнением реактора, даже в том случае, когда уплотненный полиол получают в "стессовых" условиях, например, при низкой концентрации катализатора и при ускоренным добавлении эпоксидной. Как показано в Таблице 1, катализатор, полученный без добавления функционализированного полимера, в случае использования в "стессовых" условиях (20 rpm катализатора и 2-часовое добавление пропиленоксид) (см. Сравнительный Пример 11), обеспечивает получение полиола с непреломляемо высокой вязкостью (17000 сантимпульс), сравнительно высоким содержанием полиполевой хвостовой фракции высокой молекулярной массы (9260 ppm полиола, имеющего максимальную молекулярную массу, превышающую 100000) и значительным загрязнением реактора вследствие образования геля. Катализаторы, соответствующие настоящему изобретению, позволяют преодолеть упомянутые проблемы посредством получения полиолов, имеющих низкую вязкость, низкое содержание хвостовой фракции высокой молекулярной массы и не загрязненных реактор даже в "стессовых" условиях.

Вполне очевидно, что ключевым моментом получения DMC катализаторов, отличающихся высокой активностью, является утепление образования высококристаллических форм уплотненных катализаторов. Несмотря на то, что в течение десятков лет для получения полиполезидных соединений применяли DMC катализаторы, имеющие относительную высокую степень кристалличности, DMC катализаторы, имеющие относительно высокую степень кристалличности, сейчас стало ясно, что более желательны DMC катализаторы, имеющие относительно низкую степень кристалличности. Настоящее изобретение предоставляет общую методику получения, по существу, некристаллических катализаторов. Включение в состав катализатора функционализированного полимера обеспечивает получение, по существу, некристаллического катализатора, который легко получить и выделять, который отличается высокой активностью и обеспечивает получение полиолпорошин высокого качества.

Настоящее изобретение включает способ получения уплотненных катализаторов.
Упомянутый способ включает реагирование водных растворов соли металла и цианата металла в присутствии органического комплексообразующего агента и функционализированного полимера. В типичном случае водные растворы соли металла (например, хлорида цинка) и цианата металла (например, гексацианобутират кальция) реагируют в присутствии органического комплексообразующего агента (например, трет-бутилового спирта) и функционализированного полимера с эффективным перемешиванием для получения суспензии катализатора. Соль металла используется с избытком. Упомянутая суспензия катализатора включает продукт реакции соли металла и цианата металла, который представляет собой двойное металлоцианидное соединение. Присутствует также избыток соли металла, вода, органический комплексообразующий агент и функционализированный полимер; часть каждого из них включена в структуру катализатора. Упомянутые реагирующие вещества объединяются при любой необходимой температуре. Упомянутый катализатор, в предпочтительном варианте, получают при температуре в пределах, приблизительно, от комнатной, до, приблизительно, 80 °C; более предпочтительный диапазон составляет, приблизительно, от 35°C до, приблизительно, 60°C.

Упомянутый органический комплексообразующий агент и функционализированный полимер могут включаться в любой либо оба водных растворы соли или же добавляться в суспензию катализатора непосредственно после осаждения DMC соединения. Предпочтение, как правило, отдается предварительному смешиванию комплексообразующего агента с любым из или с обеими водными растворами перед объединением реагирующих веществ. Если вместо этого упомянутый комплексообразующий агент добавляется к упомянутому осадку катализатора, в этом случае реакционная смесь следует активно перемешивать с помощью гомогенизатора или вибратора с большим одновременным увеличением наиболее активной формы упомянутого катализатора. Предпочтение, как правило, отдается добавлению упомянутого функционализированного полимера после осаждения DMC соединения. После этого катализатор, как правило, выделяют из суспензии катализатора любым приемлемым способом, например, фильтрацией, центрифугированием, декантацией и т.п.

Выделенный твердый катализатор, содержащий полимер, в предпочтительном варианте промывают водным раствором, содержащим дополнительное количество органического комплексообразующего агента и/или дополнительное количество функционализированного полимера. После завершения промывки упомянутого катализатора его, в предпочтительном варианте, как правило, сушили под вакуумом до тех пор, пока упомянутый катализатор не достигает постоянной массы. Подходящие способы промывки и выделения упомянутого катализатора описаны в патенте США 5482908, описание к которому в качестве ссылки включено в настоящее описание.

Настоящее изобретение включает способ получения полиэпоксидного соединения. Этот способ включает полимеризацию эпоксидсоединения в присутствии двойного металлоцианидного соединения, соответствующего настоящему изобретению. К числу предпочтительных эпоксидсоединений относятся этиленоксид, пропиленоксид, оксиды бутана, оксид стирола и т.п., а также их смеси. Упомянутый способ может быть использован для получения статистических либо блок-полимеров. Полиэпоксидные соединения могут быть: например, полиэфирполиол, полученный посредством полимеризации эпоксидсоединения в присутствии инициатора, содержащего гидроксильную группу.

В упомянутый способ, соответствующий настоящему изобретению, для получения полиэпоксидных соединений других типов, могут включаться другие моноомеры, которые могут быть сополимеризованы с эпоксидсоединением в присутствии DMC соединения. Любой сополимер, известные в данной области техники, полученные с использованием традиционных DMC катализаторов, могут быть получены с упомянутыми катализаторами, соответствующими настоящему изобретению. Например, эпоксидсоединения сополимеризуются с оксатенами (как описано в патентах США 3287457 и 3404109) для образования промежуточных полимеров либо с ангиридами (как описано в патентах США 5145883 и 3538043) для образования сложных полимеров либо простых и сложных полиэфирполиолов. Получение простых полимеров, сложных полиэфирполиолов, простых и сложных полиэфирполиолов с использованием двойных металлоцианидных катализаторов полностью описано, например, в патентах США 6223583, 5145883, 4472560, 3941489, 3900518, 3538043, 3404109, 3275458, 3276457 и в работе Дж. Шуардта (J.L. Schuchardt) и С.Д. Харпер (S.D. Harper) SPI Proceedings, 32nd Annual Polyurethane Tech./Market Conf. (1989) 360.

Описания к этим патентам США, относящиеся к синтезу полимеров с использованием DMC катализаторов, в полном объеме включены в качестве ссылки в настоящее описание. Полиэфирполиолы (или моноэлы), полученные с помощью катализаторов, соответствующих настоящему изобретению, в предпочтительном варианте имеют, в среднем, приблизительно, от 1 до 8 гидроксильных функциональных групп, в более предпочтительном варианте, приблизительно, от 2 до 6, и, в наиболее предпочтительном варианте, приблизительно, от 2 до 3. Упомянутые полиолы, в предпочтительном варианте, имеют среднечисленные молекулярные массы в пределах, приблизительно, от 500 до 50000. Более предпочтительный диапазон составляет, приблизительно, от 1000 до, приблизительно, 12000; наиболее предпочтительным является диапазон, приблизительно, от 2000 до, приблизительно, 8000.

-8-
Следующие примеры служат простой иллюстрацией настоящего изобретения. Специалистам в данной области техники будут очевидны многочисленные вариации, находящиеся в пределах духа настоящего изобретения и его объема, определяемого прилагаемой формулой изобретения.

ПРИМЕР 1
Получение катализатора: комплекс гексацианокобальтата цинка/ t-бутилового спирта, содержащий поли(N,N-диметилакриламид)

Получают 5% (мас.) раствор поли(N,N-диметилакриламиды) в дистиллированной воде (Раствор 1). Для получения Растор 2 хлорид цинка (75 г) растворяют в дистиллированной воде (275 мл) и т-бутиловом спирте (50 мл). К раствору хлорида цинка добавляют 50 граммов Растор 1. Раствор 3 получают посредством растворения гексацианокобальтата калия (7,5 г) в дистиллированной воде (100 мл). Раствор 3 добавляют к смеси хлорида цинка/поли(N,N-диметилакриламиды) в течение 30 минут с гомогенизацией полученной смеси с 20% максимальной интенсивностью перемешивания. Температура реакционной смеси в процессе реакции с помощью внутреннего змеевика, предназначенного для нагревания либо охлаждения, поддерживается на уровне 60 °C. Интенсивность перемешивания в течение следующих 10 минут повышается до 40%. Полученную смесь фильтруют под давлением через 5-микронный фильтр при избыточном давлении 40 фунтов/дюйм² (избыточное давление 2,812 кг/см²). Полученную фильтр-прессную лепешку ресушивают в смеси t-бутилового спирта (200 мл) и дистиллированной воды (70 мл), полученную смесь гомогенизируют при 40% интенсивности перемешивания в течение 10 минут и вновь фильтруют под давлением, как описывалось ранее. Полученные переводные вещества ресушивают в t-бутиловом спирте (185 мл), повторяют процесс промывки и выделения. Полученную фильтр-прессную лепешку сушат в вакуумной печи при 60°C до постоянной массы. Полученный сухой катализатор легко измельчается до необходимого порошкообразного состояния. В состав полученного катализатора входит 24% (мас.) поли(N,N-диметилакриламиды). Активность катализатора относительно полимеризации проилленоксид составляет 23,8 г РО/мин при 100 ppm катализатора.

ПРИМЕР 2
Получение катализатора: комплекс гексацианокобальтата цинка/ t-бутилового спирта, содержащий сополимер поли(1-винилпирролидона) и акриловой кислоты

Для получения Растор 1 раствор хлорида цинка (62.5% (мас.) в воде (120 г) смешивают с дистиллированной водой (230 мл) и t-бутиловым спиртом (50 мл). Для получения Растор 2 гексацианокобальтат калия (7,5 г) растворяют в дистиллированной воде (100 мл). Раствор 3 получают посредством растворения сополимера поли(1-винилпирролидона) (8,0 г) в воде (50 мл) и t-бутиловом спирте (2,0 мл). Раствор 2 добавляют к Растору 1 в течение 30 минут с гомогенизацией полученной смеси с 20% максимальной интенсивностью перемешивания. Температура реакционной смеси в процессе упомянутого добавления поддерживается на уровне 50 °C. Интенсивность перемешивания в течение следующих 10 минут повышается до 40%. Полученный катализатор оставляют. 5 г смеси добавляют Растор 3, образовавшуюся сместь с помощью магнитной мешалки перемешивают в течение 3 минут, после чего фильтруют под давлением через 20-микронный фильтр при избыточном давлении 40 фунтов/дюйм². Полученную фильтр-прессную лепешку ресушивают в смеси t-бутилового спирта (130 мл) и дистиллированной воды (55 мл), полученную смесь гомогенизируют при 40% интенсивности перемешивания в течение 10 минут. Полученный катализатор оставляют. 15 г смеси с помощью магнитной мешалки перемешивают в течение 3 минут, после чего фильтруют под давлением, как описывалось ранее. Полученную фильтр-прессную лепешку ресушивают в t-бутиловом спирте (185 мл) и полученную смесь гомогенизируют при 40% интенсивности перемешивания в течение 10 минут. Полученный катализатор оставляют. 25 г смеси с помощью магнитной мешалки перемешивают в течение 3 минут, после чего фильтруют под давлением, как описывалось ранее. Полученную фильтр-прессную лепешку ресушивают в t-бутиловом спирте (185 мл) и полученную смесь гомогенизируют при 40% интенсивности перемешивания в течение 10 минут. Полученный катализатор оставляют. 35 г смеси с помощью магнитной мешалки перемешивают в течение 3 минут, после чего фильтруют под давлением, как описывалось ранее. Полученную фильтр-прессную лепешку ресушивают в t-бутиловом спирте (185 мл) и полученную смесь гомогенизируют при 40% интенсивности перемешивания в течение 10 минут. Полученный катализатор оставляют. 45 г смеси с помощью магнитной мешалки перемешивают в течение 3 минут, после чего фильтруют под давлением, как описывалось ранее. Полученную фильтр-прессную лепешку ресушивают в t-бутиловом спирте (185 мл) и полученную смесь гомогенизируют при 40% интенсивности перемешивания в течение 10 минут. Полученный катализатор оставляют. 55 г смеси с помощью магнитной мешалки перемешивают в течение 3 минут, после чего фильтруют под давлением, как описывалось ранее. Полученную фильтр-прессную лепешку ресушивают в t-бутиловом спирте (185 мл) и полученную смесь гомогенизируют при 40% интенсивности перемешивания в течение 10 минут. Полученный катализатор оставляют. 65 г смеси с помощью магнитной мешалки перемешивают в течение 3 минут, после чего фильтруют под давлением, как описывалось ранее. Полученную фильтр-прессную лепешку ресушивают в t-бутиловом спирте (185 мл) и полученную смесь гомогенизируют при 40% интенсивности перемешивания в течение 10 минут. Полученный катализатор оставляют.
смеси гомогенизируют при 40% интенсивности перемешивания в течение 10 минут. Гомогенизатор останавливают. Полученную сместь фильтруют под давлением, как описывалось ранее. Полученную фильтр-пресную лепешку реусидрируют в т-бутиловом спирте (185 мл) и полученнную сместь гомогенизируют при 40% интенсивности перемешивания в течение 10 минут. Гомогенизатор останавливают. Фильтрование и выделение твердых частиц катализатора осуществляют, как описывалось ранее. Полученную фильтр-пресную лепешку сушат в вакуумной печи при 60°C до постоянной массы. Полученный сухой катализатор легко измельчается до свободнотекущего порошка. В состав полученного катализатора входит 8,0% (мас.) поли(винилметилового эфира). Активность катализатора относительно полимеризации пропиленоксид составляет 25 г PO/мин при 25 ррп катализатора.

Фигура 1 представляет гетерогенчатую порошковую дифрактограмму упомянутого катализатора.

ПРИМЕР 5

Получение катализатора: комплекс гексацианокобальтата цинка/ т-бутилового спирта, содержащий поли(винилметиловый эфир) и полиоксипропилен.

Для получения Расторра 1 хлорид цинка (75 г) и поли(винилметиловый эфир) (3,0 г) растворяют в дистилированной воде (275 мл) и т-бутиловом спирте (60 мл). Для получения Расторра 2 гексацианокобальтат калия (7,5 г) растворяют в дистилированной воде (100 мл). Растор 3 получают посредством растроения поли(оксипропилен)дисла (мOLEкулярная масса 1000, 8,0 г) в дистилированной воде (50 мл) и т-бутиловом спирте (2,0 мл). Растор 2 добавляют к Расторру 1 в течение 30 минут при 50°C с гомогенизацией полученной смеся с 20% максимальной интенсивностью перемешивания. Интенсивность перемешивания в течение следующих 10 минут повышается до 40%. Гомогенизатор останавливают. К полученной смеся добавляют раствор полиоксипропилендисла (мOLEкулярная масса 1000, 8,0 г) в дистилированной воде (50 мл) и т-бутиловом спирте (2,0 мл) в течение 10 минут при 50°C с гомогенизацией полученной смеся с 20% максимальной интенсивностью перемешивания. Интенсивность перемешивания в течение следующих 10 минут повышается до 40%. Гомогенизатор останавливают. К полученной смеся добавляют раствор полиоксипропилендисла (мOLEкулярная масса 1000, 2,0 г) в дистилированной воде (50 мл) и т-бутиловом спирте (2,0 мл) в течение 3 минут, после чего фильтруют под давлением через 20-микронный фильтр при избыточном давлении 40 фунтов/дюйм². Полученную фильтр-пресную лепешку реусидрируют в смеси т-бутилового спирта (130 мл), дистилированной воды (155 мл) и поли(винилметилового эфира) (1,0 г), полученную сместь гомогенизируют при 40% интенсивности перемешивания в течение 10 минут. Гомогенизатор останавливают. Добавляют дополнительное количество полиоксипропилендисла (мOLEкулярная масса 1000, 2,0 г) в полученную сместь с помощью магнитной мешалки перемешивают в течение 3 минут. Полученную сместь фильтруют под давлением, как описывалось ранее. Полученную фильтр-пресную лепешку реусидрируют в т-бутиловом спирте (185 мл) и поли(винилметиловым эфире) (1,0 г) и полученную сместь гомогенизируют при 40% интенсивности перемешивания в течение 10 минут. Гомогенизатор останавливают. Добавляют дополнительное количество полиоксипропилендисла (мOLEкулярная масса 1000, 1,0 г) и полученную сместь гомогенизируют с помощью магнитной мешалки в течение 3 минут. Фильтрование и выделение твердых частиц катализатора осуществляют, как описывалось ранее. Полученную фильтр-пресную лепешку сушат в вакуумной печи при 60°C до постоянной массы. Полученный сухой катализатор легко измельчается до свободнотекущего порошка. В состав полученного катализатора входит 20% (мас.) сочетания поли(винилметилового эфира) и полиоксипропилендисла. Активность катализатора относительно
полимеризации пропилиленоксиды составляет 17,9 г/Ро/мин при 25 ppm катализатора.

ПРИМЕР 8
Получение катализатора: комплекс гексацетокислотата цинка/ t-бутилового спирта, содержащий поли(винилпиперидон) и полифириндил.
Для получения Расторва 1 хлорид цинка (37,5 г) растворяют в дистиллированной воде (137,5 мл) и t-бутиловом спирте (25 мл). Расторв 2 получают посредством растворения гексацетокислотата кальция (3,75 г) в дистиллированной воде (50 мл). Расторв 3 получают посредством растворения поли(оксипиперидон)диола (мOLEкулярная масса 1000, 0,6 г) в дистиллированной воде (25 мл) и t-бутиловом спирте (5,0 мл). Расторв 2 добавляют к Расторву 1 в течение 15 минут при 50°C с гомогенизацией полученной смеси с 20% максимальной интенсивностью перемешивания. Интенсивность перемешивания в течение следующих 10 минут повышается до 40%. Гомогенезатор останавливает. К уплотненной смеси добавляют Расторв 3, образованную смесь с помощью магнитной мешалки перемешивают в течение 3 минут, после чего фильтруют под давлением через 20-микронный фильтр при избыточном давлении 40 фунтов/дюйм². Полученную фильтр-пресную лепешку разгружают в смеси t-бутилового спирта (65 мл) и дистиллированной воды (27,5 мл) и полученную смесь гомогенизируют при 40% интенсивности перемешивания в течение 10 минут. Гомогенезатор останавливает. Добавляют дополнительное количество поли(оксипиперидон)диола (мOLEкулярная масса 1000, 1,0 г) и полученную смесь с помощью магнитной мешалки перемешивают в течение 3 минут. Образовавшуюся смесь фильтруют под давлением, как описывалось ранее. Полученную фильтр-пресную лепешку разгружают в смеси t-бутилового спирта (92,5 мл) и поли(винилпиперидон) эфире (3,0 г) и полученную смесь гомогенизируют при 40% интенсивности перемешивания в течение 10 минут. Гомогенезатор останавливает. Добавляют дополнительное количество поли(оксипиперидон)диола (мOLEкулярная масса 1000, 0,5 г) и образованную смесь перемешивают с помощью магнитной мешалки в течение 3 минут. Фильтрование и выделение твердых частей катализатора осуществляют, как описывалось ранее. Полученную фильтр-пресную лепешку сушат в вакуумной печи при 60°C до постоянной массы. Полученный сухой катализатор легко измельчается до свободнотекущего порошка. В состав полученного катализатора входит 5,0% (мас.) поли(винилпиперидон). Активность катализатора относительно полимеризации пропилиленоксиды составляет 19,2 г РО/мин при 20 ppm катализатора.

ПРИМЕР 9
Получение катализатора: комплекс гексацетокислотата цинка/t-бутилового спирта, содержащий поли(1-винилпирролидон) и линдин.
Для получения Расторва 1 раствор хлорида цинка (120 г 62,5% (мас.) ZnCl₂ в воде) растворяют в дистиллированной воде (230 мл) и t-бутиловом спирте (50 мл). Расторв 2 получают посредством растворения гексацетокислотата кальция (7,5 г) в дистиллированной воде (100 мл). Расторв 3 получают посредством смешивания поли(1-винилпирролидон) (8,0 г) с дистиллированной водой (50 мл) и t-бутиловым спиртом (2,0 мл). Расторв 2 добавляют к Расторву 1 в течение 30 минут при 50°C с гомогенизацией полученной смеси с 20% максимальной интенсивностью перемешивания. Интенсивность перемешивания в течение следующих 30
минут повышается до 40%. Гомогенизатор останавливается. К уплотненной смеси добавляют раствор 3, образующуюся смесь с помощью магнитной мешалки перемешивают в течение 3 минут, после чего фильтруют под давлением через 20-микронный фильтр при избыточном давлении 40 фунтов/дюйм². Полученную фильтр-прессную левкуешку ресуспендируют в смеси дистиллированной воды (201 мл) и гексацетинокальцита в течение 5 минут с добавлением поли(акриламид) (0.5 мг на 100 мл). Полученную смесь гомогенизируют при 40% интенсивности перемешивания в течение 10 минут. Гомогенизатор останавливается. Добавляют дополнительное количество поли(1-винилпирролидона) (2.0 г) и полученную смесь с помощью магнитной мешалки перемешивают в течение 3 минут. Образовавшуюся смесь фильтруют под давлением, как описывалось ранее. Полученную фильтр-прессную левкуешку ресуспендируют в т-бутиловом спирте (185 мл) и полученную смесь гомогенизируют при 40% интенсивности перемешивания в течение 10 минут. Гомогенизатор останавливается. Фильтрация и выделение общей частиц катализатора осуществляют, как описывалось ранее. Полученную фильтр-прессную левкуешку сушат в вакуумной печи при 60°C до постоянной массы. Полученный сухой катализатор легко измельчается до свободнотекующего порошка. В состав полученного катализатора входит 22% (мас.) поли(1-винилпирролидона). Активность катализатора относительно полимеризации пропиленоксида составляет 14.7 г РО/мин при 20 ppm катализатора.

СРАВНИТЕЛЬНЫЙ ПРИМЕР 9

Получение катализатора: комплекс гексацетинокальцита цинка/ т-бутилового спирта, содержащий поликатион.

Для получения раствора 1 хлорид цинка (283,5 г) растворяют в дистиллированной воде (1039 мл) и т-бутиловом спирте (189 мл). Рассмотрение 2 получают посредством растворения гексацетинокальцита калия (28,35 г) в дистиллированной воде (378 мл). Рассмотрение 3 получают посредством смешения поли(оксипропилен)дисперсии (молярная масса 1000, 30,2 г) с дистиллированной водой (180 мл) и т-бутиловым спиртом (7,5 мл). Рассмотрение 2 добавляют к Рассмотрению 1 в течение 1 часа при 50°C с перемешиванием с частотой 450 об/мин. После добавления частоту перемешивания в течение 1 час повышают до 900 об/мин при избыточном давлении азота 10 фунтов/дюйм² (0,703 кгс/м²). После этого частоту перемешивания снижают до 450 об/мин, добавляют Рассмотрение 3 и образовавшуюся смесь перемешивают в течение 3 минут. Твердые вещества выделяют посредством фильтрования под давлением через 20-микронный фильтр при избыточном давлении 40 фунтов/дюйм². Полученную фильтр-прессную левкуешку ресуспендируют в смеси дистиллированной воды (201 мл) и t-бутатового спирта (492 мл) и полученную смесь перемешивают с частотой 900 об/мин в течение 1 часа. Частоту перемешивания снижают до 450 об/мин и добавляют дополнительное количество поли(оксипропилен)дисперсии (молярная масса 1000, 7,6 г). После перемешивания в течение 3 минут твердые вещества выделяют, как описывалось ранее. Полученную фильтр-прессную левкуешку ресуспендируют в т-бутиловом спирте (700 мл) и полученную смесь перемешивают при частоте 900 об/мин в течение 1 час. Частоту перемешивания снижают до 450 об/мин и добавляют дополнительное количество поли(оксипропилен)дисперсии (молярная масса 1000, 3,6 г). После перемешивания в течение 5 минут твердые вещества выделяют и сушат при вакууме при 60°C до постоянной массы. Полученный сухой катализатор легко измельчается до свободнотекующего порошка. Активность катализатора относительно полимеризации пропиленоксида составляет 20 г РО/мин при 25 ppm катализатора. На фигуре 1 представлена рентгеновская порошковая дифрактограмма упомянутого катализатора.

СРАВНИТЕЛЬНЫЕ ПРИМЕРЫ 10 И 11

Получение катализатора: комплекс гексацетинокальцита цинка/ т-бутилового спирта, полученный без функционализированного полимера.

Для получения раствора 1 гексацетинокальцита цинка (8,0 г) растворяют в дистиллированной воде (30 мл) и т-бутиловом спирте (50 мл). Рассмотрение 2 получают посредством растворения хлорида цинка (75 г) в дистиллированной воде (75 мл). Рассмотрение 2 добавляют к Рассмотрению 1 в течение 30 минут с гомогенизацией полученной смеси с 20% максимальной интенсивностью перемешивания. После завершения добавления полученной смеси гомогенизируют в течение 10 минут с 40% максимальной интенсивностью перемешивания. Упомянутую смесь центрифугируют при 17000 об/мин в течение 30 минут для выделения твердых веществ.

Полученные твердые вещества ресуспендируют в смеси т-бутилового спирта (155 мл) и дистиллированной воды (55 мл). Полученную смесь гомогенизируют при 40% интенсивности перемешивания в течение 10 минут, после чего сушат, как описано ранее. Полученные твердые вещества ресуспендируют в т-бутиловом спирте (165 мл), полученную смесь гомогенизируют при 40% интенсивности перемешивания в течение 10 минут и выделяют. Полученный сухой катализатор сушат под вакуумом при 60°C до постоянной массы. Полученный сухой катализатор размалывают (с трудом) до получения свободнотекующего порошка. Активность катализатора относительно полимеризации пропиленоксида составляет 17,9 г/мин при 50 ppm катализатора (Сравнительный Пример 10) и 9,3 г РО/мин при 20 ppm катализатора (Сравнительный Пример 11). На фигуре 1 представлена рентгеновская порошковая дифрактограмма упомянутого катализатора.

ПРИМЕР A

Полимеризация эпоксисоединений: эксперименты с определением скорости - общая процедура.

В 1-литровый реактор, снабжённый мешалкой, вошли полиоксипропилентриэфирный (молярная масса 700) стартер (70 г) и содержащий полимер катализатор гексацетинокальцита цинка (от 0,014 до 0,057 г, 20-50 ppm в готовом полимере). Полученную смесь перемешивают, нагревают до 105°C и
упаривают под вакуумом для удаления следових количеств воды из тримого стартера. Давление в реакторе доводят до разрежения, составляющего, приблизительно, 30 дюймов рт. ст. (7,62 мм рт. ст.) и одной порцей добавляют пропиленоксид (10-11 г). После этого тщательно контролируют давление в реакторе. Дополнительную порцию пропиленоксида добавляют лишь после того, как в реакторе происходит ускоренное падение давления; упомянутое падение давления свидетельствует об активации катализатора. После проверки активации катализатора остальная часть пропиленоксида (490 г) постепенно добавляется таким образом, чтобы избыточное давление реактора удерживалось на уровне приблизительно 10 фунтов/дюйм². После завершения добавления пропиленоксида температура образовавшейся смеси удерживается на уровне 105°C до установления постоянного давления. После этого из полиоливого продукта под вакуумом удаляют остаточное количество напорированного мономера, полисл охлаждают и выделяют.

Для определения скорости проникновения реакции вычерчивают график зависимости расхода PO (г) продуктивности реакции (мин). Показатель максимальной крутизны наклона кривой представляет собой скорость протекания реакции в количестве граммов PO, претерпевших превращение в течение минуты. Пересечение упомянутой линии и горизонтальной линии, являющейся продолжением базовой линии кривой, принимается за время индукции (в минутах), необходимое для активации катализатора. Измеренные скорости протекания реакции в обобщенном виде представлены в Таблице.

В Таблице, когда упомянутая процедура используется для измерения скорости полимеризации пропиленоксида, катализаторы, соответствующие настоящему изобретению, как правило, полимеризуют PO со скоростью, приблизительно, более 15 г/мин при 20 ррт при 105°C. Скорость полимеризации эпоксидсоединений при использовании катализаторов, соответствующих настоящему изобретению, последовательно выше, чем в случае использования подобных же катализаторов, но полученных при отсутствии функционализированного полимера (см. Сравнительный Пример 11).

ПРИМЕР 2.
Синтез полиэфирполиола: полиоксипропиленполикетон, молекулярная масса 8000.
В 1-литровый реактор, снабженный мешалкой, вносят полиоксипропиленполикетонный (молекулярная масса 725) стартёр (85 г) и катализатор, температура которой составляет 0,0173 г, 25 ррт. Полученную смесь перемешивают, нагревают до 130°C и упаривают под вакуумом для удаления следовых количеств воды из диоксида стартера. В реактор, в котором первоначально поддерживается разрежение, составляющее приблизительно 30 дюймов рт. ст., добавляют пропиленоксид (12 г) с последующим тщательным контролированием давления в реакторе. Дополнительную порцию пропиленоксида добавляют лишь после того, как в реакторе происходит ускоренное падение давления; упомянутое падение давления свидетельствует об активации катализатора. После проверки активации катализатора постепенно, в течение 2-6 часов, добавляют остальную часть пропиленоксида (518 г) (см. Таблицу). После завершения добавления полимеризации смеси удерживают на уровне 130°C до установления постоянного давления. После этого из полиоливого продукта под вакуумом при 80°C удаляют остаточное количество непрореагированного мономера (см. Примеры 1-8 и Сравнительные Примеры C9-C11).

Предшествующие примеры приведены лишь в качестве иллюстрации; объем настоящего изобретения определяется представленной далее формулой изобретения.

Формула изобретения:

1. Катализатор, который, по данным рентгеновской порошковой дифрактометрии, по существу, не является кристаллическим и который содержит: (a) двойное металлопицианидное соединение, (b) органический комплексобразующий агент и (c) от 2 до 80 мас. % функционализированного полимера, который (i) имеет общую структуру

\[\text{R}^{+}-\text{COON}^–\text{C}-\text{C}^–\text{CN}\]

где R' - водород, -COOH либо C₁₋₅ аликильная группа; A - одна или несколько функциональных групп, выбранные из группы, включающей -OH, -NH₂, -NR₂, -SH, -SR, -COR, -CN, -Cl, -Br, -C₆H₄OH, -C₆H₄O-(CH₂)₂OH, -CONH₂, -CONH, -CO-NR₂, -OR, -NO₂, -NHCOR, -NRCOR, -COOH, -COOR, -CHO, -OCOR, -COO-R, -SO₃H, -CONH-R-SO₃H, пиронидил и гироспирин, где R - C₁₋₅ аликиль либо алкеновая группа, и где n имеет значение в пределах от 5 до 500, или (ii) выбран из группы, в состав которой входят сложные полиэфиры, поликарбонаты, полимеры оксазолина, полиалканамиды, полипиридинии, сополимеры маленовой кислоты и маленового анилида, гидроксигилциллолоэ, крахмалы и полиолефир, или водорастворимую соль, полученную из упомянутого функционализированного полимера.

2. Катализатор по п. 1, отличающийся тем, что n имеет значение от 10 до 500.

3. Катализатор по п. 1, отличающийся тем, что упомянутое двойное металлопицианидное соединение включает гексацианокобальтат цинка.

4. Катализатор по п. 1, отличающийся тем, что упомянутый органический комплексобразующий агент включает трет-бутиловый спирт.
<table>
<thead>
<tr>
<th>№</th>
<th>Добавка функционализированного полимера</th>
<th>Каталлизатор (ppm)</th>
<th>Скорость полимеризации (г PO/мин)</th>
<th>Продолжительность добавления PO (час.)</th>
<th>Вязкость (сантиметрокс)</th>
<th>Mw/Mn</th>
<th>Степень ненасыщенности (мэк/г)</th>
<th>Хвостовая фракция высокой молекулярной массы (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>поли(N,N-диметилакриламид)</td>
<td>100</td>
<td>23,8</td>
<td>6</td>
<td>3510</td>
<td>1,19</td>
<td>0,0054</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>поли(винилипропилродон)</td>
<td>25</td>
<td>12,2</td>
<td>2</td>
<td>5210</td>
<td>1,19</td>
<td>0,0054</td>
<td>4670</td>
</tr>
<tr>
<td>3</td>
<td>сополимер поли(винилипропилродон) и акриловой кислоты</td>
<td>20</td>
<td>17,2</td>
<td>2</td>
<td>8220</td>
<td>1,23</td>
<td>0,0045</td>
<td>6050</td>
</tr>
<tr>
<td>4</td>
<td>поли(винилметиловый эфир)</td>
<td>25</td>
<td>25,0</td>
<td>4</td>
<td>3150</td>
<td>1,14</td>
<td>0,0076</td>
<td>1210</td>
</tr>
<tr>
<td>5</td>
<td>поли(винилметиловый эфир)/полизифирдиол</td>
<td>25</td>
<td>17,9</td>
<td>4</td>
<td>3510</td>
<td>1,08</td>
<td>0,0058</td>
<td>1010</td>
</tr>
<tr>
<td>6</td>
<td>поли(винилэтиловый эфир)/полизифирдиол</td>
<td>25</td>
<td>21,7</td>
<td>4</td>
<td>3450</td>
<td>1,08</td>
<td>0,0056</td>
<td>1520</td>
</tr>
<tr>
<td>7</td>
<td>полиэфириполил LEXOREZ 1080-55</td>
<td>20</td>
<td>19,2</td>
<td>2</td>
<td>4380</td>
<td>1,14</td>
<td>0,0044</td>
<td>3580</td>
</tr>
<tr>
<td>8</td>
<td>поли(винилипропилродон)</td>
<td>20</td>
<td>14,7</td>
<td>2</td>
<td>4510</td>
<td>1,15</td>
<td>0,0045</td>
<td>3770</td>
</tr>
<tr>
<td>C9</td>
<td>поли(оксипропиленид)диол, молекулярная масса 1000</td>
<td>25</td>
<td>20,0</td>
<td>4</td>
<td>3360</td>
<td>1,16</td>
<td>0,0060</td>
<td>2000</td>
</tr>
<tr>
<td>C10</td>
<td>без добавки²</td>
<td>50</td>
<td>17,9</td>
<td>4</td>
<td>4150</td>
<td>1,23</td>
<td>0,0067</td>
<td>-</td>
</tr>
<tr>
<td>C11</td>
<td>без добавки²</td>
<td>20</td>
<td>9,3</td>
<td>2</td>
<td>17000</td>
<td>1,35</td>
<td>0,0064</td>
<td>9260</td>
</tr>
</tbody>
</table>

1 продукт компании Inolex Chemical Co. - конденсационный полимер 2-метил-1,3-пропандиола и адипиновой кислоты.
2 в процессе синтезирования диола (молекулярная масса 8000) с помощью этого катализатора, наблюдается образование геля.
3 хвостовая фракция высокой молекулярной массы представляет собой определенное количество (в ppm) полилата, имеющего максимальную молекулярную массу>100000, измеренное посредством гельпроникающей хроматографии с использованием полиэтиловых стандартов.