发明名称
一种氟虫双酰胺和新烟碱类杀虫剂农药组合物

摘要
本发明为一种氟虫双酰胺和新烟碱类杀虫剂农药组合物，其特征在于有效成分包括化合物A和化合物B，其中化合物A为氟虫双酰胺；化合物B为至少一种氯化烟碱类杀虫剂，所述的氯化烟碱类杀虫剂为吡虫啉、噻虫胺、噻虫啉、呋虫胺、烯啶虫胺、氯噻啉和氯虫苯甲酰胺。化合物A与化合物B之间的重量比是1:50-50:1。杀虫组合物可以根据需要制备成常用的水分散粒剂、可湿性粉剂、悬浮剂、颗粒剂、微囊悬浮剂、微胶囊粉剂、可分散油悬浮剂、超低容量液剂、干悬浮剂等剂型。该杀虫组合物有明显增效，杀虫谱广的特点，能有效防治多种作物的多种害虫，可应用于蔬菜、果树、水稻、玉米、大豆、小麦、花生、棉花等各种作物，具有高效、速效、持效期长等优点。
1. 一种氯虫双酰胺和新烟碱类杀虫剂农药组合物，其特征在于：活性成分由氯虫双酰胺和新烟碱的重量比为 8：1-8：1；该杀虫组合物的剂型为悬浮剂。

2. 权利要求 1 所述的氯虫双酰胺和新烟碱类杀虫剂农药组合物的用途，其特征在于，其在蔬菜、果树、水稻、玉米、大豆、小麦、花生或棉花各种农作物的应用。

3. 权利要求 1 所述的氯虫双酰胺和新烟碱类杀虫剂农药组合物的用途，其特征在于，其用于防治鳞翅目、同翅目、鞘翅目、双翅目各种害虫。
一种氟虫双酰胺和新烟碱类杀虫剂农药组合物

技术领域

[0001] 本发明涉及一种农药组合物，具体说是设计杀虫剂组合物，属于农药制剂领域。

背景技术

[0002] 氟虫双酰胺是由 (flubendiamide) 由日本农药株式会社研发的一种新型杀虫剂，是目前为数不多的作用于昆虫细胞兰尼碱 (Ryanodine) 受体的化合物。对鳞翅目害虫有光谱防效，与现有杀虫剂无互抗性产生，非常适宜于现有杀虫剂产生抗性的害虫的防治，几乎所有的鳞翅目类害虫均具有很好的活性，对成虫和幼虫都有优良的活性，而且作用速度快，持效期长。但是该成分没有杀卵作用，且没有内吸作用，因此限制了该药剂对于刺吸式等害虫的应用。

[0003] 新烟碱类化合物是一类高效、安全、高选择性的新型杀虫剂，在国内外市场发展很快。我国从上世纪 80 年代末就开始了对新烟碱类杀虫剂的研究开发，目前已取得不少进展。新烟碱类杀虫剂有：吡虫啉、烯啶虫胺、氯噻啉、噻虫啉、噻虫胺、呋虫胺、哌虫啶等。其最大的特点是其对多种抗性害虫显示出了优秀的防效和对哺乳动物毒性较低，具有优良的内吸性和高效、低毒、杀虫谱广、持效期长等特点。但是新烟碱类杀虫剂由于其作用机理原因对鳞翅目等害虫防效一般，目前主要用于针对刺吸式害虫的防治。

发明内容

[0004] 本发明的目的是研究出氟虫双酰胺和新烟碱类杀虫剂的增效复配配方，扩大这两种杀虫剂的应用范围。

[0005] 以下为本发明的技术方案：

[0006] 选取：化合物 (A) 氟虫双酰胺，化学名：3-氟-5’-(2-甲磺酰基-1,1-二甲基乙烷基)-N-(1,2,2-四氟-1-(三氟甲基)乙基)-0-甲苯基] 邻苯二酰胺。

[0007] 化合物 (A) 的结构式为：

[0008]
化合物(B)新烟碱类杀虫剂，有：吡虫啉、烯啶虫胺、氯噻啉、噻虫啉、噻虫胺、哒螨腈、吡虫啉等。

其特征在于：由化合物(A)氟虫双酰胺和化合物(B)新烟碱类杀虫剂中的一种组成，化合物(A)与化合物(B)的重量比为1:50-50:1。

化合物(A)和化合物(B)的优先重量比是：1:30-30:1。

化合物(B)系新烟碱类杀虫剂吡虫啉、噻虫胺、噻虫啉、呋虫胺、烯啶虫胺、氯噻啉、哒螨腈中的一种。

该杀虫农药组合物，还含有农药制剂中通常使用的助剂、溶剂、载体辅助成分以做成各种适合农业使用的剂型。

所述助剂为分散剂NNO,十二烷基硫酸钠,扩散剂MF,木质素磺酸钠,聚乙烯醇,农乳600#，脂肪醇聚氧乙烯醚、壬基酚聚氧乙烯醚、烷基酚聚氧乙烯醚磷酸酯、茶磺酸甲醇缩聚物、硫酸铵,乳化剂500#中的一种或几种；所述溶剂为异丙醇、二甲基甲酰胺、二甲苯和乙酸乙酯中的一种或几种；所述载体为白炭黑、高岭土、轻质碳酸钙、陶土和水中的一种或几种。

杀虫组合物可根据需要制备成常用的水分散粒剂、可湿性粉剂、悬浮剂、颗粒剂、微囊悬浮剂、微胶囊粉剂、可分散油悬浮剂、超低容量液剂、或干悬浮剂剂型。

这些制剂中，除活性成分外，均含有表面活性剂，而且根据不同剂型还可以含有有机溶剂或助溶剂、载体（填料）或水等稀释剂。必要时加入抗冻剂、增稠剂、稳定剂、消泡剂、崩解剂等其他功能性助剂。

制备方法为常规农药的各种剂型的制备方法。如图1。

本品由有效活性成分、助剂、溶剂三部分组成，将原药、润湿剂、分散剂、抗凝剂、溶剂按比例混合后，然后将混合物压入砂磨机中进行砂磨，待有效成分被砂磨至粒径为5μm左右后，再次压入混合器进行混合。本专利中加入的润湿剂、分散剂、消泡剂、抗凝剂等能保持制剂在高温、低温下的稳定，有助于储藏、运输，保证药效。

本发明所加入的各种润湿剂、助剂、溶剂等均为市场销售产品，农药生产常用辅剂。

该杀虫农药组合物应用在蔬菜、果树、水稻、玉米、大豆、小麦、花生、或棉花各种农
作物上。其用于防治鳞翅目、同翅目、鞘翅目、双翅目、等害虫的防治，尤其是对稻纵卷叶螟、二化螟、三化螟、稻飞虱、菜青虫、小菜蛾、甜菜夜蛾、斜纹夜蛾、蚜虫、叶蝉、粉虱害虫的防治。

【0021】 本发明有益效果：(1) 扩大了氟虫双酰胺和新烟碱类杀虫剂的杀虫范围，氟虫双酰胺和新烟碱类杀虫剂属于不同杀虫作用机理的杀虫剂复配，对害虫作用位点多，本发明组合物可用于防治间作物、果树、蔬菜，其他特种作物和草皮中的鳞翅目、同翅目、鞘翅目、双翅目等各种害虫。 (2) 可应用于喷雾、拌种、混土撒施等各种可能的施药方式。此外，由于提高了药效，从而降低了使用成本，并可达到药剂互补、延缓害虫抗性产生的作用。 (3) 大量试验证明，本发明杀虫组合物具有高效、速效、持效期长等优点。

附图说明

【0022】 图 1 为制备本发明农药组合物悬浮剂的基本流程图。

具体实施方式

【0023】 下面通过实施例对本发明作进一步说明。应该理解的是，本发明实施例所述制备方法仅仅是用于说明本发明，而不是对本发明的限制，在本发明的构思前提下对本发明制备方法的简单改进都属于本发明要求保护的范围。

【0024】 在制剂实施例中，我们描述组合物的详细比例，在生物活性实施例中，我们详细描述组合物突出的生物活性。

【0025】 一、描述杀虫防病毒组合物的制备。

【0026】 本品由有效成分、助剂、溶剂三部分组成，将原药、润湿剂、分散剂、抗凝剂、溶剂等组分在混合釜中混合，然后将混合物抽入砂磨机中进行砂磨，待有效成分被砂磨至粒径为 5 μm 左右后，再次抽入混合器进行混合。本专利中加入的润湿剂、分散剂，消泡剂、抗凝剂等能保持制剂在高温、低温下的稳定，有助于储藏、运输，保证药效。

【0027】 本发明用下列实例进行说明，但不限于本发明。

【0028】 实施例 1 31%氟虫双酰胺·吡虫啉悬浮剂（30:1）

【0029】 挤入搅拌罐中 545 克去离子水，将 40 克木质素磺酸钠、20 克十二烷基硫酸钠和 5 克甲醛、50 克乙二醇，挤入搅拌罐中，然后边搅拌将 300 克氟虫双酰胺、10 克吡虫啉、30 克白炭黑、按照顺序投入剪切罐中，剪切 30 分钟使物料混合均匀。打开循环水，将物料球磨以一定量的流量，温度控制 40 度以下，细度过 325 目筛，即得 31%氟虫双酰胺·吡虫啉悬浮剂。

【0030】 实施例 2 21%氟虫双酰胺·噻虫胺悬浮剂（20:1）

【0031】 挤入搅拌罐中 660 克去离子水，将 50 克分散剂 NNO、40 克分散剂 MF、20 克十二烷基硫酸钠和 5 克甲醛、20 克乙二醇，挤入搅拌罐中，然后边搅拌将 200 克氟虫双酰胺、10 克噻虫胺、5 克高岭土、按照顺序投入剪切罐中，剪切 30 分钟使物料混合均匀。打开循环水，将物料球磨以一定量的流量，温度控制 40 度以下，细度过 325 目筛，即得 21%氟虫双酰胺·噻虫胺悬浮剂。

【0032】 实施例 3 11%氟虫双酰胺·吡虫啉悬浮剂（10:1）

【0033】 挤入搅拌罐中 733 克去离子水，将 50 克聚磺酸甲醛缩聚物、30 克分散剂 MF、20 克脂肪醇聚氧乙烯醚、5 克松防腐剂、20 克乙二醇，挤入搅拌罐中，然后边搅拌将 100 克氟虫双酰胺、10 克吡虫啉、2 克黄原胶、按照顺序投入剪切罐中，剪切 30 分钟使物料混合均匀。
打开循环水，按物料重量以一定量的用量，温度控制40度以下，细度过325目筛，即得11%氟虫双酰胺・吡虫啉悬浮剂。

实施例4 30%氟虫双酰胺・吡虫啉悬浮剂（1:1）

实施例5 22%氟虫双酰胺・烯啶虫胺悬浮剂（1:10）

实施例6 21%氟虫双酰胺・氯噻啉悬浮剂（1:20）

实施例7 31%氟虫双酰胺・哌虫啶悬浮剂（1:30）

实施例8 51%氟虫双酰胺・吡虫啉水分散剂（1:50）

实施例9 31%氟虫双酰胺・烯啶虫胺悬浮剂（1:30）

实施例10 2:1氟虫双酰胺・噻虫啉颗粒剂（1:20）
附后，即可得 2.1% 氟虫双酰胺·噻虫啉颗粒剂。

【0048】实施例 11 : 1.1% 氟虫双酰胺·呋虫胺微囊悬浮剂 (1:10)

【0049】将氟虫双酰胺 1 克，呋虫胺 10 克，溶解于 100 克二甲苯和 50 克乙酸乙酯组成的混合溶液中，再抽入壬基酚聚氧乙烯醚磷酸酯 30 克，烷基芳基聚氧丙烯聚氧乙烯醚 30 克，在高剪切釜中高速剪切 30 分钟，加入 200 克聚乙烯基醚，2000 转 / 分搅拌下升温固化 60 分钟，之后加入 497 克去离子水，60 克 NNO 分散剂，22 克白炭黑，搅拌均匀即可得 1.1% 氟虫双酰胺·呋虫胺微囊悬浮剂。

【0050】实施例 12 : 15% 氟虫双酰胺·烯啶虫胺微胶囊粉剂 (1:2)

【0051】将氟虫双酰胺 50 克，烯啶虫胺 100 克，溶解于 100 克二甲苯和 200 克二甲基酰胺组成的混合溶液中，再抽入壬基酚聚氧乙烯醚磷酸酯 40 克，50 克基基二-异氰酸酯，烷基芳基聚氧丙烯聚氧乙烯醚 30 克，2000 转 / 分搅拌下缓慢加入 30 克乙二胺，搅拌 2 小时，之后加入 400 克去离子水，60 克 NNO 分散剂，100 克白炭黑，240 克硫酸铵，喷雾造粒，烘干整形后水分蒸干，即可得 15% 氟虫双酰胺·烯啶虫胺微胶囊粉剂。

【0052】实施例 13 : 20% 氟虫双酰胺·氯噻啉可分散油悬浮剂 (1:1)

【0053】将氟虫双酰胺 500 克，氯噻啉 100 克，溶解于 500 克二甲苯中，将 60 克十二烷基硫酸钠、40 克十二烷基苯磺酸钙、50 克无机膨润土，按照顺序投入剪切罐中，剪切 30 分钟使物料混合均匀。打开循环水，将物料球磨以一定量的流量，温度控制 40 度以下，细度为 325 目筛，即可得 20% 氟虫双酰胺·氯噻啉可分散油悬浮剂。

【0054】实施例 14 : 30% 氟虫双酰胺·噻虫嗪可分散油悬浮剂 (2:1)

【0055】将氟虫双酰胺 500 克，氯噻啉 100 克，溶解于 500 克二甲苯中，将 60 克十二烷基硫酸钠、40 克十二烷基苯磺酸钙、50 克无机膨润土，按照顺序投入剪切罐中，剪切 30 分钟使物料混合均匀。打开循环水，将物料球磨以一定量的流量，温度控制 40 度以下，细度为 325 目筛，即可得 30% 氟虫双酰胺·噻虫嗪可分散油悬浮剂。

【0056】实施例 15 : 1.1% 氟虫双酰胺·氯噻啉超低容量液剂 (10:1)

【0057】以成品超低容量液剂为重量 1000 克计算，氟虫双酰胺 10 克，氯噻啉 1 克，N- 甲基吡咯烷酮 50 克，十二烷基苯磺酸钠 55 克，二辛基醚为 1000 克，搅拌 30 分钟，至完全透明，检测合格后即为 1.1% 氟虫双酰胺·氯噻啉超低容量液剂。

【0058】实施例 16 : 42% 氟虫双酰胺·呋虫胺可湿性粉剂 (20:1)

【0059】将氟虫双酰胺 500 克，呋虫胺 20 克，扩散剂 MF 80 克，苯胺酸钠等量物混合 60 克，十二烷基硫酸钠 50 克，白炭黑 30 克，甘油 300 克，搅拌均匀，采用气流粉碎法加工，即可得 42% 氟虫双酰胺·呋虫胺可湿性粉剂。

【0060】实施例 17 : 31% 氟虫双酰胺·噻虫胺悬浮剂 (30:1)

【0061】将氟虫双酰胺 500 克，噻虫胺 100 克，十二烷基苯磺酸钠 50 克，乙二醇，十二烷基硫酸钠 30 克，十二烷基苯磺酸钠，10 克白炭黑，30 克硅酸锌铝，按照顺序投入剪切罐中，剪切 30 分钟使物料混合均匀。打开循环水，将物料球磨以一定量的流量，温度控制 40 度以下，细度为 325 目筛，即可得 31% 氟虫双酰胺·噻虫胺悬浮剂。

【0062】实施例 18 : 51% 氟虫双酰胺·噻虫啉水分散粒剂 (50:1)
说明书

【0063】将氯虫双酰胺500克、噻虫啉10克，助剂W350克，SOPA27030克，十二烷基硫酸钠30克，高岭土50克，硫酸铵330克，混合均匀后，加入适量水约180克，装入压电设备，进行挤压造粒，在50～80℃条件下烘干至水分合格，即可得51%氯虫双酰胺·噻虫啉水分散粒剂。

【0064】实施例196%氯虫双酰胺·呋虫胺干悬浮剂（1：2）

【0065】将氯虫双酰胺200克、呋虫胺400克、烷基芳基聚氧乙烯醚70克，丙基酚聚氧乙烯醚磷酸酯40克，分散剂NO 60克，加入混合溶液中，搅拌均匀，然后用高速剪切机进行粉碎，再加入乙二醇二甲醚，研磨后加入白炭黑50克，硫酸铵220克，搅拌2小时，再加入压电干燥塔干燥或造粒，制成粉末或颗粒状固体，检测合格后即为60%氯虫双酰胺·呋虫胺干悬浮剂。使用时入水后与悬浮剂效果相同，但贮存稳定性又优于悬浮剂。

【0066】二、大田验证试验实例

【0067】实验实例1：氯虫双酰胺与呋虫胺复配对温室黄瓜白粉虱的防治效果

【0068】地点：山东寿光 调查时期：药后3天 时间：2010年

【0069】表1 氯虫双酰胺与呋虫胺复配对温室黄瓜白粉虱的防治效果

<table>
<thead>
<tr>
<th>药剂处理</th>
<th>有效成分（ai/hm²）</th>
<th>虫指（%）</th>
<th>防效（%）</th>
<th>预期防效（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>氯虫双酰胺</td>
<td>10</td>
<td>6.4</td>
<td>64.9</td>
<td></td>
</tr>
<tr>
<td>氯虫双酰胺</td>
<td>20</td>
<td>6.1</td>
<td>78.2</td>
<td></td>
</tr>
<tr>
<td>氯虫双酰胺</td>
<td>30</td>
<td>5.3</td>
<td>84.5</td>
<td></td>
</tr>
<tr>
<td>呋虫胺</td>
<td>30</td>
<td>6.0</td>
<td>82.8</td>
<td></td>
</tr>
<tr>
<td>氯虫双酰胺·呋虫胺</td>
<td>10：30</td>
<td>6.2</td>
<td>80.7</td>
<td>75.2</td>
</tr>
<tr>
<td>氯虫双酰胺·呋虫胺</td>
<td>20：30</td>
<td>6.8</td>
<td>86.5</td>
<td>82.1</td>
</tr>
<tr>
<td>氯虫双酰胺·呋虫胺</td>
<td>30：30</td>
<td>6.5</td>
<td>94.2</td>
<td>89.6</td>
</tr>
</tbody>
</table>

【0071】由上表1结果可见，氯虫双酰胺与呋虫胺复配实际防效明显高于其预期防效，由此可见本发明组合具有显著的增效作用。

【0072】实验实例2：氯虫双酰胺与烯啶虫胺复配对豇豆蓟马的防治效果

【0073】地点：山东寿光 调查时期：药后3天 时间：2010年

【0074】表2 氯虫双酰胺与烯啶虫胺复配对豇豆蓟马的防治效果

<table>
<thead>
<tr>
<th>药剂处理</th>
<th>有效成分（ai/hm²）</th>
<th>虫指（%）</th>
<th>防效（%）</th>
<th>预期防效（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>氯虫双酰胺</td>
<td>10</td>
<td>6.7</td>
<td>69.4</td>
<td></td>
</tr>
<tr>
<td>氯虫双酰胺</td>
<td>20</td>
<td>6.2</td>
<td>76.8</td>
<td></td>
</tr>
<tr>
<td>氯虫双酰胺</td>
<td>30</td>
<td>5.5</td>
<td>85.4</td>
<td></td>
</tr>
<tr>
<td>烯啶虫胺</td>
<td>30</td>
<td>6.9</td>
<td>76.2</td>
<td></td>
</tr>
<tr>
<td>氯虫双酰胺·烯啶虫胺</td>
<td>10：30</td>
<td>6.6</td>
<td>78.5</td>
<td>72.5</td>
</tr>
<tr>
<td>氯虫双酰胺·烯啶虫胺</td>
<td>20：30</td>
<td>6.3</td>
<td>88.5</td>
<td>81.7</td>
</tr>
<tr>
<td>氯虫双酰胺·烯啶虫胺</td>
<td>30：30</td>
<td>5.9</td>
<td>94.4</td>
<td>90.1</td>
</tr>
</tbody>
</table>

【0076】由上表2结果可见，氯虫双酰胺与烯啶虫胺复配实际防效明显高于其预期防效，由此可见本发明组合具有显著的增效作用。

【0077】实验实例3：氯虫双酰胺与吡虫啉复配对稻飞虱的防治效果

【0078】地点：湖北襄阳 时间：2010年7月

【0079】表3 氯虫双酰胺与吡虫啉复配对稻飞虱的防治效果
<table>
<thead>
<tr>
<th>药剂处理</th>
<th>有效成分 (ai/ hm²)</th>
<th>防效 (%)</th>
<th>预期防效 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>氟虫双酰胺</td>
<td>10</td>
<td>66.3</td>
<td></td>
</tr>
<tr>
<td>氟虫双酰胺</td>
<td>20</td>
<td>72.5</td>
<td></td>
</tr>
<tr>
<td>氟虫双酰胺</td>
<td>30</td>
<td>78.9</td>
<td></td>
</tr>
<tr>
<td>吡虫啉</td>
<td>30</td>
<td>80.2</td>
<td></td>
</tr>
<tr>
<td>氟虫双酰胺 + 吡虫啉</td>
<td>10+30</td>
<td>85.5</td>
<td>82.5</td>
</tr>
<tr>
<td>氟虫双酰胺 + 吡虫啉</td>
<td>20+30</td>
<td>88.5</td>
<td>84.2</td>
</tr>
<tr>
<td>氟虫双酰胺 + 吡虫啉</td>
<td>30+30</td>
<td>95.4</td>
<td>89.7</td>
</tr>
</tbody>
</table>

[0081] 由上表 3 可知，氟虫双酰胺和吡虫啉组合物对水稻稻飞虱防效优异，其防治效果优于其各自单剂的防效，且高于两者复配的理论防效。由此可见，氟虫双酰胺和吡虫啉两者组合对水稻稻飞虱具有明显的增效作用。

[0082] 实验实例 4：氟虫双酰胺与噻虫胺复配对稻纵卷叶螟的防治效果

[0083] 地点：广西南宁 时间：2010 年 6 月

[0084] 表 4 30% 氟虫双酰胺 + 噻虫胺（10:20）悬浮剂对稻纵卷叶螟的防治效果

<table>
<thead>
<tr>
<th>药剂处理</th>
<th>使用量</th>
<th>防效 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20% 氟虫双酰胺 SC</td>
<td>15g/ 亩</td>
<td>72.5</td>
</tr>
<tr>
<td>20% 噻虫胺 SC</td>
<td>15g/ 亩</td>
<td>80.2</td>
</tr>
<tr>
<td>30% 氟虫双酰胺 + 噻虫胺 SC</td>
<td>10g/ 亩</td>
<td>88.5</td>
</tr>
<tr>
<td>30% 氟虫双酰胺 * 噻虫胺 SC</td>
<td>15g/ 亩</td>
<td>95.4</td>
</tr>
</tbody>
</table>

[0086] 由上表 4 可知，氟虫双酰胺和噻虫胺复配对稻纵卷叶螟的防效明显优于其各自单剂的防效，由此可见，氟虫双酰胺和吡虫啉两者组合对稻纵卷叶螟有明显的增效作用。

[0087] 实验实例 5：氟虫双酰胺与吡虫啉复配对稻纵卷叶螟的防治效果

[0088] 地点：广西南宁 时间：2010 年 7 月

[0089] 表 5 35% 氟虫双酰胺 * 吡虫啉（5:30）悬浮剂对水稻二化螟的防治效果

<table>
<thead>
<tr>
<th>药剂处理</th>
<th>使用量</th>
<th>防效 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30% 氟虫双酰胺 SC</td>
<td>10g/ 亩</td>
<td>79.5</td>
</tr>
<tr>
<td>30% 吡虫啉 SC</td>
<td>5g/ 亩</td>
<td>72.7</td>
</tr>
<tr>
<td>35% 氟虫双酰胺 * 吡虫啉 SC</td>
<td>5g/ 亩</td>
<td>87.4</td>
</tr>
<tr>
<td>35% 氟虫双酰胺 * 吡虫啉 SC</td>
<td>10g/ 亩</td>
<td>94.8</td>
</tr>
</tbody>
</table>

[0091] 由上表可知，氟虫双酰胺和吡虫啉复配对水稻二化螟的防效显著，增强了两种药剂对二化螟的防治作用。可见，氟虫双酰胺和吡虫啉两者组合对水稻二化螟有明显的增效作用。

[0092] 实验实例 6：氟虫双酰胺与噻虫啉复配对甘蓝甜菜夜蛾的防治效果

[0093] 地点：广西南宁 时间：2010 年 5 月

[0094] 表 6 15% 氟虫双酰胺 * 噻虫啉（5:10）可分散油悬浮剂对甘蓝甜菜夜蛾的防治效果

<table>
<thead>
<tr>
<th>药剂处理</th>
<th>使用量</th>
<th>防效 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>氟虫双酰胺可分散油悬浮剂</td>
<td>30g/ 亩</td>
<td>85.5</td>
</tr>
<tr>
<td>噻虫啉可分散油悬浮剂</td>
<td>50g/ 亩</td>
<td>71.8</td>
</tr>
<tr>
<td>氟虫双酰胺 * 噻虫啉可分散油悬浮剂</td>
<td>30g/ 亩</td>
<td>85.8</td>
</tr>
<tr>
<td>氟虫双酰胺 * 噻虫啉可分散油悬浮剂</td>
<td>50g/ 亩</td>
<td>95.9</td>
</tr>
</tbody>
</table>
由上表可知，氟虫双酰胺和喙虫啉复配对甘蓝甜菜夜蛾的防效有明显的提高，显著增强了两种药剂对甜菜夜蛾的防治效果，可见，氟虫双酰胺和喙虫啉两者复配对甜菜夜蛾具有明显的增效作用。

实验实例 7：氟虫双酰胺与喙虫啉复配对甘蓝蚜虫的防治效果
地点：河南开封 时间：2010年9月
表7 60%氟虫双酰胺・喙虫啉（30:30）水分散粒剂对甘蓝蚜虫的防治效果

<table>
<thead>
<tr>
<th>药剂处理</th>
<th>使用量</th>
<th>防效（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>30%氟虫双酰胺水分散粒剂</td>
<td>5g/亩</td>
<td>78.6</td>
</tr>
<tr>
<td>30%喙虫啉水分散粒剂</td>
<td>5g/亩</td>
<td>86.3</td>
</tr>
<tr>
<td>60%氟虫双酰胺・喙虫啉水分散粒剂</td>
<td>2.5g/亩</td>
<td>91.7</td>
</tr>
<tr>
<td>60%氟虫双酰胺・喙虫啉水分散粒剂</td>
<td>5g/亩</td>
<td>97.2</td>
</tr>
</tbody>
</table>

由上表可见，氟虫双酰胺和喙虫啉复配对甘蓝蚜虫防效优异，其防效在低剂量下即可达到90%以上，较单剂使用的防效有明显的提高，由此可见，该两种成分复配对甘蓝蚜虫具有明显的增效作用。

实验实例 8：氟虫双酰胺与哌虫啶复配对甘蓝小菜蛾的防治效果
地点：河南开封 时间：2010年7月
表8 70%氟虫双酰胺・哌虫啶（20:50）水分散粒剂对甘蓝小菜蛾的防治效果

<table>
<thead>
<tr>
<th>药剂处理</th>
<th>使用量</th>
<th>防效（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>30%氟虫双酰胺水分散粒剂</td>
<td>20g/亩</td>
<td>83.5</td>
</tr>
<tr>
<td>30%哌虫啶水分散粒剂</td>
<td>20g/亩</td>
<td>74.8</td>
</tr>
<tr>
<td>70%氟虫双酰胺・哌虫啶水分散粒剂</td>
<td>10g/亩</td>
<td>87.2</td>
</tr>
<tr>
<td>70%氟虫双酰胺・哌虫啶水分散粒剂</td>
<td>20g/亩</td>
<td>94.6</td>
</tr>
</tbody>
</table>

由上表可见，氟虫双酰胺和哌虫啶复配对甘蓝小菜蛾防效显著，较各单剂使用的防效有明显的提高，由此可见，该两种成分复配对甘蓝小菜蛾具有明显的增效作用。

实验实例 9：氟虫双酰胺与哌虫啶复配对水稻黑尾叶蝉的防治效果
地点：山东临沂 时间：2010年6月
表9 10.2%氟虫双酰胺・呋虫胺（0.2:10）悬浮剂对水稻黑尾叶蝉的防治效果

<table>
<thead>
<tr>
<th>药剂处理</th>
<th>使用量</th>
<th>防效（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%氟虫双酰胺悬浮剂</td>
<td>20g/亩</td>
<td>70.4</td>
</tr>
<tr>
<td>10%呋虫胺悬浮剂</td>
<td>20g/亩</td>
<td>83.7</td>
</tr>
<tr>
<td>10.2%氟虫双酰胺・呋虫胺悬浮剂</td>
<td>15g/亩</td>
<td>88.5</td>
</tr>
<tr>
<td>10.2%氟虫双酰胺・呋虫胺悬浮剂</td>
<td>20g/亩</td>
<td>95.1</td>
</tr>
</tbody>
</table>

由上表可见，氟虫双酰胺和呋虫胺复配对水稻黑尾叶蝉防效显著，较各单剂使用的防效有明显的提高，由此可见，该两种成分复配对水稻黑尾叶蝉具有明显的增效作用。

实验实例 10：氟虫双酰胺与哌虫啶复配对菜青虫的防治效果
地点：山东寿光 时间：2010年8月
表10 15%氟虫双酰胺・吡虫啉（5:10）悬浮剂对菜青虫的防治效果

<table>
<thead>
<tr>
<th>药剂处理</th>
<th>使用量</th>
<th>防效（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%氟虫双酰胺悬浮剂</td>
<td>50g/亩</td>
<td>84.7</td>
</tr>
</tbody>
</table>
[0116] 由上表可见，氯虫双酰胺和吡虫啉复配对菜青虫防效显著，较各单剂使用的防效有明显的提高，由此可见，该两种成分复配对菜青虫具有明显的增效作用。

[0117] 虽然，上文中已经用一般性说明及具体实施方案对本发明做了详尽的描述，但在本发明基础上，可以对之作一些修改和改进，这对本领域技术人员来说是显而易见的。因此，在不偏离本发明精神的基础上所做的这些修改和改进，均属于本发明要求保护的范围。

<table>
<thead>
<tr>
<th></th>
<th>10% 吡虫啉悬浮剂</th>
<th>15% 氯虫双酰胺•吡虫啉悬浮剂</th>
<th>15% 氯虫双酰胺•吡虫啉悬浮剂</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30g/亩 76.5</td>
<td>30g/亩 90.3</td>
<td>50g/亩 96.4</td>
</tr>
</tbody>
</table>

[0118] 三、室内毒力活性测定

[0119] 实施例 1 氯虫双酰胺和吡虫啉不同配比联合毒力测试

[0120] 1.1 供试药剂

[0121] 95% 吡虫啉原药，95% 氯虫双酰胺原药，氯虫啉与氯虫双酰胺不同比例混配制剂

[0122] 1.2 供试虫源

[0123] 水稻褐飞虱若虫

[0124] 1.3 单剂测定方法

[0125] 采用稻茎浸渍法，挖取健壮一致的孕穗中期稻株，洗净，剪成 15 cm 长的连根稻茎，于阴凉处晾至表面无水痕，备用。根据预试验结果，将原药配成 10% 乳油，用水稀释成不同浓度，以清水为对照，把备好的稻茎分别置于不同浓度的药液中浸泡 30 s，取出后稍晾干，以清水湿润的脱脂棉包住根部，放入试管（高 180 mm×直径 18 mm），3 天后用 3 吒若虫，放入试管内，每管 20 头。上端与湿纱布封口，每个浓度重复 3 次，共 60 头。接虫后的试管放入温度 26℃的温度室，相对湿度 70% 的养虫室中，48 h 发表象、活虫数，计算死亡率，并以对照的死亡率进行校正，然后用计算法求毒力回归方程，致死中浓度的相关系数。

[0126] 1.4 不同配比的联合毒力测定方法

[0127] 根据单剂的毒力测定结果，按有效成分质量比氯虫双酰胺，吡虫啉分别为 8:1、4:1、1:1、1:4、1:8 的配比进行混配。采用上述 1.3 方法进行独立测定，计算 LC50，按孙云沛法计算共毒系数（CTC）。共毒系数计算公式如下；

\[
ATF = \frac{S}{M} \times 100
\] \hspace{1cm} (1)

[0129] 式中：\(ATF\)——混剂实测毒力指数；

[0130] \(S\)——标准杀虫剂的 LC50，单位为毫克每升 (mg/L)；

[0131] \(M\)——混剂的 LC50，单位为毫克每升 (mg/L)。

[0132] 根据公式计算混剂理论毒力指数

\[
TTF = TFA \times P_A + TFB \times P_B
\] \hspace{1cm} (2)

[0133] 式中：\(TTF\)——混剂理论毒力指数；

[0134] \(TFA\)——A 药剂毒力指数；

[0135] \(P_A\)——A 药剂在混剂中的百分含量，单位为百分率 (%)；

[0136] \(TFB\)——B 药剂毒力指数；

[0137] \(P_B\)——B 药剂在混剂中的百分含量，单位为百分率 (%)。
根据下列公式计算混剂的共毒系数

\[CTC = \frac{ATI}{TTI} \times 100 \]

式中：CTC——共毒系数；
ATI——混剂实测毒力指数；
TTI——混剂理论毒力指数。

复配剂的共毒系数（CTC）≥ 120 表现为增效作用；CTC ≤ 80 表现为拮抗作用；80 < CTC < 120 表现为相加作用。

1.5 毒力测定结果

<table>
<thead>
<tr>
<th>供试药剂</th>
<th>配比</th>
<th>回归方程</th>
<th>LC50 (ug/mL)</th>
<th>共毒系数（CTC）</th>
</tr>
</thead>
<tbody>
<tr>
<td>氨基双酰胺</td>
<td>1:2</td>
<td>Y = 1.9108X + 1.3742</td>
<td>1.2020</td>
<td>---</td>
</tr>
<tr>
<td>吡虫啉</td>
<td>1:2</td>
<td>Y = 1.9825X + 2.6547</td>
<td>16.8862</td>
<td>---</td>
</tr>
<tr>
<td>氨基双酰胺：吡虫啉</td>
<td>8:1</td>
<td>Y = 1.9253X + 2.3657</td>
<td>14.7219</td>
<td>128</td>
</tr>
<tr>
<td>氨基双酰胺：吡虫啉</td>
<td>4:1</td>
<td>Y = 1.9438X + 2.2784</td>
<td>13.3826</td>
<td>142</td>
</tr>
<tr>
<td>氨基双酰胺：吡虫啉</td>
<td>1:1</td>
<td>Y = 1.8973X + 2.0516</td>
<td>7.2851</td>
<td>160</td>
</tr>
<tr>
<td>氨基双酰胺：吡虫啉</td>
<td>1:4</td>
<td>Y = 1.8529X + 2.2731</td>
<td>8.4925</td>
<td>168</td>
</tr>
<tr>
<td>氨基双酰胺：吡虫啉</td>
<td>1:8</td>
<td>Y = 1.8216X + 2.0936</td>
<td>7.0319</td>
<td>180</td>
</tr>
</tbody>
</table>

由上表可见，氨基双酰胺和吡虫啉复配的各比例其共毒系数均大于 120，说明该两种成分复配之后对水稻稻飞虱防效有明显的增效作用。因此该两种成分复配具有很大的应用价值和大田实用意义。

室内毒力活性测定实施例 2 氨基双酰胺和吡虫啉不同配比联合毒力测试

室内毒力活性测定实施例 2：氨基双酰胺和吡虫啉不同配比联合毒力测试

2.1 试验方法

分别将氨基双酰胺和吡虫啉以及各复配剂的母液稀释成 5 个系列浓度，采用先浸叶后接虫的方法，将未接触任何药剂的大小一致的新鲜甘蓝叶在配置好的药液中浸泡 5s 后取出，自然晾干，放入养虫盒中，任何接上供试 3 龄小菜蛾幼虫，在 25 度条件下饲养，每处理 3 次重复，每重复用药 20 头，同时设置空白对照，于 72h 检查死虫数，计算死亡率和校正死亡率，求毒力方程并计算 LC50，利用孙云沛法计算共毒系数。

2.2 试验结果
由上表可以看出，氟虫双酰胺和噻虫啉复配的各配比，其在防治小菜蛾的室内毒力结果为共毒系数均大于120，说明该两种成分组合对防治小菜蛾有明显的增效作用。

室内毒力活性测定实施例3 氟虫双酰胺和氯噻啉不同配比联合毒力测试

3.1 试验方法

采用叶龄喷雾法，选取生长一致的甘蓝叶片，用直径18mm的打孔器做成叶蛾，每皿3个叶蛾，每月叶龄10-15头，保持温度25±5℃，相对湿度65%±10%，每处理重复4次，并设空白对照。于72h检查死亡数，统计死亡率和校正死亡率，求毒力回归方程和共毒系数。

3.2 试验结果
由上表可见，氟虫双酰胺与氯噻啉复配之后的室内毒力试验结果显示，其在供试的各个比例对甘蓝蚜虫的防效其共毒系数均在 120 以上，说明该两种成分复配有明显的增效作用。且对甘蓝蚜虫的防效较单剂有明显的提高和增效。

室内毒力活性测定实施例 4 氟虫双酰胺和烯唑虫胺不同配比联合毒力测试

1. 试验方法

取 500ml 广口瓶，每瓶中放入白粉虱成虫 40 头，每瓶喷施 0.013g（喷一次），控制喷药量差异在 2%以内。于 25 度培养 2 小时后调查粉虱死亡率，计算死亡数及死亡率，校正死亡率，求出回归方程，并计算共毒系数。

2. 试验结果

<table>
<thead>
<tr>
<th>供试药剂</th>
<th>配比</th>
<th>回归方程</th>
<th>LC50</th>
<th>共毒系数</th>
</tr>
</thead>
<tbody>
<tr>
<td>氟虫双酰胺</td>
<td>——</td>
<td>Y = 1.9824X + 2.2537</td>
<td>3.8728</td>
<td>——</td>
</tr>
<tr>
<td>烯唑虫胺</td>
<td>——</td>
<td>Y = 1.3289X + 0.5611</td>
<td>2.1305</td>
<td>——</td>
</tr>
<tr>
<td>氟虫双酰胺：烯唑虫胺</td>
<td>4:1</td>
<td>Y = 1.9437X + 2.3719</td>
<td>3.6271</td>
<td>128</td>
</tr>
<tr>
<td>氟虫双酰胺：烯唑虫胺</td>
<td>1:1</td>
<td>Y = 1.8472X + 2.4812</td>
<td>2.9836</td>
<td>159</td>
</tr>
<tr>
<td>氟虫双酰胺：烯唑虫胺</td>
<td>1:4</td>
<td>Y = 1.7283X + 2.3842</td>
<td>2.2947</td>
<td>183</td>
</tr>
<tr>
<td>氟虫双酰胺：烯唑虫胺</td>
<td>1:8</td>
<td>Y = 1.8371X + 2.4917</td>
<td>2.8614</td>
<td>147</td>
</tr>
<tr>
<td>氟虫双酰胺：烯唑虫胺</td>
<td>1:16</td>
<td>Y = 1.9017X + 2.4819</td>
<td>2.6285</td>
<td>138</td>
</tr>
</tbody>
</table>

由上表可以看出，氟虫双酰胺与烯唑虫胺复配的各个比例对白粉虱的室内防治效果具有明显的增效作用，其各个比例所得的共毒系数均高于 120，由此可见，该两种成分复配具有明显的防效优势。

室内毒力活性测定实施例 5 氟虫双酰胺和噁虫胺不同配比联合毒力测试

1. 试验方法

采用先浸叶后接虫的方法，将未接触任何药剂的大小一致新鲜甘蓝叶或其他作物叶在配置好的药液中浸泡 5s 后取出，自然晾干，放入养虫盒中，任何接上供试 3 岁甘蓝甜菜夜蛾幼虫，在 25 度条件下饲养，每处理 3 次重复，没重复用虫 20 头，同时设置空白对照，与 72h 检查死亡数，计算死亡率和校正死亡率，求毒力方程并计算 LC50，利用孙云沛法计算共毒系数。

2. 试验结果
<table>
<thead>
<tr>
<th>供试药剂</th>
<th>配比</th>
<th>回归方程</th>
<th>LC50 (ug/mL)</th>
<th>共毒系数 (CTC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>噻虫双酰胺</td>
<td>——</td>
<td>$Y = 1.6065X + 3.0527$</td>
<td>2.1642</td>
<td>——</td>
</tr>
<tr>
<td>噻虫胺</td>
<td>——</td>
<td>$Y = 1.1325X + 2.6281$</td>
<td>1.9343</td>
<td>——</td>
</tr>
<tr>
<td>噻虫双酰胺: 噻虫胺</td>
<td>40:1</td>
<td>$Y = 1.6125X + 2.8571$</td>
<td>2.1947</td>
<td>121</td>
</tr>
<tr>
<td>噻虫双酰胺: 噻虫胺</td>
<td>20:1</td>
<td>$Y = 1.4927X + 3.0518$</td>
<td>2.0472</td>
<td>133</td>
</tr>
<tr>
<td>噻虫双酰胺: 噻虫胺</td>
<td>10:1</td>
<td>$Y = 1.5286X + 2.3819$</td>
<td>1.9721</td>
<td>159</td>
</tr>
<tr>
<td>噻虫双酰胺: 噻虫胺</td>
<td>5:1</td>
<td>$Y = 1.4827X + 3.2750$</td>
<td>1.7983</td>
<td>173</td>
</tr>
<tr>
<td>噻虫双酰胺: 噻虫胺</td>
<td>1:1</td>
<td>$Y = 1.4915X + 2.3819$</td>
<td>1.9382</td>
<td>162</td>
</tr>
</tbody>
</table>

[0171] 由上表可以看出，噻虫双酰胺和噻虫胺两成分混配的几个比例在对甘蓝甜菜夜蛾的防治中都有比较明显的增效作用，其共毒系数均大于 120，仅 40:1 这一个比例，其共毒系数为 121，其增效作用不是很明显，其他的比例均具有明显的增效作用，因此该两种成分复配具有很强的实用意义。

[0172] 室内毒力活性测定实施例 6 噻虫双酰胺和呋虫胺不同配比联合毒力测试

[0173] 6.1 试验方法

[0174] 采用先浸叶后接虫的方法，将未接触任何药剂的大小一致的新鲜水稻叶在配置好的药液中浸渍 5s 后取出，自然晾干，放入养虫盒中，然后接上供试 3 龄稻纵卷叶螟幼虫，在 25 度条件下饲养，没处理 3 次重复，每重复用试虫 20 头，同时设置空白对照，72h 后检查死虫数，计算死亡率和校正死亡率，求出回归方程，计算 LC50 和共毒系数。

[0175] 6.2 试验结果

[0176]
由上述试验结果可以看出，氟虫双酰胺和呋虫胺复配对稻纵卷叶螟的室内均有明显的增效作用，其各个配比的共毒系数均大于 120，说明该两种成分复配增效明显，有很强的大田实际应用价值。

室内毒力活性测定实施例

<table>
<thead>
<tr>
<th>配比</th>
<th>回归方程 $Y=aX+b$</th>
<th>LC50 (μg/mL)</th>
<th>共毒系数 (CTC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>氟虫双酰胺：呋虫胺</td>
<td>$Y=1.4824X+2.4814$</td>
<td>2.2841</td>
<td>——</td>
</tr>
<tr>
<td>氟虫双酰胺</td>
<td>$Y=0.6785X+3.3412$</td>
<td>4.6355</td>
<td>——</td>
</tr>
<tr>
<td>氟虫双酰胺：呋虫胺</td>
<td>$Y=1.5819X+2.0924$</td>
<td>2.2491</td>
<td>157</td>
</tr>
<tr>
<td>氟虫双酰胺：呋虫胺</td>
<td>$Y=1.2861X+2.4815$</td>
<td>2.3156</td>
<td>148</td>
</tr>
<tr>
<td>氟虫双酰胺：呋虫胺</td>
<td>$Y=1.2479X+2.1567$</td>
<td>2.0478</td>
<td>181</td>
</tr>
<tr>
<td>氟虫双酰胺：呋虫胺</td>
<td>$Y=1.2485X+2.4856$</td>
<td>3.0351</td>
<td>163</td>
</tr>
<tr>
<td>氟虫双酰胺：呋虫胺</td>
<td>$Y=1.6285X+2.1845$</td>
<td>3.9513</td>
<td>128</td>
</tr>
</tbody>
</table>

试验方法

采用叶-minded, 部分的甘蓝叶片, 用直径 18mm 的打孔器做成叶蝶, 每皿 3 个叶蝶, 每叶蝶 10-15 头甘蓝蚜虫, 每处理重复 4 次, 井设空白对照。于 72h 检查死虫数, 计算死亡率和校正死亡率, 求毒力回归方程和共毒系数。

试验结果

[0181] 7.2 试验结果

[0182]
由上表可以看出，氟虫双酰胺与哌虫啶复配的各比例对柑橘蚜虫都有很好的防效，其共毒系数均在 120 以上，由此可见，该两种成分复配具有明显的增效作用。
图 1