(57) Abstract: The invention includes a pharmaceutical dispensing cell ("PDC") that includes at least one sidewall having a top edge and a bottom edge; a base plate; and a lid having a first surface and a second surface. The bottom edge of the at least one sidewall is affixed to the base plate, and the lid is rotatably affixed to the at least one sidewall. Also included are methods of regulating the allocation of at least one pharmaceutical unit dosage over time. The method includes inserting a single dosage unit of at least one pharmaceutical dosage in each cell of the dispensing unit of the pharmaceutical dispensing system of the invention. In an embodiment, the system includes a plurality of PDCs having cells that are configured in a grid which has an X-axis and a Y-axis.
TITLE OF THE INVENTION
Pharmaceutical Dosage Device, Pharmaceutical Dispensing Units and System for Pharmaceutical Dosage Allocation

CROSS REFERENCE TO RELATED APPLICATION
This application claims priority to U.S. Provisional Patent Application No. 61/138,349, filed December 17, 2009, the entire disclosure of which is incorporated herein by reference.

BACKGROUND OF THE INVENTION
As the population ages and medical science advances, a large portion of the population finds itself on regimens of one or more pharmaceuticals, often involving a dosage schedule of medication administration one, two, three, or four times a day spaced out over the 24-hour period. Often individuals’ ability to comply with their dosage regimen is compromised by the difficulty associated with remembering when/if one has taken one’s pills at each time point during the day, from day to day, during the course of a week. Consequently, patients may miss dosages or inadvertently overdose. Unintentional noncompliance through simple confusion of when and if one has taken one’s medications, may result in serious medical complications and consequences for the individual, including reduction in the patient’s quality of life and serious health dangers.

Thus, remains a need in the art for a pharmaceutical dosage allocation system that permits the individual patient an easy, visual, substantially fool-proof way of maintaining compliance with his or her pharmaceutical regimen.

BRIEF SUMMARY OF THE INVENTION
The invention includes a pharmaceutical dispensing cell ("PDC") that includes at least one sidewall having a top edge and a bottom edge; a base plate; and a lid having a first surface and
a second surface. The bottom edge of the at least one sidewall is affixed to the base plate, and the lid is rotatably affixed to the at least one sidewall.

The invention further includes pharmaceutical dispensing systems that incorporate one, two, and/or three or more PDCs.

Also included are methods of regulating the allocation of at least one pharmaceutical unit dosage over time. The method includes inserting a single dosage unit of at least one pharmaceutical dosage in each cell of the dispensing unit of the pharmaceutical dispensing system of the invention. In an embodiment, the system includes a plurality of PDCs having cells that are configured in grid which has an X-axis and a Y-axis. Each cell on the X-axis may correspond to a day of the week and each cell on the Y-axis may correspond to a pre-determined time point.

DETAILED DESCRIPTION OF THE DRAWINGS

Figure 1 is a perspective view of an exemplary polygonal pharmaceutical dispensing cell with the lid removed and overturned;

Figure 1B is a plan view of the exemplary polygonal pharmaceutical dispensing cell with the lid, showing the hypothetical axis X-X;

Figure 2A is a top plan view of exemplary polygonal pharmaceutical dispensing cell with the lid closed;

Figure 2B is a cross sectional view of the polygonal pharmaceutical dispensing cell of Fig. 2A;

Figure 3A is a top plan view of exemplary polygonal pharmaceutical dispensing cell with the lid open/overturned;

Figure 3B is a cross sectional view of the polygonal pharmaceutical dispensing cell of Fig. 2A;
Figure 4, including Figures 4A, 4B, 4C, and 4D illustrates several perspective views of the polygonal pharmaceutical dispensing cell, wherein the lid is removed (4A), overturned/open (4B and 4D), and closed (4C);
Figures 5 and 6, including Figures 5A, 5A1, 5B, 5B1, 5C, 5C1, 6A, 6B, 6B1, 6C, and 6C1 show cross sectional views of the polygonal pharmaceutical dispensing cell of the invention having an interlocking tab mechanism; and Figure 7 is a plan view of an exemplary pharmaceutical dispensing unit;

DETAILED DESCRIPTION OF THE INVENTION

The invention includes a pharmaceutical dispensing cell, a pharmaceutical dispensing unit that includes one or more of the cells, and systems and methods of pharmaceutical allocation that include use of the pharmaceutical dispensing cell and/or dispensing unit.

By the term “pharmaceutical dosage unit” it is meant any single dosage unit or delivery system containing any medication (prescription or non-prescription), vitamin, mineral, nutritional supplement, fiber or other non-nutritive deliverable, or other material that is administered to a mammalian patient repeatedly over any time period, e.g., once a week, once a year, once a day, once a month, twice a day, twice a week, twice a month, etc. Such pharmaceutical dosage forms may be in any delivery system, or dosage format, for example, pills, capsules, powders, liquids, injectable forms, patch or strip delivery forms, suppositories and may include pharmaceuticals formulate for any route of administration.

In some instances, for example, when the medication is to be administered is provided to the patient in a form that cannot be pre-allocated into single dosage units (e.g., cough syrup or by inhaler) the term “pharmaceutical dosage unit” may include a representative token or chit that is placed in the appropriate pharmaceutical dispensing cell and/or system and, in practice of the
system (described below), is removed from the cell and discarded upon administration of a
dosage medication to the patient.

The pharmaceutical dispensing unit is composed of one or two or more pharmaceutical
dispensing cells ("PDCs"). Figure 1 shows an individual dispensing PDC (lid detached)
including a cell body (7) and a lid (5). Each cell body (7) includes at least a base plate (3) and
at least one sidewall (1). The sidewalls (1) are affixed to the base plate (3) to form an interior
chamber (2) having an opening (4) into which the pharmaceutical dosage form(s) are placed.
The sidewalls (1) and/or base plate (3) may be substantially planar or they may be curved (as
seen in Figure 1) or bear convolutions, bumps, projections, etc. In an embodiment, it may be
desirable that the sidewalls and/or base plate are composed of a continuous solid structure (e.g.,
not containing perforations). In other embodiments, one may prefer that the materials used
contain perforations, vents, pinholes, and the like for example, to allow for all flow and avoid
moisture accumulation in the chamber. In some embodiments, the chamber (2) may contain an
insert placed over the base plate (3) or base plate (3) may be a surface coated with fabric and/or
preservative or antibacterial material.

In an embodiment, one may prefer that the material used to form the sidewall(s) and/or base
plate is a mesh or other discontinuous material, such as a wire or plastic mesh.

The PDC includes a lid (5), that covers at least a portion of the chamber’s opening (4). The lid
is rotatably affixed to the at least one sidewall (1), such that it can be rotated at least 90° around
the hypothetical axis created by the attachment point(s) (21). Preferably, the lid (5) is attached
so that it can be rotated at least 100°, at least 130° or at least 180° around the hypothetical axis.
The PDC and any component parts (inserts, etc.) may be fabricated of any material known
or developed in the art. Examples may include metals, aluminum, meshes (e.g., plastic or
wire), polymer composites, laminates, plastics, thermoplastics, elastomeric materials, wood,
wood composites, paper, cardboard, mylar, cellulosic materials, and any other formable or moldable materials.

The PDC may be of any three dimensional cell shape, for example, cylindrical, polygonal prism, truncated cone, truncated pyramid, etc. In an embodiment, it may be preferred that the shape is that of a polygonal prism, especially, for example, a square prism or a rectangular prism.

The at least one sidewall of the PDC includes a top edge and a bottom edge. The number of sidewalls present may be informed by the three dimensional shape of the PDC. For example, if the PDC is in the form of cylinder, it will include one sidewall. A rectangle prism shaped PDC may include four sidewalls.

Regardless of number, the bottom edge of the sidewall is attached to the base plate by any means known or to be developed in the art, including nails, pins, adhesives, soldering seams and the like. Alternatively, the base plate and sidewall(s) may be unitarily formed by a molding, pressing or other forming processes.

As shown in Figure 4, the lid (5) has a first surface and a second surface and is rotatably affixed to the at least one sidewall at least one point along a hypothetical axis X-X of the lid. The first surface (9) and the second surface (11) may independently bear visually or tacitly distinct markings so that a user of the pharmaceutical dispensing system can visually or tacitly determine whether the lid of any given PDC has been rotated or not (thereby providing indication of whether the contents of the particular PDC have been consumed). For example, the first surface may be green colored and the second surface may be red; the surface may bear text (e.g., “Monday a.m”) and the second side may bear different text (e.g., “Completed”). Alternatively, the first surface may bear markings designating the time of day at which the contents of the cell should be consumed, as in, for example, Figure 7.
In an embodiment, the second surface of the lid includes a scooping structure (13) to facilitate the removal of the pharmaceutical dosage from the PDC chamber upon rotation of the lid (Figures 1, 2, 3, 4, 5, and 6). The scooping structure (13) may be any shape or configuration, such as, in cross section, square, rectangular, other polygonal shape, curved, rounded, inwardly curved, outwardly curved, triangular, or undulating. The scooping structure may be located at any area along the second surface, although in an embodiment it is preferred that the scooping structure is located substantially outwardly from the location of the hypothetical X-X axis around which the lid (5) rotates.

The scooping structure (13) may take any form or combination of elements that facilitates removal of the pharmaceutical dosage. The scooping portions (13) of the lid (5) may take the form of a unitary bar or a series of bars, projections, villi, bumps, etc. arranged in uniform or non uniform patterns. Alternatively, in several differing embodiments the scooping structure is in the form of a curvature applied to the outermost edges of the or a brush-like or flexible structure or outermost edges applied to the second surface of the lid. In an alternative embodiment, the scooping structure may take the form of a walled structure on the second surface of the lid. For example, referencing, e.g., Figure 1 (15, 15’, 15’’), the lid (5) may include a wall-like structure placed along each of the lids edges perpendicular to the plane of the second surface (11).

The lid is rotatably affixed to the at least one sidewall. The lid may be affixed at one, two, three, four or more points. By rotatably affixed, it is meant that the lid is attached to the at least one sidewall but capable of swiveling around such hypothetical X-X originating from at least one point of affixation. In an embodiment, it is preferred that the lid is of a dimension that if barely clears the base plate or insert overlaying the base plate. Alternatively, if the lid or the lid
outermost edges are made of a flexible or brush-type material, the lid dimensions may be slightly grater so that the edges brush or sweep the base plate upon rotation.

Any mechanism may be used to rotatably affix the lid to the sidewall(s). For example, the lid may include tabs, pins or other protrusions on two of its edges, which fit into slots, vents, or notches, located in the sidewall(s) or vice versa. In another embodiment, the lid includes an axle having a first end and a second end and which is located on the first surface, the second surface, or running transversely through the lid. The first and second end of the axle can be fitted into holes, notches, etc, in the sidewall.

In Figures 2, 3, an exemplary pharmaceutical dispensing cell is shown in cross section. The cell is in a polygonal configuration and includes four sidewalls (one of which cannot be seen because of cross sectioning). The cell (19) includes a lid (5) which is affixed to each of the sidewalls 1B and 1D(not shown) of the cell by an axel (21), itself having a circular cross section. The axle (21) is attached to the second surface of the lid and its first end (21a) and its second end (not shown) are inserted into notches in the sidewalls 1b and 1d.

The lid (5) includes a scooping structure in the form of a curved edge on the outermost portions of the lid (5) and the second surface bears a three walled structure scooping structure (13). When the lid (5) is rotated around the hypothetical axis X-X, the scooping structure of the lid follows a hypothetical circular pathway (25) within the interior of the chamber, scooping the pharmaceutical dosages that have been placed within the cell and bringing them to the surface of the box when the lid is rotated to about 180°.

In an embodiment of the invention the base plate is curved (or is overlayed with an insert that is curved) inwardly towards the space within the chamber substantially along the curve defined by circular pathway (25) made by the scooping structure of the lid (5) when it is rotated the
facilitates efficient capture of the pharmaceutical dosage forms by the scooping structure upon rotation of the lid.

In an embodiment, the PDC includes a locking or securing mechanism that permits the user to secure the lid such that the first surface of the lid visually or tactiley accessible (indicating the pharmaceutical dosage forms within the container have not been consumed) and/or with the second surface of the lid visually or tactiley accessible (indicating that the pharmaceutical dosage forms have been consumed).

Many suitable mechanisms are known in the art, such as interlocking tabs, self renewing adhesives, and the like and any such mechanism may be used in the PDC. Alternatively, it may be preferred that the locking mechanism includes an interlocking toothed gear attached to the side of the axel. A lever affixed to the lid includes teeth which interlock with gear teeth. Upon rotation of the lid, a tab is conveyed along an arcuate hypothetical pathway through the interior of the pharmaceutical cell thereby capturing the pharmaceutical dosage forms located within the cell and bringing them to the plane of the top surface of the cell. Once rotated, the lid is locked in place by the interlocking teeth of the gear and tab.

Another suitable locking mechanism may include a triangular cam that is attached to one side of an axel of a round cross section by the first end about which the lid is capable of rotating. Also attached to the axel by an end that is an elongate arm. The arm may be retractable and/or flexible. As the lid rotates around the axel, the adjustable arm rides over the cam until it is behind the cam and is locked into place by the cam. The arm prevents the lids from rotating backward if, for example, additional pressure is applied during retrieval of the contents of the cell.

Figures 5 and 6 show an embodiment of the invention containing a tabbed locking mechanism for the lid. Figure 5A shows a cross section of a pharmaceutical dispensing cell in which the
lid (5) is closed. Figure 5A1 is a blown up detail of the tabbed mechanism. A tab (17) located on the first end (31) of the lid (5) is inserted into a groove (23) in the sidewall, which prevents the lid (5) from moving in the backward direction. In addition, the sidewall may also contain an outwardly protruding member (27) that prevents lid from moving in the forward direction, in the absence of a force applied to the lid.

5 Figure 5B shows the same cell in cross section, wherein the tabbed mechanism is in the process of disengagement. As can be seen in Figure 5B2, when force is applied to the first surface of the lid, the tab (17) slides out of the groove (23), allowing the lid to be disengaged from locking position. In an embodiment, it may be preferred that either the tab or material forming the groove is a flexible material, to facilitate disengagement.

Figure 5C shows the same cell in cross-section, wherein the tabbed mechanism is disengaged. The base plate (3) includes a tab track (35) into which the tab can travel, so as not to scrape or damage the base plate.

Figure 6A shows the same cell in cross-section, but wherein the lid has been rotated about 90 degrees around the axis. Figure 6B (with detail shown in Figure 6B1) shows the same cell in cross section, wherein the tabbed mechanism is in the process of engagement. If the cell had contained a pharmaceutical dosage, the dosage would now be located outside of the chamber and on the second surface of the lid. Figure 6C, with detail shown in 6C1, shows the tabbed mechanism again in locked position.

Also included in the invention are pharmaceutical dispensing units that comprise a plurality of the cells described above in any configuration. In embodiment, the dispensing unit contains a plurality of cells configured in a grid having an X axis and a Y axis. For example, a dispensing unit containing four cells along the Y axis and seven cells along the X axis forming, in plan view, a grid-like structure, is envisioned. The individual columns of the grid may signify the
days of the week, Monday through Sunday. The rows of the grid may signify time points during the day at which a specific pharmaceutical dosage is to be administered.

The dispensing units may comprise as many or as few dispensing cells as desired. The units may be formed integrally so that the cells may share adjoining sidewalls with the adjacent cell. Alternatively, the unit may consist of two or more detachably attached or modular dispensing cells, so that the dispensing units may be configured to meet different drug dosage regimens, reduced in size for travel.

An exemplary embodiment is shown in Figure 7. Each dispensing cell may be independent, but is adapted to attach to one another and/or adapted to fit into a tray-like cell holder.

Alternatively, a set of cells whose number represents the number of dosages desired in a 24-hour period may be formed as a unit in a column configuration. For at-home use, the system would include a cell holder having one or more days-worth of dispensing units included therein. If desired, for travel, one could remove a column of cells, while not disturbing the remaining week’s dosages.

Also included with the invention are methods of regulating the allocation of at least one pharmaceutical dosage over time. The method includes use of a pharmaceutical dispensing unit as described above wherein each cell on the X axis corresponds to a day and each cell on the Y axis corresponds to a predetermined time point in a day (Monday morning 10:00, Monday lunch, Monday bedtime, etc.). The at least one pharmaceutical dosage which should be administered at each of the time points as placed within the appropriate dispensing cell chamber. The dosage forms are dispensed by rotating the lid around the axis to expose the second surface and to scoop up and provide access to the pharmaceutical dosage forms. In an embodiment, it may be preferred that the first side of the lid and the second side of the lid are
each distinctly decorated so that the user has a visual aid indicating whether or not he or she has taken the appropriate dosage at the appropriate time.

Other uses of the systems, cells, methods described herein are contemplated, including, for example, use of the cell or system as an “Advent Calendar” or use of the cell or system with representative tokens or chits as a memory aid to facilitate the completion of certain activities, tasks, etc

Example 1

A pharmaceutical dispensing unit is prepared by attaching twenty eight PDC to a baseboard in a 4 row by 7 column grid arrangement. Each of the individual dispensing cells has a lid with a first surface that is colored green and a second surface that is colored red. Additionally, each of the first surfaces is labeled with text as shown in the diagram below:

<table>
<thead>
<tr>
<th>Monday Morning</th>
<th>Tuesday Morning</th>
<th>Wednesday Morning</th>
<th>Thursday Morning</th>
<th>Friday Morning</th>
<th>Saturday Morning</th>
<th>Sunday Morning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday Noon</td>
<td>Tuesday noon</td>
<td>Wednesday noon</td>
<td>Thursday noon</td>
<td>Friday noon</td>
<td>Saturday noon</td>
<td>Sunday noon</td>
</tr>
<tr>
<td>Monday Evening</td>
<td>Tuesday Evening</td>
<td>Wednesday Evening</td>
<td>Thursday Evening</td>
<td>Friday Evening</td>
<td>Saturday Evening</td>
<td>Sunday Evening</td>
</tr>
<tr>
<td>Monday Bedtime</td>
<td>Tuesday Bedtime</td>
<td>Wednesday Bedtime</td>
<td>Thursday Bedtime</td>
<td>Friday Bedtime</td>
<td>Saturday Bedtime</td>
<td>Sunday Bedtime</td>
</tr>
</tbody>
</table>

Into each PDC chamber is placed one representative token (intended to represent one inhalation dosage of beclomethasone dipropionate). An asthma patient is prescribed a regimen consisting of a beclomethasone dipropionate dosage four times a day administered via the inhalation route. The patient is provided with an appropriately loaded inhaler and the pharmaceutical dispensing unit described above. Beginning Monday, at each dosage interval the patient swivels the lid of the appropriate PDC, removes the representative token, and administers the medication to himself. On Thursday, at 7 pm, the dispensing unit is that portrayed in Figure 10.
It will be appreciated by those skilled in the art that changes could be made to the embodiments described above without departing from the broad inventive concept thereof. It is understood, therefore, that this invention is not limited to the particular embodiments disclosed, but it is intended to cover modifications within the spirit and scope of the present invention as defined by the appended claims.
CLAIMS

We claim:

1. A pharmaceutical dispensing cell comprising:
 a. at least one sidewall having a top edge and a bottom edge;
 b. a base plate; and
 c. a lid having a first surface and a second surface,
 wherein the bottom edge of the at least one sidewall is affixed to the base plate, and the lid
 is rotatably affixed to the at least one sidewall.

2. The dispensing cell of claim 1, wherein at least one of the first surface or the second
 surface of the lid further comprises a scooping structure.

3. The dispensing cell of claim 1, at least one of the first or the second surfaces of the lid
 comprises a visual element.

4. The dispensing cell of claim 1, wherein at least one of the first or the second surface of
 the lid comprises a visual element, such that the first surface is visually distinct from the second
 surface.

5. The dispensing cell of claim 1, wherein one or more of the sidewall, the base plate and
 the lid comprises a thermoplastic material, a thermosetting material, wood, paper, cardboard, a
 metal, a composite, a aluminum, a textile, glass, ceramic, and mixtures thereof.

6. The dispensing cell of claim 1, wherein the cell has four sidewalls configured to form a
 polygon.

7. The dispensing cell of claim 1 where in the cell has four sidewalls configured to form a
 rectangle.

8. The dispensing cell of claim 1, wherein the cell comprises three, four, five, six, seven
 eight or nine sidewalls.
9. The dispensing cell of claim 1, comprising four sidewalls configured in the form of a rectangle affixed to a base plate having a substantially rectangular plan view.

10. A pharmaceutical dispensing unit comprising a plurality of the cells of claim 1.

11. The dispensing unit of claim 10, comprising a plurality of cells configured in a grid having an X-axis and a Y-axis.

12. The dispensing unit of claim 11, wherein the X-axis contains seven cells.

13. The dispensing unit of claim 11, wherein the Y-axis contains about two to about twelve cells.

14. The dispensing unit of claim 1, wherein the Y-axis contains about two to about six cells.

15. The dispensing unit of claim 1, wherein at least one of the first or the second surfaces of the lids of each of the cells comprises a visual element.

16. The dispensing unit of claim 15, wherein at least the second surface of each lid bears an identical visual marking.

17. The dispensing unit of claim 1, wherein each cell is attached to at least one other cell.

18. The dispensing unit of claim 1, wherein each cell is detachably attached to at least one other cell.

19. The dispensing unit of claim 1, wherein the plurality of cells are unitarily formed.

20. A method of regulating the allocation of at least one pharmaceutical dosage over time, the method comprising inserting a single dosage unit of the at least one pharmaceutical dosage in each cell of the dispensing unit of claim 10, wherein the cells are configured in grid having
an X-axis and a Y-axis and wherein each cell on the X-axis corresponds to a day of the week and each cell on the Y-axis corresponds to a pre-determined time point.

21. The method of claim 20, wherein the first surface of each lid is independently marked to indicate the day of the week to which it corresponds.

22. The method of claim 20, wherein the first surface of each lid is independently marked to indicate the day of the week and the time point to which it corresponds.

23. The method of claim 20, wherein the pharmaceutical dosage is chosen from a vitamin, a mineral, a prescription drug, a non-prescription drug, a nutritional supplement and a fiber delivery system.

24. The method of claim 20 comprising inserting a single dosage unit of the about two to about ten one pharmaceutical dosages in each cell.